1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 26 /* All Rights Reserved */ 27 28 #include <sys/param.h> 29 #include <sys/types.h> 30 #include <sys/vmparam.h> 31 #include <sys/systm.h> 32 #include <sys/signal.h> 33 #include <sys/stack.h> 34 #include <sys/regset.h> 35 #include <sys/privregs.h> 36 #include <sys/frame.h> 37 #include <sys/proc.h> 38 #include <sys/psw.h> 39 #include <sys/siginfo.h> 40 #include <sys/cpuvar.h> 41 #include <sys/asm_linkage.h> 42 #include <sys/kmem.h> 43 #include <sys/errno.h> 44 #include <sys/bootconf.h> 45 #include <sys/archsystm.h> 46 #include <sys/debug.h> 47 #include <sys/elf.h> 48 #include <sys/spl.h> 49 #include <sys/time.h> 50 #include <sys/atomic.h> 51 #include <sys/sysmacros.h> 52 #include <sys/cmn_err.h> 53 #include <sys/modctl.h> 54 #include <sys/kobj.h> 55 #include <sys/panic.h> 56 #include <sys/reboot.h> 57 #include <sys/time.h> 58 #include <sys/fp.h> 59 #include <sys/x86_archext.h> 60 #include <sys/auxv.h> 61 #include <sys/auxv_386.h> 62 #include <sys/dtrace.h> 63 #include <sys/brand.h> 64 #include <sys/machbrand.h> 65 #include <sys/cmn_err.h> 66 67 extern const struct fnsave_state x87_initial; 68 extern const struct fxsave_state sse_initial; 69 70 /* 71 * Map an fnsave-formatted save area into an fxsave-formatted save area. 72 * 73 * Most fields are the same width, content and semantics. However 74 * the tag word is compressed. 75 */ 76 static void 77 fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx) 78 { 79 uint_t i, tagbits; 80 81 fx->fx_fcw = fn->f_fcw; 82 fx->fx_fsw = fn->f_fsw; 83 84 /* 85 * copy element by element (because of holes) 86 */ 87 for (i = 0; i < 8; i++) 88 bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0], 89 sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */ 90 91 /* 92 * synthesize compressed tag bits 93 */ 94 fx->fx_fctw = 0; 95 for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2) 96 if ((tagbits & 3) != 3) 97 fx->fx_fctw |= (1 << i); 98 99 fx->fx_fop = fn->f_fop; 100 101 #if defined(__amd64) 102 fx->fx_rip = (uint64_t)fn->f_eip; 103 fx->fx_rdp = (uint64_t)fn->f_dp; 104 #else 105 fx->fx_eip = fn->f_eip; 106 fx->fx_cs = fn->f_cs; 107 fx->__fx_ign0 = 0; 108 fx->fx_dp = fn->f_dp; 109 fx->fx_ds = fn->f_ds; 110 fx->__fx_ign1 = 0; 111 #endif 112 } 113 114 /* 115 * Map from an fxsave-format save area to an fnsave-format save area. 116 */ 117 static void 118 fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn) 119 { 120 uint_t i, top, tagbits; 121 122 fn->f_fcw = fx->fx_fcw; 123 fn->__f_ign0 = 0; 124 fn->f_fsw = fx->fx_fsw; 125 fn->__f_ign1 = 0; 126 127 top = (fx->fx_fsw & FPS_TOP) >> 11; 128 129 /* 130 * copy element by element (because of holes) 131 */ 132 for (i = 0; i < 8; i++) 133 bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0], 134 sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */ 135 136 /* 137 * synthesize uncompressed tag bits 138 */ 139 fn->f_ftw = 0; 140 for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) { 141 uint_t ibit, expo; 142 const uint16_t *fpp; 143 static const uint16_t zero[5] = { 0, 0, 0, 0, 0 }; 144 145 if ((tagbits & 1) == 0) { 146 fn->f_ftw |= 3 << (i << 1); /* empty */ 147 continue; 148 } 149 150 /* 151 * (tags refer to *physical* registers) 152 */ 153 fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0]; 154 ibit = fpp[3] >> 15; 155 expo = fpp[4] & 0x7fff; 156 157 if (ibit && expo != 0 && expo != 0x7fff) 158 continue; /* valid fp number */ 159 160 if (bcmp(fpp, &zero, sizeof (zero))) 161 fn->f_ftw |= 2 << (i << 1); /* NaN */ 162 else 163 fn->f_ftw |= 1 << (i << 1); /* fp zero */ 164 } 165 166 fn->f_fop = fx->fx_fop; 167 168 fn->__f_ign2 = 0; 169 #if defined(__amd64) 170 fn->f_eip = (uint32_t)fx->fx_rip; 171 fn->f_cs = U32CS_SEL; 172 fn->f_dp = (uint32_t)fx->fx_rdp; 173 fn->f_ds = UDS_SEL; 174 #else 175 fn->f_eip = fx->fx_eip; 176 fn->f_cs = fx->fx_cs; 177 fn->f_dp = fx->fx_dp; 178 fn->f_ds = fx->fx_ds; 179 #endif 180 fn->__f_ign3 = 0; 181 } 182 183 /* 184 * Map from an fpregset_t into an fxsave-format save area 185 */ 186 static void 187 fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx) 188 { 189 #if defined(__amd64) 190 bcopy(fp, fx, sizeof (*fx)); 191 #else 192 const struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state; 193 194 fnsave_to_fxsave((const struct fnsave_state *)fc, fx); 195 fx->fx_mxcsr = fc->mxcsr; 196 bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm)); 197 #endif 198 /* 199 * avoid useless #gp exceptions - mask reserved bits 200 */ 201 fx->fx_mxcsr &= sse_mxcsr_mask; 202 } 203 204 /* 205 * Map from an fxsave-format save area into a fpregset_t 206 */ 207 static void 208 fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp) 209 { 210 #if defined(__amd64) 211 bcopy(fx, fp, sizeof (*fx)); 212 #else 213 struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state; 214 215 fxsave_to_fnsave(fx, (struct fnsave_state *)fc); 216 fc->mxcsr = fx->fx_mxcsr; 217 bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm)); 218 #endif 219 } 220 221 #if defined(_SYSCALL32_IMPL) 222 static void 223 fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx) 224 { 225 const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state; 226 227 fnsave_to_fxsave((const struct fnsave_state *)fc, fx); 228 /* 229 * avoid useless #gp exceptions - mask reserved bits 230 */ 231 fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr; 232 bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm)); 233 } 234 235 static void 236 fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp) 237 { 238 struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state; 239 240 fxsave_to_fnsave(fx, (struct fnsave_state *)fc); 241 fc->mxcsr = fx->fx_mxcsr; 242 bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm)); 243 } 244 245 static void 246 fpregset_nto32(const fpregset_t *src, fpregset32_t *dst) 247 { 248 fxsave_to_fpregset32((struct fxsave_state *)src, dst); 249 dst->fp_reg_set.fpchip_state.status = 250 src->fp_reg_set.fpchip_state.status; 251 dst->fp_reg_set.fpchip_state.xstatus = 252 src->fp_reg_set.fpchip_state.xstatus; 253 } 254 255 static void 256 fpregset_32ton(const fpregset32_t *src, fpregset_t *dst) 257 { 258 fpregset32_to_fxsave(src, (struct fxsave_state *)dst); 259 dst->fp_reg_set.fpchip_state.status = 260 src->fp_reg_set.fpchip_state.status; 261 dst->fp_reg_set.fpchip_state.xstatus = 262 src->fp_reg_set.fpchip_state.xstatus; 263 } 264 #endif 265 266 /* 267 * Set floating-point registers from a native fpregset_t. 268 */ 269 void 270 setfpregs(klwp_t *lwp, fpregset_t *fp) 271 { 272 struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu; 273 274 if (fpu->fpu_flags & FPU_EN) { 275 if (!(fpu->fpu_flags & FPU_VALID)) { 276 /* 277 * FPU context is still active, release the 278 * ownership. 279 */ 280 fp_free(fpu, 0); 281 } 282 } 283 /* 284 * Else: if we are trying to change the FPU state of a thread which 285 * hasn't yet initialized floating point, store the state in 286 * the pcb and indicate that the state is valid. When the 287 * thread enables floating point, it will use this state instead 288 * of the default state. 289 */ 290 291 switch (fp_save_mech) { 292 #if defined(__i386) 293 case FP_FNSAVE: 294 bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn, 295 sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn)); 296 break; 297 #endif 298 case FP_FXSAVE: 299 fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx); 300 fpu->fpu_regs.kfpu_xstatus = 301 fp->fp_reg_set.fpchip_state.xstatus; 302 break; 303 304 case FP_XSAVE: 305 fpregset_to_fxsave(fp, 306 &fpu->fpu_regs.kfpu_u.kfpu_xs.xs_fxsave); 307 fpu->fpu_regs.kfpu_xstatus = 308 fp->fp_reg_set.fpchip_state.xstatus; 309 fpu->fpu_regs.kfpu_u.kfpu_xs.xs_xstate_bv |= 310 (XFEATURE_LEGACY_FP | XFEATURE_SSE); 311 break; 312 default: 313 panic("Invalid fp_save_mech"); 314 /*NOTREACHED*/ 315 } 316 317 fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status; 318 fpu->fpu_flags |= FPU_VALID; 319 } 320 321 /* 322 * Get floating-point registers into a native fpregset_t. 323 */ 324 void 325 getfpregs(klwp_t *lwp, fpregset_t *fp) 326 { 327 struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu; 328 329 kpreempt_disable(); 330 if (fpu->fpu_flags & FPU_EN) { 331 /* 332 * If we have FPU hw and the thread's pcb doesn't have 333 * a valid FPU state then get the state from the hw. 334 */ 335 if (fpu_exists && ttolwp(curthread) == lwp && 336 !(fpu->fpu_flags & FPU_VALID)) 337 fp_save(fpu); /* get the current FPU state */ 338 } 339 340 /* 341 * There are 3 possible cases we have to be aware of here: 342 * 343 * 1. FPU is enabled. FPU state is stored in the current LWP. 344 * 345 * 2. FPU is not enabled, and there have been no intervening /proc 346 * modifications. Return initial FPU state. 347 * 348 * 3. FPU is not enabled, but a /proc consumer has modified FPU state. 349 * FPU state is stored in the current LWP. 350 */ 351 if ((fpu->fpu_flags & FPU_EN) || (fpu->fpu_flags & FPU_VALID)) { 352 /* 353 * Cases 1 and 3. 354 */ 355 switch (fp_save_mech) { 356 #if defined(__i386) 357 case FP_FNSAVE: 358 bcopy(&fpu->fpu_regs.kfpu_u.kfpu_fn, fp, 359 sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn)); 360 break; 361 #endif 362 case FP_FXSAVE: 363 fxsave_to_fpregset(&fpu->fpu_regs.kfpu_u.kfpu_fx, fp); 364 fp->fp_reg_set.fpchip_state.xstatus = 365 fpu->fpu_regs.kfpu_xstatus; 366 break; 367 case FP_XSAVE: 368 fxsave_to_fpregset( 369 &fpu->fpu_regs.kfpu_u.kfpu_xs.xs_fxsave, fp); 370 fp->fp_reg_set.fpchip_state.xstatus = 371 fpu->fpu_regs.kfpu_xstatus; 372 break; 373 default: 374 panic("Invalid fp_save_mech"); 375 /*NOTREACHED*/ 376 } 377 fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status; 378 } else { 379 /* 380 * Case 2. 381 */ 382 switch (fp_save_mech) { 383 #if defined(__i386) 384 case FP_FNSAVE: 385 bcopy(&x87_initial, fp, sizeof (x87_initial)); 386 break; 387 #endif 388 case FP_FXSAVE: 389 case FP_XSAVE: 390 /* 391 * For now, we don't have any AVX specific field in ABI. 392 * If we add any in the future, we need to initial them 393 * as well. 394 */ 395 fxsave_to_fpregset(&sse_initial, fp); 396 fp->fp_reg_set.fpchip_state.xstatus = 397 fpu->fpu_regs.kfpu_xstatus; 398 break; 399 default: 400 panic("Invalid fp_save_mech"); 401 /*NOTREACHED*/ 402 } 403 fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status; 404 } 405 kpreempt_enable(); 406 } 407 408 #if defined(_SYSCALL32_IMPL) 409 410 /* 411 * Set floating-point registers from an fpregset32_t. 412 */ 413 void 414 setfpregs32(klwp_t *lwp, fpregset32_t *fp) 415 { 416 fpregset_t fpregs; 417 418 fpregset_32ton(fp, &fpregs); 419 setfpregs(lwp, &fpregs); 420 } 421 422 /* 423 * Get floating-point registers into an fpregset32_t. 424 */ 425 void 426 getfpregs32(klwp_t *lwp, fpregset32_t *fp) 427 { 428 fpregset_t fpregs; 429 430 getfpregs(lwp, &fpregs); 431 fpregset_nto32(&fpregs, fp); 432 } 433 434 #endif /* _SYSCALL32_IMPL */ 435 436 /* 437 * Return the general registers 438 */ 439 void 440 getgregs(klwp_t *lwp, gregset_t grp) 441 { 442 struct regs *rp = lwptoregs(lwp); 443 #if defined(__amd64) 444 struct pcb *pcb = &lwp->lwp_pcb; 445 int thisthread = lwptot(lwp) == curthread; 446 447 grp[REG_RDI] = rp->r_rdi; 448 grp[REG_RSI] = rp->r_rsi; 449 grp[REG_RDX] = rp->r_rdx; 450 grp[REG_RCX] = rp->r_rcx; 451 grp[REG_R8] = rp->r_r8; 452 grp[REG_R9] = rp->r_r9; 453 grp[REG_RAX] = rp->r_rax; 454 grp[REG_RBX] = rp->r_rbx; 455 grp[REG_RBP] = rp->r_rbp; 456 grp[REG_R10] = rp->r_r10; 457 grp[REG_R11] = rp->r_r11; 458 grp[REG_R12] = rp->r_r12; 459 grp[REG_R13] = rp->r_r13; 460 grp[REG_R14] = rp->r_r14; 461 grp[REG_R15] = rp->r_r15; 462 grp[REG_FSBASE] = pcb->pcb_fsbase; 463 grp[REG_GSBASE] = pcb->pcb_gsbase; 464 if (thisthread) 465 kpreempt_disable(); 466 if (pcb->pcb_rupdate == 1) { 467 grp[REG_DS] = pcb->pcb_ds; 468 grp[REG_ES] = pcb->pcb_es; 469 grp[REG_FS] = pcb->pcb_fs; 470 grp[REG_GS] = pcb->pcb_gs; 471 } else { 472 grp[REG_DS] = rp->r_ds; 473 grp[REG_ES] = rp->r_es; 474 grp[REG_FS] = rp->r_fs; 475 grp[REG_GS] = rp->r_gs; 476 } 477 if (thisthread) 478 kpreempt_enable(); 479 grp[REG_TRAPNO] = rp->r_trapno; 480 grp[REG_ERR] = rp->r_err; 481 grp[REG_RIP] = rp->r_rip; 482 grp[REG_CS] = rp->r_cs; 483 grp[REG_SS] = rp->r_ss; 484 grp[REG_RFL] = rp->r_rfl; 485 grp[REG_RSP] = rp->r_rsp; 486 #else 487 bcopy(&rp->r_gs, grp, sizeof (gregset_t)); 488 #endif 489 } 490 491 #if defined(_SYSCALL32_IMPL) 492 493 void 494 getgregs32(klwp_t *lwp, gregset32_t grp) 495 { 496 struct regs *rp = lwptoregs(lwp); 497 struct pcb *pcb = &lwp->lwp_pcb; 498 int thisthread = lwptot(lwp) == curthread; 499 500 if (thisthread) 501 kpreempt_disable(); 502 if (pcb->pcb_rupdate == 1) { 503 grp[GS] = (uint16_t)pcb->pcb_gs; 504 grp[FS] = (uint16_t)pcb->pcb_fs; 505 grp[DS] = (uint16_t)pcb->pcb_ds; 506 grp[ES] = (uint16_t)pcb->pcb_es; 507 } else { 508 grp[GS] = (uint16_t)rp->r_gs; 509 grp[FS] = (uint16_t)rp->r_fs; 510 grp[DS] = (uint16_t)rp->r_ds; 511 grp[ES] = (uint16_t)rp->r_es; 512 } 513 if (thisthread) 514 kpreempt_enable(); 515 grp[EDI] = (greg32_t)rp->r_rdi; 516 grp[ESI] = (greg32_t)rp->r_rsi; 517 grp[EBP] = (greg32_t)rp->r_rbp; 518 grp[ESP] = 0; 519 grp[EBX] = (greg32_t)rp->r_rbx; 520 grp[EDX] = (greg32_t)rp->r_rdx; 521 grp[ECX] = (greg32_t)rp->r_rcx; 522 grp[EAX] = (greg32_t)rp->r_rax; 523 grp[TRAPNO] = (greg32_t)rp->r_trapno; 524 grp[ERR] = (greg32_t)rp->r_err; 525 grp[EIP] = (greg32_t)rp->r_rip; 526 grp[CS] = (uint16_t)rp->r_cs; 527 grp[EFL] = (greg32_t)rp->r_rfl; 528 grp[UESP] = (greg32_t)rp->r_rsp; 529 grp[SS] = (uint16_t)rp->r_ss; 530 } 531 532 void 533 ucontext_32ton(const ucontext32_t *src, ucontext_t *dst) 534 { 535 mcontext_t *dmc = &dst->uc_mcontext; 536 const mcontext32_t *smc = &src->uc_mcontext; 537 538 bzero(dst, sizeof (*dst)); 539 dst->uc_flags = src->uc_flags; 540 dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link; 541 542 bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask)); 543 544 dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp; 545 dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size; 546 dst->uc_stack.ss_flags = src->uc_stack.ss_flags; 547 548 dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS]; 549 dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS]; 550 dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES]; 551 dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS]; 552 dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI]; 553 dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI]; 554 dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP]; 555 dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX]; 556 dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX]; 557 dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX]; 558 dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX]; 559 dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO]; 560 dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR]; 561 dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP]; 562 dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS]; 563 dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL]; 564 dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP]; 565 dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS]; 566 567 /* 568 * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set 569 * otherwise there is no guarantee that anything in fpregs is valid. 570 */ 571 if (src->uc_flags & UC_FPU) 572 fpregset_32ton(&src->uc_mcontext.fpregs, 573 &dst->uc_mcontext.fpregs); 574 } 575 576 #endif /* _SYSCALL32_IMPL */ 577 578 /* 579 * Return the user-level PC. 580 * If in a system call, return the address of the syscall trap. 581 */ 582 greg_t 583 getuserpc() 584 { 585 greg_t upc = lwptoregs(ttolwp(curthread))->r_pc; 586 uint32_t insn; 587 588 if (curthread->t_sysnum == 0) 589 return (upc); 590 591 /* 592 * We might've gotten here from sysenter (0xf 0x34), 593 * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0). 594 * 595 * Go peek at the binary to figure it out.. 596 */ 597 if (fuword32((void *)(upc - 2), &insn) != -1 && 598 (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f) 599 return (upc - 2); 600 return (upc - 7); 601 } 602 603 /* 604 * Protect segment registers from non-user privilege levels and GDT selectors 605 * other than USER_CS, USER_DS and lwp FS and GS values. If the segment 606 * selector is non-null and not USER_CS/USER_DS, we make sure that the 607 * TI bit is set to point into the LDT and that the RPL is set to 3. 608 * 609 * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we 610 * also explicitly zero the top 16 bits since they may be coming from the 611 * user's address space via setcontext(2) or /proc. 612 * 613 * Note about null selector. When running on the hypervisor if we allow a 614 * process to set its %cs to null selector with RPL of 0 the hypervisor will 615 * crash the domain. If running on bare metal we would get a #gp fault and 616 * be able to kill the process and continue on. Therefore we make sure to 617 * force RPL to SEL_UPL even for null selector when setting %cs. 618 */ 619 620 #if defined(IS_CS) || defined(IS_NOT_CS) 621 #error "IS_CS and IS_NOT_CS already defined" 622 #endif 623 624 #define IS_CS 1 625 #define IS_NOT_CS 0 626 627 /*ARGSUSED*/ 628 static greg_t 629 fix_segreg(greg_t sr, int iscs, model_t datamodel) 630 { 631 switch (sr &= 0xffff) { 632 633 case 0: 634 if (iscs == IS_CS) 635 return (0 | SEL_UPL); 636 else 637 return (0); 638 639 #if defined(__amd64) 640 /* 641 * If lwp attempts to switch data model then force their 642 * code selector to be null selector. 643 */ 644 case U32CS_SEL: 645 if (datamodel == DATAMODEL_NATIVE) 646 return (0 | SEL_UPL); 647 else 648 return (sr); 649 650 case UCS_SEL: 651 if (datamodel == DATAMODEL_ILP32) 652 return (0 | SEL_UPL); 653 #elif defined(__i386) 654 case UCS_SEL: 655 #endif 656 /*FALLTHROUGH*/ 657 case UDS_SEL: 658 case LWPFS_SEL: 659 case LWPGS_SEL: 660 case SEL_UPL: 661 return (sr); 662 default: 663 break; 664 } 665 666 /* 667 * Force it into the LDT in ring 3 for 32-bit processes, which by 668 * default do not have an LDT, so that any attempt to use an invalid 669 * selector will reference the (non-existant) LDT, and cause a #gp 670 * fault for the process. 671 * 672 * 64-bit processes get the null gdt selector since they 673 * are not allowed to have a private LDT. 674 */ 675 #if defined(__amd64) 676 if (datamodel == DATAMODEL_ILP32) { 677 return (sr | SEL_TI_LDT | SEL_UPL); 678 } else { 679 if (iscs == IS_CS) 680 return (0 | SEL_UPL); 681 else 682 return (0); 683 } 684 685 #elif defined(__i386) 686 return (sr | SEL_TI_LDT | SEL_UPL); 687 #endif 688 } 689 690 /* 691 * Set general registers. 692 */ 693 void 694 setgregs(klwp_t *lwp, gregset_t grp) 695 { 696 struct regs *rp = lwptoregs(lwp); 697 model_t datamodel = lwp_getdatamodel(lwp); 698 699 #if defined(__amd64) 700 struct pcb *pcb = &lwp->lwp_pcb; 701 int thisthread = lwptot(lwp) == curthread; 702 703 if (datamodel == DATAMODEL_NATIVE) { 704 705 if (thisthread) 706 (void) save_syscall_args(); /* copy the args */ 707 708 rp->r_rdi = grp[REG_RDI]; 709 rp->r_rsi = grp[REG_RSI]; 710 rp->r_rdx = grp[REG_RDX]; 711 rp->r_rcx = grp[REG_RCX]; 712 rp->r_r8 = grp[REG_R8]; 713 rp->r_r9 = grp[REG_R9]; 714 rp->r_rax = grp[REG_RAX]; 715 rp->r_rbx = grp[REG_RBX]; 716 rp->r_rbp = grp[REG_RBP]; 717 rp->r_r10 = grp[REG_R10]; 718 rp->r_r11 = grp[REG_R11]; 719 rp->r_r12 = grp[REG_R12]; 720 rp->r_r13 = grp[REG_R13]; 721 rp->r_r14 = grp[REG_R14]; 722 rp->r_r15 = grp[REG_R15]; 723 rp->r_trapno = grp[REG_TRAPNO]; 724 rp->r_err = grp[REG_ERR]; 725 rp->r_rip = grp[REG_RIP]; 726 /* 727 * Setting %cs or %ss to anything else is quietly but 728 * quite definitely forbidden! 729 */ 730 rp->r_cs = UCS_SEL; 731 rp->r_ss = UDS_SEL; 732 rp->r_rsp = grp[REG_RSP]; 733 734 if (thisthread) 735 kpreempt_disable(); 736 737 pcb->pcb_ds = UDS_SEL; 738 pcb->pcb_es = UDS_SEL; 739 740 /* 741 * 64-bit processes -are- allowed to set their fsbase/gsbase 742 * values directly, but only if they're using the segment 743 * selectors that allow that semantic. 744 * 745 * (32-bit processes must use lwp_set_private().) 746 */ 747 pcb->pcb_fsbase = grp[REG_FSBASE]; 748 pcb->pcb_gsbase = grp[REG_GSBASE]; 749 pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel); 750 pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel); 751 752 /* 753 * Ensure that we go out via update_sregs 754 */ 755 pcb->pcb_rupdate = 1; 756 lwptot(lwp)->t_post_sys = 1; 757 if (thisthread) 758 kpreempt_enable(); 759 #if defined(_SYSCALL32_IMPL) 760 } else { 761 rp->r_rdi = (uint32_t)grp[REG_RDI]; 762 rp->r_rsi = (uint32_t)grp[REG_RSI]; 763 rp->r_rdx = (uint32_t)grp[REG_RDX]; 764 rp->r_rcx = (uint32_t)grp[REG_RCX]; 765 rp->r_rax = (uint32_t)grp[REG_RAX]; 766 rp->r_rbx = (uint32_t)grp[REG_RBX]; 767 rp->r_rbp = (uint32_t)grp[REG_RBP]; 768 rp->r_trapno = (uint32_t)grp[REG_TRAPNO]; 769 rp->r_err = (uint32_t)grp[REG_ERR]; 770 rp->r_rip = (uint32_t)grp[REG_RIP]; 771 772 rp->r_cs = fix_segreg(grp[REG_CS], IS_CS, datamodel); 773 rp->r_ss = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel); 774 775 rp->r_rsp = (uint32_t)grp[REG_RSP]; 776 777 if (thisthread) 778 kpreempt_disable(); 779 780 pcb->pcb_ds = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel); 781 pcb->pcb_es = fix_segreg(grp[REG_ES], IS_NOT_CS, datamodel); 782 783 /* 784 * (See fsbase/gsbase commentary above) 785 */ 786 pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel); 787 pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel); 788 789 /* 790 * Ensure that we go out via update_sregs 791 */ 792 pcb->pcb_rupdate = 1; 793 lwptot(lwp)->t_post_sys = 1; 794 if (thisthread) 795 kpreempt_enable(); 796 #endif 797 } 798 799 /* 800 * Only certain bits of the flags register can be modified. 801 */ 802 rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) | 803 (grp[REG_RFL] & PSL_USERMASK); 804 805 #elif defined(__i386) 806 807 /* 808 * Only certain bits of the flags register can be modified. 809 */ 810 grp[EFL] = (rp->r_efl & ~PSL_USERMASK) | (grp[EFL] & PSL_USERMASK); 811 812 /* 813 * Copy saved registers from user stack. 814 */ 815 bcopy(grp, &rp->r_gs, sizeof (gregset_t)); 816 817 rp->r_cs = fix_segreg(rp->r_cs, IS_CS, datamodel); 818 rp->r_ss = fix_segreg(rp->r_ss, IS_NOT_CS, datamodel); 819 rp->r_ds = fix_segreg(rp->r_ds, IS_NOT_CS, datamodel); 820 rp->r_es = fix_segreg(rp->r_es, IS_NOT_CS, datamodel); 821 rp->r_fs = fix_segreg(rp->r_fs, IS_NOT_CS, datamodel); 822 rp->r_gs = fix_segreg(rp->r_gs, IS_NOT_CS, datamodel); 823 824 #endif /* __i386 */ 825 } 826 827 /* 828 * Determine whether eip is likely to have an interrupt frame 829 * on the stack. We do this by comparing the address to the 830 * range of addresses spanned by several well-known routines. 831 */ 832 extern void _interrupt(); 833 extern void _allsyscalls(); 834 extern void _cmntrap(); 835 extern void fakesoftint(); 836 837 extern size_t _interrupt_size; 838 extern size_t _allsyscalls_size; 839 extern size_t _cmntrap_size; 840 extern size_t _fakesoftint_size; 841 842 /* 843 * Get a pc-only stacktrace. Used for kmem_alloc() buffer ownership tracking. 844 * Returns MIN(current stack depth, pcstack_limit). 845 */ 846 int 847 getpcstack(pc_t *pcstack, int pcstack_limit) 848 { 849 struct frame *fp = (struct frame *)getfp(); 850 struct frame *nextfp, *minfp, *stacktop; 851 int depth = 0; 852 int on_intr; 853 uintptr_t pc; 854 855 if ((on_intr = CPU_ON_INTR(CPU)) != 0) 856 stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME)); 857 else 858 stacktop = (struct frame *)curthread->t_stk; 859 minfp = fp; 860 861 pc = ((struct regs *)fp)->r_pc; 862 863 while (depth < pcstack_limit) { 864 nextfp = (struct frame *)fp->fr_savfp; 865 pc = fp->fr_savpc; 866 if (nextfp <= minfp || nextfp >= stacktop) { 867 if (on_intr) { 868 /* 869 * Hop from interrupt stack to thread stack. 870 */ 871 stacktop = (struct frame *)curthread->t_stk; 872 minfp = (struct frame *)curthread->t_stkbase; 873 on_intr = 0; 874 continue; 875 } 876 break; 877 } 878 pcstack[depth++] = (pc_t)pc; 879 fp = nextfp; 880 minfp = fp; 881 } 882 return (depth); 883 } 884 885 /* 886 * The following ELF header fields are defined as processor-specific 887 * in the V8 ABI: 888 * 889 * e_ident[EI_DATA] encoding of the processor-specific 890 * data in the object file 891 * e_machine processor identification 892 * e_flags processor-specific flags associated 893 * with the file 894 */ 895 896 /* 897 * The value of at_flags reflects a platform's cpu module support. 898 * at_flags is used to check for allowing a binary to execute and 899 * is passed as the value of the AT_FLAGS auxiliary vector. 900 */ 901 int at_flags = 0; 902 903 /* 904 * Check the processor-specific fields of an ELF header. 905 * 906 * returns 1 if the fields are valid, 0 otherwise 907 */ 908 /*ARGSUSED2*/ 909 int 910 elfheadcheck( 911 unsigned char e_data, 912 Elf32_Half e_machine, 913 Elf32_Word e_flags) 914 { 915 if (e_data != ELFDATA2LSB) 916 return (0); 917 #if defined(__amd64) 918 if (e_machine == EM_AMD64) 919 return (1); 920 #endif 921 return (e_machine == EM_386); 922 } 923 924 uint_t auxv_hwcap_include = 0; /* patch to enable unrecognized features */ 925 uint_t auxv_hwcap_exclude = 0; /* patch for broken cpus, debugging */ 926 #if defined(_SYSCALL32_IMPL) 927 uint_t auxv_hwcap32_include = 0; /* ditto for 32-bit apps */ 928 uint_t auxv_hwcap32_exclude = 0; /* ditto for 32-bit apps */ 929 #endif 930 931 /* 932 * Gather information about the processor and place it into auxv_hwcap 933 * so that it can be exported to the linker via the aux vector. 934 * 935 * We use this seemingly complicated mechanism so that we can ensure 936 * that /etc/system can be used to override what the system can or 937 * cannot discover for itself. 938 */ 939 void 940 bind_hwcap(void) 941 { 942 uint_t cpu_hwcap_flags = cpuid_pass4(NULL); 943 944 auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags) & 945 ~auxv_hwcap_exclude; 946 947 #if defined(__amd64) 948 /* 949 * On AMD processors, sysenter just doesn't work at all 950 * when the kernel is in long mode. On IA-32e processors 951 * it does, but there's no real point in all the alternate 952 * mechanism when syscall works on both. 953 * 954 * Besides, the kernel's sysenter handler is expecting a 955 * 32-bit lwp ... 956 */ 957 auxv_hwcap &= ~AV_386_SEP; 958 #else 959 /* 960 * 32-bit processes can -always- use the lahf/sahf instructions 961 */ 962 auxv_hwcap |= AV_386_AHF; 963 #endif 964 965 if (auxv_hwcap_include || auxv_hwcap_exclude) 966 cmn_err(CE_CONT, "?user ABI extensions: %b\n", 967 auxv_hwcap, FMT_AV_386); 968 969 #if defined(_SYSCALL32_IMPL) 970 auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags) & 971 ~auxv_hwcap32_exclude; 972 973 #if defined(__amd64) 974 /* 975 * If this is an amd64 architecture machine from Intel, then 976 * syscall -doesn't- work in compatibility mode, only sysenter does. 977 * 978 * Sigh. 979 */ 980 if (!cpuid_syscall32_insn(NULL)) 981 auxv_hwcap32 &= ~AV_386_AMD_SYSC; 982 983 /* 984 * 32-bit processes can -always- use the lahf/sahf instructions 985 */ 986 auxv_hwcap32 |= AV_386_AHF; 987 #endif 988 989 if (auxv_hwcap32_include || auxv_hwcap32_exclude) 990 cmn_err(CE_CONT, "?32-bit user ABI extensions: %b\n", 991 auxv_hwcap32, FMT_AV_386); 992 #endif 993 } 994 995 /* 996 * sync_icache() - this is called 997 * in proc/fs/prusrio.c. x86 has an unified cache and therefore 998 * this is a nop. 999 */ 1000 /* ARGSUSED */ 1001 void 1002 sync_icache(caddr_t addr, uint_t len) 1003 { 1004 /* Do nothing for now */ 1005 } 1006 1007 /*ARGSUSED*/ 1008 void 1009 sync_data_memory(caddr_t va, size_t len) 1010 { 1011 /* Not implemented for this platform */ 1012 } 1013 1014 int 1015 __ipltospl(int ipl) 1016 { 1017 return (ipltospl(ipl)); 1018 } 1019 1020 /* 1021 * The panic code invokes panic_saveregs() to record the contents of a 1022 * regs structure into the specified panic_data structure for debuggers. 1023 */ 1024 void 1025 panic_saveregs(panic_data_t *pdp, struct regs *rp) 1026 { 1027 panic_nv_t *pnv = PANICNVGET(pdp); 1028 1029 struct cregs creg; 1030 1031 getcregs(&creg); 1032 1033 #if defined(__amd64) 1034 PANICNVADD(pnv, "rdi", rp->r_rdi); 1035 PANICNVADD(pnv, "rsi", rp->r_rsi); 1036 PANICNVADD(pnv, "rdx", rp->r_rdx); 1037 PANICNVADD(pnv, "rcx", rp->r_rcx); 1038 PANICNVADD(pnv, "r8", rp->r_r8); 1039 PANICNVADD(pnv, "r9", rp->r_r9); 1040 PANICNVADD(pnv, "rax", rp->r_rax); 1041 PANICNVADD(pnv, "rbx", rp->r_rbx); 1042 PANICNVADD(pnv, "rbp", rp->r_rbp); 1043 PANICNVADD(pnv, "r10", rp->r_r10); 1044 PANICNVADD(pnv, "r10", rp->r_r10); 1045 PANICNVADD(pnv, "r11", rp->r_r11); 1046 PANICNVADD(pnv, "r12", rp->r_r12); 1047 PANICNVADD(pnv, "r13", rp->r_r13); 1048 PANICNVADD(pnv, "r14", rp->r_r14); 1049 PANICNVADD(pnv, "r15", rp->r_r15); 1050 PANICNVADD(pnv, "fsbase", rdmsr(MSR_AMD_FSBASE)); 1051 PANICNVADD(pnv, "gsbase", rdmsr(MSR_AMD_GSBASE)); 1052 PANICNVADD(pnv, "ds", rp->r_ds); 1053 PANICNVADD(pnv, "es", rp->r_es); 1054 PANICNVADD(pnv, "fs", rp->r_fs); 1055 PANICNVADD(pnv, "gs", rp->r_gs); 1056 PANICNVADD(pnv, "trapno", rp->r_trapno); 1057 PANICNVADD(pnv, "err", rp->r_err); 1058 PANICNVADD(pnv, "rip", rp->r_rip); 1059 PANICNVADD(pnv, "cs", rp->r_cs); 1060 PANICNVADD(pnv, "rflags", rp->r_rfl); 1061 PANICNVADD(pnv, "rsp", rp->r_rsp); 1062 PANICNVADD(pnv, "ss", rp->r_ss); 1063 PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3])); 1064 PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0])); 1065 PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3])); 1066 PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0])); 1067 #elif defined(__i386) 1068 PANICNVADD(pnv, "gs", (uint32_t)rp->r_gs); 1069 PANICNVADD(pnv, "fs", (uint32_t)rp->r_fs); 1070 PANICNVADD(pnv, "es", (uint32_t)rp->r_es); 1071 PANICNVADD(pnv, "ds", (uint32_t)rp->r_ds); 1072 PANICNVADD(pnv, "edi", (uint32_t)rp->r_edi); 1073 PANICNVADD(pnv, "esi", (uint32_t)rp->r_esi); 1074 PANICNVADD(pnv, "ebp", (uint32_t)rp->r_ebp); 1075 PANICNVADD(pnv, "esp", (uint32_t)rp->r_esp); 1076 PANICNVADD(pnv, "ebx", (uint32_t)rp->r_ebx); 1077 PANICNVADD(pnv, "edx", (uint32_t)rp->r_edx); 1078 PANICNVADD(pnv, "ecx", (uint32_t)rp->r_ecx); 1079 PANICNVADD(pnv, "eax", (uint32_t)rp->r_eax); 1080 PANICNVADD(pnv, "trapno", (uint32_t)rp->r_trapno); 1081 PANICNVADD(pnv, "err", (uint32_t)rp->r_err); 1082 PANICNVADD(pnv, "eip", (uint32_t)rp->r_eip); 1083 PANICNVADD(pnv, "cs", (uint32_t)rp->r_cs); 1084 PANICNVADD(pnv, "eflags", (uint32_t)rp->r_efl); 1085 PANICNVADD(pnv, "uesp", (uint32_t)rp->r_uesp); 1086 PANICNVADD(pnv, "ss", (uint32_t)rp->r_ss); 1087 PANICNVADD(pnv, "gdt", creg.cr_gdt); 1088 PANICNVADD(pnv, "idt", creg.cr_idt); 1089 #endif /* __i386 */ 1090 1091 PANICNVADD(pnv, "ldt", creg.cr_ldt); 1092 PANICNVADD(pnv, "task", creg.cr_task); 1093 PANICNVADD(pnv, "cr0", creg.cr_cr0); 1094 PANICNVADD(pnv, "cr2", creg.cr_cr2); 1095 PANICNVADD(pnv, "cr3", creg.cr_cr3); 1096 if (creg.cr_cr4) 1097 PANICNVADD(pnv, "cr4", creg.cr_cr4); 1098 1099 PANICNVSET(pdp, pnv); 1100 } 1101 1102 #define TR_ARG_MAX 6 /* Max args to print, same as SPARC */ 1103 1104 #if !defined(__amd64) 1105 1106 /* 1107 * Given a return address (%eip), determine the likely number of arguments 1108 * that were pushed on the stack prior to its execution. We do this by 1109 * expecting that a typical call sequence consists of pushing arguments on 1110 * the stack, executing a call instruction, and then performing an add 1111 * on %esp to restore it to the value prior to pushing the arguments for 1112 * the call. We attempt to detect such an add, and divide the addend 1113 * by the size of a word to determine the number of pushed arguments. 1114 * 1115 * If we do not find such an add, we punt and return TR_ARG_MAX. It is not 1116 * possible to reliably determine if a function took no arguments (i.e. was 1117 * void) because assembler routines do not reliably perform an add on %esp 1118 * immediately upon returning (eg. _sys_call()), so returning TR_ARG_MAX is 1119 * safer than returning 0. 1120 */ 1121 static ulong_t 1122 argcount(uintptr_t eip) 1123 { 1124 const uint8_t *ins = (const uint8_t *)eip; 1125 ulong_t n; 1126 1127 enum { 1128 M_MODRM_ESP = 0xc4, /* Mod/RM byte indicates %esp */ 1129 M_ADD_IMM32 = 0x81, /* ADD imm32 to r/m32 */ 1130 M_ADD_IMM8 = 0x83 /* ADD imm8 to r/m32 */ 1131 }; 1132 1133 if (eip < KERNELBASE || ins[1] != M_MODRM_ESP) 1134 return (TR_ARG_MAX); 1135 1136 switch (ins[0]) { 1137 case M_ADD_IMM32: 1138 n = ins[2] + (ins[3] << 8) + (ins[4] << 16) + (ins[5] << 24); 1139 break; 1140 1141 case M_ADD_IMM8: 1142 n = ins[2]; 1143 break; 1144 1145 default: 1146 return (TR_ARG_MAX); 1147 } 1148 1149 n /= sizeof (long); 1150 return (MIN(n, TR_ARG_MAX)); 1151 } 1152 1153 #endif /* !__amd64 */ 1154 1155 /* 1156 * Print a stack backtrace using the specified frame pointer. We delay two 1157 * seconds before continuing, unless this is the panic traceback. 1158 * If we are in the process of panicking, we also attempt to write the 1159 * stack backtrace to a staticly assigned buffer, to allow the panic 1160 * code to find it and write it in to uncompressed pages within the 1161 * system crash dump. 1162 * Note that the frame for the starting stack pointer value is omitted because 1163 * the corresponding %eip is not known. 1164 */ 1165 1166 extern char *dump_stack_scratch; 1167 1168 #if defined(__amd64) 1169 1170 void 1171 traceback(caddr_t fpreg) 1172 { 1173 struct frame *fp = (struct frame *)fpreg; 1174 struct frame *nextfp; 1175 uintptr_t pc, nextpc; 1176 ulong_t off; 1177 char args[TR_ARG_MAX * 2 + 16], *sym; 1178 uint_t offset = 0; 1179 uint_t next_offset = 0; 1180 char stack_buffer[1024]; 1181 1182 if (!panicstr) 1183 printf("traceback: %%fp = %p\n", (void *)fp); 1184 1185 if (panicstr && !dump_stack_scratch) { 1186 printf("Warning - stack not written to the dump buffer\n"); 1187 } 1188 1189 fp = (struct frame *)plat_traceback(fpreg); 1190 if ((uintptr_t)fp < KERNELBASE) 1191 goto out; 1192 1193 pc = fp->fr_savpc; 1194 fp = (struct frame *)fp->fr_savfp; 1195 1196 while ((uintptr_t)fp >= KERNELBASE) { 1197 /* 1198 * XX64 Until port is complete tolerate 8-byte aligned 1199 * frame pointers but flag with a warning so they can 1200 * be fixed. 1201 */ 1202 if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) { 1203 if (((uintptr_t)fp & (8 - 1)) == 0) { 1204 printf(" >> warning! 8-byte" 1205 " aligned %%fp = %p\n", (void *)fp); 1206 } else { 1207 printf( 1208 " >> mis-aligned %%fp = %p\n", (void *)fp); 1209 break; 1210 } 1211 } 1212 1213 args[0] = '\0'; 1214 nextpc = (uintptr_t)fp->fr_savpc; 1215 nextfp = (struct frame *)fp->fr_savfp; 1216 if ((sym = kobj_getsymname(pc, &off)) != NULL) { 1217 printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp, 1218 mod_containing_pc((caddr_t)pc), sym, off, args); 1219 (void) snprintf(stack_buffer, sizeof (stack_buffer), 1220 "%s:%s+%lx (%s) | ", 1221 mod_containing_pc((caddr_t)pc), sym, off, args); 1222 } else { 1223 printf("%016lx %lx (%s)\n", 1224 (uintptr_t)fp, pc, args); 1225 (void) snprintf(stack_buffer, sizeof (stack_buffer), 1226 "%lx (%s) | ", pc, args); 1227 } 1228 1229 if (panicstr && dump_stack_scratch) { 1230 next_offset = offset + strlen(stack_buffer); 1231 if (next_offset < STACK_BUF_SIZE) { 1232 bcopy(stack_buffer, dump_stack_scratch + offset, 1233 strlen(stack_buffer)); 1234 offset = next_offset; 1235 } else { 1236 /* 1237 * In attempting to save the panic stack 1238 * to the dumpbuf we have overflowed that area. 1239 * Print a warning and continue to printf the 1240 * stack to the msgbuf 1241 */ 1242 printf("Warning: stack in the dump buffer" 1243 " may be incomplete\n"); 1244 offset = next_offset; 1245 } 1246 } 1247 1248 pc = nextpc; 1249 fp = nextfp; 1250 } 1251 out: 1252 if (!panicstr) { 1253 printf("end of traceback\n"); 1254 DELAY(2 * MICROSEC); 1255 } else if (dump_stack_scratch) { 1256 dump_stack_scratch[offset] = '\0'; 1257 } 1258 } 1259 1260 #elif defined(__i386) 1261 1262 void 1263 traceback(caddr_t fpreg) 1264 { 1265 struct frame *fp = (struct frame *)fpreg; 1266 struct frame *nextfp, *minfp, *stacktop; 1267 uintptr_t pc, nextpc; 1268 uint_t offset = 0; 1269 uint_t next_offset = 0; 1270 char stack_buffer[1024]; 1271 1272 cpu_t *cpu; 1273 1274 /* 1275 * args[] holds TR_ARG_MAX hex long args, plus ", " or '\0'. 1276 */ 1277 char args[TR_ARG_MAX * 2 + 8], *p; 1278 1279 int on_intr; 1280 ulong_t off; 1281 char *sym; 1282 1283 if (!panicstr) 1284 printf("traceback: %%fp = %p\n", (void *)fp); 1285 1286 if (panicstr && !dump_stack_scratch) { 1287 printf("Warning - stack not written to the dumpbuf\n"); 1288 } 1289 1290 /* 1291 * If we are panicking, all high-level interrupt information in 1292 * CPU was overwritten. panic_cpu has the correct values. 1293 */ 1294 kpreempt_disable(); /* prevent migration */ 1295 1296 cpu = (panicstr && CPU->cpu_id == panic_cpu.cpu_id)? &panic_cpu : CPU; 1297 1298 if ((on_intr = CPU_ON_INTR(cpu)) != 0) 1299 stacktop = (struct frame *)(cpu->cpu_intr_stack + SA(MINFRAME)); 1300 else 1301 stacktop = (struct frame *)curthread->t_stk; 1302 1303 kpreempt_enable(); 1304 1305 fp = (struct frame *)plat_traceback(fpreg); 1306 if ((uintptr_t)fp < KERNELBASE) 1307 goto out; 1308 1309 minfp = fp; /* Baseline minimum frame pointer */ 1310 pc = fp->fr_savpc; 1311 fp = (struct frame *)fp->fr_savfp; 1312 1313 while ((uintptr_t)fp >= KERNELBASE) { 1314 ulong_t argc; 1315 long *argv; 1316 1317 if (fp <= minfp || fp >= stacktop) { 1318 if (on_intr) { 1319 /* 1320 * Hop from interrupt stack to thread stack. 1321 */ 1322 stacktop = (struct frame *)curthread->t_stk; 1323 minfp = (struct frame *)curthread->t_stkbase; 1324 on_intr = 0; 1325 continue; 1326 } 1327 break; /* we're outside of the expected range */ 1328 } 1329 1330 if ((uintptr_t)fp & (STACK_ALIGN - 1)) { 1331 printf(" >> mis-aligned %%fp = %p\n", (void *)fp); 1332 break; 1333 } 1334 1335 nextpc = fp->fr_savpc; 1336 nextfp = (struct frame *)fp->fr_savfp; 1337 argc = argcount(nextpc); 1338 argv = (long *)((char *)fp + sizeof (struct frame)); 1339 1340 args[0] = '\0'; 1341 p = args; 1342 while (argc-- > 0 && argv < (long *)stacktop) { 1343 p += snprintf(p, args + sizeof (args) - p, 1344 "%s%lx", (p == args) ? "" : ", ", *argv++); 1345 } 1346 1347 if ((sym = kobj_getsymname(pc, &off)) != NULL) { 1348 printf("%08lx %s:%s+%lx (%s)\n", (uintptr_t)fp, 1349 mod_containing_pc((caddr_t)pc), sym, off, args); 1350 (void) snprintf(stack_buffer, sizeof (stack_buffer), 1351 "%s:%s+%lx (%s) | ", 1352 mod_containing_pc((caddr_t)pc), sym, off, args); 1353 1354 } else { 1355 printf("%08lx %lx (%s)\n", 1356 (uintptr_t)fp, pc, args); 1357 (void) snprintf(stack_buffer, sizeof (stack_buffer), 1358 "%lx (%s) | ", pc, args); 1359 1360 } 1361 1362 if (panicstr && dump_stack_scratch) { 1363 next_offset = offset + strlen(stack_buffer); 1364 if (next_offset < STACK_BUF_SIZE) { 1365 bcopy(stack_buffer, dump_stack_scratch + offset, 1366 strlen(stack_buffer)); 1367 offset = next_offset; 1368 } else { 1369 /* 1370 * In attempting to save the panic stack 1371 * to the dumpbuf we have overflowed that area. 1372 * Print a warning and continue to printf the 1373 * stack to the msgbuf 1374 */ 1375 printf("Warning: stack in the dumpbuf" 1376 " may be incomplete\n"); 1377 offset = next_offset; 1378 } 1379 } 1380 1381 minfp = fp; 1382 pc = nextpc; 1383 fp = nextfp; 1384 } 1385 out: 1386 if (!panicstr) { 1387 printf("end of traceback\n"); 1388 DELAY(2 * MICROSEC); 1389 } else if (dump_stack_scratch) { 1390 dump_stack_scratch[offset] = '\0'; 1391 } 1392 1393 } 1394 1395 #endif /* __i386 */ 1396 1397 /* 1398 * Generate a stack backtrace from a saved register set. 1399 */ 1400 void 1401 traceregs(struct regs *rp) 1402 { 1403 traceback((caddr_t)rp->r_fp); 1404 } 1405 1406 void 1407 exec_set_sp(size_t stksize) 1408 { 1409 klwp_t *lwp = ttolwp(curthread); 1410 1411 lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize; 1412 } 1413 1414 hrtime_t 1415 gethrtime_waitfree(void) 1416 { 1417 return (dtrace_gethrtime()); 1418 } 1419 1420 hrtime_t 1421 gethrtime(void) 1422 { 1423 return (gethrtimef()); 1424 } 1425 1426 hrtime_t 1427 gethrtime_unscaled(void) 1428 { 1429 return (gethrtimeunscaledf()); 1430 } 1431 1432 void 1433 scalehrtime(hrtime_t *hrt) 1434 { 1435 scalehrtimef(hrt); 1436 } 1437 1438 uint64_t 1439 unscalehrtime(hrtime_t nsecs) 1440 { 1441 return (unscalehrtimef(nsecs)); 1442 } 1443 1444 void 1445 gethrestime(timespec_t *tp) 1446 { 1447 gethrestimef(tp); 1448 } 1449 1450 #if defined(__amd64) 1451 /* 1452 * Part of the implementation of hres_tick(); this routine is 1453 * easier in C than assembler .. called with the hres_lock held. 1454 * 1455 * XX64 Many of these timekeeping variables need to be extern'ed in a header 1456 */ 1457 1458 #include <sys/time.h> 1459 #include <sys/machlock.h> 1460 1461 extern int one_sec; 1462 extern int max_hres_adj; 1463 1464 void 1465 __adj_hrestime(void) 1466 { 1467 long long adj; 1468 1469 if (hrestime_adj == 0) 1470 adj = 0; 1471 else if (hrestime_adj > 0) { 1472 if (hrestime_adj < max_hres_adj) 1473 adj = hrestime_adj; 1474 else 1475 adj = max_hres_adj; 1476 } else { 1477 if (hrestime_adj < -max_hres_adj) 1478 adj = -max_hres_adj; 1479 else 1480 adj = hrestime_adj; 1481 } 1482 1483 timedelta -= adj; 1484 hrestime_adj = timedelta; 1485 hrestime.tv_nsec += adj; 1486 1487 while (hrestime.tv_nsec >= NANOSEC) { 1488 one_sec++; 1489 hrestime.tv_sec++; 1490 hrestime.tv_nsec -= NANOSEC; 1491 } 1492 } 1493 #endif 1494 1495 /* 1496 * Wrapper functions to maintain backwards compability 1497 */ 1498 int 1499 xcopyin(const void *uaddr, void *kaddr, size_t count) 1500 { 1501 return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED)); 1502 } 1503 1504 int 1505 xcopyout(const void *kaddr, void *uaddr, size_t count) 1506 { 1507 return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED)); 1508 } 1509