xref: /titanic_41/usr/src/uts/intel/ia32/os/archdep.c (revision 223f6c28404c8d330c123e98936160b8da9a26b2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/vmparam.h>
35 #include <sys/systm.h>
36 #include <sys/signal.h>
37 #include <sys/stack.h>
38 #include <sys/regset.h>
39 #include <sys/privregs.h>
40 #include <sys/frame.h>
41 #include <sys/proc.h>
42 #include <sys/psw.h>
43 #include <sys/siginfo.h>
44 #include <sys/cpuvar.h>
45 #include <sys/asm_linkage.h>
46 #include <sys/kmem.h>
47 #include <sys/errno.h>
48 #include <sys/bootconf.h>
49 #include <sys/archsystm.h>
50 #include <sys/debug.h>
51 #include <sys/elf.h>
52 #include <sys/spl.h>
53 #include <sys/time.h>
54 #include <sys/atomic.h>
55 #include <sys/sysmacros.h>
56 #include <sys/cmn_err.h>
57 #include <sys/modctl.h>
58 #include <sys/kobj.h>
59 #include <sys/panic.h>
60 #include <sys/reboot.h>
61 #include <sys/time.h>
62 #include <sys/fp.h>
63 #include <sys/x86_archext.h>
64 #include <sys/auxv.h>
65 #include <sys/auxv_386.h>
66 #include <sys/dtrace.h>
67 #include <sys/brand.h>
68 #include <sys/machbrand.h>
69 
70 extern const struct fnsave_state x87_initial;
71 extern const struct fxsave_state sse_initial;
72 
73 /*
74  * Map an fnsave-formatted save area into an fxsave-formatted save area.
75  *
76  * Most fields are the same width, content and semantics.  However
77  * the tag word is compressed.
78  */
79 static void
80 fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx)
81 {
82 	uint_t i, tagbits;
83 
84 	fx->fx_fcw = fn->f_fcw;
85 	fx->fx_fsw = fn->f_fsw;
86 
87 	/*
88 	 * copy element by element (because of holes)
89 	 */
90 	for (i = 0; i < 8; i++)
91 		bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0],
92 		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
93 
94 	/*
95 	 * synthesize compressed tag bits
96 	 */
97 	fx->fx_fctw = 0;
98 	for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2)
99 		if ((tagbits & 3) != 3)
100 			fx->fx_fctw |= (1 << i);
101 
102 	fx->fx_fop = fn->f_fop;
103 
104 #if defined(__amd64)
105 	fx->fx_rip = (uint64_t)fn->f_eip;
106 	fx->fx_rdp = (uint64_t)fn->f_dp;
107 #else
108 	fx->fx_eip = fn->f_eip;
109 	fx->fx_cs = fn->f_cs;
110 	fx->__fx_ign0 = 0;
111 	fx->fx_dp = fn->f_dp;
112 	fx->fx_ds = fn->f_ds;
113 	fx->__fx_ign1 = 0;
114 #endif
115 }
116 
117 /*
118  * Map from an fxsave-format save area to an fnsave-format save area.
119  */
120 static void
121 fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn)
122 {
123 	uint_t i, top, tagbits;
124 
125 	fn->f_fcw = fx->fx_fcw;
126 	fn->__f_ign0 = 0;
127 	fn->f_fsw = fx->fx_fsw;
128 	fn->__f_ign1 = 0;
129 
130 	top = (fx->fx_fsw & FPS_TOP) >> 11;
131 
132 	/*
133 	 * copy element by element (because of holes)
134 	 */
135 	for (i = 0; i < 8; i++)
136 		bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0],
137 		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
138 
139 	/*
140 	 * synthesize uncompressed tag bits
141 	 */
142 	fn->f_ftw = 0;
143 	for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) {
144 		uint_t ibit, expo;
145 		const uint16_t *fpp;
146 		static const uint16_t zero[5] = { 0, 0, 0, 0, 0 };
147 
148 		if ((tagbits & 1) == 0) {
149 			fn->f_ftw |= 3 << (i << 1);	/* empty */
150 			continue;
151 		}
152 
153 		/*
154 		 * (tags refer to *physical* registers)
155 		 */
156 		fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0];
157 		ibit = fpp[3] >> 15;
158 		expo = fpp[4] & 0x7fff;
159 
160 		if (ibit && expo != 0 && expo != 0x7fff)
161 			continue;			/* valid fp number */
162 
163 		if (bcmp(fpp, &zero, sizeof (zero)))
164 			fn->f_ftw |= 2 << (i << 1);	/* NaN */
165 		else
166 			fn->f_ftw |= 1 << (i << 1);	/* fp zero */
167 	}
168 
169 	fn->f_fop = fx->fx_fop;
170 
171 	fn->__f_ign2 = 0;
172 #if defined(__amd64)
173 	fn->f_eip = (uint32_t)fx->fx_rip;
174 	fn->f_cs = U32CS_SEL;
175 	fn->f_dp = (uint32_t)fx->fx_rdp;
176 	fn->f_ds = UDS_SEL;
177 #else
178 	fn->f_eip = fx->fx_eip;
179 	fn->f_cs = fx->fx_cs;
180 	fn->f_dp = fx->fx_dp;
181 	fn->f_ds = fx->fx_ds;
182 #endif
183 	fn->__f_ign3 = 0;
184 }
185 
186 /*
187  * Map from an fpregset_t into an fxsave-format save area
188  */
189 static void
190 fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx)
191 {
192 #if defined(__amd64)
193 	bcopy(fp, fx, sizeof (*fx));
194 #else
195 	const struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state;
196 
197 	fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
198 	fx->fx_mxcsr = fc->mxcsr;
199 	bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
200 #endif
201 	/*
202 	 * avoid useless #gp exceptions - mask reserved bits
203 	 */
204 	fx->fx_mxcsr &= sse_mxcsr_mask;
205 }
206 
207 /*
208  * Map from an fxsave-format save area into a fpregset_t
209  */
210 static void
211 fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp)
212 {
213 #if defined(__amd64)
214 	bcopy(fx, fp, sizeof (*fx));
215 #else
216 	struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state;
217 
218 	fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
219 	fc->mxcsr = fx->fx_mxcsr;
220 	bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
221 #endif
222 }
223 
224 #if defined(_SYSCALL32_IMPL)
225 static void
226 fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx)
227 {
228 	const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
229 
230 	fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
231 	/*
232 	 * avoid useless #gp exceptions - mask reserved bits
233 	 */
234 	fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr;
235 	bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
236 }
237 
238 static void
239 fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp)
240 {
241 	struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
242 
243 	fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
244 	fc->mxcsr = fx->fx_mxcsr;
245 	bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
246 }
247 
248 static void
249 fpregset_nto32(const fpregset_t *src, fpregset32_t *dst)
250 {
251 	fxsave_to_fpregset32((struct fxsave_state *)src, dst);
252 	dst->fp_reg_set.fpchip_state.status =
253 	    src->fp_reg_set.fpchip_state.status;
254 	dst->fp_reg_set.fpchip_state.xstatus =
255 	    src->fp_reg_set.fpchip_state.xstatus;
256 }
257 
258 static void
259 fpregset_32ton(const fpregset32_t *src, fpregset_t *dst)
260 {
261 	fpregset32_to_fxsave(src, (struct fxsave_state *)dst);
262 	dst->fp_reg_set.fpchip_state.status =
263 	    src->fp_reg_set.fpchip_state.status;
264 	dst->fp_reg_set.fpchip_state.xstatus =
265 	    src->fp_reg_set.fpchip_state.xstatus;
266 }
267 #endif
268 
269 /*
270  * Set floating-point registers from a native fpregset_t.
271  */
272 void
273 setfpregs(klwp_t *lwp, fpregset_t *fp)
274 {
275 	struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
276 
277 	if (fpu->fpu_flags & FPU_EN) {
278 		if (!(fpu->fpu_flags & FPU_VALID)) {
279 			/*
280 			 * FPU context is still active, release the
281 			 * ownership.
282 			 */
283 			fp_free(fpu, 0);
284 		}
285 #if !defined(__amd64)
286 		if (fp_kind == __FP_SSE) {
287 #endif
288 			fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx);
289 			fpu->fpu_regs.kfpu_xstatus =
290 			    fp->fp_reg_set.fpchip_state.xstatus;
291 #if !defined(__amd64)
292 		} else
293 			bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn,
294 			    sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
295 #endif
296 		fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status;
297 		fpu->fpu_flags |= FPU_VALID;
298 	} else {
299 		/*
300 		 * If we are trying to change the FPU state of a thread which
301 		 * hasn't yet initialized floating point, store the state in
302 		 * the pcb and indicate that the state is valid.  When the
303 		 * thread enables floating point, it will use this state instead
304 		 * of the default state.
305 		 */
306 #if !defined(__amd64)
307 		if (fp_kind == __FP_SSE) {
308 #endif
309 			fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx);
310 			fpu->fpu_regs.kfpu_xstatus =
311 			    fp->fp_reg_set.fpchip_state.xstatus;
312 #if !defined(__amd64)
313 		} else
314 			bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn,
315 			    sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
316 #endif
317 		fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status;
318 		fpu->fpu_flags |= FPU_VALID;
319 	}
320 }
321 
322 /*
323  * Get floating-point registers into a native fpregset_t.
324  */
325 void
326 getfpregs(klwp_t *lwp, fpregset_t *fp)
327 {
328 	struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
329 
330 	kpreempt_disable();
331 	if (fpu->fpu_flags & FPU_EN) {
332 		/*
333 		 * If we have FPU hw and the thread's pcb doesn't have
334 		 * a valid FPU state then get the state from the hw.
335 		 */
336 		if (fpu_exists && ttolwp(curthread) == lwp &&
337 		    !(fpu->fpu_flags & FPU_VALID))
338 			fp_save(fpu); /* get the current FPU state */
339 	}
340 
341 	/*
342 	 * There are 3 possible cases we have to be aware of here:
343 	 *
344 	 * 1. FPU is enabled.  FPU state is stored in the current LWP.
345 	 *
346 	 * 2. FPU is not enabled, and there have been no intervening /proc
347 	 *    modifications.  Return initial FPU state.
348 	 *
349 	 * 3. FPU is not enabled, but a /proc consumer has modified FPU state.
350 	 *    FPU state is stored in the current LWP.
351 	 */
352 	if ((fpu->fpu_flags & FPU_EN) || (fpu->fpu_flags & FPU_VALID)) {
353 		/*
354 		 * Cases 1 and 3.
355 		 */
356 #if !defined(__amd64)
357 		if (fp_kind == __FP_SSE) {
358 #endif
359 			fxsave_to_fpregset(&fpu->fpu_regs.kfpu_u.kfpu_fx, fp);
360 			fp->fp_reg_set.fpchip_state.xstatus =
361 			    fpu->fpu_regs.kfpu_xstatus;
362 #if !defined(__amd64)
363 		} else
364 			bcopy(&fpu->fpu_regs.kfpu_u.kfpu_fn, fp,
365 			    sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
366 #endif
367 		fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
368 	} else {
369 		/*
370 		 * Case 2.
371 		 */
372 #if !defined(__amd64)
373 		if (fp_kind == __FP_SSE) {
374 #endif
375 			fxsave_to_fpregset(&sse_initial, fp);
376 			fp->fp_reg_set.fpchip_state.xstatus =
377 			    fpu->fpu_regs.kfpu_xstatus;
378 #if !defined(__amd64)
379 		} else
380 			bcopy(&x87_initial, fp, sizeof (x87_initial));
381 #endif
382 		fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
383 	}
384 	kpreempt_enable();
385 }
386 
387 #if defined(_SYSCALL32_IMPL)
388 
389 /*
390  * Set floating-point registers from an fpregset32_t.
391  */
392 void
393 setfpregs32(klwp_t *lwp, fpregset32_t *fp)
394 {
395 	fpregset_t fpregs;
396 
397 	fpregset_32ton(fp, &fpregs);
398 	setfpregs(lwp, &fpregs);
399 }
400 
401 /*
402  * Get floating-point registers into an fpregset32_t.
403  */
404 void
405 getfpregs32(klwp_t *lwp, fpregset32_t *fp)
406 {
407 	fpregset_t fpregs;
408 
409 	getfpregs(lwp, &fpregs);
410 	fpregset_nto32(&fpregs, fp);
411 }
412 
413 #endif	/* _SYSCALL32_IMPL */
414 
415 /*
416  * Return the general registers
417  */
418 void
419 getgregs(klwp_t *lwp, gregset_t grp)
420 {
421 	struct regs *rp = lwptoregs(lwp);
422 #if defined(__amd64)
423 	struct pcb *pcb = &lwp->lwp_pcb;
424 	int thisthread = lwptot(lwp) == curthread;
425 
426 	grp[REG_RDI] = rp->r_rdi;
427 	grp[REG_RSI] = rp->r_rsi;
428 	grp[REG_RDX] = rp->r_rdx;
429 	grp[REG_RCX] = rp->r_rcx;
430 	grp[REG_R8] = rp->r_r8;
431 	grp[REG_R9] = rp->r_r9;
432 	grp[REG_RAX] = rp->r_rax;
433 	grp[REG_RBX] = rp->r_rbx;
434 	grp[REG_RBP] = rp->r_rbp;
435 	grp[REG_R10] = rp->r_r10;
436 	grp[REG_R11] = rp->r_r11;
437 	grp[REG_R12] = rp->r_r12;
438 	grp[REG_R13] = rp->r_r13;
439 	grp[REG_R14] = rp->r_r14;
440 	grp[REG_R15] = rp->r_r15;
441 	grp[REG_FSBASE] = pcb->pcb_fsbase;
442 	grp[REG_GSBASE] = pcb->pcb_gsbase;
443 	if (thisthread)
444 		kpreempt_disable();
445 	if (pcb->pcb_flags & RUPDATE_PENDING) {
446 		grp[REG_DS] = pcb->pcb_ds;
447 		grp[REG_ES] = pcb->pcb_es;
448 		grp[REG_FS] = pcb->pcb_fs;
449 		grp[REG_GS] = pcb->pcb_gs;
450 	} else {
451 		grp[REG_DS] = rp->r_ds;
452 		grp[REG_ES] = rp->r_es;
453 		grp[REG_FS] = rp->r_fs;
454 		grp[REG_GS] = rp->r_gs;
455 	}
456 	if (thisthread)
457 		kpreempt_enable();
458 	grp[REG_TRAPNO] = rp->r_trapno;
459 	grp[REG_ERR] = rp->r_err;
460 	grp[REG_RIP] = rp->r_rip;
461 	grp[REG_CS] = rp->r_cs;
462 	grp[REG_SS] = rp->r_ss;
463 	grp[REG_RFL] = rp->r_rfl;
464 	grp[REG_RSP] = rp->r_rsp;
465 #else
466 	bcopy(&rp->r_gs, grp, sizeof (gregset_t));
467 #endif
468 }
469 
470 #if defined(_SYSCALL32_IMPL)
471 
472 void
473 getgregs32(klwp_t *lwp, gregset32_t grp)
474 {
475 	struct regs *rp = lwptoregs(lwp);
476 	struct pcb *pcb = &lwp->lwp_pcb;
477 	int thisthread = lwptot(lwp) == curthread;
478 
479 	if (thisthread)
480 		kpreempt_disable();
481 	if (pcb->pcb_flags & RUPDATE_PENDING) {
482 		grp[GS] = (uint16_t)pcb->pcb_gs;
483 		grp[FS] = (uint16_t)pcb->pcb_fs;
484 		grp[DS] = (uint16_t)pcb->pcb_ds;
485 		grp[ES] = (uint16_t)pcb->pcb_es;
486 	} else {
487 		grp[GS] = (uint16_t)rp->r_gs;
488 		grp[FS] = (uint16_t)rp->r_fs;
489 		grp[DS] = (uint16_t)rp->r_ds;
490 		grp[ES] = (uint16_t)rp->r_es;
491 	}
492 	if (thisthread)
493 		kpreempt_enable();
494 	grp[EDI] = (greg32_t)rp->r_rdi;
495 	grp[ESI] = (greg32_t)rp->r_rsi;
496 	grp[EBP] = (greg32_t)rp->r_rbp;
497 	grp[ESP] = 0;
498 	grp[EBX] = (greg32_t)rp->r_rbx;
499 	grp[EDX] = (greg32_t)rp->r_rdx;
500 	grp[ECX] = (greg32_t)rp->r_rcx;
501 	grp[EAX] = (greg32_t)rp->r_rax;
502 	grp[TRAPNO] = (greg32_t)rp->r_trapno;
503 	grp[ERR] = (greg32_t)rp->r_err;
504 	grp[EIP] = (greg32_t)rp->r_rip;
505 	grp[CS] = (uint16_t)rp->r_cs;
506 	grp[EFL] = (greg32_t)rp->r_rfl;
507 	grp[UESP] = (greg32_t)rp->r_rsp;
508 	grp[SS] = (uint16_t)rp->r_ss;
509 }
510 
511 void
512 ucontext_32ton(const ucontext32_t *src, ucontext_t *dst)
513 {
514 	mcontext_t *dmc = &dst->uc_mcontext;
515 	const mcontext32_t *smc = &src->uc_mcontext;
516 
517 	bzero(dst, sizeof (*dst));
518 	dst->uc_flags = src->uc_flags;
519 	dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link;
520 
521 	bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask));
522 
523 	dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp;
524 	dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size;
525 	dst->uc_stack.ss_flags = src->uc_stack.ss_flags;
526 
527 	dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS];
528 	dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS];
529 	dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES];
530 	dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS];
531 	dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI];
532 	dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI];
533 	dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP];
534 	dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX];
535 	dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX];
536 	dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX];
537 	dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX];
538 	dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO];
539 	dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR];
540 	dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP];
541 	dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS];
542 	dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL];
543 	dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP];
544 	dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS];
545 
546 	/*
547 	 * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set
548 	 * otherwise there is no guarantee that anything in fpregs is valid.
549 	 */
550 	if (src->uc_flags & UC_FPU)
551 		fpregset_32ton(&src->uc_mcontext.fpregs,
552 		    &dst->uc_mcontext.fpregs);
553 }
554 
555 #endif	/* _SYSCALL32_IMPL */
556 
557 /*
558  * Return the user-level PC.
559  * If in a system call, return the address of the syscall trap.
560  */
561 greg_t
562 getuserpc()
563 {
564 	greg_t upc = lwptoregs(ttolwp(curthread))->r_pc;
565 	uint32_t insn;
566 
567 	if (curthread->t_sysnum == 0)
568 		return (upc);
569 
570 	/*
571 	 * We might've gotten here from sysenter (0xf 0x34),
572 	 * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0).
573 	 *
574 	 * Go peek at the binary to figure it out..
575 	 */
576 	if (fuword32((void *)(upc - 2), &insn) != -1 &&
577 	    (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f)
578 		return (upc - 2);
579 	return (upc - 7);
580 }
581 
582 /*
583  * Protect segment registers from non-user privilege levels and GDT selectors
584  * other than USER_CS, USER_DS and lwp FS and GS values.  If the segment
585  * selector is non-null and not USER_CS/USER_DS, we make sure that the
586  * TI bit is set to point into the LDT and that the RPL is set to 3.
587  *
588  * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we
589  * also explicitly zero the top 16 bits since they may be coming from the
590  * user's address space via setcontext(2) or /proc.
591  */
592 
593 /*ARGSUSED*/
594 static greg_t
595 fix_segreg(greg_t sr, model_t datamodel)
596 {
597 	kthread_t *t = curthread;
598 
599 	switch (sr &= 0xffff) {
600 #if defined(__amd64)
601 	/*
602 	 * If lwp attempts to switch data model then force their
603 	 * code selector to be null selector.
604 	 */
605 	case U32CS_SEL:
606 		if (datamodel == DATAMODEL_NATIVE)
607 			return (0);
608 		else
609 			return (sr);
610 
611 	case UCS_SEL:
612 		if (datamodel == DATAMODEL_ILP32)
613 			return (0);
614 #elif defined(__i386)
615 	case UCS_SEL:
616 #endif
617 	/*FALLTHROUGH*/
618 	case UDS_SEL:
619 	case LWPFS_SEL:
620 	case LWPGS_SEL:
621 	case 0:
622 		return (sr);
623 	default:
624 		break;
625 	}
626 
627 	/*
628 	 * Allow this process's brand to do any necessary segment register
629 	 * manipulation.
630 	 */
631 	if (PROC_IS_BRANDED(t->t_procp) && BRMOP(t->t_procp)->b_fixsegreg)
632 		return (BRMOP(t->t_procp)->b_fixsegreg(sr, datamodel));
633 
634 	/*
635 	 * Force it into the LDT in ring 3 for 32-bit processes, which by
636 	 * default do not have an LDT, so that any attempt to use an invalid
637 	 * selector will reference the (non-existant) LDT, and cause a #gp fault
638 	 * for the process.
639 	 *
640 	 * 64-bit processes get the null gdt selector since they
641 	 * are not allowed to have a private LDT.
642 	 */
643 #if defined(__amd64)
644 	return (datamodel == DATAMODEL_ILP32 ? (sr | SEL_TI_LDT | SEL_UPL) : 0);
645 #elif defined(__i386)
646 	return (sr | SEL_TI_LDT | SEL_UPL);
647 #endif
648 }
649 
650 /*
651  * Set general registers.
652  */
653 void
654 setgregs(klwp_t *lwp, gregset_t grp)
655 {
656 	struct regs *rp = lwptoregs(lwp);
657 	model_t	datamodel = lwp_getdatamodel(lwp);
658 
659 #if defined(__amd64)
660 	struct pcb *pcb = &lwp->lwp_pcb;
661 	int thisthread = lwptot(lwp) == curthread;
662 
663 	if (datamodel == DATAMODEL_NATIVE) {
664 
665 		if (thisthread)
666 			(void) save_syscall_args();	/* copy the args */
667 
668 		rp->r_rdi = grp[REG_RDI];
669 		rp->r_rsi = grp[REG_RSI];
670 		rp->r_rdx = grp[REG_RDX];
671 		rp->r_rcx = grp[REG_RCX];
672 		rp->r_r8 = grp[REG_R8];
673 		rp->r_r9 = grp[REG_R9];
674 		rp->r_rax = grp[REG_RAX];
675 		rp->r_rbx = grp[REG_RBX];
676 		rp->r_rbp = grp[REG_RBP];
677 		rp->r_r10 = grp[REG_R10];
678 		rp->r_r11 = grp[REG_R11];
679 		rp->r_r12 = grp[REG_R12];
680 		rp->r_r13 = grp[REG_R13];
681 		rp->r_r14 = grp[REG_R14];
682 		rp->r_r15 = grp[REG_R15];
683 		rp->r_trapno = grp[REG_TRAPNO];
684 		rp->r_err = grp[REG_ERR];
685 		rp->r_rip = grp[REG_RIP];
686 		/*
687 		 * Setting %cs or %ss to anything else is quietly but
688 		 * quite definitely forbidden!
689 		 */
690 		rp->r_cs = UCS_SEL;
691 		rp->r_ss = UDS_SEL;
692 		rp->r_rsp = grp[REG_RSP];
693 
694 		if (thisthread)
695 			kpreempt_disable();
696 
697 		pcb->pcb_ds = UDS_SEL;
698 		pcb->pcb_es = UDS_SEL;
699 
700 		/*
701 		 * 64-bit processes -are- allowed to set their fsbase/gsbase
702 		 * values directly, but only if they're using the segment
703 		 * selectors that allow that semantic.
704 		 *
705 		 * (32-bit processes must use lwp_set_private().)
706 		 */
707 		pcb->pcb_fsbase = grp[REG_FSBASE];
708 		pcb->pcb_gsbase = grp[REG_GSBASE];
709 		pcb->pcb_fs = fix_segreg(grp[REG_FS], datamodel);
710 		pcb->pcb_gs = fix_segreg(grp[REG_GS], datamodel);
711 
712 		/*
713 		 * Ensure that we go out via update_sregs
714 		 */
715 		pcb->pcb_flags |= RUPDATE_PENDING;
716 		lwptot(lwp)->t_post_sys = 1;
717 		if (thisthread)
718 			kpreempt_enable();
719 #if defined(_SYSCALL32_IMPL)
720 	} else {
721 		rp->r_rdi = (uint32_t)grp[REG_RDI];
722 		rp->r_rsi = (uint32_t)grp[REG_RSI];
723 		rp->r_rdx = (uint32_t)grp[REG_RDX];
724 		rp->r_rcx = (uint32_t)grp[REG_RCX];
725 		rp->r_rax = (uint32_t)grp[REG_RAX];
726 		rp->r_rbx = (uint32_t)grp[REG_RBX];
727 		rp->r_rbp = (uint32_t)grp[REG_RBP];
728 		rp->r_trapno = (uint32_t)grp[REG_TRAPNO];
729 		rp->r_err = (uint32_t)grp[REG_ERR];
730 		rp->r_rip = (uint32_t)grp[REG_RIP];
731 
732 		/*
733 		 * The kernel uses %cs to determine if it is dealing with
734 		 * another part of the kernel or with a userland application.
735 		 * Specifically, it tests the privilege bits. For this reason,
736 		 * we must prevent user apps from ending up with a NULL selector
737 		 * in %cs. Instead, we'll use index 0 into the GDT but with the
738 		 * privilege bits set to usermode.
739 		 */
740 		rp->r_cs = fix_segreg(grp[REG_CS], datamodel) | SEL_UPL;
741 		rp->r_ss = fix_segreg(grp[REG_DS], datamodel);
742 
743 		rp->r_rsp = (uint32_t)grp[REG_RSP];
744 
745 		if (thisthread)
746 			kpreempt_disable();
747 
748 		pcb->pcb_ds = fix_segreg(grp[REG_DS], datamodel);
749 		pcb->pcb_es = fix_segreg(grp[REG_ES], datamodel);
750 
751 		/*
752 		 * (See fsbase/gsbase commentary above)
753 		 */
754 		pcb->pcb_fs = fix_segreg(grp[REG_FS], datamodel);
755 		pcb->pcb_gs = fix_segreg(grp[REG_GS], datamodel);
756 
757 		/*
758 		 * Ensure that we go out via update_sregs
759 		 */
760 		pcb->pcb_flags |= RUPDATE_PENDING;
761 		lwptot(lwp)->t_post_sys = 1;
762 		if (thisthread)
763 			kpreempt_enable();
764 #endif
765 	}
766 
767 	/*
768 	 * Only certain bits of the flags register can be modified.
769 	 */
770 	rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) |
771 	    (grp[REG_RFL] & PSL_USERMASK);
772 
773 #elif defined(__i386)
774 
775 	/*
776 	 * Only certain bits of the flags register can be modified.
777 	 */
778 	grp[EFL] = (rp->r_efl & ~PSL_USERMASK) | (grp[EFL] & PSL_USERMASK);
779 
780 	/*
781 	 * Copy saved registers from user stack.
782 	 */
783 	bcopy(grp, &rp->r_gs, sizeof (gregset_t));
784 
785 	rp->r_cs = fix_segreg(rp->r_cs, datamodel);
786 	rp->r_ss = fix_segreg(rp->r_ss, datamodel);
787 	rp->r_ds = fix_segreg(rp->r_ds, datamodel);
788 	rp->r_es = fix_segreg(rp->r_es, datamodel);
789 	rp->r_fs = fix_segreg(rp->r_fs, datamodel);
790 	rp->r_gs = fix_segreg(rp->r_gs, datamodel);
791 
792 #endif	/* __i386 */
793 }
794 
795 /*
796  * Determine whether eip is likely to have an interrupt frame
797  * on the stack.  We do this by comparing the address to the
798  * range of addresses spanned by several well-known routines.
799  */
800 extern void _interrupt();
801 extern void _allsyscalls();
802 extern void _cmntrap();
803 extern void fakesoftint();
804 
805 extern size_t _interrupt_size;
806 extern size_t _allsyscalls_size;
807 extern size_t _cmntrap_size;
808 extern size_t _fakesoftint_size;
809 
810 /*
811  * Get a pc-only stacktrace.  Used for kmem_alloc() buffer ownership tracking.
812  * Returns MIN(current stack depth, pcstack_limit).
813  */
814 int
815 getpcstack(pc_t *pcstack, int pcstack_limit)
816 {
817 	struct frame *fp = (struct frame *)getfp();
818 	struct frame *nextfp, *minfp, *stacktop;
819 	int depth = 0;
820 	int on_intr;
821 	uintptr_t pc;
822 
823 	if ((on_intr = CPU_ON_INTR(CPU)) != 0)
824 		stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
825 	else
826 		stacktop = (struct frame *)curthread->t_stk;
827 	minfp = fp;
828 
829 	pc = ((struct regs *)fp)->r_pc;
830 
831 	while (depth < pcstack_limit) {
832 		nextfp = (struct frame *)fp->fr_savfp;
833 		pc = fp->fr_savpc;
834 		if (nextfp <= minfp || nextfp >= stacktop) {
835 			if (on_intr) {
836 				/*
837 				 * Hop from interrupt stack to thread stack.
838 				 */
839 				stacktop = (struct frame *)curthread->t_stk;
840 				minfp = (struct frame *)curthread->t_stkbase;
841 				on_intr = 0;
842 				continue;
843 			}
844 			break;
845 		}
846 		pcstack[depth++] = (pc_t)pc;
847 		fp = nextfp;
848 		minfp = fp;
849 	}
850 	return (depth);
851 }
852 
853 /*
854  * The following ELF header fields are defined as processor-specific
855  * in the V8 ABI:
856  *
857  *	e_ident[EI_DATA]	encoding of the processor-specific
858  *				data in the object file
859  *	e_machine		processor identification
860  *	e_flags			processor-specific flags associated
861  *				with the file
862  */
863 
864 /*
865  * The value of at_flags reflects a platform's cpu module support.
866  * at_flags is used to check for allowing a binary to execute and
867  * is passed as the value of the AT_FLAGS auxiliary vector.
868  */
869 int at_flags = 0;
870 
871 /*
872  * Check the processor-specific fields of an ELF header.
873  *
874  * returns 1 if the fields are valid, 0 otherwise
875  */
876 /*ARGSUSED2*/
877 int
878 elfheadcheck(
879 	unsigned char e_data,
880 	Elf32_Half e_machine,
881 	Elf32_Word e_flags)
882 {
883 	if (e_data != ELFDATA2LSB)
884 		return (0);
885 #if defined(__amd64)
886 	if (e_machine == EM_AMD64)
887 		return (1);
888 #endif
889 	return (e_machine == EM_386);
890 }
891 
892 uint_t auxv_hwcap_include = 0;	/* patch to enable unrecognized features */
893 uint_t auxv_hwcap_exclude = 0;	/* patch for broken cpus, debugging */
894 #if defined(_SYSCALL32_IMPL)
895 uint_t auxv_hwcap32_include = 0;	/* ditto for 32-bit apps */
896 uint_t auxv_hwcap32_exclude = 0;	/* ditto for 32-bit apps */
897 #endif
898 
899 /*
900  * Gather information about the processor and place it into auxv_hwcap
901  * so that it can be exported to the linker via the aux vector.
902  *
903  * We use this seemingly complicated mechanism so that we can ensure
904  * that /etc/system can be used to override what the system can or
905  * cannot discover for itself.
906  */
907 void
908 bind_hwcap(void)
909 {
910 	uint_t cpu_hwcap_flags = cpuid_pass4(NULL);
911 
912 	auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags) &
913 	    ~auxv_hwcap_exclude;
914 
915 #if defined(__amd64)
916 	/*
917 	 * On AMD processors, sysenter just doesn't work at all
918 	 * when the kernel is in long mode.  On IA-32e processors
919 	 * it does, but there's no real point in all the alternate
920 	 * mechanism when syscall works on both.
921 	 *
922 	 * Besides, the kernel's sysenter handler is expecting a
923 	 * 32-bit lwp ...
924 	 */
925 	auxv_hwcap &= ~AV_386_SEP;
926 #else
927 	/*
928 	 * 32-bit processes can -always- use the lahf/sahf instructions
929 	 */
930 	auxv_hwcap |= AV_386_AHF;
931 #endif
932 
933 	if (auxv_hwcap_include || auxv_hwcap_exclude)
934 		cmn_err(CE_CONT, "?user ABI extensions: %b\n",
935 		    auxv_hwcap, FMT_AV_386);
936 
937 #if defined(_SYSCALL32_IMPL)
938 	auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags) &
939 		~auxv_hwcap32_exclude;
940 
941 #if defined(__amd64)
942 	/*
943 	 * If this is an amd64 architecture machine from Intel, then
944 	 * syscall -doesn't- work in compatibility mode, only sysenter does.
945 	 *
946 	 * Sigh.
947 	 */
948 	if (!cpuid_syscall32_insn(NULL))
949 		auxv_hwcap32 &= ~AV_386_AMD_SYSC;
950 
951 	/*
952 	 * 32-bit processes can -always- use the lahf/sahf instructions
953 	 */
954 	auxv_hwcap32 |= AV_386_AHF;
955 #endif
956 
957 	if (auxv_hwcap32_include || auxv_hwcap32_exclude)
958 		cmn_err(CE_CONT, "?32-bit user ABI extensions: %b\n",
959 		    auxv_hwcap32, FMT_AV_386);
960 #endif
961 }
962 
963 /*
964  *	sync_icache() - this is called
965  *	in proc/fs/prusrio.c. x86 has an unified cache and therefore
966  *	this is a nop.
967  */
968 /* ARGSUSED */
969 void
970 sync_icache(caddr_t addr, uint_t len)
971 {
972 	/* Do nothing for now */
973 }
974 
975 /*ARGSUSED*/
976 void
977 sync_data_memory(caddr_t va, size_t len)
978 {
979 	/* Not implemented for this platform */
980 }
981 
982 int
983 __ipltospl(int ipl)
984 {
985 	return (ipltospl(ipl));
986 }
987 
988 /*
989  * The panic code invokes panic_saveregs() to record the contents of a
990  * regs structure into the specified panic_data structure for debuggers.
991  */
992 void
993 panic_saveregs(panic_data_t *pdp, struct regs *rp)
994 {
995 	panic_nv_t *pnv = PANICNVGET(pdp);
996 
997 	struct cregs	creg;
998 
999 	getcregs(&creg);
1000 
1001 #if defined(__amd64)
1002 	PANICNVADD(pnv, "rdi", rp->r_rdi);
1003 	PANICNVADD(pnv, "rsi", rp->r_rsi);
1004 	PANICNVADD(pnv, "rdx", rp->r_rdx);
1005 	PANICNVADD(pnv, "rcx", rp->r_rcx);
1006 	PANICNVADD(pnv, "r8", rp->r_r8);
1007 	PANICNVADD(pnv, "r9", rp->r_r9);
1008 	PANICNVADD(pnv, "rax", rp->r_rax);
1009 	PANICNVADD(pnv, "rbx", rp->r_rbx);
1010 	PANICNVADD(pnv, "rbp", rp->r_rbp);
1011 	PANICNVADD(pnv, "r10", rp->r_r10);
1012 	PANICNVADD(pnv, "r10", rp->r_r10);
1013 	PANICNVADD(pnv, "r11", rp->r_r11);
1014 	PANICNVADD(pnv, "r12", rp->r_r12);
1015 	PANICNVADD(pnv, "r13", rp->r_r13);
1016 	PANICNVADD(pnv, "r14", rp->r_r14);
1017 	PANICNVADD(pnv, "r15", rp->r_r15);
1018 	PANICNVADD(pnv, "fsbase", rdmsr(MSR_AMD_FSBASE));
1019 	PANICNVADD(pnv, "gsbase", rdmsr(MSR_AMD_GSBASE));
1020 	PANICNVADD(pnv, "ds", rp->r_ds);
1021 	PANICNVADD(pnv, "es", rp->r_es);
1022 	PANICNVADD(pnv, "fs", rp->r_fs);
1023 	PANICNVADD(pnv, "gs", rp->r_gs);
1024 	PANICNVADD(pnv, "trapno", rp->r_trapno);
1025 	PANICNVADD(pnv, "err", rp->r_err);
1026 	PANICNVADD(pnv, "rip", rp->r_rip);
1027 	PANICNVADD(pnv, "cs", rp->r_cs);
1028 	PANICNVADD(pnv, "rflags", rp->r_rfl);
1029 	PANICNVADD(pnv, "rsp", rp->r_rsp);
1030 	PANICNVADD(pnv, "ss", rp->r_ss);
1031 	PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3]));
1032 	PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0]));
1033 	PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3]));
1034 	PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0]));
1035 #elif defined(__i386)
1036 	PANICNVADD(pnv, "gs", (uint32_t)rp->r_gs);
1037 	PANICNVADD(pnv, "fs", (uint32_t)rp->r_fs);
1038 	PANICNVADD(pnv, "es", (uint32_t)rp->r_es);
1039 	PANICNVADD(pnv, "ds", (uint32_t)rp->r_ds);
1040 	PANICNVADD(pnv, "edi", (uint32_t)rp->r_edi);
1041 	PANICNVADD(pnv, "esi", (uint32_t)rp->r_esi);
1042 	PANICNVADD(pnv, "ebp", (uint32_t)rp->r_ebp);
1043 	PANICNVADD(pnv, "esp", (uint32_t)rp->r_esp);
1044 	PANICNVADD(pnv, "ebx", (uint32_t)rp->r_ebx);
1045 	PANICNVADD(pnv, "edx", (uint32_t)rp->r_edx);
1046 	PANICNVADD(pnv, "ecx", (uint32_t)rp->r_ecx);
1047 	PANICNVADD(pnv, "eax", (uint32_t)rp->r_eax);
1048 	PANICNVADD(pnv, "trapno", (uint32_t)rp->r_trapno);
1049 	PANICNVADD(pnv, "err", (uint32_t)rp->r_err);
1050 	PANICNVADD(pnv, "eip", (uint32_t)rp->r_eip);
1051 	PANICNVADD(pnv, "cs", (uint32_t)rp->r_cs);
1052 	PANICNVADD(pnv, "eflags", (uint32_t)rp->r_efl);
1053 	PANICNVADD(pnv, "uesp", (uint32_t)rp->r_uesp);
1054 	PANICNVADD(pnv, "ss", (uint32_t)rp->r_ss);
1055 	PANICNVADD(pnv, "gdt", creg.cr_gdt);
1056 	PANICNVADD(pnv, "idt", creg.cr_idt);
1057 #endif	/* __i386 */
1058 
1059 	PANICNVADD(pnv, "ldt", creg.cr_ldt);
1060 	PANICNVADD(pnv, "task", creg.cr_task);
1061 	PANICNVADD(pnv, "cr0", creg.cr_cr0);
1062 	PANICNVADD(pnv, "cr2", creg.cr_cr2);
1063 	PANICNVADD(pnv, "cr3", creg.cr_cr3);
1064 	if (creg.cr_cr4)
1065 		PANICNVADD(pnv, "cr4", creg.cr_cr4);
1066 
1067 	PANICNVSET(pdp, pnv);
1068 }
1069 
1070 #define	TR_ARG_MAX 6	/* Max args to print, same as SPARC */
1071 
1072 #if !defined(__amd64)
1073 
1074 /*
1075  * Given a return address (%eip), determine the likely number of arguments
1076  * that were pushed on the stack prior to its execution.  We do this by
1077  * expecting that a typical call sequence consists of pushing arguments on
1078  * the stack, executing a call instruction, and then performing an add
1079  * on %esp to restore it to the value prior to pushing the arguments for
1080  * the call.  We attempt to detect such an add, and divide the addend
1081  * by the size of a word to determine the number of pushed arguments.
1082  *
1083  * If we do not find such an add, we punt and return TR_ARG_MAX. It is not
1084  * possible to reliably determine if a function took no arguments (i.e. was
1085  * void) because assembler routines do not reliably perform an add on %esp
1086  * immediately upon returning (eg. _sys_call()), so returning TR_ARG_MAX is
1087  * safer than returning 0.
1088  */
1089 static ulong_t
1090 argcount(uintptr_t eip)
1091 {
1092 	const uint8_t *ins = (const uint8_t *)eip;
1093 	ulong_t n;
1094 
1095 	enum {
1096 		M_MODRM_ESP = 0xc4,	/* Mod/RM byte indicates %esp */
1097 		M_ADD_IMM32 = 0x81,	/* ADD imm32 to r/m32 */
1098 		M_ADD_IMM8  = 0x83	/* ADD imm8 to r/m32 */
1099 	};
1100 
1101 	if (eip < KERNELBASE || ins[1] != M_MODRM_ESP)
1102 		return (TR_ARG_MAX);
1103 
1104 	switch (ins[0]) {
1105 	case M_ADD_IMM32:
1106 		n = ins[2] + (ins[3] << 8) + (ins[4] << 16) + (ins[5] << 24);
1107 		break;
1108 
1109 	case M_ADD_IMM8:
1110 		n = ins[2];
1111 		break;
1112 
1113 	default:
1114 		return (TR_ARG_MAX);
1115 	}
1116 
1117 	n /= sizeof (long);
1118 	return (MIN(n, TR_ARG_MAX));
1119 }
1120 
1121 #endif	/* !__amd64 */
1122 
1123 /*
1124  * Print a stack backtrace using the specified frame pointer.  We delay two
1125  * seconds before continuing, unless this is the panic traceback.  Note
1126  * that the frame for the starting stack pointer value is omitted because
1127  * the corresponding %eip is not known.
1128  */
1129 #if defined(__amd64)
1130 
1131 void
1132 traceback(caddr_t fpreg)
1133 {
1134 	struct frame	*fp = (struct frame *)fpreg;
1135 	struct frame	*nextfp;
1136 	uintptr_t	pc, nextpc;
1137 	ulong_t		off;
1138 	char		args[TR_ARG_MAX * 2 + 16], *sym;
1139 
1140 	if (!panicstr)
1141 		printf("traceback: %%fp = %p\n", (void *)fp);
1142 
1143 	if ((uintptr_t)fp < KERNELBASE)
1144 		goto out;
1145 
1146 	pc = fp->fr_savpc;
1147 	fp = (struct frame *)fp->fr_savfp;
1148 
1149 	while ((uintptr_t)fp >= KERNELBASE) {
1150 		/*
1151 		 * XX64 Until port is complete tolerate 8-byte aligned
1152 		 * frame pointers but flag with a warning so they can
1153 		 * be fixed.
1154 		 */
1155 		if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) {
1156 			if (((uintptr_t)fp & (8 - 1)) == 0) {
1157 				printf("  >> warning! 8-byte"
1158 				    " aligned %%fp = %p\n", (void *)fp);
1159 			} else {
1160 				printf(
1161 				    "  >> mis-aligned %%fp = %p\n", (void *)fp);
1162 				break;
1163 			}
1164 		}
1165 
1166 		args[0] = '\0';
1167 		nextpc = (uintptr_t)fp->fr_savpc;
1168 		nextfp = (struct frame *)fp->fr_savfp;
1169 		if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1170 			printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1171 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1172 		} else {
1173 			printf("%016lx %lx (%s)\n",
1174 			    (uintptr_t)fp, pc, args);
1175 		}
1176 
1177 		pc = nextpc;
1178 		fp = nextfp;
1179 	}
1180 out:
1181 	if (!panicstr) {
1182 		printf("end of traceback\n");
1183 		DELAY(2 * MICROSEC);
1184 	}
1185 }
1186 
1187 #elif defined(__i386)
1188 
1189 void
1190 traceback(caddr_t fpreg)
1191 {
1192 	struct frame *fp = (struct frame *)fpreg;
1193 	struct frame *nextfp, *minfp, *stacktop;
1194 	uintptr_t pc, nextpc;
1195 
1196 	cpu_t *cpu;
1197 
1198 	/*
1199 	 * args[] holds TR_ARG_MAX hex long args, plus ", " or '\0'.
1200 	 */
1201 	char args[TR_ARG_MAX * 2 + 8], *p;
1202 
1203 	int on_intr;
1204 	ulong_t off;
1205 	char *sym;
1206 
1207 	if (!panicstr)
1208 		printf("traceback: %%fp = %p\n", (void *)fp);
1209 
1210 	/*
1211 	 * If we are panicking, all high-level interrupt information in
1212 	 * CPU was overwritten.  panic_cpu has the correct values.
1213 	 */
1214 	kpreempt_disable();			/* prevent migration */
1215 
1216 	cpu = (panicstr && CPU->cpu_id == panic_cpu.cpu_id)? &panic_cpu : CPU;
1217 
1218 	if ((on_intr = CPU_ON_INTR(cpu)) != 0)
1219 		stacktop = (struct frame *)(cpu->cpu_intr_stack + SA(MINFRAME));
1220 	else
1221 		stacktop = (struct frame *)curthread->t_stk;
1222 
1223 	kpreempt_enable();
1224 
1225 	if ((uintptr_t)fp < KERNELBASE)
1226 		goto out;
1227 
1228 	minfp = fp;	/* Baseline minimum frame pointer */
1229 	pc = fp->fr_savpc;
1230 	fp = (struct frame *)fp->fr_savfp;
1231 
1232 	while ((uintptr_t)fp >= KERNELBASE) {
1233 		ulong_t argc;
1234 		long *argv;
1235 
1236 		if (fp <= minfp || fp >= stacktop) {
1237 			if (on_intr) {
1238 				/*
1239 				 * Hop from interrupt stack to thread stack.
1240 				 */
1241 				stacktop = (struct frame *)curthread->t_stk;
1242 				minfp = (struct frame *)curthread->t_stkbase;
1243 				on_intr = 0;
1244 				continue;
1245 			}
1246 			break; /* we're outside of the expected range */
1247 		}
1248 
1249 		if ((uintptr_t)fp & (STACK_ALIGN - 1)) {
1250 			printf("  >> mis-aligned %%fp = %p\n", (void *)fp);
1251 			break;
1252 		}
1253 
1254 		nextpc = fp->fr_savpc;
1255 		nextfp = (struct frame *)fp->fr_savfp;
1256 		argc = argcount(nextpc);
1257 		argv = (long *)((char *)fp + sizeof (struct frame));
1258 
1259 		args[0] = '\0';
1260 		p = args;
1261 		while (argc-- > 0 && argv < (long *)stacktop) {
1262 			p += snprintf(p, args + sizeof (args) - p,
1263 			    "%s%lx", (p == args) ? "" : ", ", *argv++);
1264 		}
1265 
1266 		if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1267 			printf("%08lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1268 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1269 		} else {
1270 			printf("%08lx %lx (%s)\n",
1271 			    (uintptr_t)fp, pc, args);
1272 		}
1273 
1274 		minfp = fp;
1275 		pc = nextpc;
1276 		fp = nextfp;
1277 	}
1278 out:
1279 	if (!panicstr) {
1280 		printf("end of traceback\n");
1281 		DELAY(2 * MICROSEC);
1282 	}
1283 }
1284 
1285 #endif	/* __i386 */
1286 
1287 /*
1288  * Generate a stack backtrace from a saved register set.
1289  */
1290 void
1291 traceregs(struct regs *rp)
1292 {
1293 	traceback((caddr_t)rp->r_fp);
1294 }
1295 
1296 void
1297 exec_set_sp(size_t stksize)
1298 {
1299 	klwp_t *lwp = ttolwp(curthread);
1300 
1301 	lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize;
1302 }
1303 
1304 hrtime_t
1305 gethrtime_waitfree(void)
1306 {
1307 	return (dtrace_gethrtime());
1308 }
1309 
1310 hrtime_t
1311 gethrtime(void)
1312 {
1313 	return (gethrtimef());
1314 }
1315 
1316 hrtime_t
1317 gethrtime_unscaled(void)
1318 {
1319 	return (gethrtimeunscaledf());
1320 }
1321 
1322 void
1323 scalehrtime(hrtime_t *hrt)
1324 {
1325 	scalehrtimef(hrt);
1326 }
1327 
1328 void
1329 gethrestime(timespec_t *tp)
1330 {
1331 	gethrestimef(tp);
1332 }
1333 
1334 #if defined(__amd64)
1335 /*
1336  * Part of the implementation of hres_tick(); this routine is
1337  * easier in C than assembler .. called with the hres_lock held.
1338  *
1339  * XX64	Many of these timekeeping variables need to be extern'ed in a header
1340  */
1341 
1342 #include <sys/time.h>
1343 #include <sys/machlock.h>
1344 
1345 extern int one_sec;
1346 extern timestruc_t hrestime;
1347 extern int max_hres_adj;
1348 
1349 void
1350 __adj_hrestime(void)
1351 {
1352 	long long adj;
1353 
1354 	if (hrestime_adj == 0)
1355 		adj = 0;
1356 	else if (hrestime_adj > 0) {
1357 		if (hrestime_adj < max_hres_adj)
1358 			adj = hrestime_adj;
1359 		else
1360 			adj = max_hres_adj;
1361 	} else {
1362 		if (hrestime_adj < -max_hres_adj)
1363 			adj = -max_hres_adj;
1364 		else
1365 			adj = hrestime_adj;
1366 	}
1367 
1368 	timedelta -= adj;
1369 	hrestime_adj = timedelta;
1370 	hrestime.tv_nsec += adj;
1371 
1372 	while (hrestime.tv_nsec >= NANOSEC) {
1373 		one_sec++;
1374 		hrestime.tv_sec++;
1375 		hrestime.tv_nsec -= NANOSEC;
1376 	}
1377 }
1378 #endif
1379 
1380 /*
1381  * Wrapper functions to maintain backwards compability
1382  */
1383 int
1384 xcopyin(const void *uaddr, void *kaddr, size_t count)
1385 {
1386 	return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED));
1387 }
1388 
1389 int
1390 xcopyout(const void *kaddr, void *uaddr, size_t count)
1391 {
1392 	return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED));
1393 }
1394