1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */ 28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */ 29 /* All Rights Reserved */ 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/sysmacros.h> 36 #include <sys/signal.h> 37 #include <sys/systm.h> 38 #include <sys/user.h> 39 #include <sys/mman.h> 40 #include <sys/class.h> 41 #include <sys/proc.h> 42 #include <sys/procfs.h> 43 #include <sys/buf.h> 44 #include <sys/kmem.h> 45 #include <sys/cred.h> 46 #include <sys/archsystm.h> 47 #include <sys/vmparam.h> 48 #include <sys/prsystm.h> 49 #include <sys/reboot.h> 50 #include <sys/uadmin.h> 51 #include <sys/vfs.h> 52 #include <sys/vnode.h> 53 #include <sys/file.h> 54 #include <sys/session.h> 55 #include <sys/ucontext.h> 56 #include <sys/dnlc.h> 57 #include <sys/var.h> 58 #include <sys/cmn_err.h> 59 #include <sys/debugreg.h> 60 #include <sys/thread.h> 61 #include <sys/vtrace.h> 62 #include <sys/consdev.h> 63 #include <sys/psw.h> 64 #include <sys/regset.h> 65 #include <sys/privregs.h> 66 #include <sys/stack.h> 67 #include <sys/swap.h> 68 #include <vm/hat.h> 69 #include <vm/anon.h> 70 #include <vm/as.h> 71 #include <vm/page.h> 72 #include <vm/seg.h> 73 #include <vm/seg_kmem.h> 74 #include <vm/seg_map.h> 75 #include <vm/seg_vn.h> 76 #include <sys/exec.h> 77 #include <sys/acct.h> 78 #include <sys/core.h> 79 #include <sys/corectl.h> 80 #include <sys/modctl.h> 81 #include <sys/tuneable.h> 82 #include <c2/audit.h> 83 #include <sys/bootconf.h> 84 #include <sys/dumphdr.h> 85 #include <sys/promif.h> 86 #include <sys/systeminfo.h> 87 #include <sys/kdi.h> 88 #include <sys/contract_impl.h> 89 #include <sys/x86_archext.h> 90 #include <sys/segments.h> 91 92 /* 93 * Compare the version of boot that boot says it is against 94 * the version of boot the kernel expects. 95 */ 96 int 97 check_boot_version(int boots_version) 98 { 99 if (boots_version == BO_VERSION) 100 return (0); 101 102 prom_printf("Wrong boot interface - kernel needs v%d found v%d\n", 103 BO_VERSION, boots_version); 104 prom_panic("halting"); 105 /*NOTREACHED*/ 106 } 107 108 /* 109 * Process the physical installed list for boot. 110 * Finds: 111 * 1) the pfn of the highest installed physical page, 112 * 2) the number of pages installed 113 * 3) the number of distinct contiguous regions these pages fall into. 114 */ 115 void 116 installed_top_size( 117 struct memlist *list, /* pointer to start of installed list */ 118 pfn_t *high_pfn, /* return ptr for top value */ 119 pgcnt_t *pgcnt, /* return ptr for sum of installed pages */ 120 int *ranges) /* return ptr for the count of contig. ranges */ 121 { 122 pfn_t top = 0; 123 pgcnt_t sumpages = 0; 124 pfn_t highp; /* high page in a chunk */ 125 int cnt = 0; 126 127 for (; list; list = list->next) { 128 ++cnt; 129 highp = (list->address + list->size - 1) >> PAGESHIFT; 130 if (top < highp) 131 top = highp; 132 sumpages += btop(list->size); 133 } 134 135 *high_pfn = top; 136 *pgcnt = sumpages; 137 *ranges = cnt; 138 } 139 140 /* 141 * Copy in a memory list from boot to kernel, with a filter function 142 * to remove pages. The filter function can increase the address and/or 143 * decrease the size to filter out pages. It will also align addresses and 144 * sizes to PAGESIZE. 145 */ 146 void 147 copy_memlist_filter( 148 struct memlist *src, 149 struct memlist **dstp, 150 void (*filter)(uint64_t *, uint64_t *)) 151 { 152 struct memlist *dst, *prev; 153 uint64_t addr; 154 uint64_t size; 155 uint64_t eaddr; 156 157 dst = *dstp; 158 prev = dst; 159 160 /* 161 * Move through the memlist applying a filter against 162 * each range of memory. Note that we may apply the 163 * filter multiple times against each memlist entry. 164 */ 165 for (; src; src = src->next) { 166 addr = P2ROUNDUP(src->address, PAGESIZE); 167 eaddr = P2ALIGN(src->address + src->size, PAGESIZE); 168 while (addr < eaddr) { 169 size = eaddr - addr; 170 if (filter != NULL) 171 filter(&addr, &size); 172 if (size == 0) 173 break; 174 dst->address = addr; 175 dst->size = size; 176 dst->next = 0; 177 if (prev == dst) { 178 dst->prev = 0; 179 dst++; 180 } else { 181 dst->prev = prev; 182 prev->next = dst; 183 dst++; 184 prev++; 185 } 186 addr += size; 187 } 188 } 189 190 *dstp = dst; 191 } 192 193 /* 194 * Kernel setup code, called from startup(). 195 */ 196 void 197 kern_setup1(void) 198 { 199 proc_t *pp; 200 201 pp = &p0; 202 203 proc_sched = pp; 204 205 /* 206 * Initialize process 0 data structures 207 */ 208 pp->p_stat = SRUN; 209 pp->p_flag = SSYS; 210 211 pp->p_pidp = &pid0; 212 pp->p_pgidp = &pid0; 213 pp->p_sessp = &session0; 214 pp->p_tlist = &t0; 215 pid0.pid_pglink = pp; 216 pid0.pid_pgtail = pp; 217 218 /* 219 * XXX - we asssume that the u-area is zeroed out except for 220 * ttolwp(curthread)->lwp_regs. 221 */ 222 u.u_cmask = (mode_t)CMASK; 223 224 thread_init(); /* init thread_free list */ 225 pid_init(); /* initialize pid (proc) table */ 226 contract_init(); /* initialize contracts */ 227 228 init_pages_pp_maximum(); 229 } 230 231 /* 232 * Load a procedure into a thread. 233 */ 234 void 235 thread_load(kthread_t *t, void (*start)(), caddr_t arg, size_t len) 236 { 237 caddr_t sp; 238 size_t framesz; 239 caddr_t argp; 240 long *p; 241 extern void thread_start(); 242 243 /* 244 * Push a "c" call frame onto the stack to represent 245 * the caller of "start". 246 */ 247 sp = t->t_stk; 248 ASSERT(((uintptr_t)t->t_stk & (STACK_ENTRY_ALIGN - 1)) == 0); 249 if (len != 0) { 250 /* 251 * the object that arg points at is copied into the 252 * caller's frame. 253 */ 254 framesz = SA(len); 255 sp -= framesz; 256 ASSERT(sp > t->t_stkbase); 257 argp = sp + SA(MINFRAME); 258 bcopy(arg, argp, len); 259 arg = argp; 260 } 261 /* 262 * Set up arguments (arg and len) on the caller's stack frame. 263 */ 264 p = (long *)sp; 265 266 *--p = 0; /* fake call */ 267 *--p = 0; /* null frame pointer terminates stack trace */ 268 *--p = (long)len; 269 *--p = (intptr_t)arg; 270 *--p = (intptr_t)start; 271 272 /* 273 * initialize thread to resume at thread_start() which will 274 * turn around and invoke (*start)(arg, len). 275 */ 276 t->t_pc = (uintptr_t)thread_start; 277 t->t_sp = (uintptr_t)p; 278 279 ASSERT((t->t_sp & (STACK_ENTRY_ALIGN - 1)) == 0); 280 } 281 282 /* 283 * load user registers into lwp. 284 */ 285 /*ARGSUSED2*/ 286 void 287 lwp_load(klwp_t *lwp, gregset_t grp, uintptr_t thrptr) 288 { 289 struct regs *rp = lwptoregs(lwp); 290 291 setgregs(lwp, grp); 292 rp->r_ps = PSL_USER; 293 294 /* 295 * For 64-bit lwps, we allow one magic %fs selector value, and one 296 * magic %gs selector to point anywhere in the address space using 297 * %fsbase and %gsbase behind the scenes. libc uses %fs to point 298 * at the ulwp_t structure. 299 * 300 * For 32-bit lwps, libc wedges its lwp thread pointer into the 301 * ucontext ESP slot (which is otherwise irrelevant to setting a 302 * ucontext) and LWPGS_SEL value into gregs[REG_GS]. This is so 303 * syslwp_create() can atomically setup %gs. 304 * 305 * See setup_context() in libc. 306 */ 307 #ifdef _SYSCALL32_IMPL 308 if (lwp_getdatamodel(lwp) == DATAMODEL_ILP32) { 309 if (grp[REG_GS] == LWPGS_SEL) 310 (void) lwp_setprivate(lwp, _LWP_GSBASE, thrptr); 311 } 312 #else 313 if (grp[GS] == LWPGS_SEL) 314 (void) lwp_setprivate(lwp, _LWP_GSBASE, thrptr); 315 #endif 316 317 lwp->lwp_eosys = JUSTRETURN; 318 lwptot(lwp)->t_post_sys = 1; 319 } 320 321 /* 322 * set syscall()'s return values for a lwp. 323 */ 324 void 325 lwp_setrval(klwp_t *lwp, int v1, int v2) 326 { 327 lwptoregs(lwp)->r_ps &= ~PS_C; 328 lwptoregs(lwp)->r_r0 = v1; 329 lwptoregs(lwp)->r_r1 = v2; 330 } 331 332 /* 333 * set syscall()'s return values for a lwp. 334 */ 335 void 336 lwp_setsp(klwp_t *lwp, caddr_t sp) 337 { 338 lwptoregs(lwp)->r_sp = (intptr_t)sp; 339 } 340 341 /* 342 * Copy regs from parent to child. 343 */ 344 void 345 lwp_forkregs(klwp_t *lwp, klwp_t *clwp) 346 { 347 #if defined(__amd64) 348 clwp->lwp_pcb.pcb_flags |= RUPDATE_PENDING; 349 lwptot(clwp)->t_post_sys = 1; 350 #endif 351 bcopy(lwp->lwp_regs, clwp->lwp_regs, sizeof (struct regs)); 352 } 353 354 /* 355 * This function is currently unused on x86. 356 */ 357 /*ARGSUSED*/ 358 void 359 lwp_freeregs(klwp_t *lwp, int isexec) 360 {} 361 362 /* 363 * This function is currently unused on x86. 364 */ 365 void 366 lwp_pcb_exit(void) 367 {} 368 369 /* 370 * Lwp context ops for segment registers. 371 */ 372 373 /* 374 * Every time we come into the kernel (syscall, interrupt or trap 375 * but not fast-traps) we capture the current values of the user's 376 * segment registers into the lwp's reg structure. This includes 377 * lcall for i386 generic system call support since it is handled 378 * as a segment-not-present trap. 379 * 380 * Here we save the current values from the lwp regs into the pcb 381 * and set the RUPDATE_PENDING bit to tell the rest of the kernel 382 * that the pcb copy of the segment registers is the current one. 383 * This ensures the lwp's next trip to user land via update_sregs. 384 * Finally we set t_post_sys to ensure that no system call fast-path's 385 * its way out of the kernel via sysret. 386 * 387 * (This means that we need to have interrupts disabled when we test 388 * t->t_post_sys in the syscall handlers; if the test fails, we need 389 * to keep interrupts disabled until we return to userland so we can't 390 * be switched away.) 391 * 392 * As a result of all this, we don't really have to do a whole lot if 393 * the thread is just mucking about in the kernel, switching on and 394 * off the cpu for whatever reason it feels like. And yet we still 395 * preserve fast syscalls, cause if we -don't- get descheduled, 396 * we never come here either. 397 */ 398 399 #define VALID_LWP_DESC(udp) ((udp)->usd_type == SDT_MEMRWA && \ 400 (udp)->usd_p == 1 && (udp)->usd_dpl == SEL_UPL) 401 402 void 403 lwp_segregs_save(klwp_t *lwp) 404 { 405 #if defined(__amd64) 406 pcb_t *pcb = &lwp->lwp_pcb; 407 struct regs *rp; 408 409 ASSERT(VALID_LWP_DESC(&pcb->pcb_fsdesc)); 410 ASSERT(VALID_LWP_DESC(&pcb->pcb_gsdesc)); 411 412 if ((pcb->pcb_flags & RUPDATE_PENDING) == 0) { 413 rp = lwptoregs(lwp); 414 415 /* 416 * If there's no update already pending, capture the current 417 * %ds/%es/%fs/%gs values from lwp's regs in case the user 418 * changed them; %fsbase and %gsbase are privileged so the 419 * kernel versions of these registers in pcb_fsbase and 420 * pcb_gsbase are always up-to-date. 421 */ 422 pcb->pcb_ds = rp->r_ds; 423 pcb->pcb_es = rp->r_es; 424 pcb->pcb_fs = rp->r_fs; 425 pcb->pcb_gs = rp->r_gs; 426 pcb->pcb_flags |= RUPDATE_PENDING; 427 lwp->lwp_thread->t_post_sys = 1; 428 } 429 #endif /* __amd64 */ 430 431 ASSERT(bcmp(&CPU->cpu_gdt[GDT_LWPFS], &lwp->lwp_pcb.pcb_fsdesc, 432 sizeof (lwp->lwp_pcb.pcb_fsdesc)) == 0); 433 ASSERT(bcmp(&CPU->cpu_gdt[GDT_LWPGS], &lwp->lwp_pcb.pcb_gsdesc, 434 sizeof (lwp->lwp_pcb.pcb_gsdesc)) == 0); 435 } 436 437 /* 438 * Restore lwp private fs and gs segment descriptors 439 * on current cpu's GDT. 440 */ 441 static void 442 lwp_segregs_restore(klwp_t *lwp) 443 { 444 cpu_t *cpu = CPU; 445 pcb_t *pcb = &lwp->lwp_pcb; 446 447 ASSERT(VALID_LWP_DESC(&pcb->pcb_fsdesc)); 448 ASSERT(VALID_LWP_DESC(&pcb->pcb_gsdesc)); 449 450 cpu->cpu_gdt[GDT_LWPFS] = pcb->pcb_fsdesc; 451 cpu->cpu_gdt[GDT_LWPGS] = pcb->pcb_gsdesc; 452 453 #if defined(__amd64) 454 /* 455 * Make it impossible for a process to change its data model. 456 * We do this by toggling the present bits for the 32 and 457 * 64-bit user code descriptors. That way if a user lwp attempts 458 * to change its data model (by using the wrong code descriptor in 459 * %cs) it will fault immediately. This also allows us to simplify 460 * assertions and checks in the kernel. 461 */ 462 cpu->cpu_gdt[GDT_UCODE].usd_p = 1; 463 cpu->cpu_gdt[GDT_U32CODE].usd_p = 0; 464 #endif /* __amd64 */ 465 } 466 467 #ifdef _SYSCALL32_IMPL 468 469 static void 470 lwp_segregs_restore32(klwp_t *lwp) 471 { 472 cpu_t *cpu = CPU; 473 pcb_t *pcb = &lwp->lwp_pcb; 474 475 ASSERT(VALID_LWP_DESC(&pcb->pcb_fsdesc)); 476 ASSERT(VALID_LWP_DESC(&pcb->pcb_gsdesc)); 477 478 cpu->cpu_gdt[GDT_LWPFS] = pcb->pcb_fsdesc; 479 cpu->cpu_gdt[GDT_LWPGS] = pcb->pcb_gsdesc; 480 cpu->cpu_gdt[GDT_UCODE].usd_p = 0; 481 cpu->cpu_gdt[GDT_U32CODE].usd_p = 1; 482 } 483 484 #endif /* _SYSCALL32_IMPL */ 485 486 /* 487 * Add any lwp-associated context handlers to the lwp at the beginning 488 * of the lwp's useful life. 489 * 490 * All paths which create lwp's invoke lwp_create(); lwp_create() 491 * invokes lwp_stk_init() which initializes the stack, sets up 492 * lwp_regs, and invokes this routine. 493 * 494 * All paths which destroy lwp's invoke lwp_exit() to rip the lwp 495 * apart and put it on 'lwp_deathrow'; if the lwp is destroyed it 496 * ends up in thread_free() which invokes freectx(t, 0) before 497 * invoking lwp_stk_fini(). When the lwp is recycled from death 498 * row, lwp_stk_fini() is invoked, then thread_free(), and thus 499 * freectx(t, 0) as before. 500 * 501 * In the case of exec, the surviving lwp is thoroughly scrubbed 502 * clean; exec invokes freectx(t, 1) to destroy associated contexts. 503 * On the way back to the new image, it invokes setregs() which 504 * in turn invokes this routine. 505 */ 506 void 507 lwp_installctx(klwp_t *lwp) 508 { 509 kthread_t *t = lwptot(lwp); 510 int thisthread = t == curthread; 511 #ifdef _SYSCALL32_IMPL 512 void (*restop)(klwp_t *) = lwp_getdatamodel(lwp) == DATAMODEL_NATIVE ? 513 lwp_segregs_restore : lwp_segregs_restore32; 514 #else 515 void (*restop)(klwp_t *) = lwp_segregs_restore; 516 #endif 517 518 /* 519 * Install the basic lwp context handlers on each lwp. 520 * 521 * On the amd64 kernel, the context handlers are responsible for 522 * virtualizing %ds, %es, %fs, and %gs to the lwp. The register 523 * values are only ever changed via sys_rtt when the 524 * RUPDATE_PENDING bit is set. Only sys_rtt gets to clear the bit. 525 * 526 * On the i386 kernel, the context handlers are responsible for 527 * virtualizing %gs/%fs to the lwp by updating the per-cpu GDTs 528 */ 529 ASSERT(removectx(t, lwp, lwp_segregs_save, restop, 530 NULL, NULL, NULL, NULL) == 0); 531 if (thisthread) 532 kpreempt_disable(); 533 installctx(t, lwp, lwp_segregs_save, restop, 534 NULL, NULL, NULL, NULL); 535 if (thisthread) { 536 /* 537 * Since we're the right thread, set the values in the GDT 538 */ 539 restop(lwp); 540 kpreempt_enable(); 541 } 542 543 /* 544 * If we have sysenter/sysexit instructions enabled, we need 545 * to ensure that the hardware mechanism is kept up-to-date with the 546 * lwp's kernel stack pointer across context switches. 547 * 548 * sep_save zeros the sysenter stack pointer msr; sep_restore sets 549 * it to the lwp's kernel stack pointer (kstktop). 550 */ 551 if (x86_feature & X86_SEP) { 552 #if defined(__amd64) 553 caddr_t kstktop = (caddr_t)lwp->lwp_regs; 554 #elif defined(__i386) 555 caddr_t kstktop = ((caddr_t)lwp->lwp_regs - MINFRAME) + 556 SA(sizeof (struct regs) + MINFRAME); 557 #endif 558 ASSERT(removectx(t, kstktop, 559 sep_save, sep_restore, NULL, NULL, NULL, NULL) == 0); 560 561 if (thisthread) 562 kpreempt_disable(); 563 installctx(t, kstktop, 564 sep_save, sep_restore, NULL, NULL, NULL, NULL); 565 if (thisthread) { 566 /* 567 * We're the right thread, so set the stack pointer 568 * for the first sysenter instruction to use 569 */ 570 sep_restore(kstktop); 571 kpreempt_enable(); 572 } 573 } 574 } 575 576 /* 577 * Clear registers on exec(2). 578 */ 579 void 580 setregs(uarg_t *args) 581 { 582 struct regs *rp; 583 kthread_t *t = curthread; 584 klwp_t *lwp = ttolwp(t); 585 pcb_t *pcb = &lwp->lwp_pcb; 586 greg_t sp; 587 588 /* 589 * Initialize user registers 590 */ 591 (void) save_syscall_args(); /* copy args from registers first */ 592 rp = lwptoregs(lwp); 593 sp = rp->r_sp; 594 bzero(rp, sizeof (*rp)); 595 596 rp->r_ss = UDS_SEL; 597 rp->r_sp = sp; 598 rp->r_pc = args->entry; 599 rp->r_ps = PSL_USER; 600 601 #if defined(__amd64) 602 603 pcb->pcb_fs = pcb->pcb_gs = 0; 604 pcb->pcb_fsbase = pcb->pcb_gsbase = 0; 605 606 if (ttoproc(t)->p_model == DATAMODEL_NATIVE) { 607 cpu_t *cpu; 608 609 rp->r_cs = UCS_SEL; 610 611 /* 612 * Only allow 64-bit user code descriptor to be present. 613 */ 614 kpreempt_disable(); 615 cpu = CPU; 616 cpu->cpu_gdt[GDT_UCODE].usd_p = 1; 617 cpu->cpu_gdt[GDT_U32CODE].usd_p = 0; 618 kpreempt_enable(); 619 620 /* 621 * Arrange that the virtualized %fs and %gs GDT descriptors 622 * have a well-defined initial state (present, ring 3 623 * and of type data). 624 */ 625 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 626 627 /* 628 * thrptr is either NULL or a value used by DTrace. 629 * 64-bit processes use %fs as their "thread" register. 630 */ 631 if (args->thrptr) 632 (void) lwp_setprivate(lwp, _LWP_FSBASE, args->thrptr); 633 634 } else { 635 cpu_t *cpu; 636 637 rp->r_cs = U32CS_SEL; 638 rp->r_ds = rp->r_es = UDS_SEL; 639 640 /* 641 * only allow 32-bit user code selector to be present. 642 */ 643 kpreempt_disable(); 644 cpu = CPU; 645 cpu->cpu_gdt[GDT_UCODE].usd_p = 0; 646 cpu->cpu_gdt[GDT_U32CODE].usd_p = 1; 647 kpreempt_enable(); 648 649 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 650 651 /* 652 * thrptr is either NULL or a value used by DTrace. 653 * 32-bit processes use %gs as their "thread" register. 654 */ 655 if (args->thrptr) 656 (void) lwp_setprivate(lwp, _LWP_GSBASE, args->thrptr); 657 658 } 659 660 661 pcb->pcb_ds = rp->r_ds; 662 pcb->pcb_es = rp->r_es; 663 pcb->pcb_flags |= RUPDATE_PENDING; 664 665 #elif defined(__i386) 666 667 rp->r_cs = UCS_SEL; 668 rp->r_ds = rp->r_es = UDS_SEL; 669 670 /* 671 * Arrange that the virtualized %fs and %gs GDT descriptors 672 * have a well-defined initial state (present, ring 3 673 * and of type data). 674 */ 675 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 676 677 678 /* 679 * For %gs we need to reset LWP_GSBASE in pcb and the 680 * per-cpu GDT descriptor. thrptr is either NULL 681 * or a value used by DTrace. 682 */ 683 if (args->thrptr) 684 (void) lwp_setprivate(lwp, _LWP_GSBASE, args->thrptr); 685 #endif 686 687 lwp->lwp_eosys = JUSTRETURN; 688 t->t_post_sys = 1; 689 690 /* 691 * Here we initialize minimal fpu state. 692 * The rest is done at the first floating 693 * point instruction that a process executes. 694 */ 695 pcb->pcb_fpu.fpu_flags = 0; 696 697 /* 698 * Add the lwp context handlers that virtualize segment registers, 699 * and/or system call stacks etc. 700 */ 701 lwp_installctx(lwp); 702 } 703 704 #if !defined(lwp_getdatamodel) 705 706 /* 707 * Return the datamodel of the given lwp. 708 */ 709 /*ARGSUSED*/ 710 model_t 711 lwp_getdatamodel(klwp_t *lwp) 712 { 713 return (lwp->lwp_procp->p_model); 714 } 715 716 #endif /* !lwp_getdatamodel */ 717 718 #if !defined(get_udatamodel) 719 720 model_t 721 get_udatamodel(void) 722 { 723 return (curproc->p_model); 724 } 725 726 #endif /* !get_udatamodel */ 727