1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/param.h> 33 #include <sys/types.h> 34 #include <sys/vmparam.h> 35 #include <sys/systm.h> 36 #include <sys/signal.h> 37 #include <sys/stack.h> 38 #include <sys/regset.h> 39 #include <sys/privregs.h> 40 #include <sys/frame.h> 41 #include <sys/proc.h> 42 #include <sys/psw.h> 43 #include <sys/siginfo.h> 44 #include <sys/cpuvar.h> 45 #include <sys/asm_linkage.h> 46 #include <sys/kmem.h> 47 #include <sys/errno.h> 48 #include <sys/bootconf.h> 49 #include <sys/archsystm.h> 50 #include <sys/debug.h> 51 #include <sys/elf.h> 52 #include <sys/spl.h> 53 #include <sys/time.h> 54 #include <sys/atomic.h> 55 #include <sys/sysmacros.h> 56 #include <sys/cmn_err.h> 57 #include <sys/modctl.h> 58 #include <sys/kobj.h> 59 #include <sys/panic.h> 60 #include <sys/reboot.h> 61 #include <sys/time.h> 62 #include <sys/fp.h> 63 #include <sys/x86_archext.h> 64 #include <sys/auxv.h> 65 #include <sys/auxv_386.h> 66 #include <sys/dtrace.h> 67 #include <sys/brand.h> 68 #include <sys/machbrand.h> 69 70 extern const struct fnsave_state x87_initial; 71 extern const struct fxsave_state sse_initial; 72 73 /* 74 * Map an fnsave-formatted save area into an fxsave-formatted save area. 75 * 76 * Most fields are the same width, content and semantics. However 77 * the tag word is compressed. 78 */ 79 static void 80 fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx) 81 { 82 uint_t i, tagbits; 83 84 fx->fx_fcw = fn->f_fcw; 85 fx->fx_fsw = fn->f_fsw; 86 87 /* 88 * copy element by element (because of holes) 89 */ 90 for (i = 0; i < 8; i++) 91 bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0], 92 sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */ 93 94 /* 95 * synthesize compressed tag bits 96 */ 97 fx->fx_fctw = 0; 98 for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2) 99 if ((tagbits & 3) != 3) 100 fx->fx_fctw |= (1 << i); 101 102 fx->fx_fop = fn->f_fop; 103 104 #if defined(__amd64) 105 fx->fx_rip = (uint64_t)fn->f_eip; 106 fx->fx_rdp = (uint64_t)fn->f_dp; 107 #else 108 fx->fx_eip = fn->f_eip; 109 fx->fx_cs = fn->f_cs; 110 fx->__fx_ign0 = 0; 111 fx->fx_dp = fn->f_dp; 112 fx->fx_ds = fn->f_ds; 113 fx->__fx_ign1 = 0; 114 #endif 115 } 116 117 /* 118 * Map from an fxsave-format save area to an fnsave-format save area. 119 */ 120 static void 121 fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn) 122 { 123 uint_t i, top, tagbits; 124 125 fn->f_fcw = fx->fx_fcw; 126 fn->__f_ign0 = 0; 127 fn->f_fsw = fx->fx_fsw; 128 fn->__f_ign1 = 0; 129 130 top = (fx->fx_fsw & FPS_TOP) >> 11; 131 132 /* 133 * copy element by element (because of holes) 134 */ 135 for (i = 0; i < 8; i++) 136 bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0], 137 sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */ 138 139 /* 140 * synthesize uncompressed tag bits 141 */ 142 fn->f_ftw = 0; 143 for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) { 144 uint_t ibit, expo; 145 const uint16_t *fpp; 146 static const uint16_t zero[5] = { 0, 0, 0, 0, 0 }; 147 148 if ((tagbits & 1) == 0) { 149 fn->f_ftw |= 3 << (i << 1); /* empty */ 150 continue; 151 } 152 153 /* 154 * (tags refer to *physical* registers) 155 */ 156 fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0]; 157 ibit = fpp[3] >> 15; 158 expo = fpp[4] & 0x7fff; 159 160 if (ibit && expo != 0 && expo != 0x7fff) 161 continue; /* valid fp number */ 162 163 if (bcmp(fpp, &zero, sizeof (zero))) 164 fn->f_ftw |= 2 << (i << 1); /* NaN */ 165 else 166 fn->f_ftw |= 1 << (i << 1); /* fp zero */ 167 } 168 169 fn->f_fop = fx->fx_fop; 170 171 fn->__f_ign2 = 0; 172 #if defined(__amd64) 173 fn->f_eip = (uint32_t)fx->fx_rip; 174 fn->f_cs = U32CS_SEL; 175 fn->f_dp = (uint32_t)fx->fx_rdp; 176 fn->f_ds = UDS_SEL; 177 #else 178 fn->f_eip = fx->fx_eip; 179 fn->f_cs = fx->fx_cs; 180 fn->f_dp = fx->fx_dp; 181 fn->f_ds = fx->fx_ds; 182 #endif 183 fn->__f_ign3 = 0; 184 } 185 186 /* 187 * Map from an fpregset_t into an fxsave-format save area 188 */ 189 static void 190 fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx) 191 { 192 #if defined(__amd64) 193 bcopy(fp, fx, sizeof (*fx)); 194 #else 195 const struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state; 196 197 fnsave_to_fxsave((const struct fnsave_state *)fc, fx); 198 fx->fx_mxcsr = fc->mxcsr; 199 bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm)); 200 #endif 201 /* 202 * avoid useless #gp exceptions - mask reserved bits 203 */ 204 fx->fx_mxcsr &= sse_mxcsr_mask; 205 } 206 207 /* 208 * Map from an fxsave-format save area into a fpregset_t 209 */ 210 static void 211 fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp) 212 { 213 #if defined(__amd64) 214 bcopy(fx, fp, sizeof (*fx)); 215 #else 216 struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state; 217 218 fxsave_to_fnsave(fx, (struct fnsave_state *)fc); 219 fc->mxcsr = fx->fx_mxcsr; 220 bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm)); 221 #endif 222 } 223 224 #if defined(_SYSCALL32_IMPL) 225 static void 226 fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx) 227 { 228 const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state; 229 230 fnsave_to_fxsave((const struct fnsave_state *)fc, fx); 231 /* 232 * avoid useless #gp exceptions - mask reserved bits 233 */ 234 fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr; 235 bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm)); 236 } 237 238 static void 239 fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp) 240 { 241 struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state; 242 243 fxsave_to_fnsave(fx, (struct fnsave_state *)fc); 244 fc->mxcsr = fx->fx_mxcsr; 245 bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm)); 246 } 247 248 static void 249 fpregset_nto32(const fpregset_t *src, fpregset32_t *dst) 250 { 251 fxsave_to_fpregset32((struct fxsave_state *)src, dst); 252 dst->fp_reg_set.fpchip_state.status = 253 src->fp_reg_set.fpchip_state.status; 254 dst->fp_reg_set.fpchip_state.xstatus = 255 src->fp_reg_set.fpchip_state.xstatus; 256 } 257 258 static void 259 fpregset_32ton(const fpregset32_t *src, fpregset_t *dst) 260 { 261 fpregset32_to_fxsave(src, (struct fxsave_state *)dst); 262 dst->fp_reg_set.fpchip_state.status = 263 src->fp_reg_set.fpchip_state.status; 264 dst->fp_reg_set.fpchip_state.xstatus = 265 src->fp_reg_set.fpchip_state.xstatus; 266 } 267 #endif 268 269 /* 270 * Set floating-point registers from a native fpregset_t. 271 */ 272 void 273 setfpregs(klwp_t *lwp, fpregset_t *fp) 274 { 275 struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu; 276 277 if (fpu->fpu_flags & FPU_EN) { 278 if (!(fpu->fpu_flags & FPU_VALID)) { 279 /* 280 * FPU context is still active, release the 281 * ownership. 282 */ 283 fp_free(fpu, 0); 284 } 285 #if !defined(__amd64) 286 if (fp_kind == __FP_SSE) { 287 #endif 288 fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx); 289 fpu->fpu_regs.kfpu_xstatus = 290 fp->fp_reg_set.fpchip_state.xstatus; 291 #if !defined(__amd64) 292 } else 293 bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn, 294 sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn)); 295 #endif 296 fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status; 297 fpu->fpu_flags |= FPU_VALID; 298 299 /* 300 * If we are changing the fpu_flags in the current context, 301 * disable floating point (turn on CR0_TS bit) to track 302 * FPU_VALID after clearing any errors (frstor chokes 303 * otherwise) 304 */ 305 if (lwp == ttolwp(curthread)) { 306 (void) fperr_reset(); 307 fpdisable(); 308 } 309 } else { 310 /* 311 * If we are trying to change the FPU state of a thread which 312 * hasn't yet initialized floating point, store the state in 313 * the pcb and indicate that the state is valid. When the 314 * thread enables floating point, it will use this state instead 315 * of the default state. 316 */ 317 #if !defined(__amd64) 318 if (fp_kind == __FP_SSE) { 319 #endif 320 fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx); 321 fpu->fpu_regs.kfpu_xstatus = 322 fp->fp_reg_set.fpchip_state.xstatus; 323 #if !defined(__amd64) 324 } else 325 bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn, 326 sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn)); 327 #endif 328 fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status; 329 fpu->fpu_flags |= FPU_VALID; 330 } 331 } 332 333 /* 334 * Get floating-point registers into a native fpregset_t. 335 */ 336 void 337 getfpregs(klwp_t *lwp, fpregset_t *fp) 338 { 339 struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu; 340 341 kpreempt_disable(); 342 if (fpu->fpu_flags & FPU_EN) { 343 /* 344 * If we have FPU hw and the thread's pcb doesn't have 345 * a valid FPU state then get the state from the hw. 346 */ 347 if (fpu_exists && ttolwp(curthread) == lwp && 348 !(fpu->fpu_flags & FPU_VALID)) 349 fp_save(fpu); /* get the current FPU state */ 350 } 351 352 /* 353 * There are 3 possible cases we have to be aware of here: 354 * 355 * 1. FPU is enabled. FPU state is stored in the current LWP. 356 * 357 * 2. FPU is not enabled, and there have been no intervening /proc 358 * modifications. Return initial FPU state. 359 * 360 * 3. FPU is not enabled, but a /proc consumer has modified FPU state. 361 * FPU state is stored in the current LWP. 362 */ 363 if ((fpu->fpu_flags & FPU_EN) || (fpu->fpu_flags & FPU_VALID)) { 364 /* 365 * Cases 1 and 3. 366 */ 367 #if !defined(__amd64) 368 if (fp_kind == __FP_SSE) { 369 #endif 370 fxsave_to_fpregset(&fpu->fpu_regs.kfpu_u.kfpu_fx, fp); 371 fp->fp_reg_set.fpchip_state.xstatus = 372 fpu->fpu_regs.kfpu_xstatus; 373 #if !defined(__amd64) 374 } else 375 bcopy(&fpu->fpu_regs.kfpu_u.kfpu_fn, fp, 376 sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn)); 377 #endif 378 fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status; 379 } else { 380 /* 381 * Case 2. 382 */ 383 #if !defined(__amd64) 384 if (fp_kind == __FP_SSE) { 385 #endif 386 fxsave_to_fpregset(&sse_initial, fp); 387 fp->fp_reg_set.fpchip_state.xstatus = 388 fpu->fpu_regs.kfpu_xstatus; 389 #if !defined(__amd64) 390 } else 391 bcopy(&x87_initial, fp, sizeof (x87_initial)); 392 #endif 393 fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status; 394 } 395 kpreempt_enable(); 396 } 397 398 #if defined(_SYSCALL32_IMPL) 399 400 /* 401 * Set floating-point registers from an fpregset32_t. 402 */ 403 void 404 setfpregs32(klwp_t *lwp, fpregset32_t *fp) 405 { 406 fpregset_t fpregs; 407 408 fpregset_32ton(fp, &fpregs); 409 setfpregs(lwp, &fpregs); 410 } 411 412 /* 413 * Get floating-point registers into an fpregset32_t. 414 */ 415 void 416 getfpregs32(klwp_t *lwp, fpregset32_t *fp) 417 { 418 fpregset_t fpregs; 419 420 getfpregs(lwp, &fpregs); 421 fpregset_nto32(&fpregs, fp); 422 } 423 424 #endif /* _SYSCALL32_IMPL */ 425 426 /* 427 * Return the general registers 428 */ 429 void 430 getgregs(klwp_t *lwp, gregset_t grp) 431 { 432 struct regs *rp = lwptoregs(lwp); 433 #if defined(__amd64) 434 struct pcb *pcb = &lwp->lwp_pcb; 435 int thisthread = lwptot(lwp) == curthread; 436 437 grp[REG_RDI] = rp->r_rdi; 438 grp[REG_RSI] = rp->r_rsi; 439 grp[REG_RDX] = rp->r_rdx; 440 grp[REG_RCX] = rp->r_rcx; 441 grp[REG_R8] = rp->r_r8; 442 grp[REG_R9] = rp->r_r9; 443 grp[REG_RAX] = rp->r_rax; 444 grp[REG_RBX] = rp->r_rbx; 445 grp[REG_RBP] = rp->r_rbp; 446 grp[REG_R10] = rp->r_r10; 447 grp[REG_R11] = rp->r_r11; 448 grp[REG_R12] = rp->r_r12; 449 grp[REG_R13] = rp->r_r13; 450 grp[REG_R14] = rp->r_r14; 451 grp[REG_R15] = rp->r_r15; 452 grp[REG_FSBASE] = pcb->pcb_fsbase; 453 grp[REG_GSBASE] = pcb->pcb_gsbase; 454 if (thisthread) 455 kpreempt_disable(); 456 if (pcb->pcb_flags & RUPDATE_PENDING) { 457 grp[REG_DS] = pcb->pcb_ds; 458 grp[REG_ES] = pcb->pcb_es; 459 grp[REG_FS] = pcb->pcb_fs; 460 grp[REG_GS] = pcb->pcb_gs; 461 } else { 462 grp[REG_DS] = rp->r_ds; 463 grp[REG_ES] = rp->r_es; 464 grp[REG_FS] = rp->r_fs; 465 grp[REG_GS] = rp->r_gs; 466 } 467 if (thisthread) 468 kpreempt_enable(); 469 grp[REG_TRAPNO] = rp->r_trapno; 470 grp[REG_ERR] = rp->r_err; 471 grp[REG_RIP] = rp->r_rip; 472 grp[REG_CS] = rp->r_cs; 473 grp[REG_SS] = rp->r_ss; 474 grp[REG_RFL] = rp->r_rfl; 475 grp[REG_RSP] = rp->r_rsp; 476 #else 477 bcopy(&rp->r_gs, grp, sizeof (gregset_t)); 478 #endif 479 } 480 481 #if defined(_SYSCALL32_IMPL) 482 483 void 484 getgregs32(klwp_t *lwp, gregset32_t grp) 485 { 486 struct regs *rp = lwptoregs(lwp); 487 struct pcb *pcb = &lwp->lwp_pcb; 488 int thisthread = lwptot(lwp) == curthread; 489 490 if (thisthread) 491 kpreempt_disable(); 492 if (pcb->pcb_flags & RUPDATE_PENDING) { 493 grp[GS] = (uint16_t)pcb->pcb_gs; 494 grp[FS] = (uint16_t)pcb->pcb_fs; 495 grp[DS] = (uint16_t)pcb->pcb_ds; 496 grp[ES] = (uint16_t)pcb->pcb_es; 497 } else { 498 grp[GS] = (uint16_t)rp->r_gs; 499 grp[FS] = (uint16_t)rp->r_fs; 500 grp[DS] = (uint16_t)rp->r_ds; 501 grp[ES] = (uint16_t)rp->r_es; 502 } 503 if (thisthread) 504 kpreempt_enable(); 505 grp[EDI] = (greg32_t)rp->r_rdi; 506 grp[ESI] = (greg32_t)rp->r_rsi; 507 grp[EBP] = (greg32_t)rp->r_rbp; 508 grp[ESP] = 0; 509 grp[EBX] = (greg32_t)rp->r_rbx; 510 grp[EDX] = (greg32_t)rp->r_rdx; 511 grp[ECX] = (greg32_t)rp->r_rcx; 512 grp[EAX] = (greg32_t)rp->r_rax; 513 grp[TRAPNO] = (greg32_t)rp->r_trapno; 514 grp[ERR] = (greg32_t)rp->r_err; 515 grp[EIP] = (greg32_t)rp->r_rip; 516 grp[CS] = (uint16_t)rp->r_cs; 517 grp[EFL] = (greg32_t)rp->r_rfl; 518 grp[UESP] = (greg32_t)rp->r_rsp; 519 grp[SS] = (uint16_t)rp->r_ss; 520 } 521 522 void 523 ucontext_32ton(const ucontext32_t *src, ucontext_t *dst) 524 { 525 mcontext_t *dmc = &dst->uc_mcontext; 526 const mcontext32_t *smc = &src->uc_mcontext; 527 528 bzero(dst, sizeof (*dst)); 529 dst->uc_flags = src->uc_flags; 530 dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link; 531 532 bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask)); 533 534 dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp; 535 dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size; 536 dst->uc_stack.ss_flags = src->uc_stack.ss_flags; 537 538 dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS]; 539 dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS]; 540 dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES]; 541 dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS]; 542 dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI]; 543 dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI]; 544 dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP]; 545 dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX]; 546 dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX]; 547 dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX]; 548 dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX]; 549 dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO]; 550 dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR]; 551 dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP]; 552 dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS]; 553 dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL]; 554 dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP]; 555 dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS]; 556 557 /* 558 * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set 559 * otherwise there is no guarantee that anything in fpregs is valid. 560 */ 561 if (src->uc_flags & UC_FPU) 562 fpregset_32ton(&src->uc_mcontext.fpregs, 563 &dst->uc_mcontext.fpregs); 564 } 565 566 #endif /* _SYSCALL32_IMPL */ 567 568 /* 569 * Return the user-level PC. 570 * If in a system call, return the address of the syscall trap. 571 */ 572 greg_t 573 getuserpc() 574 { 575 greg_t upc = lwptoregs(ttolwp(curthread))->r_pc; 576 uint32_t insn; 577 578 if (curthread->t_sysnum == 0) 579 return (upc); 580 581 /* 582 * We might've gotten here from sysenter (0xf 0x34), 583 * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0). 584 * 585 * Go peek at the binary to figure it out.. 586 */ 587 if (fuword32((void *)(upc - 2), &insn) != -1 && 588 (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f) 589 return (upc - 2); 590 return (upc - 7); 591 } 592 593 /* 594 * Protect segment registers from non-user privilege levels and GDT selectors 595 * other than USER_CS, USER_DS and lwp FS and GS values. If the segment 596 * selector is non-null and not USER_CS/USER_DS, we make sure that the 597 * TI bit is set to point into the LDT and that the RPL is set to 3. 598 * 599 * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we 600 * also explicitly zero the top 16 bits since they may be coming from the 601 * user's address space via setcontext(2) or /proc. 602 */ 603 604 /*ARGSUSED*/ 605 static greg_t 606 fix_segreg(greg_t sr, model_t datamodel) 607 { 608 kthread_t *t = curthread; 609 610 switch (sr &= 0xffff) { 611 #if defined(__amd64) 612 /* 613 * If lwp attempts to switch data model then force their 614 * code selector to be null selector. 615 */ 616 case U32CS_SEL: 617 if (datamodel == DATAMODEL_NATIVE) 618 return (0); 619 else 620 return (sr); 621 622 case UCS_SEL: 623 if (datamodel == DATAMODEL_ILP32) 624 return (0); 625 #elif defined(__i386) 626 case UCS_SEL: 627 #endif 628 /*FALLTHROUGH*/ 629 case UDS_SEL: 630 case LWPFS_SEL: 631 case LWPGS_SEL: 632 case 0: 633 return (sr); 634 default: 635 break; 636 } 637 638 /* 639 * Allow this process's brand to do any necessary segment register 640 * manipulation. 641 */ 642 if (PROC_IS_BRANDED(t->t_procp) && BRMOP(t->t_procp)->b_fixsegreg) 643 return (BRMOP(t->t_procp)->b_fixsegreg(sr, datamodel)); 644 645 /* 646 * Force it into the LDT in ring 3 for 32-bit processes, which by 647 * default do not have an LDT, so that any attempt to use an invalid 648 * selector will reference the (non-existant) LDT, and cause a #gp fault 649 * for the process. 650 * 651 * 64-bit processes get the null gdt selector since they 652 * are not allowed to have a private LDT. 653 */ 654 #if defined(__amd64) 655 return (datamodel == DATAMODEL_ILP32 ? (sr | SEL_TI_LDT | SEL_UPL) : 0); 656 #elif defined(__i386) 657 return (sr | SEL_TI_LDT | SEL_UPL); 658 #endif 659 } 660 661 /* 662 * Set general registers. 663 */ 664 void 665 setgregs(klwp_t *lwp, gregset_t grp) 666 { 667 struct regs *rp = lwptoregs(lwp); 668 model_t datamodel = lwp_getdatamodel(lwp); 669 670 #if defined(__amd64) 671 struct pcb *pcb = &lwp->lwp_pcb; 672 int thisthread = lwptot(lwp) == curthread; 673 674 if (datamodel == DATAMODEL_NATIVE) { 675 676 if (thisthread) 677 (void) save_syscall_args(); /* copy the args */ 678 679 rp->r_rdi = grp[REG_RDI]; 680 rp->r_rsi = grp[REG_RSI]; 681 rp->r_rdx = grp[REG_RDX]; 682 rp->r_rcx = grp[REG_RCX]; 683 rp->r_r8 = grp[REG_R8]; 684 rp->r_r9 = grp[REG_R9]; 685 rp->r_rax = grp[REG_RAX]; 686 rp->r_rbx = grp[REG_RBX]; 687 rp->r_rbp = grp[REG_RBP]; 688 rp->r_r10 = grp[REG_R10]; 689 rp->r_r11 = grp[REG_R11]; 690 rp->r_r12 = grp[REG_R12]; 691 rp->r_r13 = grp[REG_R13]; 692 rp->r_r14 = grp[REG_R14]; 693 rp->r_r15 = grp[REG_R15]; 694 rp->r_trapno = grp[REG_TRAPNO]; 695 rp->r_err = grp[REG_ERR]; 696 rp->r_rip = grp[REG_RIP]; 697 /* 698 * Setting %cs or %ss to anything else is quietly but 699 * quite definitely forbidden! 700 */ 701 rp->r_cs = UCS_SEL; 702 rp->r_ss = UDS_SEL; 703 rp->r_rsp = grp[REG_RSP]; 704 705 if (thisthread) 706 kpreempt_disable(); 707 708 pcb->pcb_ds = UDS_SEL; 709 pcb->pcb_es = UDS_SEL; 710 711 /* 712 * 64-bit processes -are- allowed to set their fsbase/gsbase 713 * values directly, but only if they're using the segment 714 * selectors that allow that semantic. 715 * 716 * (32-bit processes must use lwp_set_private().) 717 */ 718 pcb->pcb_fsbase = grp[REG_FSBASE]; 719 pcb->pcb_gsbase = grp[REG_GSBASE]; 720 pcb->pcb_fs = fix_segreg(grp[REG_FS], datamodel); 721 pcb->pcb_gs = fix_segreg(grp[REG_GS], datamodel); 722 723 /* 724 * Ensure that we go out via update_sregs 725 */ 726 pcb->pcb_flags |= RUPDATE_PENDING; 727 lwptot(lwp)->t_post_sys = 1; 728 if (thisthread) 729 kpreempt_enable(); 730 #if defined(_SYSCALL32_IMPL) 731 } else { 732 rp->r_rdi = (uint32_t)grp[REG_RDI]; 733 rp->r_rsi = (uint32_t)grp[REG_RSI]; 734 rp->r_rdx = (uint32_t)grp[REG_RDX]; 735 rp->r_rcx = (uint32_t)grp[REG_RCX]; 736 rp->r_rax = (uint32_t)grp[REG_RAX]; 737 rp->r_rbx = (uint32_t)grp[REG_RBX]; 738 rp->r_rbp = (uint32_t)grp[REG_RBP]; 739 rp->r_trapno = (uint32_t)grp[REG_TRAPNO]; 740 rp->r_err = (uint32_t)grp[REG_ERR]; 741 rp->r_rip = (uint32_t)grp[REG_RIP]; 742 743 /* 744 * The kernel uses %cs to determine if it is dealing with 745 * another part of the kernel or with a userland application. 746 * Specifically, it tests the privilege bits. For this reason, 747 * we must prevent user apps from ending up with a NULL selector 748 * in %cs. Instead, we'll use index 0 into the GDT but with the 749 * privilege bits set to usermode. 750 */ 751 rp->r_cs = fix_segreg(grp[REG_CS], datamodel) | SEL_UPL; 752 rp->r_ss = fix_segreg(grp[REG_DS], datamodel); 753 754 rp->r_rsp = (uint32_t)grp[REG_RSP]; 755 756 if (thisthread) 757 kpreempt_disable(); 758 759 pcb->pcb_ds = fix_segreg(grp[REG_DS], datamodel); 760 pcb->pcb_es = fix_segreg(grp[REG_ES], datamodel); 761 762 /* 763 * (See fsbase/gsbase commentary above) 764 */ 765 pcb->pcb_fs = fix_segreg(grp[REG_FS], datamodel); 766 pcb->pcb_gs = fix_segreg(grp[REG_GS], datamodel); 767 768 /* 769 * Ensure that we go out via update_sregs 770 */ 771 pcb->pcb_flags |= RUPDATE_PENDING; 772 lwptot(lwp)->t_post_sys = 1; 773 if (thisthread) 774 kpreempt_enable(); 775 #endif 776 } 777 778 /* 779 * Only certain bits of the flags register can be modified. 780 */ 781 rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) | 782 (grp[REG_RFL] & PSL_USERMASK); 783 784 #elif defined(__i386) 785 786 /* 787 * Only certain bits of the flags register can be modified. 788 */ 789 grp[EFL] = (rp->r_efl & ~PSL_USERMASK) | (grp[EFL] & PSL_USERMASK); 790 791 /* 792 * Copy saved registers from user stack. 793 */ 794 bcopy(grp, &rp->r_gs, sizeof (gregset_t)); 795 796 rp->r_cs = fix_segreg(rp->r_cs, datamodel); 797 rp->r_ss = fix_segreg(rp->r_ss, datamodel); 798 rp->r_ds = fix_segreg(rp->r_ds, datamodel); 799 rp->r_es = fix_segreg(rp->r_es, datamodel); 800 rp->r_fs = fix_segreg(rp->r_fs, datamodel); 801 rp->r_gs = fix_segreg(rp->r_gs, datamodel); 802 803 #endif /* __i386 */ 804 } 805 806 /* 807 * Determine whether eip is likely to have an interrupt frame 808 * on the stack. We do this by comparing the address to the 809 * range of addresses spanned by several well-known routines. 810 */ 811 extern void _interrupt(); 812 extern void _allsyscalls(); 813 extern void _cmntrap(); 814 extern void fakesoftint(); 815 816 extern size_t _interrupt_size; 817 extern size_t _allsyscalls_size; 818 extern size_t _cmntrap_size; 819 extern size_t _fakesoftint_size; 820 821 /* 822 * Get a pc-only stacktrace. Used for kmem_alloc() buffer ownership tracking. 823 * Returns MIN(current stack depth, pcstack_limit). 824 */ 825 int 826 getpcstack(pc_t *pcstack, int pcstack_limit) 827 { 828 struct frame *fp = (struct frame *)getfp(); 829 struct frame *nextfp, *minfp, *stacktop; 830 int depth = 0; 831 int on_intr; 832 uintptr_t pc; 833 834 if ((on_intr = CPU_ON_INTR(CPU)) != 0) 835 stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME)); 836 else 837 stacktop = (struct frame *)curthread->t_stk; 838 minfp = fp; 839 840 pc = ((struct regs *)fp)->r_pc; 841 842 while (depth < pcstack_limit) { 843 nextfp = (struct frame *)fp->fr_savfp; 844 pc = fp->fr_savpc; 845 if (nextfp <= minfp || nextfp >= stacktop) { 846 if (on_intr) { 847 /* 848 * Hop from interrupt stack to thread stack. 849 */ 850 stacktop = (struct frame *)curthread->t_stk; 851 minfp = (struct frame *)curthread->t_stkbase; 852 on_intr = 0; 853 continue; 854 } 855 break; 856 } 857 pcstack[depth++] = (pc_t)pc; 858 fp = nextfp; 859 minfp = fp; 860 } 861 return (depth); 862 } 863 864 /* 865 * The following ELF header fields are defined as processor-specific 866 * in the V8 ABI: 867 * 868 * e_ident[EI_DATA] encoding of the processor-specific 869 * data in the object file 870 * e_machine processor identification 871 * e_flags processor-specific flags associated 872 * with the file 873 */ 874 875 /* 876 * The value of at_flags reflects a platform's cpu module support. 877 * at_flags is used to check for allowing a binary to execute and 878 * is passed as the value of the AT_FLAGS auxiliary vector. 879 */ 880 int at_flags = 0; 881 882 /* 883 * Check the processor-specific fields of an ELF header. 884 * 885 * returns 1 if the fields are valid, 0 otherwise 886 */ 887 /*ARGSUSED2*/ 888 int 889 elfheadcheck( 890 unsigned char e_data, 891 Elf32_Half e_machine, 892 Elf32_Word e_flags) 893 { 894 if (e_data != ELFDATA2LSB) 895 return (0); 896 #if defined(__amd64) 897 if (e_machine == EM_AMD64) 898 return (1); 899 #endif 900 return (e_machine == EM_386); 901 } 902 903 uint_t auxv_hwcap_include = 0; /* patch to enable unrecognized features */ 904 uint_t auxv_hwcap_exclude = 0; /* patch for broken cpus, debugging */ 905 #if defined(_SYSCALL32_IMPL) 906 uint_t auxv_hwcap32_include = 0; /* ditto for 32-bit apps */ 907 uint_t auxv_hwcap32_exclude = 0; /* ditto for 32-bit apps */ 908 #endif 909 910 /* 911 * Gather information about the processor and place it into auxv_hwcap 912 * so that it can be exported to the linker via the aux vector. 913 * 914 * We use this seemingly complicated mechanism so that we can ensure 915 * that /etc/system can be used to override what the system can or 916 * cannot discover for itself. 917 */ 918 void 919 bind_hwcap(void) 920 { 921 uint_t cpu_hwcap_flags = cpuid_pass4(NULL); 922 923 auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags) & 924 ~auxv_hwcap_exclude; 925 926 #if defined(__amd64) 927 /* 928 * On AMD processors, sysenter just doesn't work at all 929 * when the kernel is in long mode. On IA-32e processors 930 * it does, but there's no real point in all the alternate 931 * mechanism when syscall works on both. 932 * 933 * Besides, the kernel's sysenter handler is expecting a 934 * 32-bit lwp ... 935 */ 936 auxv_hwcap &= ~AV_386_SEP; 937 #endif 938 939 if (auxv_hwcap_include || auxv_hwcap_exclude) 940 cmn_err(CE_CONT, "?user ABI extensions: %b\n", 941 auxv_hwcap, FMT_AV_386); 942 943 #if defined(_SYSCALL32_IMPL) 944 auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags) & 945 ~auxv_hwcap32_exclude; 946 947 #if defined(__amd64) 948 /* 949 * If this is an amd64 architecture machine from Intel, then 950 * syscall -doesn't- work in compatibility mode, only sysenter does. 951 * 952 * Sigh. 953 */ 954 if (!cpuid_syscall32_insn(NULL)) 955 auxv_hwcap32 &= ~AV_386_AMD_SYSC; 956 #endif 957 958 if (auxv_hwcap32_include || auxv_hwcap32_exclude) 959 cmn_err(CE_CONT, "?32-bit user ABI extensions: %b\n", 960 auxv_hwcap32, FMT_AV_386); 961 #endif 962 } 963 964 /* 965 * sync_icache() - this is called 966 * in proc/fs/prusrio.c. x86 has an unified cache and therefore 967 * this is a nop. 968 */ 969 /* ARGSUSED */ 970 void 971 sync_icache(caddr_t addr, uint_t len) 972 { 973 /* Do nothing for now */ 974 } 975 976 /*ARGSUSED*/ 977 void 978 sync_data_memory(caddr_t va, size_t len) 979 { 980 /* Not implemented for this platform */ 981 } 982 983 int 984 __ipltospl(int ipl) 985 { 986 return (ipltospl(ipl)); 987 } 988 989 /* 990 * The panic code invokes panic_saveregs() to record the contents of a 991 * regs structure into the specified panic_data structure for debuggers. 992 */ 993 void 994 panic_saveregs(panic_data_t *pdp, struct regs *rp) 995 { 996 panic_nv_t *pnv = PANICNVGET(pdp); 997 998 struct cregs creg; 999 1000 getcregs(&creg); 1001 1002 #if defined(__amd64) 1003 PANICNVADD(pnv, "rdi", rp->r_rdi); 1004 PANICNVADD(pnv, "rsi", rp->r_rsi); 1005 PANICNVADD(pnv, "rdx", rp->r_rdx); 1006 PANICNVADD(pnv, "rcx", rp->r_rcx); 1007 PANICNVADD(pnv, "r8", rp->r_r8); 1008 PANICNVADD(pnv, "r9", rp->r_r9); 1009 PANICNVADD(pnv, "rax", rp->r_rax); 1010 PANICNVADD(pnv, "rbx", rp->r_rbx); 1011 PANICNVADD(pnv, "rbp", rp->r_rbp); 1012 PANICNVADD(pnv, "r10", rp->r_r10); 1013 PANICNVADD(pnv, "r10", rp->r_r10); 1014 PANICNVADD(pnv, "r11", rp->r_r11); 1015 PANICNVADD(pnv, "r12", rp->r_r12); 1016 PANICNVADD(pnv, "r13", rp->r_r13); 1017 PANICNVADD(pnv, "r14", rp->r_r14); 1018 PANICNVADD(pnv, "r15", rp->r_r15); 1019 PANICNVADD(pnv, "fsbase", rp->r_fsbase); 1020 PANICNVADD(pnv, "gsbase", rp->r_gsbase); 1021 PANICNVADD(pnv, "ds", rp->r_ds); 1022 PANICNVADD(pnv, "es", rp->r_es); 1023 PANICNVADD(pnv, "fs", rp->r_fs); 1024 PANICNVADD(pnv, "gs", rp->r_gs); 1025 PANICNVADD(pnv, "trapno", rp->r_trapno); 1026 PANICNVADD(pnv, "err", rp->r_err); 1027 PANICNVADD(pnv, "rip", rp->r_rip); 1028 PANICNVADD(pnv, "cs", rp->r_cs); 1029 PANICNVADD(pnv, "rflags", rp->r_rfl); 1030 PANICNVADD(pnv, "rsp", rp->r_rsp); 1031 PANICNVADD(pnv, "ss", rp->r_ss); 1032 PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3])); 1033 PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0])); 1034 PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3])); 1035 PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0])); 1036 #elif defined(__i386) 1037 PANICNVADD(pnv, "gs", (uint32_t)rp->r_gs); 1038 PANICNVADD(pnv, "fs", (uint32_t)rp->r_fs); 1039 PANICNVADD(pnv, "es", (uint32_t)rp->r_es); 1040 PANICNVADD(pnv, "ds", (uint32_t)rp->r_ds); 1041 PANICNVADD(pnv, "edi", (uint32_t)rp->r_edi); 1042 PANICNVADD(pnv, "esi", (uint32_t)rp->r_esi); 1043 PANICNVADD(pnv, "ebp", (uint32_t)rp->r_ebp); 1044 PANICNVADD(pnv, "esp", (uint32_t)rp->r_esp); 1045 PANICNVADD(pnv, "ebx", (uint32_t)rp->r_ebx); 1046 PANICNVADD(pnv, "edx", (uint32_t)rp->r_edx); 1047 PANICNVADD(pnv, "ecx", (uint32_t)rp->r_ecx); 1048 PANICNVADD(pnv, "eax", (uint32_t)rp->r_eax); 1049 PANICNVADD(pnv, "trapno", (uint32_t)rp->r_trapno); 1050 PANICNVADD(pnv, "err", (uint32_t)rp->r_err); 1051 PANICNVADD(pnv, "eip", (uint32_t)rp->r_eip); 1052 PANICNVADD(pnv, "cs", (uint32_t)rp->r_cs); 1053 PANICNVADD(pnv, "eflags", (uint32_t)rp->r_efl); 1054 PANICNVADD(pnv, "uesp", (uint32_t)rp->r_uesp); 1055 PANICNVADD(pnv, "ss", (uint32_t)rp->r_ss); 1056 PANICNVADD(pnv, "gdt", creg.cr_gdt); 1057 PANICNVADD(pnv, "idt", creg.cr_idt); 1058 #endif /* __i386 */ 1059 1060 PANICNVADD(pnv, "ldt", creg.cr_ldt); 1061 PANICNVADD(pnv, "task", creg.cr_task); 1062 PANICNVADD(pnv, "cr0", creg.cr_cr0); 1063 PANICNVADD(pnv, "cr2", creg.cr_cr2); 1064 PANICNVADD(pnv, "cr3", creg.cr_cr3); 1065 if (creg.cr_cr4) 1066 PANICNVADD(pnv, "cr4", creg.cr_cr4); 1067 1068 PANICNVSET(pdp, pnv); 1069 } 1070 1071 #define TR_ARG_MAX 6 /* Max args to print, same as SPARC */ 1072 1073 #if !defined(__amd64) 1074 1075 /* 1076 * Given a return address (%eip), determine the likely number of arguments 1077 * that were pushed on the stack prior to its execution. We do this by 1078 * expecting that a typical call sequence consists of pushing arguments on 1079 * the stack, executing a call instruction, and then performing an add 1080 * on %esp to restore it to the value prior to pushing the arguments for 1081 * the call. We attempt to detect such an add, and divide the addend 1082 * by the size of a word to determine the number of pushed arguments. 1083 * 1084 * If we do not find such an add, we punt and return TR_ARG_MAX. It is not 1085 * possible to reliably determine if a function took no arguments (i.e. was 1086 * void) because assembler routines do not reliably perform an add on %esp 1087 * immediately upon returning (eg. _sys_call()), so returning TR_ARG_MAX is 1088 * safer than returning 0. 1089 */ 1090 static ulong_t 1091 argcount(uintptr_t eip) 1092 { 1093 const uint8_t *ins = (const uint8_t *)eip; 1094 ulong_t n; 1095 1096 enum { 1097 M_MODRM_ESP = 0xc4, /* Mod/RM byte indicates %esp */ 1098 M_ADD_IMM32 = 0x81, /* ADD imm32 to r/m32 */ 1099 M_ADD_IMM8 = 0x83 /* ADD imm8 to r/m32 */ 1100 }; 1101 1102 if (eip < KERNELBASE || ins[1] != M_MODRM_ESP) 1103 return (TR_ARG_MAX); 1104 1105 switch (ins[0]) { 1106 case M_ADD_IMM32: 1107 n = ins[2] + (ins[3] << 8) + (ins[4] << 16) + (ins[5] << 24); 1108 break; 1109 1110 case M_ADD_IMM8: 1111 n = ins[2]; 1112 break; 1113 1114 default: 1115 return (TR_ARG_MAX); 1116 } 1117 1118 n /= sizeof (long); 1119 return (MIN(n, TR_ARG_MAX)); 1120 } 1121 1122 #endif /* !__amd64 */ 1123 1124 /* 1125 * Print a stack backtrace using the specified frame pointer. We delay two 1126 * seconds before continuing, unless this is the panic traceback. Note 1127 * that the frame for the starting stack pointer value is omitted because 1128 * the corresponding %eip is not known. 1129 */ 1130 #if defined(__amd64) 1131 1132 void 1133 traceback(caddr_t fpreg) 1134 { 1135 struct frame *fp = (struct frame *)fpreg; 1136 struct frame *nextfp; 1137 uintptr_t pc, nextpc; 1138 ulong_t off; 1139 char args[TR_ARG_MAX * 2 + 16], *sym; 1140 1141 if (!panicstr) 1142 printf("traceback: %%fp = %p\n", (void *)fp); 1143 1144 if ((uintptr_t)fp < KERNELBASE) 1145 goto out; 1146 1147 pc = fp->fr_savpc; 1148 fp = (struct frame *)fp->fr_savfp; 1149 1150 while ((uintptr_t)fp >= KERNELBASE) { 1151 /* 1152 * XX64 Until port is complete tolerate 8-byte aligned 1153 * frame pointers but flag with a warning so they can 1154 * be fixed. 1155 */ 1156 if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) { 1157 if (((uintptr_t)fp & (8 - 1)) == 0) { 1158 printf(" >> warning! 8-byte" 1159 " aligned %%fp = %p\n", (void *)fp); 1160 } else { 1161 printf( 1162 " >> mis-aligned %%fp = %p\n", (void *)fp); 1163 break; 1164 } 1165 } 1166 1167 args[0] = '\0'; 1168 nextpc = (uintptr_t)fp->fr_savpc; 1169 nextfp = (struct frame *)fp->fr_savfp; 1170 if ((sym = kobj_getsymname(pc, &off)) != NULL) { 1171 printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp, 1172 mod_containing_pc((caddr_t)pc), sym, off, args); 1173 } else { 1174 printf("%016lx %lx (%s)\n", 1175 (uintptr_t)fp, pc, args); 1176 } 1177 1178 pc = nextpc; 1179 fp = nextfp; 1180 } 1181 out: 1182 if (!panicstr) { 1183 printf("end of traceback\n"); 1184 DELAY(2 * MICROSEC); 1185 } 1186 } 1187 1188 #elif defined(__i386) 1189 1190 void 1191 traceback(caddr_t fpreg) 1192 { 1193 struct frame *fp = (struct frame *)fpreg; 1194 struct frame *nextfp, *minfp, *stacktop; 1195 uintptr_t pc, nextpc; 1196 1197 cpu_t *cpu; 1198 1199 /* 1200 * args[] holds TR_ARG_MAX hex long args, plus ", " or '\0'. 1201 */ 1202 char args[TR_ARG_MAX * 2 + 8], *p; 1203 1204 int on_intr; 1205 ulong_t off; 1206 char *sym; 1207 1208 if (!panicstr) 1209 printf("traceback: %%fp = %p\n", (void *)fp); 1210 1211 /* 1212 * If we are panicking, all high-level interrupt information in 1213 * CPU was overwritten. panic_cpu has the correct values. 1214 */ 1215 kpreempt_disable(); /* prevent migration */ 1216 1217 cpu = (panicstr && CPU->cpu_id == panic_cpu.cpu_id)? &panic_cpu : CPU; 1218 1219 if ((on_intr = CPU_ON_INTR(cpu)) != 0) 1220 stacktop = (struct frame *)(cpu->cpu_intr_stack + SA(MINFRAME)); 1221 else 1222 stacktop = (struct frame *)curthread->t_stk; 1223 1224 kpreempt_enable(); 1225 1226 if ((uintptr_t)fp < KERNELBASE) 1227 goto out; 1228 1229 minfp = fp; /* Baseline minimum frame pointer */ 1230 pc = fp->fr_savpc; 1231 fp = (struct frame *)fp->fr_savfp; 1232 1233 while ((uintptr_t)fp >= KERNELBASE) { 1234 ulong_t argc; 1235 long *argv; 1236 1237 if (fp <= minfp || fp >= stacktop) { 1238 if (on_intr) { 1239 /* 1240 * Hop from interrupt stack to thread stack. 1241 */ 1242 stacktop = (struct frame *)curthread->t_stk; 1243 minfp = (struct frame *)curthread->t_stkbase; 1244 on_intr = 0; 1245 continue; 1246 } 1247 break; /* we're outside of the expected range */ 1248 } 1249 1250 if ((uintptr_t)fp & (STACK_ALIGN - 1)) { 1251 printf(" >> mis-aligned %%fp = %p\n", (void *)fp); 1252 break; 1253 } 1254 1255 nextpc = fp->fr_savpc; 1256 nextfp = (struct frame *)fp->fr_savfp; 1257 argc = argcount(nextpc); 1258 argv = (long *)((char *)fp + sizeof (struct frame)); 1259 1260 args[0] = '\0'; 1261 p = args; 1262 while (argc-- > 0 && argv < (long *)stacktop) { 1263 p += snprintf(p, args + sizeof (args) - p, 1264 "%s%lx", (p == args) ? "" : ", ", *argv++); 1265 } 1266 1267 if ((sym = kobj_getsymname(pc, &off)) != NULL) { 1268 printf("%08lx %s:%s+%lx (%s)\n", (uintptr_t)fp, 1269 mod_containing_pc((caddr_t)pc), sym, off, args); 1270 } else { 1271 printf("%08lx %lx (%s)\n", 1272 (uintptr_t)fp, pc, args); 1273 } 1274 1275 minfp = fp; 1276 pc = nextpc; 1277 fp = nextfp; 1278 } 1279 out: 1280 if (!panicstr) { 1281 printf("end of traceback\n"); 1282 DELAY(2 * MICROSEC); 1283 } 1284 } 1285 1286 #endif /* __i386 */ 1287 1288 /* 1289 * Generate a stack backtrace from a saved register set. 1290 */ 1291 void 1292 traceregs(struct regs *rp) 1293 { 1294 traceback((caddr_t)rp->r_fp); 1295 } 1296 1297 void 1298 exec_set_sp(size_t stksize) 1299 { 1300 klwp_t *lwp = ttolwp(curthread); 1301 1302 lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize; 1303 } 1304 1305 hrtime_t 1306 gethrtime_waitfree(void) 1307 { 1308 return (dtrace_gethrtime()); 1309 } 1310 1311 hrtime_t 1312 gethrtime(void) 1313 { 1314 return (gethrtimef()); 1315 } 1316 1317 hrtime_t 1318 gethrtime_unscaled(void) 1319 { 1320 return (gethrtimeunscaledf()); 1321 } 1322 1323 void 1324 scalehrtime(hrtime_t *hrt) 1325 { 1326 scalehrtimef(hrt); 1327 } 1328 1329 void 1330 gethrestime(timespec_t *tp) 1331 { 1332 gethrestimef(tp); 1333 } 1334 1335 #if defined(__amd64) 1336 /* 1337 * Part of the implementation of hres_tick(); this routine is 1338 * easier in C than assembler .. called with the hres_lock held. 1339 * 1340 * XX64 Many of these timekeeping variables need to be extern'ed in a header 1341 */ 1342 1343 #include <sys/time.h> 1344 #include <sys/machlock.h> 1345 1346 extern int one_sec; 1347 extern timestruc_t hrestime; 1348 extern int max_hres_adj; 1349 1350 void 1351 __adj_hrestime(void) 1352 { 1353 long long adj; 1354 1355 if (hrestime_adj == 0) 1356 adj = 0; 1357 else if (hrestime_adj > 0) { 1358 if (hrestime_adj < max_hres_adj) 1359 adj = hrestime_adj; 1360 else 1361 adj = max_hres_adj; 1362 } else { 1363 if (hrestime_adj < -max_hres_adj) 1364 adj = -max_hres_adj; 1365 else 1366 adj = hrestime_adj; 1367 } 1368 1369 timedelta -= adj; 1370 hrestime_adj = timedelta; 1371 hrestime.tv_nsec += adj; 1372 1373 while (hrestime.tv_nsec >= NANOSEC) { 1374 one_sec++; 1375 hrestime.tv_sec++; 1376 hrestime.tv_nsec -= NANOSEC; 1377 } 1378 } 1379 #endif 1380 1381 /* 1382 * Wrapper functions to maintain backwards compability 1383 */ 1384 int 1385 xcopyin(const void *uaddr, void *kaddr, size_t count) 1386 { 1387 return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED)); 1388 } 1389 1390 int 1391 xcopyout(const void *kaddr, void *uaddr, size_t count) 1392 { 1393 return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED)); 1394 } 1395