1/* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21/* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26/* 27 * Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. 28 * Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T 29 * All Rights Reserved 30 */ 31 32#pragma ident "%Z%%M% %I% %E% SMI" 33 34/* 35 * General assembly language routines. 36 * It is the intent of this file to contain routines that are 37 * independent of the specific kernel architecture, and those that are 38 * common across kernel architectures. 39 * As architectures diverge, and implementations of specific 40 * architecture-dependent routines change, the routines should be moved 41 * from this file into the respective ../`arch -k`/subr.s file. 42 */ 43 44#include <sys/asm_linkage.h> 45#include <sys/asm_misc.h> 46#include <sys/panic.h> 47#include <sys/ontrap.h> 48#include <sys/regset.h> 49#include <sys/privregs.h> 50#include <sys/reboot.h> 51#include <sys/psw.h> 52#include <sys/x86_archext.h> 53 54#if defined(__lint) 55#include <sys/types.h> 56#include <sys/systm.h> 57#include <sys/thread.h> 58#include <sys/archsystm.h> 59#include <sys/byteorder.h> 60#include <sys/dtrace.h> 61#else /* __lint */ 62#include "assym.h" 63#endif /* __lint */ 64#include <sys/dditypes.h> 65 66/* 67 * on_fault() 68 * Catch lofault faults. Like setjmp except it returns one 69 * if code following causes uncorrectable fault. Turned off 70 * by calling no_fault(). 71 */ 72 73#if defined(__lint) 74 75/* ARGSUSED */ 76int 77on_fault(label_t *ljb) 78{ return (0); } 79 80void 81no_fault(void) 82{} 83 84#else /* __lint */ 85 86#if defined(__amd64) 87 88 ENTRY(on_fault) 89 movq %gs:CPU_THREAD, %rsi 90 leaq catch_fault(%rip), %rdx 91 movq %rdi, T_ONFAULT(%rsi) /* jumpbuf in t_onfault */ 92 movq %rdx, T_LOFAULT(%rsi) /* catch_fault in t_lofault */ 93 jmp setjmp /* let setjmp do the rest */ 94 95catch_fault: 96 movq %gs:CPU_THREAD, %rsi 97 movq T_ONFAULT(%rsi), %rdi /* address of save area */ 98 xorl %eax, %eax 99 movq %rax, T_ONFAULT(%rsi) /* turn off onfault */ 100 movq %rax, T_LOFAULT(%rsi) /* turn off lofault */ 101 jmp longjmp /* let longjmp do the rest */ 102 SET_SIZE(on_fault) 103 104 ENTRY(no_fault) 105 movq %gs:CPU_THREAD, %rsi 106 xorl %eax, %eax 107 movq %rax, T_ONFAULT(%rsi) /* turn off onfault */ 108 movq %rax, T_LOFAULT(%rsi) /* turn off lofault */ 109 ret 110 SET_SIZE(no_fault) 111 112#elif defined(__i386) 113 114 ENTRY(on_fault) 115 movl %gs:CPU_THREAD, %edx 116 movl 4(%esp), %eax /* jumpbuf address */ 117 leal catch_fault, %ecx 118 movl %eax, T_ONFAULT(%edx) /* jumpbuf in t_onfault */ 119 movl %ecx, T_LOFAULT(%edx) /* catch_fault in t_lofault */ 120 jmp setjmp /* let setjmp do the rest */ 121 122catch_fault: 123 movl %gs:CPU_THREAD, %edx 124 xorl %eax, %eax 125 movl T_ONFAULT(%edx), %ecx /* address of save area */ 126 movl %eax, T_ONFAULT(%edx) /* turn off onfault */ 127 movl %eax, T_LOFAULT(%edx) /* turn off lofault */ 128 pushl %ecx 129 call longjmp /* let longjmp do the rest */ 130 SET_SIZE(on_fault) 131 132 ENTRY(no_fault) 133 movl %gs:CPU_THREAD, %edx 134 xorl %eax, %eax 135 movl %eax, T_ONFAULT(%edx) /* turn off onfault */ 136 movl %eax, T_LOFAULT(%edx) /* turn off lofault */ 137 ret 138 SET_SIZE(no_fault) 139 140#endif /* __i386 */ 141#endif /* __lint */ 142 143/* 144 * Default trampoline code for on_trap() (see <sys/ontrap.h>). We just 145 * do a longjmp(&curthread->t_ontrap->ot_jmpbuf) if this is ever called. 146 */ 147 148#if defined(lint) 149 150void 151on_trap_trampoline(void) 152{} 153 154#else /* __lint */ 155 156#if defined(__amd64) 157 158 ENTRY(on_trap_trampoline) 159 movq %gs:CPU_THREAD, %rsi 160 movq T_ONTRAP(%rsi), %rdi 161 addq $OT_JMPBUF, %rdi 162 jmp longjmp 163 SET_SIZE(on_trap_trampoline) 164 165#elif defined(__i386) 166 167 ENTRY(on_trap_trampoline) 168 movl %gs:CPU_THREAD, %eax 169 movl T_ONTRAP(%eax), %eax 170 addl $OT_JMPBUF, %eax 171 pushl %eax 172 call longjmp 173 SET_SIZE(on_trap_trampoline) 174 175#endif /* __i386 */ 176#endif /* __lint */ 177 178/* 179 * Push a new element on to the t_ontrap stack. Refer to <sys/ontrap.h> for 180 * more information about the on_trap() mechanism. If the on_trap_data is the 181 * same as the topmost stack element, we just modify that element. 182 */ 183#if defined(lint) 184 185/*ARGSUSED*/ 186int 187on_trap(on_trap_data_t *otp, uint_t prot) 188{ return (0); } 189 190#else /* __lint */ 191 192#if defined(__amd64) 193 194 ENTRY(on_trap) 195 movw %si, OT_PROT(%rdi) /* ot_prot = prot */ 196 movw $0, OT_TRAP(%rdi) /* ot_trap = 0 */ 197 leaq on_trap_trampoline(%rip), %rdx /* rdx = &on_trap_trampoline */ 198 movq %rdx, OT_TRAMPOLINE(%rdi) /* ot_trampoline = rdx */ 199 xorl %ecx, %ecx 200 movq %rcx, OT_HANDLE(%rdi) /* ot_handle = NULL */ 201 movq %rcx, OT_PAD1(%rdi) /* ot_pad1 = NULL */ 202 movq %gs:CPU_THREAD, %rdx /* rdx = curthread */ 203 movq T_ONTRAP(%rdx), %rcx /* rcx = curthread->t_ontrap */ 204 cmpq %rdi, %rcx /* if (otp == %rcx) */ 205 je 0f /* don't modify t_ontrap */ 206 207 movq %rcx, OT_PREV(%rdi) /* ot_prev = t_ontrap */ 208 movq %rdi, T_ONTRAP(%rdx) /* curthread->t_ontrap = otp */ 209 2100: addq $OT_JMPBUF, %rdi /* &ot_jmpbuf */ 211 jmp setjmp 212 SET_SIZE(on_trap) 213 214#elif defined(__i386) 215 216 ENTRY(on_trap) 217 movl 4(%esp), %eax /* %eax = otp */ 218 movl 8(%esp), %edx /* %edx = prot */ 219 220 movw %dx, OT_PROT(%eax) /* ot_prot = prot */ 221 movw $0, OT_TRAP(%eax) /* ot_trap = 0 */ 222 leal on_trap_trampoline, %edx /* %edx = &on_trap_trampoline */ 223 movl %edx, OT_TRAMPOLINE(%eax) /* ot_trampoline = %edx */ 224 movl $0, OT_HANDLE(%eax) /* ot_handle = NULL */ 225 movl $0, OT_PAD1(%eax) /* ot_pad1 = NULL */ 226 movl %gs:CPU_THREAD, %edx /* %edx = curthread */ 227 movl T_ONTRAP(%edx), %ecx /* %ecx = curthread->t_ontrap */ 228 cmpl %eax, %ecx /* if (otp == %ecx) */ 229 je 0f /* don't modify t_ontrap */ 230 231 movl %ecx, OT_PREV(%eax) /* ot_prev = t_ontrap */ 232 movl %eax, T_ONTRAP(%edx) /* curthread->t_ontrap = otp */ 233 2340: addl $OT_JMPBUF, %eax /* %eax = &ot_jmpbuf */ 235 movl %eax, 4(%esp) /* put %eax back on the stack */ 236 jmp setjmp /* let setjmp do the rest */ 237 SET_SIZE(on_trap) 238 239#endif /* __i386 */ 240#endif /* __lint */ 241 242/* 243 * Setjmp and longjmp implement non-local gotos using state vectors 244 * type label_t. 245 */ 246 247#if defined(__lint) 248 249/* ARGSUSED */ 250int 251setjmp(label_t *lp) 252{ return (0); } 253 254/* ARGSUSED */ 255void 256longjmp(label_t *lp) 257{} 258 259#else /* __lint */ 260 261#if LABEL_PC != 0 262#error LABEL_PC MUST be defined as 0 for setjmp/longjmp to work as coded 263#endif /* LABEL_PC != 0 */ 264 265#if defined(__amd64) 266 267 ENTRY(setjmp) 268 movq %rsp, LABEL_SP(%rdi) 269 movq %rbp, LABEL_RBP(%rdi) 270 movq %rbx, LABEL_RBX(%rdi) 271 movq %r12, LABEL_R12(%rdi) 272 movq %r13, LABEL_R13(%rdi) 273 movq %r14, LABEL_R14(%rdi) 274 movq %r15, LABEL_R15(%rdi) 275 movq (%rsp), %rdx /* return address */ 276 movq %rdx, (%rdi) /* LABEL_PC is 0 */ 277 xorl %eax, %eax /* return 0 */ 278 ret 279 SET_SIZE(setjmp) 280 281 ENTRY(longjmp) 282 movq LABEL_SP(%rdi), %rsp 283 movq LABEL_RBP(%rdi), %rbp 284 movq LABEL_RBX(%rdi), %rbx 285 movq LABEL_R12(%rdi), %r12 286 movq LABEL_R13(%rdi), %r13 287 movq LABEL_R14(%rdi), %r14 288 movq LABEL_R15(%rdi), %r15 289 movq (%rdi), %rdx /* return address; LABEL_PC is 0 */ 290 movq %rdx, (%rsp) 291 xorl %eax, %eax 292 incl %eax /* return 1 */ 293 ret 294 SET_SIZE(longjmp) 295 296#elif defined(__i386) 297 298 ENTRY(setjmp) 299 movl 4(%esp), %edx /* address of save area */ 300 movl %ebp, LABEL_EBP(%edx) 301 movl %ebx, LABEL_EBX(%edx) 302 movl %esi, LABEL_ESI(%edx) 303 movl %edi, LABEL_EDI(%edx) 304 movl %esp, 4(%edx) 305 movl (%esp), %ecx /* %eip (return address) */ 306 movl %ecx, (%edx) /* LABEL_PC is 0 */ 307 subl %eax, %eax /* return 0 */ 308 ret 309 SET_SIZE(setjmp) 310 311 ENTRY(longjmp) 312 movl 4(%esp), %edx /* address of save area */ 313 movl LABEL_EBP(%edx), %ebp 314 movl LABEL_EBX(%edx), %ebx 315 movl LABEL_ESI(%edx), %esi 316 movl LABEL_EDI(%edx), %edi 317 movl 4(%edx), %esp 318 movl (%edx), %ecx /* %eip (return addr); LABEL_PC is 0 */ 319 movl $1, %eax 320 addl $4, %esp /* pop ret adr */ 321 jmp *%ecx /* indirect */ 322 SET_SIZE(longjmp) 323 324#endif /* __i386 */ 325#endif /* __lint */ 326 327/* 328 * if a() calls b() calls caller(), 329 * caller() returns return address in a(). 330 * (Note: We assume a() and b() are C routines which do the normal entry/exit 331 * sequence.) 332 */ 333 334#if defined(__lint) 335 336caddr_t 337caller(void) 338{ return (0); } 339 340#else /* __lint */ 341 342#if defined(__amd64) 343 344 ENTRY(caller) 345 movq 8(%rbp), %rax /* b()'s return pc, in a() */ 346 ret 347 SET_SIZE(caller) 348 349#elif defined(__i386) 350 351 ENTRY(caller) 352 movl 4(%ebp), %eax /* b()'s return pc, in a() */ 353 ret 354 SET_SIZE(caller) 355 356#endif /* __i386 */ 357#endif /* __lint */ 358 359/* 360 * if a() calls callee(), callee() returns the 361 * return address in a(); 362 */ 363 364#if defined(__lint) 365 366caddr_t 367callee(void) 368{ return (0); } 369 370#else /* __lint */ 371 372#if defined(__amd64) 373 374 ENTRY(callee) 375 movq (%rsp), %rax /* callee()'s return pc, in a() */ 376 ret 377 SET_SIZE(callee) 378 379#elif defined(__i386) 380 381 ENTRY(callee) 382 movl (%esp), %eax /* callee()'s return pc, in a() */ 383 ret 384 SET_SIZE(callee) 385 386#endif /* __i386 */ 387#endif /* __lint */ 388 389/* 390 * return the current frame pointer 391 */ 392 393#if defined(__lint) 394 395greg_t 396getfp(void) 397{ return (0); } 398 399#else /* __lint */ 400 401#if defined(__amd64) 402 403 ENTRY(getfp) 404 movq %rbp, %rax 405 ret 406 SET_SIZE(getfp) 407 408#elif defined(__i386) 409 410 ENTRY(getfp) 411 movl %ebp, %eax 412 ret 413 SET_SIZE(getfp) 414 415#endif /* __i386 */ 416#endif /* __lint */ 417 418/* 419 * Invalidate a single page table entry in the TLB 420 */ 421 422#if defined(__lint) 423 424/* ARGSUSED */ 425void 426mmu_tlbflush_entry(caddr_t m) 427{} 428 429#else /* __lint */ 430 431#if defined(__amd64) 432 433 ENTRY(mmu_tlbflush_entry) 434 invlpg (%rdi) 435 ret 436 SET_SIZE(mmu_tlbflush_entry) 437 438#elif defined(__i386) 439 440 ENTRY(mmu_tlbflush_entry) 441 movl 4(%esp), %eax 442 invlpg (%eax) 443 ret 444 SET_SIZE(mmu_tlbflush_entry) 445 446#endif /* __i386 */ 447#endif /* __lint */ 448 449 450/* 451 * Get/Set the value of various control registers 452 */ 453 454#if defined(__lint) 455 456ulong_t 457getcr0(void) 458{ return (0); } 459 460/* ARGSUSED */ 461void 462setcr0(ulong_t value) 463{} 464 465ulong_t 466getcr2(void) 467{ return (0); } 468 469ulong_t 470getcr3(void) 471{ return (0); } 472 473/* ARGSUSED */ 474void 475setcr3(ulong_t val) 476{} 477 478void 479reload_cr3(void) 480{} 481 482ulong_t 483getcr4(void) 484{ return (0); } 485 486/* ARGSUSED */ 487void 488setcr4(ulong_t val) 489{} 490 491#if defined(__amd64) 492 493ulong_t 494getcr8(void) 495{ return (0); } 496 497/* ARGSUSED */ 498void 499setcr8(ulong_t val) 500{} 501 502#endif /* __amd64 */ 503 504#else /* __lint */ 505 506#if defined(__amd64) 507 508 ENTRY(getcr0) 509 movq %cr0, %rax 510 ret 511 SET_SIZE(getcr0) 512 513 ENTRY(setcr0) 514 movq %rdi, %cr0 515 ret 516 SET_SIZE(setcr0) 517 518 ENTRY(getcr2) 519 movq %cr2, %rax 520 ret 521 SET_SIZE(getcr2) 522 523 ENTRY(getcr3) 524 movq %cr3, %rax 525 ret 526 SET_SIZE(getcr3) 527 528 ENTRY(setcr3) 529 movq %rdi, %cr3 530 ret 531 SET_SIZE(setcr3) 532 533 ENTRY(reload_cr3) 534 movq %cr3, %rdi 535 movq %rdi, %cr3 536 ret 537 SET_SIZE(reload_cr3) 538 539 ENTRY(getcr4) 540 movq %cr4, %rax 541 ret 542 SET_SIZE(getcr4) 543 544 ENTRY(setcr4) 545 movq %rdi, %cr4 546 ret 547 SET_SIZE(setcr4) 548 549 ENTRY(getcr8) 550 movq %cr8, %rax 551 ret 552 SET_SIZE(getcr8) 553 554 ENTRY(setcr8) 555 movq %rdi, %cr8 556 ret 557 SET_SIZE(setcr8) 558 559#elif defined(__i386) 560 561 ENTRY(getcr0) 562 movl %cr0, %eax 563 ret 564 SET_SIZE(getcr0) 565 566 ENTRY(setcr0) 567 movl 4(%esp), %eax 568 movl %eax, %cr0 569 ret 570 SET_SIZE(setcr0) 571 572 ENTRY(getcr2) 573 movl %cr2, %eax 574 ret 575 SET_SIZE(getcr2) 576 577 ENTRY(getcr3) 578 movl %cr3, %eax 579 ret 580 SET_SIZE(getcr3) 581 582 ENTRY(setcr3) 583 movl 4(%esp), %eax 584 movl %eax, %cr3 585 ret 586 SET_SIZE(setcr3) 587 588 ENTRY(reload_cr3) 589 movl %cr3, %eax 590 movl %eax, %cr3 591 ret 592 SET_SIZE(reload_cr3) 593 594 ENTRY(getcr4) 595 movl %cr4, %eax 596 ret 597 SET_SIZE(getcr4) 598 599 ENTRY(setcr4) 600 movl 4(%esp), %eax 601 movl %eax, %cr4 602 ret 603 SET_SIZE(setcr4) 604 605#endif /* __i386 */ 606#endif /* __lint */ 607 608#if defined(__lint) 609 610/*ARGSUSED*/ 611uint32_t 612__cpuid_insn(struct cpuid_regs *regs) 613{ return (0); } 614 615#else /* __lint */ 616 617#if defined(__amd64) 618 619 ENTRY(__cpuid_insn) 620 movq %rbx, %r8 621 movq %rcx, %r9 622 movq %rdx, %r11 623 movl (%rdi), %eax /* %eax = regs->cp_eax */ 624 movl 0x4(%rdi), %ebx /* %ebx = regs->cp_ebx */ 625 movl 0x8(%rdi), %ecx /* %ecx = regs->cp_ecx */ 626 movl 0xc(%rdi), %edx /* %edx = regs->cp_edx */ 627 cpuid 628 movl %eax, (%rdi) /* regs->cp_eax = %eax */ 629 movl %ebx, 0x4(%rdi) /* regs->cp_ebx = %ebx */ 630 movl %ecx, 0x8(%rdi) /* regs->cp_ecx = %ecx */ 631 movl %edx, 0xc(%rdi) /* regs->cp_edx = %edx */ 632 movq %r8, %rbx 633 movq %r9, %rcx 634 movq %r11, %rdx 635 ret 636 SET_SIZE(__cpuid_insn) 637 638#elif defined(__i386) 639 640 ENTRY(__cpuid_insn) 641 pushl %ebp 642 movl 0x8(%esp), %ebp /* %ebp = regs */ 643 pushl %ebx 644 pushl %ecx 645 pushl %edx 646 movl (%ebp), %eax /* %eax = regs->cp_eax */ 647 movl 0x4(%ebp), %ebx /* %ebx = regs->cp_ebx */ 648 movl 0x8(%ebp), %ecx /* %ecx = regs->cp_ecx */ 649 movl 0xc(%ebp), %edx /* %edx = regs->cp_edx */ 650 cpuid 651 movl %eax, (%ebp) /* regs->cp_eax = %eax */ 652 movl %ebx, 0x4(%ebp) /* regs->cp_ebx = %ebx */ 653 movl %ecx, 0x8(%ebp) /* regs->cp_ecx = %ecx */ 654 movl %edx, 0xc(%ebp) /* regs->cp_edx = %edx */ 655 popl %edx 656 popl %ecx 657 popl %ebx 658 popl %ebp 659 ret 660 SET_SIZE(__cpuid_insn) 661 662#endif /* __i386 */ 663#endif /* __lint */ 664 665/* 666 * Insert entryp after predp in a doubly linked list. 667 */ 668 669#if defined(__lint) 670 671/*ARGSUSED*/ 672void 673_insque(caddr_t entryp, caddr_t predp) 674{} 675 676#else /* __lint */ 677 678#if defined(__amd64) 679 680 ENTRY(_insque) 681 movq (%rsi), %rax /* predp->forw */ 682 movq %rsi, CPTRSIZE(%rdi) /* entryp->back = predp */ 683 movq %rax, (%rdi) /* entryp->forw = predp->forw */ 684 movq %rdi, (%rsi) /* predp->forw = entryp */ 685 movq %rdi, CPTRSIZE(%rax) /* predp->forw->back = entryp */ 686 ret 687 SET_SIZE(_insque) 688 689#elif defined(__i386) 690 691 ENTRY(_insque) 692 movl 8(%esp), %edx 693 movl 4(%esp), %ecx 694 movl (%edx), %eax /* predp->forw */ 695 movl %edx, CPTRSIZE(%ecx) /* entryp->back = predp */ 696 movl %eax, (%ecx) /* entryp->forw = predp->forw */ 697 movl %ecx, (%edx) /* predp->forw = entryp */ 698 movl %ecx, CPTRSIZE(%eax) /* predp->forw->back = entryp */ 699 ret 700 SET_SIZE(_insque) 701 702#endif /* __i386 */ 703#endif /* __lint */ 704 705/* 706 * Remove entryp from a doubly linked list 707 */ 708 709#if defined(__lint) 710 711/*ARGSUSED*/ 712void 713_remque(caddr_t entryp) 714{} 715 716#else /* __lint */ 717 718#if defined(__amd64) 719 720 ENTRY(_remque) 721 movq (%rdi), %rax /* entry->forw */ 722 movq CPTRSIZE(%rdi), %rdx /* entry->back */ 723 movq %rax, (%rdx) /* entry->back->forw = entry->forw */ 724 movq %rdx, CPTRSIZE(%rax) /* entry->forw->back = entry->back */ 725 ret 726 SET_SIZE(_remque) 727 728#elif defined(__i386) 729 730 ENTRY(_remque) 731 movl 4(%esp), %ecx 732 movl (%ecx), %eax /* entry->forw */ 733 movl CPTRSIZE(%ecx), %edx /* entry->back */ 734 movl %eax, (%edx) /* entry->back->forw = entry->forw */ 735 movl %edx, CPTRSIZE(%eax) /* entry->forw->back = entry->back */ 736 ret 737 SET_SIZE(_remque) 738 739#endif /* __i386 */ 740#endif /* __lint */ 741 742/* 743 * Returns the number of 744 * non-NULL bytes in string argument. 745 */ 746 747#if defined(__lint) 748 749/* ARGSUSED */ 750size_t 751strlen(const char *str) 752{ return (0); } 753 754#else /* __lint */ 755 756#if defined(__amd64) 757 758/* 759 * This is close to a simple transliteration of a C version of this 760 * routine. We should either just -make- this be a C version, or 761 * justify having it in assembler by making it significantly faster. 762 * 763 * size_t 764 * strlen(const char *s) 765 * { 766 * const char *s0; 767 * #if defined(DEBUG) 768 * if ((uintptr_t)s < KERNELBASE) 769 * panic(.str_panic_msg); 770 * #endif 771 * for (s0 = s; *s; s++) 772 * ; 773 * return (s - s0); 774 * } 775 */ 776 777 ENTRY(strlen) 778#ifdef DEBUG 779 movq kernelbase(%rip), %rax 780 cmpq %rax, %rdi 781 jae str_valid 782 pushq %rbp 783 movq %rsp, %rbp 784 leaq .str_panic_msg(%rip), %rdi 785 xorl %eax, %eax 786 call panic 787#endif /* DEBUG */ 788str_valid: 789 cmpb $0, (%rdi) 790 movq %rdi, %rax 791 je .null_found 792 .align 4 793.strlen_loop: 794 incq %rdi 795 cmpb $0, (%rdi) 796 jne .strlen_loop 797.null_found: 798 subq %rax, %rdi 799 movq %rdi, %rax 800 ret 801 SET_SIZE(strlen) 802 803#elif defined(__i386) 804 805 ENTRY(strlen) 806#ifdef DEBUG 807 movl kernelbase, %eax 808 cmpl %eax, 4(%esp) 809 jae str_valid 810 pushl %ebp 811 movl %esp, %ebp 812 pushl $.str_panic_msg 813 call panic 814#endif /* DEBUG */ 815 816str_valid: 817 movl 4(%esp), %eax /* %eax = string address */ 818 testl $3, %eax /* if %eax not word aligned */ 819 jnz .not_word_aligned /* goto .not_word_aligned */ 820 .align 4 821.word_aligned: 822 movl (%eax), %edx /* move 1 word from (%eax) to %edx */ 823 movl $0x7f7f7f7f, %ecx 824 andl %edx, %ecx /* %ecx = %edx & 0x7f7f7f7f */ 825 addl $4, %eax /* next word */ 826 addl $0x7f7f7f7f, %ecx /* %ecx += 0x7f7f7f7f */ 827 orl %edx, %ecx /* %ecx |= %edx */ 828 andl $0x80808080, %ecx /* %ecx &= 0x80808080 */ 829 cmpl $0x80808080, %ecx /* if no null byte in this word */ 830 je .word_aligned /* goto .word_aligned */ 831 subl $4, %eax /* post-incremented */ 832.not_word_aligned: 833 cmpb $0, (%eax) /* if a byte in (%eax) is null */ 834 je .null_found /* goto .null_found */ 835 incl %eax /* next byte */ 836 testl $3, %eax /* if %eax not word aligned */ 837 jnz .not_word_aligned /* goto .not_word_aligned */ 838 jmp .word_aligned /* goto .word_aligned */ 839 .align 4 840.null_found: 841 subl 4(%esp), %eax /* %eax -= string address */ 842 ret 843 SET_SIZE(strlen) 844 845#endif /* __i386 */ 846 847#ifdef DEBUG 848 .text 849.str_panic_msg: 850 .string "strlen: argument below kernelbase" 851#endif /* DEBUG */ 852 853#endif /* __lint */ 854 855 /* 856 * Berkley 4.3 introduced symbolically named interrupt levels 857 * as a way deal with priority in a machine independent fashion. 858 * Numbered priorities are machine specific, and should be 859 * discouraged where possible. 860 * 861 * Note, for the machine specific priorities there are 862 * examples listed for devices that use a particular priority. 863 * It should not be construed that all devices of that 864 * type should be at that priority. It is currently were 865 * the current devices fit into the priority scheme based 866 * upon time criticalness. 867 * 868 * The underlying assumption of these assignments is that 869 * IPL 10 is the highest level from which a device 870 * routine can call wakeup. Devices that interrupt from higher 871 * levels are restricted in what they can do. If they need 872 * kernels services they should schedule a routine at a lower 873 * level (via software interrupt) to do the required 874 * processing. 875 * 876 * Examples of this higher usage: 877 * Level Usage 878 * 14 Profiling clock (and PROM uart polling clock) 879 * 12 Serial ports 880 * 881 * The serial ports request lower level processing on level 6. 882 * 883 * Also, almost all splN routines (where N is a number or a 884 * mnemonic) will do a RAISE(), on the assumption that they are 885 * never used to lower our priority. 886 * The exceptions are: 887 * spl8() Because you can't be above 15 to begin with! 888 * splzs() Because this is used at boot time to lower our 889 * priority, to allow the PROM to poll the uart. 890 * spl0() Used to lower priority to 0. 891 */ 892 893#if defined(__lint) 894 895int spl0(void) { return (0); } 896int spl6(void) { return (0); } 897int spl7(void) { return (0); } 898int spl8(void) { return (0); } 899int splhigh(void) { return (0); } 900int splhi(void) { return (0); } 901int splzs(void) { return (0); } 902 903#else /* __lint */ 904 905/* reg = cpu->cpu_m.cpu_pri; */ 906#define GETIPL_NOGS(reg, cpup) \ 907 movl CPU_PRI(cpup), reg; 908 909/* cpu->cpu_m.cpu_pri; */ 910#define SETIPL_NOGS(val, cpup) \ 911 movl val, CPU_PRI(cpup); 912 913/* reg = cpu->cpu_m.cpu_pri; */ 914#define GETIPL(reg) \ 915 movl %gs:CPU_PRI, reg; 916 917/* cpu->cpu_m.cpu_pri; */ 918#define SETIPL(val) \ 919 movl val, %gs:CPU_PRI; 920 921/* 922 * Macro to raise processor priority level. 923 * Avoid dropping processor priority if already at high level. 924 * Also avoid going below CPU->cpu_base_spl, which could've just been set by 925 * a higher-level interrupt thread that just blocked. 926 */ 927#if defined(__amd64) 928 929#define RAISE(level) \ 930 cli; \ 931 LOADCPU(%rcx); \ 932 movl $/**/level, %edi;\ 933 GETIPL_NOGS(%eax, %rcx);\ 934 cmpl %eax, %edi; \ 935 jg spl; \ 936 jmp setsplhisti 937 938#elif defined(__i386) 939 940#define RAISE(level) \ 941 cli; \ 942 LOADCPU(%ecx); \ 943 movl $/**/level, %edx;\ 944 GETIPL_NOGS(%eax, %ecx);\ 945 cmpl %eax, %edx; \ 946 jg spl; \ 947 jmp setsplhisti 948 949#endif /* __i386 */ 950 951/* 952 * Macro to set the priority to a specified level. 953 * Avoid dropping the priority below CPU->cpu_base_spl. 954 */ 955#if defined(__amd64) 956 957#define SETPRI(level) \ 958 cli; \ 959 LOADCPU(%rcx); \ 960 movl $/**/level, %edi; \ 961 jmp spl 962 963#elif defined(__i386) 964 965#define SETPRI(level) \ 966 cli; \ 967 LOADCPU(%ecx); \ 968 movl $/**/level, %edx; \ 969 jmp spl 970 971#endif /* __i386 */ 972 973 /* locks out all interrupts, including memory errors */ 974 ENTRY(spl8) 975 SETPRI(15) 976 SET_SIZE(spl8) 977 978 /* just below the level that profiling runs */ 979 ENTRY(spl7) 980 RAISE(13) 981 SET_SIZE(spl7) 982 983 /* sun specific - highest priority onboard serial i/o asy ports */ 984 ENTRY(splzs) 985 SETPRI(12) /* Can't be a RAISE, as it's used to lower us */ 986 SET_SIZE(splzs) 987 988 /* 989 * should lock out clocks and all interrupts, 990 * as you can see, there are exceptions 991 */ 992 993#if defined(__amd64) 994 995 .align 16 996 ENTRY(splhi) 997 ALTENTRY(splhigh) 998 ALTENTRY(spl6) 999 ALTENTRY(i_ddi_splhigh) 1000 cli 1001 LOADCPU(%rcx) 1002 movl $DISP_LEVEL, %edi 1003 movl CPU_PRI(%rcx), %eax 1004 cmpl %eax, %edi 1005 jle setsplhisti 1006 SETIPL_NOGS(%edi, %rcx) 1007 /* 1008 * If we aren't using cr8 to control ipl then we patch this 1009 * with a jump to slow_setsplhi 1010 */ 1011 ALTENTRY(setsplhi_patch) 1012 movq CPU_PRI_DATA(%rcx), %r11 /* get pri data ptr */ 1013 movzb (%r11, %rdi, 1), %rdx /* get apic mask for this ipl */ 1014 movq %rdx, %cr8 /* set new apic priority */ 1015 /* 1016 * enable interrupts 1017 */ 1018setsplhisti: 1019 nop /* patch this to a sti when a proper setspl routine appears */ 1020 ret 1021 1022 ALTENTRY(slow_setsplhi) 1023 pushq %rbp 1024 movq %rsp, %rbp 1025 subq $16, %rsp 1026 movl %eax, -4(%rbp) /* save old ipl */ 1027 call *setspl(%rip) 1028 movl -4(%rbp), %eax /* return old ipl */ 1029 leave 1030 jmp setsplhisti 1031 1032 SET_SIZE(i_ddi_splhigh) 1033 SET_SIZE(spl6) 1034 SET_SIZE(splhigh) 1035 SET_SIZE(splhi) 1036 1037#elif defined(__i386) 1038 1039 .align 16 1040 ENTRY(splhi) 1041 ALTENTRY(splhigh) 1042 ALTENTRY(spl6) 1043 ALTENTRY(i_ddi_splhigh) 1044 cli 1045 LOADCPU(%ecx) 1046 movl $DISP_LEVEL, %edx 1047 movl CPU_PRI(%ecx), %eax 1048 cmpl %eax, %edx 1049 jle setsplhisti 1050 SETIPL_NOGS(%edx, %ecx) /* set new ipl */ 1051 1052 pushl %eax /* save old ipl */ 1053 pushl %edx /* pass new ipl */ 1054 call *setspl 1055 popl %ecx /* dummy pop */ 1056 popl %eax /* return old ipl */ 1057 /* 1058 * enable interrupts 1059 * 1060 * (we patch this to an sti once a proper setspl routine 1061 * is installed) 1062 */ 1063setsplhisti: 1064 nop /* patch this to a sti when a proper setspl routine appears */ 1065 ret 1066 SET_SIZE(i_ddi_splhigh) 1067 SET_SIZE(spl6) 1068 SET_SIZE(splhigh) 1069 SET_SIZE(splhi) 1070 1071#endif /* __i386 */ 1072 1073 /* allow all interrupts */ 1074 ENTRY(spl0) 1075 SETPRI(0) 1076 SET_SIZE(spl0) 1077 1078#endif /* __lint */ 1079 1080/* 1081 * splr is like splx but will only raise the priority and never drop it 1082 */ 1083#if defined(__lint) 1084 1085/* ARGSUSED */ 1086int 1087splr(int level) 1088{ return (0); } 1089 1090#else /* __lint */ 1091 1092#if defined(__amd64) 1093 1094 ENTRY(splr) 1095 cli 1096 LOADCPU(%rcx) 1097 GETIPL_NOGS(%eax, %rcx) 1098 cmpl %eax, %edi /* if new level > current level */ 1099 jg spl /* then set ipl to new level */ 1100splr_setsti: 1101 nop /* patch this to a sti when a proper setspl routine appears */ 1102 ret /* else return the current level */ 1103 SET_SIZE(splr) 1104 1105#elif defined(__i386) 1106 1107 ENTRY(splr) 1108 cli 1109 LOADCPU(%ecx) 1110 movl 4(%esp), %edx /* get new spl level */ 1111 GETIPL_NOGS(%eax, %ecx) 1112 cmpl %eax, %edx /* if new level > current level */ 1113 jg spl /* then set ipl to new level */ 1114splr_setsti: 1115 nop /* patch this to a sti when a proper setspl routine appears */ 1116 ret /* else return the current level */ 1117 SET_SIZE(splr) 1118 1119#endif /* __i386 */ 1120#endif /* __lint */ 1121 1122 1123 1124/* 1125 * splx - set PIL back to that indicated by the level passed as an argument, 1126 * or to the CPU's base priority, whichever is higher. 1127 * Needs to be fall through to spl to save cycles. 1128 * Algorithm for spl: 1129 * 1130 * turn off interrupts 1131 * 1132 * if (CPU->cpu_base_spl > newipl) 1133 * newipl = CPU->cpu_base_spl; 1134 * oldipl = CPU->cpu_pridata->c_ipl; 1135 * CPU->cpu_pridata->c_ipl = newipl; 1136 * 1137 * /indirectly call function to set spl values (usually setpicmasks) 1138 * setspl(); // load new masks into pics 1139 * 1140 * Be careful not to set priority lower than CPU->cpu_base_pri, 1141 * even though it seems we're raising the priority, it could be set 1142 * higher at any time by an interrupt routine, so we must block interrupts 1143 * and look at CPU->cpu_base_pri 1144 */ 1145#if defined(__lint) 1146 1147/* ARGSUSED */ 1148void 1149splx(int level) 1150{} 1151 1152#else /* __lint */ 1153 1154#if defined(__amd64) 1155 1156 ENTRY(splx) 1157 ALTENTRY(i_ddi_splx) 1158 cli /* disable interrupts */ 1159 LOADCPU(%rcx) 1160 /*FALLTHRU*/ 1161 .align 4 1162spl: 1163 /* 1164 * New priority level is in %edi, cpu struct pointer is in %rcx 1165 */ 1166 GETIPL_NOGS(%eax, %rcx) /* get current ipl */ 1167 cmpl %edi, CPU_BASE_SPL(%rcx) /* if (base spl > new ipl) */ 1168 ja set_to_base_spl /* then use base_spl */ 1169 1170setprilev: 1171 SETIPL_NOGS(%edi, %rcx) /* set new ipl */ 1172 /* 1173 * If we aren't using cr8 to control ipl then we patch this 1174 * with a jump to slow_spl 1175 */ 1176 ALTENTRY(spl_patch) 1177 movq CPU_PRI_DATA(%rcx), %r11 /* get pri data ptr */ 1178 movzb (%r11, %rdi, 1), %rdx /* get apic mask for this ipl */ 1179 movq %rdx, %cr8 /* set new apic priority */ 1180 xorl %edx, %edx 1181 bsrl CPU_SOFTINFO(%rcx), %edx /* fls(cpu->cpu_softinfo.st_pending) */ 1182 cmpl %edi, %edx /* new ipl vs. st_pending */ 1183 jle setsplsti 1184 1185 pushq %rbp 1186 movq %rsp, %rbp 1187 /* stack now 16-byte aligned */ 1188 pushq %rax /* save old spl */ 1189 pushq %rdi /* save new ipl too */ 1190 jmp fakesoftint 1191 1192setsplsti: 1193 nop /* patch this to a sti when a proper setspl routine appears */ 1194 ret 1195 1196 ALTENTRY(slow_spl) 1197 pushq %rbp 1198 movq %rsp, %rbp 1199 /* stack now 16-byte aligned */ 1200 1201 pushq %rax /* save old spl */ 1202 pushq %rdi /* save new ipl too */ 1203 1204 call *setspl(%rip) 1205 1206 LOADCPU(%rcx) 1207 movl CPU_SOFTINFO(%rcx), %eax 1208 orl %eax, %eax 1209 jz slow_setsplsti 1210 1211 bsrl %eax, %edx /* fls(cpu->cpu_softinfo.st_pending) */ 1212 cmpl 0(%rsp), %edx /* new ipl vs. st_pending */ 1213 jg fakesoftint 1214 1215 ALTENTRY(fakesoftint_return) 1216 /* 1217 * enable interrupts 1218 */ 1219slow_setsplsti: 1220 nop /* patch this to a sti when a proper setspl routine appears */ 1221 popq %rdi 1222 popq %rax /* return old ipl */ 1223 leave 1224 ret 1225 SET_SIZE(fakesoftint_return) 1226 1227set_to_base_spl: 1228 movl CPU_BASE_SPL(%rcx), %edi 1229 jmp setprilev 1230 SET_SIZE(spl) 1231 SET_SIZE(i_ddi_splx) 1232 SET_SIZE(splx) 1233 1234#elif defined(__i386) 1235 1236 ENTRY(splx) 1237 ALTENTRY(i_ddi_splx) 1238 cli /* disable interrupts */ 1239 LOADCPU(%ecx) 1240 movl 4(%esp), %edx /* get new spl level */ 1241 /*FALLTHRU*/ 1242 1243 .align 4 1244 ALTENTRY(spl) 1245 /* 1246 * New priority level is in %edx 1247 * (doing this early to avoid an AGI in the next instruction) 1248 */ 1249 GETIPL_NOGS(%eax, %ecx) /* get current ipl */ 1250 cmpl %edx, CPU_BASE_SPL(%ecx) /* if ( base spl > new ipl) */ 1251 ja set_to_base_spl /* then use base_spl */ 1252 1253setprilev: 1254 SETIPL_NOGS(%edx, %ecx) /* set new ipl */ 1255 1256 pushl %eax /* save old ipl */ 1257 pushl %edx /* pass new ipl */ 1258 call *setspl 1259 1260 LOADCPU(%ecx) 1261 movl CPU_SOFTINFO(%ecx), %eax 1262 orl %eax, %eax 1263 jz setsplsti 1264 1265 /* 1266 * Before dashing off, check that setsplsti has been patched. 1267 */ 1268 cmpl $NOP_INSTR, setsplsti 1269 je setsplsti 1270 1271 bsrl %eax, %edx 1272 cmpl 0(%esp), %edx 1273 jg fakesoftint 1274 1275 ALTENTRY(fakesoftint_return) 1276 /* 1277 * enable interrupts 1278 */ 1279setsplsti: 1280 nop /* patch this to a sti when a proper setspl routine appears */ 1281 popl %eax 1282 popl %eax / return old ipl 1283 ret 1284 SET_SIZE(fakesoftint_return) 1285 1286set_to_base_spl: 1287 movl CPU_BASE_SPL(%ecx), %edx 1288 jmp setprilev 1289 SET_SIZE(spl) 1290 SET_SIZE(i_ddi_splx) 1291 SET_SIZE(splx) 1292 1293#endif /* __i386 */ 1294#endif /* __lint */ 1295 1296#if defined(__lint) 1297 1298void 1299install_spl(void) 1300{} 1301 1302#else /* __lint */ 1303 1304#if defined(__amd64) 1305 1306 ENTRY_NP(install_spl) 1307 movq %cr0, %rax 1308 movq %rax, %rdx 1309 movl $_BITNOT(CR0_WP), %ecx 1310 movslq %ecx, %rcx 1311 andq %rcx, %rax /* we don't want to take a fault */ 1312 movq %rax, %cr0 1313 jmp 1f 13141: movb $STI_INSTR, setsplsti(%rip) 1315 movb $STI_INSTR, slow_setsplsti(%rip) 1316 movb $STI_INSTR, setsplhisti(%rip) 1317 movb $STI_INSTR, splr_setsti(%rip) 1318 testl $1, intpri_use_cr8(%rip) /* are using %cr8 ? */ 1319 jz 2f /* no, go patch more */ 1320 movq %rdx, %cr0 1321 ret 13222: 1323 /* 1324 * Patch spl functions to use slow spl method 1325 */ 1326 leaq setsplhi_patch(%rip), %rdi /* get patch point addr */ 1327 leaq slow_setsplhi(%rip), %rax /* jmp target */ 1328 subq %rdi, %rax /* calculate jmp distance */ 1329 subq $2, %rax /* minus size of jmp instr */ 1330 shlq $8, %rax /* construct jmp instr */ 1331 addq $JMP_INSTR, %rax 1332 movw %ax, setsplhi_patch(%rip) /* patch in the jmp */ 1333 leaq spl_patch(%rip), %rdi /* get patch point addr */ 1334 leaq slow_spl(%rip), %rax /* jmp target */ 1335 subq %rdi, %rax /* calculate jmp distance */ 1336 subq $2, %rax /* minus size of jmp instr */ 1337 shlq $8, %rax /* construct jmp instr */ 1338 addq $JMP_INSTR, %rax 1339 movw %ax, spl_patch(%rip) /* patch in the jmp */ 1340 /* 1341 * Ensure %cr8 is zero since we aren't using it 1342 */ 1343 xorl %eax, %eax 1344 movq %rax, %cr8 1345 movq %rdx, %cr0 1346 ret 1347 SET_SIZE(install_spl) 1348 1349#elif defined(__i386) 1350 1351 ENTRY_NP(install_spl) 1352 movl %cr0, %eax 1353 movl %eax, %edx 1354 andl $_BITNOT(CR0_WP), %eax /* we don't want to take a fault */ 1355 movl %eax, %cr0 1356 jmp 1f 13571: movb $STI_INSTR, setsplsti 1358 movb $STI_INSTR, setsplhisti 1359 movb $STI_INSTR, splr_setsti 1360 movl %edx, %cr0 1361 ret 1362 SET_SIZE(install_spl) 1363 1364#endif /* __i386 */ 1365#endif /* __lint */ 1366 1367 1368/* 1369 * Get current processor interrupt level 1370 */ 1371 1372#if defined(__lint) 1373 1374int 1375getpil(void) 1376{ return (0); } 1377 1378#else /* __lint */ 1379 1380#if defined(__amd64) 1381 1382 ENTRY(getpil) 1383 GETIPL(%eax) /* priority level into %eax */ 1384 ret 1385 SET_SIZE(getpil) 1386 1387#elif defined(__i386) 1388 1389 ENTRY(getpil) 1390 GETIPL(%eax) /* priority level into %eax */ 1391 ret 1392 SET_SIZE(getpil) 1393 1394#endif /* __i386 */ 1395#endif /* __lint */ 1396 1397#if defined(__i386) 1398 1399/* 1400 * Read and write the %gs register 1401 */ 1402 1403#if defined(__lint) 1404 1405/*ARGSUSED*/ 1406uint16_t 1407getgs(void) 1408{ return (0); } 1409 1410/*ARGSUSED*/ 1411void 1412setgs(uint16_t sel) 1413{} 1414 1415#else /* __lint */ 1416 1417 ENTRY(getgs) 1418 clr %eax 1419 movw %gs, %ax 1420 ret 1421 SET_SIZE(getgs) 1422 1423 ENTRY(setgs) 1424 movw 4(%esp), %gs 1425 ret 1426 SET_SIZE(setgs) 1427 1428#endif /* __lint */ 1429#endif /* __i386 */ 1430 1431#if defined(__lint) 1432 1433void 1434pc_reset(void) 1435{} 1436 1437#else /* __lint */ 1438 1439 ENTRY(wait_500ms) 1440 push %ebx 1441 movl $50000, %ebx 14421: 1443 call tenmicrosec 1444 decl %ebx 1445 jnz 1b 1446 pop %ebx 1447 ret 1448 SET_SIZE(wait_500ms) 1449 1450#define RESET_METHOD_KBC 1 1451#define RESET_METHOD_PORT92 2 1452#define RESET_METHOD_PCI 4 1453 1454 DGDEF3(pc_reset_methods, 4, 8) 1455 .long RESET_METHOD_KBC|RESET_METHOD_PORT92|RESET_METHOD_PCI; 1456 1457 ENTRY(pc_reset) 1458 1459#if defined(__i386) 1460 testl $RESET_METHOD_KBC, pc_reset_methods 1461#elif defined(__amd64) 1462 testl $RESET_METHOD_KBC, pc_reset_methods(%rip) 1463#endif 1464 jz 1f 1465 1466 / 1467 / Try the classic keyboard controller-triggered reset. 1468 / 1469 movw $0x64, %dx 1470 movb $0xfe, %al 1471 outb (%dx) 1472 1473 / Wait up to 500 milliseconds here for the keyboard controller 1474 / to pull the reset line. On some systems where the keyboard 1475 / controller is slow to pull the reset line, the next reset method 1476 / may be executed (which may be bad if those systems hang when the 1477 / next reset method is used, e.g. Ferrari 3400 (doesn't like port 92), 1478 / and Ferrari 4000 (doesn't like the cf9 reset method)) 1479 1480 call wait_500ms 1481 14821: 1483#if defined(__i386) 1484 testl $RESET_METHOD_PORT92, pc_reset_methods 1485#elif defined(__amd64) 1486 testl $RESET_METHOD_PORT92, pc_reset_methods(%rip) 1487#endif 1488 jz 3f 1489 1490 / 1491 / Try port 0x92 fast reset 1492 / 1493 movw $0x92, %dx 1494 inb (%dx) 1495 cmpb $0xff, %al / If port's not there, we should get back 0xFF 1496 je 1f 1497 testb $1, %al / If bit 0 1498 jz 2f / is clear, jump to perform the reset 1499 andb $0xfe, %al / otherwise, 1500 outb (%dx) / clear bit 0 first, then 15012: 1502 orb $1, %al / Set bit 0 1503 outb (%dx) / and reset the system 15041: 1505 1506 call wait_500ms 1507 15083: 1509#if defined(__i386) 1510 testl $RESET_METHOD_PCI, pc_reset_methods 1511#elif defined(__amd64) 1512 testl $RESET_METHOD_PCI, pc_reset_methods(%rip) 1513#endif 1514 jz 4f 1515 1516 / Try the PCI (soft) reset vector (should work on all modern systems, 1517 / but has been shown to cause problems on 450NX systems, and some newer 1518 / systems (e.g. ATI IXP400-equipped systems)) 1519 / When resetting via this method, 2 writes are required. The first 1520 / targets bit 1 (0=hard reset without power cycle, 1=hard reset with 1521 / power cycle). 1522 / The reset occurs on the second write, during bit 2's transition from 1523 / 0->1. 1524 movw $0xcf9, %dx 1525 movb $0x2, %al / Reset mode = hard, no power cycle 1526 outb (%dx) 1527 movb $0x6, %al 1528 outb (%dx) 1529 1530 call wait_500ms 1531 15324: 1533 / 1534 / port 0xcf9 failed also. Last-ditch effort is to 1535 / triple-fault the CPU. 1536 / 1537#if defined(__amd64) 1538 pushq $0x0 1539 pushq $0x0 / IDT base of 0, limit of 0 + 2 unused bytes 1540 lidt (%rsp) 1541#elif defined(__i386) 1542 pushl $0x0 1543 pushl $0x0 / IDT base of 0, limit of 0 + 2 unused bytes 1544 lidt (%esp) 1545#endif 1546 int $0x0 / Trigger interrupt, generate triple-fault 1547 1548 cli 1549 hlt / Wait forever 1550 /*NOTREACHED*/ 1551 SET_SIZE(pc_reset) 1552 1553#endif /* __lint */ 1554 1555/* 1556 * C callable in and out routines 1557 */ 1558 1559#if defined(__lint) 1560 1561/* ARGSUSED */ 1562void 1563outl(int port_address, uint32_t val) 1564{} 1565 1566#else /* __lint */ 1567 1568#if defined(__amd64) 1569 1570 ENTRY(outl) 1571 movw %di, %dx 1572 movl %esi, %eax 1573 outl (%dx) 1574 ret 1575 SET_SIZE(outl) 1576 1577#elif defined(__i386) 1578 1579 .set PORT, 4 1580 .set VAL, 8 1581 1582 ENTRY(outl) 1583 movw PORT(%esp), %dx 1584 movl VAL(%esp), %eax 1585 outl (%dx) 1586 ret 1587 SET_SIZE(outl) 1588 1589#endif /* __i386 */ 1590#endif /* __lint */ 1591 1592#if defined(__lint) 1593 1594/* ARGSUSED */ 1595void 1596outw(int port_address, uint16_t val) 1597{} 1598 1599#else /* __lint */ 1600 1601#if defined(__amd64) 1602 1603 ENTRY(outw) 1604 movw %di, %dx 1605 movw %si, %ax 1606 D16 outl (%dx) /* XX64 why not outw? */ 1607 ret 1608 SET_SIZE(outw) 1609 1610#elif defined(__i386) 1611 1612 ENTRY(outw) 1613 movw PORT(%esp), %dx 1614 movw VAL(%esp), %ax 1615 D16 outl (%dx) 1616 ret 1617 SET_SIZE(outw) 1618 1619#endif /* __i386 */ 1620#endif /* __lint */ 1621 1622#if defined(__lint) 1623 1624/* ARGSUSED */ 1625void 1626outb(int port_address, uint8_t val) 1627{} 1628 1629#else /* __lint */ 1630 1631#if defined(__amd64) 1632 1633 ENTRY(outb) 1634 movw %di, %dx 1635 movb %sil, %al 1636 outb (%dx) 1637 ret 1638 SET_SIZE(outb) 1639 1640#elif defined(__i386) 1641 1642 ENTRY(outb) 1643 movw PORT(%esp), %dx 1644 movb VAL(%esp), %al 1645 outb (%dx) 1646 ret 1647 SET_SIZE(outb) 1648 1649#endif /* __i386 */ 1650#endif /* __lint */ 1651 1652#if defined(__lint) 1653 1654/* ARGSUSED */ 1655uint32_t 1656inl(int port_address) 1657{ return (0); } 1658 1659#else /* __lint */ 1660 1661#if defined(__amd64) 1662 1663 ENTRY(inl) 1664 xorl %eax, %eax 1665 movw %di, %dx 1666 inl (%dx) 1667 ret 1668 SET_SIZE(inl) 1669 1670#elif defined(__i386) 1671 1672 ENTRY(inl) 1673 movw PORT(%esp), %dx 1674 inl (%dx) 1675 ret 1676 SET_SIZE(inl) 1677 1678#endif /* __i386 */ 1679#endif /* __lint */ 1680 1681#if defined(__lint) 1682 1683/* ARGSUSED */ 1684uint16_t 1685inw(int port_address) 1686{ return (0); } 1687 1688#else /* __lint */ 1689 1690#if defined(__amd64) 1691 1692 ENTRY(inw) 1693 xorl %eax, %eax 1694 movw %di, %dx 1695 D16 inl (%dx) 1696 ret 1697 SET_SIZE(inw) 1698 1699#elif defined(__i386) 1700 1701 ENTRY(inw) 1702 subl %eax, %eax 1703 movw PORT(%esp), %dx 1704 D16 inl (%dx) 1705 ret 1706 SET_SIZE(inw) 1707 1708#endif /* __i386 */ 1709#endif /* __lint */ 1710 1711 1712#if defined(__lint) 1713 1714/* ARGSUSED */ 1715uint8_t 1716inb(int port_address) 1717{ return (0); } 1718 1719#else /* __lint */ 1720 1721#if defined(__amd64) 1722 1723 ENTRY(inb) 1724 xorl %eax, %eax 1725 movw %di, %dx 1726 inb (%dx) 1727 ret 1728 SET_SIZE(inb) 1729 1730#elif defined(__i386) 1731 1732 ENTRY(inb) 1733 subl %eax, %eax 1734 movw PORT(%esp), %dx 1735 inb (%dx) 1736 ret 1737 SET_SIZE(inb) 1738 1739#endif /* __i386 */ 1740#endif /* __lint */ 1741 1742 1743#if defined(__lint) 1744 1745/* ARGSUSED */ 1746void 1747repoutsw(int port, uint16_t *addr, int cnt) 1748{} 1749 1750#else /* __lint */ 1751 1752#if defined(__amd64) 1753 1754 ENTRY(repoutsw) 1755 movl %edx, %ecx 1756 movw %di, %dx 1757 rep 1758 D16 outsl 1759 ret 1760 SET_SIZE(repoutsw) 1761 1762#elif defined(__i386) 1763 1764 /* 1765 * The arguments and saved registers are on the stack in the 1766 * following order: 1767 * | cnt | +16 1768 * | *addr | +12 1769 * | port | +8 1770 * | eip | +4 1771 * | esi | <-- %esp 1772 * If additional values are pushed onto the stack, make sure 1773 * to adjust the following constants accordingly. 1774 */ 1775 .set PORT, 8 1776 .set ADDR, 12 1777 .set COUNT, 16 1778 1779 ENTRY(repoutsw) 1780 pushl %esi 1781 movl PORT(%esp), %edx 1782 movl ADDR(%esp), %esi 1783 movl COUNT(%esp), %ecx 1784 rep 1785 D16 outsl 1786 popl %esi 1787 ret 1788 SET_SIZE(repoutsw) 1789 1790#endif /* __i386 */ 1791#endif /* __lint */ 1792 1793 1794#if defined(__lint) 1795 1796/* ARGSUSED */ 1797void 1798repinsw(int port_addr, uint16_t *addr, int cnt) 1799{} 1800 1801#else /* __lint */ 1802 1803#if defined(__amd64) 1804 1805 ENTRY(repinsw) 1806 movl %edx, %ecx 1807 movw %di, %dx 1808 rep 1809 D16 insl 1810 ret 1811 SET_SIZE(repinsw) 1812 1813#elif defined(__i386) 1814 1815 ENTRY(repinsw) 1816 pushl %edi 1817 movl PORT(%esp), %edx 1818 movl ADDR(%esp), %edi 1819 movl COUNT(%esp), %ecx 1820 rep 1821 D16 insl 1822 popl %edi 1823 ret 1824 SET_SIZE(repinsw) 1825 1826#endif /* __i386 */ 1827#endif /* __lint */ 1828 1829 1830#if defined(__lint) 1831 1832/* ARGSUSED */ 1833void 1834repinsb(int port, uint8_t *addr, int count) 1835{} 1836 1837#else /* __lint */ 1838 1839#if defined(__amd64) 1840 1841 ENTRY(repinsb) 1842 movl %edx, %ecx 1843 movw %di, %dx 1844 movq %rsi, %rdi 1845 rep 1846 insb 1847 ret 1848 SET_SIZE(repinsb) 1849 1850#elif defined(__i386) 1851 1852 /* 1853 * The arguments and saved registers are on the stack in the 1854 * following order: 1855 * | cnt | +16 1856 * | *addr | +12 1857 * | port | +8 1858 * | eip | +4 1859 * | esi | <-- %esp 1860 * If additional values are pushed onto the stack, make sure 1861 * to adjust the following constants accordingly. 1862 */ 1863 .set IO_PORT, 8 1864 .set IO_ADDR, 12 1865 .set IO_COUNT, 16 1866 1867 ENTRY(repinsb) 1868 pushl %edi 1869 movl IO_ADDR(%esp), %edi 1870 movl IO_COUNT(%esp), %ecx 1871 movl IO_PORT(%esp), %edx 1872 rep 1873 insb 1874 popl %edi 1875 ret 1876 SET_SIZE(repinsb) 1877 1878#endif /* __i386 */ 1879#endif /* __lint */ 1880 1881 1882/* 1883 * Input a stream of 32-bit words. 1884 * NOTE: count is a DWORD count. 1885 */ 1886#if defined(__lint) 1887 1888/* ARGSUSED */ 1889void 1890repinsd(int port, uint32_t *addr, int count) 1891{} 1892 1893#else /* __lint */ 1894 1895#if defined(__amd64) 1896 1897 ENTRY(repinsd) 1898 movl %edx, %ecx 1899 movw %di, %dx 1900 movq %rsi, %rdi 1901 rep 1902 insl 1903 ret 1904 SET_SIZE(repinsd) 1905 1906#elif defined(__i386) 1907 1908 ENTRY(repinsd) 1909 pushl %edi 1910 movl IO_ADDR(%esp), %edi 1911 movl IO_COUNT(%esp), %ecx 1912 movl IO_PORT(%esp), %edx 1913 rep 1914 insl 1915 popl %edi 1916 ret 1917 SET_SIZE(repinsd) 1918 1919#endif /* __i386 */ 1920#endif /* __lint */ 1921 1922/* 1923 * Output a stream of bytes 1924 * NOTE: count is a byte count 1925 */ 1926#if defined(__lint) 1927 1928/* ARGSUSED */ 1929void 1930repoutsb(int port, uint8_t *addr, int count) 1931{} 1932 1933#else /* __lint */ 1934 1935#if defined(__amd64) 1936 1937 ENTRY(repoutsb) 1938 movl %edx, %ecx 1939 movw %di, %dx 1940 rep 1941 outsb 1942 ret 1943 SET_SIZE(repoutsb) 1944 1945#elif defined(__i386) 1946 1947 ENTRY(repoutsb) 1948 pushl %esi 1949 movl IO_ADDR(%esp), %esi 1950 movl IO_COUNT(%esp), %ecx 1951 movl IO_PORT(%esp), %edx 1952 rep 1953 outsb 1954 popl %esi 1955 ret 1956 SET_SIZE(repoutsb) 1957 1958#endif /* __i386 */ 1959#endif /* __lint */ 1960 1961/* 1962 * Output a stream of 32-bit words 1963 * NOTE: count is a DWORD count 1964 */ 1965#if defined(__lint) 1966 1967/* ARGSUSED */ 1968void 1969repoutsd(int port, uint32_t *addr, int count) 1970{} 1971 1972#else /* __lint */ 1973 1974#if defined(__amd64) 1975 1976 ENTRY(repoutsd) 1977 movl %edx, %ecx 1978 movw %di, %dx 1979 rep 1980 outsl 1981 ret 1982 SET_SIZE(repoutsd) 1983 1984#elif defined(__i386) 1985 1986 ENTRY(repoutsd) 1987 pushl %esi 1988 movl IO_ADDR(%esp), %esi 1989 movl IO_COUNT(%esp), %ecx 1990 movl IO_PORT(%esp), %edx 1991 rep 1992 outsl 1993 popl %esi 1994 ret 1995 SET_SIZE(repoutsd) 1996 1997#endif /* __i386 */ 1998#endif /* __lint */ 1999 2000/* 2001 * void int3(void) 2002 * void int18(void) 2003 * void int20(void) 2004 */ 2005 2006#if defined(__lint) 2007 2008void 2009int3(void) 2010{} 2011 2012void 2013int18(void) 2014{} 2015 2016void 2017int20(void) 2018{} 2019 2020#else /* __lint */ 2021 2022 ENTRY(int3) 2023 int $T_BPTFLT 2024 ret 2025 SET_SIZE(int3) 2026 2027 ENTRY(int18) 2028 int $T_MCE 2029 ret 2030 SET_SIZE(int18) 2031 2032 ENTRY(int20) 2033 movl boothowto, %eax 2034 andl $RB_DEBUG, %eax 2035 jz 1f 2036 2037 int $T_DBGENTR 20381: 2039 rep; ret /* use 2 byte return instruction when branch target */ 2040 /* AMD Software Optimization Guide - Section 6.2 */ 2041 SET_SIZE(int20) 2042 2043#endif /* __lint */ 2044 2045#if defined(__lint) 2046 2047/* ARGSUSED */ 2048int 2049scanc(size_t size, uchar_t *cp, uchar_t *table, uchar_t mask) 2050{ return (0); } 2051 2052#else /* __lint */ 2053 2054#if defined(__amd64) 2055 2056 ENTRY(scanc) 2057 /* rdi == size */ 2058 /* rsi == cp */ 2059 /* rdx == table */ 2060 /* rcx == mask */ 2061 addq %rsi, %rdi /* end = &cp[size] */ 2062.scanloop: 2063 cmpq %rdi, %rsi /* while (cp < end */ 2064 jnb .scandone 2065 movzbq (%rsi), %r8 /* %r8 = *cp */ 2066 incq %rsi /* cp++ */ 2067 testb %cl, (%r8, %rdx) 2068 jz .scanloop /* && (table[*cp] & mask) == 0) */ 2069 decq %rsi /* (fix post-increment) */ 2070.scandone: 2071 movl %edi, %eax 2072 subl %esi, %eax /* return (end - cp) */ 2073 ret 2074 SET_SIZE(scanc) 2075 2076#elif defined(__i386) 2077 2078 ENTRY(scanc) 2079 pushl %edi 2080 pushl %esi 2081 movb 24(%esp), %cl /* mask = %cl */ 2082 movl 16(%esp), %esi /* cp = %esi */ 2083 movl 20(%esp), %edx /* table = %edx */ 2084 movl %esi, %edi 2085 addl 12(%esp), %edi /* end = &cp[size]; */ 2086.scanloop: 2087 cmpl %edi, %esi /* while (cp < end */ 2088 jnb .scandone 2089 movzbl (%esi), %eax /* %al = *cp */ 2090 incl %esi /* cp++ */ 2091 movb (%edx, %eax), %al /* %al = table[*cp] */ 2092 testb %al, %cl 2093 jz .scanloop /* && (table[*cp] & mask) == 0) */ 2094 dec %esi /* post-incremented */ 2095.scandone: 2096 movl %edi, %eax 2097 subl %esi, %eax /* return (end - cp) */ 2098 popl %esi 2099 popl %edi 2100 ret 2101 SET_SIZE(scanc) 2102 2103#endif /* __i386 */ 2104#endif /* __lint */ 2105 2106/* 2107 * Replacement functions for ones that are normally inlined. 2108 * In addition to the copy in i86.il, they are defined here just in case. 2109 */ 2110 2111#if defined(__lint) 2112 2113int 2114intr_clear(void) 2115{ return 0; } 2116 2117int 2118clear_int_flag(void) 2119{ return 0; } 2120 2121#else /* __lint */ 2122 2123#if defined(__amd64) 2124 2125 ENTRY(intr_clear) 2126 ENTRY(clear_int_flag) 2127 pushfq 2128 cli 2129 popq %rax 2130 ret 2131 SET_SIZE(clear_int_flag) 2132 SET_SIZE(intr_clear) 2133 2134#elif defined(__i386) 2135 2136 ENTRY(intr_clear) 2137 ENTRY(clear_int_flag) 2138 pushfl 2139 cli 2140 popl %eax 2141 ret 2142 SET_SIZE(clear_int_flag) 2143 SET_SIZE(intr_clear) 2144 2145#endif /* __i386 */ 2146#endif /* __lint */ 2147 2148#if defined(__lint) 2149 2150struct cpu * 2151curcpup(void) 2152{ return 0; } 2153 2154#else /* __lint */ 2155 2156#if defined(__amd64) 2157 2158 ENTRY(curcpup) 2159 movq %gs:CPU_SELF, %rax 2160 ret 2161 SET_SIZE(curcpup) 2162 2163#elif defined(__i386) 2164 2165 ENTRY(curcpup) 2166 movl %gs:CPU_SELF, %eax 2167 ret 2168 SET_SIZE(curcpup) 2169 2170#endif /* __i386 */ 2171#endif /* __lint */ 2172 2173#if defined(__lint) 2174 2175/* ARGSUSED */ 2176uint32_t 2177htonl(uint32_t i) 2178{ return (0); } 2179 2180/* ARGSUSED */ 2181uint32_t 2182ntohl(uint32_t i) 2183{ return (0); } 2184 2185#else /* __lint */ 2186 2187#if defined(__amd64) 2188 2189 /* XX64 there must be shorter sequences for this */ 2190 ENTRY(htonl) 2191 ALTENTRY(ntohl) 2192 movl %edi, %eax 2193 bswap %eax 2194 ret 2195 SET_SIZE(ntohl) 2196 SET_SIZE(htonl) 2197 2198#elif defined(__i386) 2199 2200 ENTRY(htonl) 2201 ALTENTRY(ntohl) 2202 movl 4(%esp), %eax 2203 bswap %eax 2204 ret 2205 SET_SIZE(ntohl) 2206 SET_SIZE(htonl) 2207 2208#endif /* __i386 */ 2209#endif /* __lint */ 2210 2211#if defined(__lint) 2212 2213/* ARGSUSED */ 2214uint16_t 2215htons(uint16_t i) 2216{ return (0); } 2217 2218/* ARGSUSED */ 2219uint16_t 2220ntohs(uint16_t i) 2221{ return (0); } 2222 2223 2224#else /* __lint */ 2225 2226#if defined(__amd64) 2227 2228 /* XX64 there must be better sequences for this */ 2229 ENTRY(htons) 2230 ALTENTRY(ntohs) 2231 movl %edi, %eax 2232 bswap %eax 2233 shrl $16, %eax 2234 ret 2235 SET_SIZE(ntohs) 2236 SET_SIZE(htons) 2237 2238#elif defined(__i386) 2239 2240 ENTRY(htons) 2241 ALTENTRY(ntohs) 2242 movl 4(%esp), %eax 2243 bswap %eax 2244 shrl $16, %eax 2245 ret 2246 SET_SIZE(ntohs) 2247 SET_SIZE(htons) 2248 2249#endif /* __i386 */ 2250#endif /* __lint */ 2251 2252 2253#if defined(__lint) 2254 2255/* ARGSUSED */ 2256void 2257intr_restore(uint_t i) 2258{ return; } 2259 2260/* ARGSUSED */ 2261void 2262restore_int_flag(int i) 2263{ return; } 2264 2265#else /* __lint */ 2266 2267#if defined(__amd64) 2268 2269 ENTRY(intr_restore) 2270 ENTRY(restore_int_flag) 2271 pushq %rdi 2272 popfq 2273 ret 2274 SET_SIZE(restore_int_flag) 2275 SET_SIZE(intr_restore) 2276 2277#elif defined(__i386) 2278 2279 ENTRY(intr_restore) 2280 ENTRY(restore_int_flag) 2281 pushl 4(%esp) 2282 popfl 2283 ret 2284 SET_SIZE(restore_int_flag) 2285 SET_SIZE(intr_restore) 2286 2287#endif /* __i386 */ 2288#endif /* __lint */ 2289 2290#if defined(__lint) 2291 2292void 2293sti(void) 2294{} 2295 2296#else /* __lint */ 2297 2298 ENTRY(sti) 2299 sti 2300 ret 2301 SET_SIZE(sti) 2302 2303#endif /* __lint */ 2304 2305#if defined(__lint) 2306 2307dtrace_icookie_t 2308dtrace_interrupt_disable(void) 2309{ return (0); } 2310 2311#else /* __lint */ 2312 2313#if defined(__amd64) 2314 2315 ENTRY(dtrace_interrupt_disable) 2316 pushfq 2317 popq %rax 2318 cli 2319 ret 2320 SET_SIZE(dtrace_interrupt_disable) 2321 2322#elif defined(__i386) 2323 2324 ENTRY(dtrace_interrupt_disable) 2325 pushfl 2326 popl %eax 2327 cli 2328 ret 2329 SET_SIZE(dtrace_interrupt_disable) 2330 2331#endif /* __i386 */ 2332#endif /* __lint */ 2333 2334#if defined(__lint) 2335 2336/*ARGSUSED*/ 2337void 2338dtrace_interrupt_enable(dtrace_icookie_t cookie) 2339{} 2340 2341#else /* __lint */ 2342 2343#if defined(__amd64) 2344 2345 ENTRY(dtrace_interrupt_enable) 2346 pushq %rdi 2347 popfq 2348 ret 2349 SET_SIZE(dtrace_interrupt_enable) 2350 2351#elif defined(__i386) 2352 2353 ENTRY(dtrace_interrupt_enable) 2354 movl 4(%esp), %eax 2355 pushl %eax 2356 popfl 2357 ret 2358 SET_SIZE(dtrace_interrupt_enable) 2359 2360#endif /* __i386 */ 2361#endif /* __lint */ 2362 2363 2364#if defined(lint) 2365 2366void 2367dtrace_membar_producer(void) 2368{} 2369 2370void 2371dtrace_membar_consumer(void) 2372{} 2373 2374#else /* __lint */ 2375 2376 ENTRY(dtrace_membar_producer) 2377 rep; ret /* use 2 byte return instruction when branch target */ 2378 /* AMD Software Optimization Guide - Section 6.2 */ 2379 SET_SIZE(dtrace_membar_producer) 2380 2381 ENTRY(dtrace_membar_consumer) 2382 rep; ret /* use 2 byte return instruction when branch target */ 2383 /* AMD Software Optimization Guide - Section 6.2 */ 2384 SET_SIZE(dtrace_membar_consumer) 2385 2386#endif /* __lint */ 2387 2388#if defined(__lint) 2389 2390kthread_id_t 2391threadp(void) 2392{ return ((kthread_id_t)0); } 2393 2394#else /* __lint */ 2395 2396#if defined(__amd64) 2397 2398 ENTRY(threadp) 2399 movq %gs:CPU_THREAD, %rax 2400 ret 2401 SET_SIZE(threadp) 2402 2403#elif defined(__i386) 2404 2405 ENTRY(threadp) 2406 movl %gs:CPU_THREAD, %eax 2407 ret 2408 SET_SIZE(threadp) 2409 2410#endif /* __i386 */ 2411#endif /* __lint */ 2412 2413/* 2414 * Checksum routine for Internet Protocol Headers 2415 */ 2416 2417#if defined(__lint) 2418 2419/* ARGSUSED */ 2420unsigned int 2421ip_ocsum( 2422 ushort_t *address, /* ptr to 1st message buffer */ 2423 int halfword_count, /* length of data */ 2424 unsigned int sum) /* partial checksum */ 2425{ 2426 int i; 2427 unsigned int psum = 0; /* partial sum */ 2428 2429 for (i = 0; i < halfword_count; i++, address++) { 2430 psum += *address; 2431 } 2432 2433 while ((psum >> 16) != 0) { 2434 psum = (psum & 0xffff) + (psum >> 16); 2435 } 2436 2437 psum += sum; 2438 2439 while ((psum >> 16) != 0) { 2440 psum = (psum & 0xffff) + (psum >> 16); 2441 } 2442 2443 return (psum); 2444} 2445 2446#else /* __lint */ 2447 2448#if defined(__amd64) 2449 2450 ENTRY(ip_ocsum) 2451 pushq %rbp 2452 movq %rsp, %rbp 2453#ifdef DEBUG 2454 movq kernelbase(%rip), %rax 2455 cmpq %rax, %rdi 2456 jnb 1f 2457 xorl %eax, %eax 2458 movq %rdi, %rsi 2459 leaq .ip_ocsum_panic_msg(%rip), %rdi 2460 call panic 2461 /*NOTREACHED*/ 2462.ip_ocsum_panic_msg: 2463 .string "ip_ocsum: address 0x%p below kernelbase\n" 24641: 2465#endif 2466 movl %esi, %ecx /* halfword_count */ 2467 movq %rdi, %rsi /* address */ 2468 /* partial sum in %edx */ 2469 xorl %eax, %eax 2470 testl %ecx, %ecx 2471 jz .ip_ocsum_done 2472 testq $3, %rsi 2473 jnz .ip_csum_notaligned 2474.ip_csum_aligned: /* XX64 opportunities for 8-byte operations? */ 2475.next_iter: 2476 /* XX64 opportunities for prefetch? */ 2477 /* XX64 compute csum with 64 bit quantities? */ 2478 subl $32, %ecx 2479 jl .less_than_32 2480 2481 addl 0(%rsi), %edx 2482.only60: 2483 adcl 4(%rsi), %eax 2484.only56: 2485 adcl 8(%rsi), %edx 2486.only52: 2487 adcl 12(%rsi), %eax 2488.only48: 2489 adcl 16(%rsi), %edx 2490.only44: 2491 adcl 20(%rsi), %eax 2492.only40: 2493 adcl 24(%rsi), %edx 2494.only36: 2495 adcl 28(%rsi), %eax 2496.only32: 2497 adcl 32(%rsi), %edx 2498.only28: 2499 adcl 36(%rsi), %eax 2500.only24: 2501 adcl 40(%rsi), %edx 2502.only20: 2503 adcl 44(%rsi), %eax 2504.only16: 2505 adcl 48(%rsi), %edx 2506.only12: 2507 adcl 52(%rsi), %eax 2508.only8: 2509 adcl 56(%rsi), %edx 2510.only4: 2511 adcl 60(%rsi), %eax /* could be adding -1 and -1 with a carry */ 2512.only0: 2513 adcl $0, %eax /* could be adding -1 in eax with a carry */ 2514 adcl $0, %eax 2515 2516 addq $64, %rsi 2517 testl %ecx, %ecx 2518 jnz .next_iter 2519 2520.ip_ocsum_done: 2521 addl %eax, %edx 2522 adcl $0, %edx 2523 movl %edx, %eax /* form a 16 bit checksum by */ 2524 shrl $16, %eax /* adding two halves of 32 bit checksum */ 2525 addw %dx, %ax 2526 adcw $0, %ax 2527 andl $0xffff, %eax 2528 leave 2529 ret 2530 2531.ip_csum_notaligned: 2532 xorl %edi, %edi 2533 movw (%rsi), %di 2534 addl %edi, %edx 2535 adcl $0, %edx 2536 addq $2, %rsi 2537 decl %ecx 2538 jmp .ip_csum_aligned 2539 2540.less_than_32: 2541 addl $32, %ecx 2542 testl $1, %ecx 2543 jz .size_aligned 2544 andl $0xfe, %ecx 2545 movzwl (%rsi, %rcx, 2), %edi 2546 addl %edi, %edx 2547 adcl $0, %edx 2548.size_aligned: 2549 movl %ecx, %edi 2550 shrl $1, %ecx 2551 shl $1, %edi 2552 subq $64, %rdi 2553 addq %rdi, %rsi 2554 leaq .ip_ocsum_jmptbl(%rip), %rdi 2555 leaq (%rdi, %rcx, 8), %rdi 2556 xorl %ecx, %ecx 2557 clc 2558 jmp *(%rdi) 2559 2560 .align 8 2561.ip_ocsum_jmptbl: 2562 .quad .only0, .only4, .only8, .only12, .only16, .only20 2563 .quad .only24, .only28, .only32, .only36, .only40, .only44 2564 .quad .only48, .only52, .only56, .only60 2565 SET_SIZE(ip_ocsum) 2566 2567#elif defined(__i386) 2568 2569 ENTRY(ip_ocsum) 2570 pushl %ebp 2571 movl %esp, %ebp 2572 pushl %ebx 2573 pushl %esi 2574 pushl %edi 2575 movl 12(%ebp), %ecx /* count of half words */ 2576 movl 16(%ebp), %edx /* partial checksum */ 2577 movl 8(%ebp), %esi 2578 xorl %eax, %eax 2579 testl %ecx, %ecx 2580 jz .ip_ocsum_done 2581 2582 testl $3, %esi 2583 jnz .ip_csum_notaligned 2584.ip_csum_aligned: 2585.next_iter: 2586 subl $32, %ecx 2587 jl .less_than_32 2588 2589 addl 0(%esi), %edx 2590.only60: 2591 adcl 4(%esi), %eax 2592.only56: 2593 adcl 8(%esi), %edx 2594.only52: 2595 adcl 12(%esi), %eax 2596.only48: 2597 adcl 16(%esi), %edx 2598.only44: 2599 adcl 20(%esi), %eax 2600.only40: 2601 adcl 24(%esi), %edx 2602.only36: 2603 adcl 28(%esi), %eax 2604.only32: 2605 adcl 32(%esi), %edx 2606.only28: 2607 adcl 36(%esi), %eax 2608.only24: 2609 adcl 40(%esi), %edx 2610.only20: 2611 adcl 44(%esi), %eax 2612.only16: 2613 adcl 48(%esi), %edx 2614.only12: 2615 adcl 52(%esi), %eax 2616.only8: 2617 adcl 56(%esi), %edx 2618.only4: 2619 adcl 60(%esi), %eax /* We could be adding -1 and -1 with a carry */ 2620.only0: 2621 adcl $0, %eax /* we could be adding -1 in eax with a carry */ 2622 adcl $0, %eax 2623 2624 addl $64, %esi 2625 andl %ecx, %ecx 2626 jnz .next_iter 2627 2628.ip_ocsum_done: 2629 addl %eax, %edx 2630 adcl $0, %edx 2631 movl %edx, %eax /* form a 16 bit checksum by */ 2632 shrl $16, %eax /* adding two halves of 32 bit checksum */ 2633 addw %dx, %ax 2634 adcw $0, %ax 2635 andl $0xffff, %eax 2636 popl %edi /* restore registers */ 2637 popl %esi 2638 popl %ebx 2639 leave 2640 ret 2641 2642.ip_csum_notaligned: 2643 xorl %edi, %edi 2644 movw (%esi), %di 2645 addl %edi, %edx 2646 adcl $0, %edx 2647 addl $2, %esi 2648 decl %ecx 2649 jmp .ip_csum_aligned 2650 2651.less_than_32: 2652 addl $32, %ecx 2653 testl $1, %ecx 2654 jz .size_aligned 2655 andl $0xfe, %ecx 2656 movzwl (%esi, %ecx, 2), %edi 2657 addl %edi, %edx 2658 adcl $0, %edx 2659.size_aligned: 2660 movl %ecx, %edi 2661 shrl $1, %ecx 2662 shl $1, %edi 2663 subl $64, %edi 2664 addl %edi, %esi 2665 movl $.ip_ocsum_jmptbl, %edi 2666 lea (%edi, %ecx, 4), %edi 2667 xorl %ecx, %ecx 2668 clc 2669 jmp *(%edi) 2670 SET_SIZE(ip_ocsum) 2671 2672 .data 2673 .align 4 2674 2675.ip_ocsum_jmptbl: 2676 .long .only0, .only4, .only8, .only12, .only16, .only20 2677 .long .only24, .only28, .only32, .only36, .only40, .only44 2678 .long .only48, .only52, .only56, .only60 2679 2680 2681#endif /* __i386 */ 2682#endif /* __lint */ 2683 2684/* 2685 * multiply two long numbers and yield a u_longlong_t result, callable from C. 2686 * Provided to manipulate hrtime_t values. 2687 */ 2688#if defined(__lint) 2689 2690/* result = a * b; */ 2691 2692/* ARGSUSED */ 2693unsigned long long 2694mul32(uint_t a, uint_t b) 2695{ return (0); } 2696 2697#else /* __lint */ 2698 2699#if defined(__amd64) 2700 2701 ENTRY(mul32) 2702 xorl %edx, %edx /* XX64 joe, paranoia? */ 2703 movl %edi, %eax 2704 mull %esi 2705 shlq $32, %rdx 2706 orq %rdx, %rax 2707 ret 2708 SET_SIZE(mul32) 2709 2710#elif defined(__i386) 2711 2712 ENTRY(mul32) 2713 movl 8(%esp), %eax 2714 movl 4(%esp), %ecx 2715 mull %ecx 2716 ret 2717 SET_SIZE(mul32) 2718 2719#endif /* __i386 */ 2720#endif /* __lint */ 2721 2722#if defined(notused) 2723#if defined(__lint) 2724/* ARGSUSED */ 2725void 2726load_pte64(uint64_t *pte, uint64_t pte_value) 2727{} 2728#else /* __lint */ 2729 .globl load_pte64 2730load_pte64: 2731 movl 4(%esp), %eax 2732 movl 8(%esp), %ecx 2733 movl 12(%esp), %edx 2734 movl %edx, 4(%eax) 2735 movl %ecx, (%eax) 2736 ret 2737#endif /* __lint */ 2738#endif /* notused */ 2739 2740#if defined(__lint) 2741 2742/*ARGSUSED*/ 2743void 2744scan_memory(caddr_t addr, size_t size) 2745{} 2746 2747#else /* __lint */ 2748 2749#if defined(__amd64) 2750 2751 ENTRY(scan_memory) 2752 shrq $3, %rsi /* convert %rsi from byte to quadword count */ 2753 jz .scanm_done 2754 movq %rsi, %rcx /* move count into rep control register */ 2755 movq %rdi, %rsi /* move addr into lodsq control reg. */ 2756 rep lodsq /* scan the memory range */ 2757.scanm_done: 2758 rep; ret /* use 2 byte return instruction when branch target */ 2759 /* AMD Software Optimization Guide - Section 6.2 */ 2760 SET_SIZE(scan_memory) 2761 2762#elif defined(__i386) 2763 2764 ENTRY(scan_memory) 2765 pushl %ecx 2766 pushl %esi 2767 movl 16(%esp), %ecx /* move 2nd arg into rep control register */ 2768 shrl $2, %ecx /* convert from byte count to word count */ 2769 jz .scanm_done 2770 movl 12(%esp), %esi /* move 1st arg into lodsw control register */ 2771 .byte 0xf3 /* rep prefix. lame assembler. sigh. */ 2772 lodsl 2773.scanm_done: 2774 popl %esi 2775 popl %ecx 2776 ret 2777 SET_SIZE(scan_memory) 2778 2779#endif /* __i386 */ 2780#endif /* __lint */ 2781 2782 2783#if defined(__lint) 2784 2785/*ARGSUSED */ 2786int 2787lowbit(ulong_t i) 2788{ return (0); } 2789 2790#else /* __lint */ 2791 2792#if defined(__amd64) 2793 2794 ENTRY(lowbit) 2795 movl $-1, %eax 2796 bsfq %rdi, %rax 2797 incl %eax 2798 ret 2799 SET_SIZE(lowbit) 2800 2801#elif defined(__i386) 2802 2803 ENTRY(lowbit) 2804 movl $-1, %eax 2805 bsfl 4(%esp), %eax 2806 incl %eax 2807 ret 2808 SET_SIZE(lowbit) 2809 2810#endif /* __i386 */ 2811#endif /* __lint */ 2812 2813#if defined(__lint) 2814 2815/*ARGSUSED*/ 2816int 2817highbit(ulong_t i) 2818{ return (0); } 2819 2820#else /* __lint */ 2821 2822#if defined(__amd64) 2823 2824 ENTRY(highbit) 2825 movl $-1, %eax 2826 bsrq %rdi, %rax 2827 incl %eax 2828 ret 2829 SET_SIZE(highbit) 2830 2831#elif defined(__i386) 2832 2833 ENTRY(highbit) 2834 movl $-1, %eax 2835 bsrl 4(%esp), %eax 2836 incl %eax 2837 ret 2838 SET_SIZE(highbit) 2839 2840#endif /* __i386 */ 2841#endif /* __lint */ 2842 2843#if defined(__lint) 2844 2845/*ARGSUSED*/ 2846uint64_t 2847rdmsr(uint_t r) 2848{ return (0); } 2849 2850/*ARGSUSED*/ 2851void 2852wrmsr(uint_t r, const uint64_t val) 2853{} 2854 2855/*ARGSUSED*/ 2856uint64_t 2857xrdmsr(uint_t r) 2858{ return (0); } 2859 2860/*ARGSUSED*/ 2861void 2862xwrmsr(uint_t r, const uint64_t val) 2863{} 2864 2865void 2866invalidate_cache(void) 2867{} 2868 2869#else /* __lint */ 2870 2871#define XMSR_ACCESS_VAL $0x9c5a203a 2872 2873#if defined(__amd64) 2874 ENTRY(rdmsr) 2875 movl %edi, %ecx 2876 rdmsr 2877 shlq $32, %rdx 2878 orq %rdx, %rax 2879 ret 2880 SET_SIZE(rdmsr) 2881 2882 ENTRY(wrmsr) 2883 movq %rsi, %rdx 2884 shrq $32, %rdx 2885 movl %esi, %eax 2886 movl %edi, %ecx 2887 wrmsr 2888 ret 2889 SET_SIZE(wrmsr) 2890 2891 ENTRY(xrdmsr) 2892 movl %edi, %ecx 2893 movl XMSR_ACCESS_VAL, %edi /* this value is needed to access MSR */ 2894 rdmsr 2895 shlq $32, %rdx 2896 orq %rdx, %rax 2897 ret 2898 SET_SIZE(xrdmsr) 2899 2900 ENTRY(xwrmsr) 2901 movl %edi, %ecx 2902 movl XMSR_ACCESS_VAL, %edi /* this value is needed to access MSR */ 2903 movq %rsi, %rdx 2904 shrq $32, %rdx 2905 movl %esi, %eax 2906 wrmsr 2907 ret 2908 SET_SIZE(xwrmsr) 2909 2910#elif defined(__i386) 2911 2912 ENTRY(rdmsr) 2913 movl 4(%esp), %ecx 2914 rdmsr 2915 ret 2916 SET_SIZE(rdmsr) 2917 2918 ENTRY(wrmsr) 2919 movl 4(%esp), %ecx 2920 movl 8(%esp), %eax 2921 movl 12(%esp), %edx 2922 wrmsr 2923 ret 2924 SET_SIZE(wrmsr) 2925 2926 ENTRY(xrdmsr) 2927 movl 4(%esp), %ecx 2928 movl XMSR_ACCESS_VAL, %edi /* this value is needed to access MSR */ 2929 rdmsr 2930 ret 2931 SET_SIZE(xrdmsr) 2932 2933 ENTRY(xwrmsr) 2934 movl 4(%esp), %ecx 2935 movl 8(%esp), %eax 2936 movl 12(%esp), %edx 2937 movl XMSR_ACCESS_VAL, %edi /* this value is needed to access MSR */ 2938 wrmsr 2939 ret 2940 SET_SIZE(xwrmsr) 2941 2942#endif /* __i386 */ 2943 2944 ENTRY(invalidate_cache) 2945 wbinvd 2946 ret 2947 SET_SIZE(invalidate_cache) 2948 2949#endif /* __lint */ 2950 2951#if defined(__lint) 2952 2953/*ARGSUSED*/ 2954void getcregs(struct cregs *crp) 2955{} 2956 2957#else /* __lint */ 2958 2959#if defined(__amd64) 2960 2961#define GETMSR(r, off, d) \ 2962 movl $r, %ecx; \ 2963 rdmsr; \ 2964 movl %eax, off(d); \ 2965 movl %edx, off+4(d) 2966 2967 ENTRY_NP(getcregs) 2968 xorl %eax, %eax 2969 movq %rax, CREG_GDT+8(%rdi) 2970 sgdt CREG_GDT(%rdi) /* 10 bytes */ 2971 movq %rax, CREG_IDT+8(%rdi) 2972 sidt CREG_IDT(%rdi) /* 10 bytes */ 2973 movq %rax, CREG_LDT(%rdi) 2974 sldt CREG_LDT(%rdi) /* 2 bytes */ 2975 movq %rax, CREG_TASKR(%rdi) 2976 str CREG_TASKR(%rdi) /* 2 bytes */ 2977 movq %cr0, %rax 2978 movq %rax, CREG_CR0(%rdi) /* cr0 */ 2979 movq %cr2, %rax 2980 movq %rax, CREG_CR2(%rdi) /* cr2 */ 2981 movq %cr3, %rax 2982 movq %rax, CREG_CR3(%rdi) /* cr3 */ 2983 movq %cr4, %rax 2984 movq %rax, CREG_CR8(%rdi) /* cr4 */ 2985 movq %cr8, %rax 2986 movq %rax, CREG_CR8(%rdi) /* cr8 */ 2987 GETMSR(MSR_AMD_KGSBASE, CREG_KGSBASE, %rdi) 2988 GETMSR(MSR_AMD_EFER, CREG_EFER, %rdi) 2989 SET_SIZE(getcregs) 2990 2991#undef GETMSR 2992 2993#elif defined(__i386) 2994 2995 ENTRY_NP(getcregs) 2996 movl 4(%esp), %edx 2997 movw $0, CREG_GDT+6(%edx) 2998 movw $0, CREG_IDT+6(%edx) 2999 sgdt CREG_GDT(%edx) /* gdt */ 3000 sidt CREG_IDT(%edx) /* idt */ 3001 sldt CREG_LDT(%edx) /* ldt */ 3002 str CREG_TASKR(%edx) /* task */ 3003 movl %cr0, %eax 3004 movl %eax, CREG_CR0(%edx) /* cr0 */ 3005 movl %cr2, %eax 3006 movl %eax, CREG_CR2(%edx) /* cr2 */ 3007 movl %cr3, %eax 3008 movl %eax, CREG_CR3(%edx) /* cr3 */ 3009 testl $X86_LARGEPAGE, x86_feature 3010 jz .nocr4 3011 movl %cr4, %eax 3012 movl %eax, CREG_CR4(%edx) /* cr4 */ 3013 jmp .skip 3014.nocr4: 3015 movl $0, CREG_CR4(%edx) 3016.skip: 3017 rep; ret /* use 2 byte return instruction when branch target */ 3018 /* AMD Software Optimization Guide - Section 6.2 */ 3019 SET_SIZE(getcregs) 3020 3021#endif /* __i386 */ 3022#endif /* __lint */ 3023 3024 3025/* 3026 * A panic trigger is a word which is updated atomically and can only be set 3027 * once. We atomically store 0xDEFACEDD and load the old value. If the 3028 * previous value was 0, we succeed and return 1; otherwise return 0. 3029 * This allows a partially corrupt trigger to still trigger correctly. DTrace 3030 * has its own version of this function to allow it to panic correctly from 3031 * probe context. 3032 */ 3033#if defined(__lint) 3034 3035/*ARGSUSED*/ 3036int 3037panic_trigger(int *tp) 3038{ return (0); } 3039 3040/*ARGSUSED*/ 3041int 3042dtrace_panic_trigger(int *tp) 3043{ return (0); } 3044 3045#else /* __lint */ 3046 3047#if defined(__amd64) 3048 3049 ENTRY_NP(panic_trigger) 3050 xorl %eax, %eax 3051 movl $0xdefacedd, %edx 3052 lock 3053 xchgl %edx, (%rdi) 3054 cmpl $0, %edx 3055 je 0f 3056 movl $0, %eax 3057 ret 30580: movl $1, %eax 3059 ret 3060 SET_SIZE(panic_trigger) 3061 3062 ENTRY_NP(dtrace_panic_trigger) 3063 xorl %eax, %eax 3064 movl $0xdefacedd, %edx 3065 lock 3066 xchgl %edx, (%rdi) 3067 cmpl $0, %edx 3068 je 0f 3069 movl $0, %eax 3070 ret 30710: movl $1, %eax 3072 ret 3073 SET_SIZE(dtrace_panic_trigger) 3074 3075#elif defined(__i386) 3076 3077 ENTRY_NP(panic_trigger) 3078 movl 4(%esp), %edx / %edx = address of trigger 3079 movl $0xdefacedd, %eax / %eax = 0xdefacedd 3080 lock / assert lock 3081 xchgl %eax, (%edx) / exchange %eax and the trigger 3082 cmpl $0, %eax / if (%eax == 0x0) 3083 je 0f / return (1); 3084 movl $0, %eax / else 3085 ret / return (0); 30860: movl $1, %eax 3087 ret 3088 SET_SIZE(panic_trigger) 3089 3090 ENTRY_NP(dtrace_panic_trigger) 3091 movl 4(%esp), %edx / %edx = address of trigger 3092 movl $0xdefacedd, %eax / %eax = 0xdefacedd 3093 lock / assert lock 3094 xchgl %eax, (%edx) / exchange %eax and the trigger 3095 cmpl $0, %eax / if (%eax == 0x0) 3096 je 0f / return (1); 3097 movl $0, %eax / else 3098 ret / return (0); 30990: movl $1, %eax 3100 ret 3101 SET_SIZE(dtrace_panic_trigger) 3102 3103#endif /* __i386 */ 3104#endif /* __lint */ 3105 3106/* 3107 * The panic() and cmn_err() functions invoke vpanic() as a common entry point 3108 * into the panic code implemented in panicsys(). vpanic() is responsible 3109 * for passing through the format string and arguments, and constructing a 3110 * regs structure on the stack into which it saves the current register 3111 * values. If we are not dying due to a fatal trap, these registers will 3112 * then be preserved in panicbuf as the current processor state. Before 3113 * invoking panicsys(), vpanic() activates the first panic trigger (see 3114 * common/os/panic.c) and switches to the panic_stack if successful. Note that 3115 * DTrace takes a slightly different panic path if it must panic from probe 3116 * context. Instead of calling panic, it calls into dtrace_vpanic(), which 3117 * sets up the initial stack as vpanic does, calls dtrace_panic_trigger(), and 3118 * branches back into vpanic(). 3119 */ 3120#if defined(__lint) 3121 3122/*ARGSUSED*/ 3123void 3124vpanic(const char *format, va_list alist) 3125{} 3126 3127/*ARGSUSED*/ 3128void 3129dtrace_vpanic(const char *format, va_list alist) 3130{} 3131 3132#else /* __lint */ 3133 3134#if defined(__amd64) 3135 3136 ENTRY_NP(vpanic) /* Initial stack layout: */ 3137 3138 pushq %rbp /* | %rip | 0x60 */ 3139 movq %rsp, %rbp /* | %rbp | 0x58 */ 3140 pushfq /* | rfl | 0x50 */ 3141 pushq %r11 /* | %r11 | 0x48 */ 3142 pushq %r10 /* | %r10 | 0x40 */ 3143 pushq %rbx /* | %rbx | 0x38 */ 3144 pushq %rax /* | %rax | 0x30 */ 3145 pushq %r9 /* | %r9 | 0x28 */ 3146 pushq %r8 /* | %r8 | 0x20 */ 3147 pushq %rcx /* | %rcx | 0x18 */ 3148 pushq %rdx /* | %rdx | 0x10 */ 3149 pushq %rsi /* | %rsi | 0x8 alist */ 3150 pushq %rdi /* | %rdi | 0x0 format */ 3151 3152 movq %rsp, %rbx /* %rbx = current %rsp */ 3153 3154 leaq panic_quiesce(%rip), %rdi /* %rdi = &panic_quiesce */ 3155 call panic_trigger /* %eax = panic_trigger() */ 3156 3157vpanic_common: 3158 /* 3159 * The panic_trigger result is in %eax from the call above, and 3160 * dtrace_panic places it in %eax before branching here. 3161 * The rdmsr instructions that follow below will clobber %eax so 3162 * we stash the panic_trigger result in %r11d. 3163 */ 3164 movl %eax, %r11d 3165 cmpl $0, %r11d 3166 je 0f 3167 3168 /* 3169 * If panic_trigger() was successful, we are the first to initiate a 3170 * panic: we now switch to the reserved panic_stack before continuing. 3171 */ 3172 leaq panic_stack(%rip), %rsp 3173 addq $PANICSTKSIZE, %rsp 31740: subq $REGSIZE, %rsp 3175 /* 3176 * Now that we've got everything set up, store the register values as 3177 * they were when we entered vpanic() to the designated location in 3178 * the regs structure we allocated on the stack. 3179 */ 3180 movq 0x0(%rbx), %rcx 3181 movq %rcx, REGOFF_RDI(%rsp) 3182 movq 0x8(%rbx), %rcx 3183 movq %rcx, REGOFF_RSI(%rsp) 3184 movq 0x10(%rbx), %rcx 3185 movq %rcx, REGOFF_RDX(%rsp) 3186 movq 0x18(%rbx), %rcx 3187 movq %rcx, REGOFF_RCX(%rsp) 3188 movq 0x20(%rbx), %rcx 3189 3190 movq %rcx, REGOFF_R8(%rsp) 3191 movq 0x28(%rbx), %rcx 3192 movq %rcx, REGOFF_R9(%rsp) 3193 movq 0x30(%rbx), %rcx 3194 movq %rcx, REGOFF_RAX(%rsp) 3195 movq 0x38(%rbx), %rcx 3196 movq %rcx, REGOFF_RBX(%rsp) 3197 movq 0x58(%rbx), %rcx 3198 3199 movq %rcx, REGOFF_RBP(%rsp) 3200 movq 0x40(%rbx), %rcx 3201 movq %rcx, REGOFF_R10(%rsp) 3202 movq 0x48(%rbx), %rcx 3203 movq %rcx, REGOFF_R11(%rsp) 3204 movq %r12, REGOFF_R12(%rsp) 3205 3206 movq %r13, REGOFF_R13(%rsp) 3207 movq %r14, REGOFF_R14(%rsp) 3208 movq %r15, REGOFF_R15(%rsp) 3209 3210 movl $MSR_AMD_FSBASE, %ecx 3211 rdmsr 3212 movl %eax, REGOFF_FSBASE(%rsp) 3213 movl %edx, REGOFF_FSBASE+4(%rsp) 3214 3215 movl $MSR_AMD_GSBASE, %ecx 3216 rdmsr 3217 movl %eax, REGOFF_GSBASE(%rsp) 3218 movl %edx, REGOFF_GSBASE+4(%rsp) 3219 3220 xorl %ecx, %ecx 3221 movw %ds, %cx 3222 movq %rcx, REGOFF_DS(%rsp) 3223 movw %es, %cx 3224 movq %rcx, REGOFF_ES(%rsp) 3225 movw %fs, %cx 3226 movq %rcx, REGOFF_FS(%rsp) 3227 movw %gs, %cx 3228 movq %rcx, REGOFF_GS(%rsp) 3229 3230 movq $0, REGOFF_TRAPNO(%rsp) 3231 3232 movq $0, REGOFF_ERR(%rsp) 3233 leaq vpanic(%rip), %rcx 3234 movq %rcx, REGOFF_RIP(%rsp) 3235 movw %cs, %cx 3236 movzwq %cx, %rcx 3237 movq %rcx, REGOFF_CS(%rsp) 3238 movq 0x50(%rbx), %rcx 3239 movq %rcx, REGOFF_RFL(%rsp) 3240 movq %rbx, %rcx 3241 addq $0x60, %rcx 3242 movq %rcx, REGOFF_RSP(%rsp) 3243 movw %ss, %cx 3244 movzwq %cx, %rcx 3245 movq %rcx, REGOFF_SS(%rsp) 3246 3247 /* 3248 * panicsys(format, alist, rp, on_panic_stack) 3249 */ 3250 movq REGOFF_RDI(%rsp), %rdi /* format */ 3251 movq REGOFF_RSI(%rsp), %rsi /* alist */ 3252 movq %rsp, %rdx /* struct regs */ 3253 movl %r11d, %ecx /* on_panic_stack */ 3254 call panicsys 3255 addq $REGSIZE, %rsp 3256 popq %rdi 3257 popq %rsi 3258 popq %rdx 3259 popq %rcx 3260 popq %r8 3261 popq %r9 3262 popq %rax 3263 popq %rbx 3264 popq %r10 3265 popq %r11 3266 popfq 3267 leave 3268 ret 3269 SET_SIZE(vpanic) 3270 3271 ENTRY_NP(dtrace_vpanic) /* Initial stack layout: */ 3272 3273 pushq %rbp /* | %rip | 0x60 */ 3274 movq %rsp, %rbp /* | %rbp | 0x58 */ 3275 pushfq /* | rfl | 0x50 */ 3276 pushq %r11 /* | %r11 | 0x48 */ 3277 pushq %r10 /* | %r10 | 0x40 */ 3278 pushq %rbx /* | %rbx | 0x38 */ 3279 pushq %rax /* | %rax | 0x30 */ 3280 pushq %r9 /* | %r9 | 0x28 */ 3281 pushq %r8 /* | %r8 | 0x20 */ 3282 pushq %rcx /* | %rcx | 0x18 */ 3283 pushq %rdx /* | %rdx | 0x10 */ 3284 pushq %rsi /* | %rsi | 0x8 alist */ 3285 pushq %rdi /* | %rdi | 0x0 format */ 3286 3287 movq %rsp, %rbx /* %rbx = current %rsp */ 3288 3289 leaq panic_quiesce(%rip), %rdi /* %rdi = &panic_quiesce */ 3290 call dtrace_panic_trigger /* %eax = dtrace_panic_trigger() */ 3291 jmp vpanic_common 3292 3293 SET_SIZE(dtrace_vpanic) 3294 3295#elif defined(__i386) 3296 3297 ENTRY_NP(vpanic) / Initial stack layout: 3298 3299 pushl %ebp / | %eip | 20 3300 movl %esp, %ebp / | %ebp | 16 3301 pushl %eax / | %eax | 12 3302 pushl %ebx / | %ebx | 8 3303 pushl %ecx / | %ecx | 4 3304 pushl %edx / | %edx | 0 3305 3306 movl %esp, %ebx / %ebx = current stack pointer 3307 3308 lea panic_quiesce, %eax / %eax = &panic_quiesce 3309 pushl %eax / push &panic_quiesce 3310 call panic_trigger / %eax = panic_trigger() 3311 addl $4, %esp / reset stack pointer 3312 3313vpanic_common: 3314 cmpl $0, %eax / if (%eax == 0) 3315 je 0f / goto 0f; 3316 3317 /* 3318 * If panic_trigger() was successful, we are the first to initiate a 3319 * panic: we now switch to the reserved panic_stack before continuing. 3320 */ 3321 lea panic_stack, %esp / %esp = panic_stack 3322 addl $PANICSTKSIZE, %esp / %esp += PANICSTKSIZE 3323 33240: subl $REGSIZE, %esp / allocate struct regs 3325 3326 /* 3327 * Now that we've got everything set up, store the register values as 3328 * they were when we entered vpanic() to the designated location in 3329 * the regs structure we allocated on the stack. 3330 */ 3331#if !defined(__GNUC_AS__) 3332 movw %gs, %edx 3333 movl %edx, REGOFF_GS(%esp) 3334 movw %fs, %edx 3335 movl %edx, REGOFF_FS(%esp) 3336 movw %es, %edx 3337 movl %edx, REGOFF_ES(%esp) 3338 movw %ds, %edx 3339 movl %edx, REGOFF_DS(%esp) 3340#else /* __GNUC_AS__ */ 3341 mov %gs, %edx 3342 mov %edx, REGOFF_GS(%esp) 3343 mov %fs, %edx 3344 mov %edx, REGOFF_FS(%esp) 3345 mov %es, %edx 3346 mov %edx, REGOFF_ES(%esp) 3347 mov %ds, %edx 3348 mov %edx, REGOFF_DS(%esp) 3349#endif /* __GNUC_AS__ */ 3350 movl %edi, REGOFF_EDI(%esp) 3351 movl %esi, REGOFF_ESI(%esp) 3352 movl 16(%ebx), %ecx 3353 movl %ecx, REGOFF_EBP(%esp) 3354 movl %ebx, %ecx 3355 addl $20, %ecx 3356 movl %ecx, REGOFF_ESP(%esp) 3357 movl 8(%ebx), %ecx 3358 movl %ecx, REGOFF_EBX(%esp) 3359 movl 0(%ebx), %ecx 3360 movl %ecx, REGOFF_EDX(%esp) 3361 movl 4(%ebx), %ecx 3362 movl %ecx, REGOFF_ECX(%esp) 3363 movl 12(%ebx), %ecx 3364 movl %ecx, REGOFF_EAX(%esp) 3365 movl $0, REGOFF_TRAPNO(%esp) 3366 movl $0, REGOFF_ERR(%esp) 3367 lea vpanic, %ecx 3368 movl %ecx, REGOFF_EIP(%esp) 3369#if !defined(__GNUC_AS__) 3370 movw %cs, %edx 3371#else /* __GNUC_AS__ */ 3372 mov %cs, %edx 3373#endif /* __GNUC_AS__ */ 3374 movl %edx, REGOFF_CS(%esp) 3375 pushfl 3376 popl %ecx 3377 movl %ecx, REGOFF_EFL(%esp) 3378 movl $0, REGOFF_UESP(%esp) 3379#if !defined(__GNUC_AS__) 3380 movw %ss, %edx 3381#else /* __GNUC_AS__ */ 3382 mov %ss, %edx 3383#endif /* __GNUC_AS__ */ 3384 movl %edx, REGOFF_SS(%esp) 3385 3386 movl %esp, %ecx / %ecx = ®s 3387 pushl %eax / push on_panic_stack 3388 pushl %ecx / push ®s 3389 movl 12(%ebp), %ecx / %ecx = alist 3390 pushl %ecx / push alist 3391 movl 8(%ebp), %ecx / %ecx = format 3392 pushl %ecx / push format 3393 call panicsys / panicsys(); 3394 addl $16, %esp / pop arguments 3395 3396 addl $REGSIZE, %esp 3397 popl %edx 3398 popl %ecx 3399 popl %ebx 3400 popl %eax 3401 leave 3402 ret 3403 SET_SIZE(vpanic) 3404 3405 ENTRY_NP(dtrace_vpanic) / Initial stack layout: 3406 3407 pushl %ebp / | %eip | 20 3408 movl %esp, %ebp / | %ebp | 16 3409 pushl %eax / | %eax | 12 3410 pushl %ebx / | %ebx | 8 3411 pushl %ecx / | %ecx | 4 3412 pushl %edx / | %edx | 0 3413 3414 movl %esp, %ebx / %ebx = current stack pointer 3415 3416 lea panic_quiesce, %eax / %eax = &panic_quiesce 3417 pushl %eax / push &panic_quiesce 3418 call dtrace_panic_trigger / %eax = dtrace_panic_trigger() 3419 addl $4, %esp / reset stack pointer 3420 jmp vpanic_common / jump back to common code 3421 3422 SET_SIZE(dtrace_vpanic) 3423 3424#endif /* __i386 */ 3425#endif /* __lint */ 3426 3427#if defined(__lint) 3428 3429void 3430hres_tick(void) 3431{} 3432 3433int64_t timedelta; 3434hrtime_t hres_last_tick; 3435timestruc_t hrestime; 3436int64_t hrestime_adj; 3437volatile int hres_lock; 3438uint_t nsec_scale; 3439hrtime_t hrtime_base; 3440 3441#else /* __lint */ 3442 3443 DGDEF3(hrestime, _MUL(2, CLONGSIZE), 8) 3444 .NWORD 0, 0 3445 3446 DGDEF3(hrestime_adj, 8, 8) 3447 .long 0, 0 3448 3449 DGDEF3(hres_last_tick, 8, 8) 3450 .long 0, 0 3451 3452 DGDEF3(timedelta, 8, 8) 3453 .long 0, 0 3454 3455 DGDEF3(hres_lock, 4, 8) 3456 .long 0 3457 3458 /* 3459 * initialized to a non zero value to make pc_gethrtime() 3460 * work correctly even before clock is initialized 3461 */ 3462 DGDEF3(hrtime_base, 8, 8) 3463 .long _MUL(NSEC_PER_CLOCK_TICK, 6), 0 3464 3465 DGDEF3(adj_shift, 4, 4) 3466 .long ADJ_SHIFT 3467 3468#if defined(__amd64) 3469 3470 ENTRY_NP(hres_tick) 3471 pushq %rbp 3472 movq %rsp, %rbp 3473 3474 /* 3475 * We need to call *gethrtimef before picking up CLOCK_LOCK (obviously, 3476 * hres_last_tick can only be modified while holding CLOCK_LOCK). 3477 * At worst, performing this now instead of under CLOCK_LOCK may 3478 * introduce some jitter in pc_gethrestime(). 3479 */ 3480 call *gethrtimef(%rip) 3481 movq %rax, %r8 3482 3483 leaq hres_lock(%rip), %rax 3484 movb $-1, %dl 3485.CL1: 3486 xchgb %dl, (%rax) 3487 testb %dl, %dl 3488 jz .CL3 /* got it */ 3489.CL2: 3490 cmpb $0, (%rax) /* possible to get lock? */ 3491 pause 3492 jne .CL2 3493 jmp .CL1 /* yes, try again */ 3494.CL3: 3495 /* 3496 * compute the interval since last time hres_tick was called 3497 * and adjust hrtime_base and hrestime accordingly 3498 * hrtime_base is an 8 byte value (in nsec), hrestime is 3499 * a timestruc_t (sec, nsec) 3500 */ 3501 leaq hres_last_tick(%rip), %rax 3502 movq %r8, %r11 3503 subq (%rax), %r8 3504 addq %r8, hrtime_base(%rip) /* add interval to hrtime_base */ 3505 addq %r8, hrestime+8(%rip) /* add interval to hrestime.tv_nsec */ 3506 /* 3507 * Now that we have CLOCK_LOCK, we can update hres_last_tick 3508 */ 3509 movq %r11, (%rax) 3510 3511 call __adj_hrestime 3512 3513 /* 3514 * release the hres_lock 3515 */ 3516 incl hres_lock(%rip) 3517 leave 3518 ret 3519 SET_SIZE(hres_tick) 3520 3521#elif defined(__i386) 3522 3523 ENTRY_NP(hres_tick) 3524 pushl %ebp 3525 movl %esp, %ebp 3526 pushl %esi 3527 pushl %ebx 3528 3529 /* 3530 * We need to call *gethrtimef before picking up CLOCK_LOCK (obviously, 3531 * hres_last_tick can only be modified while holding CLOCK_LOCK). 3532 * At worst, performing this now instead of under CLOCK_LOCK may 3533 * introduce some jitter in pc_gethrestime(). 3534 */ 3535 call *gethrtimef 3536 movl %eax, %ebx 3537 movl %edx, %esi 3538 3539 movl $hres_lock, %eax 3540 movl $-1, %edx 3541.CL1: 3542 xchgb %dl, (%eax) 3543 testb %dl, %dl 3544 jz .CL3 / got it 3545.CL2: 3546 cmpb $0, (%eax) / possible to get lock? 3547 pause 3548 jne .CL2 3549 jmp .CL1 / yes, try again 3550.CL3: 3551 /* 3552 * compute the interval since last time hres_tick was called 3553 * and adjust hrtime_base and hrestime accordingly 3554 * hrtime_base is an 8 byte value (in nsec), hrestime is 3555 * timestruc_t (sec, nsec) 3556 */ 3557 3558 lea hres_last_tick, %eax 3559 3560 movl %ebx, %edx 3561 movl %esi, %ecx 3562 3563 subl (%eax), %edx 3564 sbbl 4(%eax), %ecx 3565 3566 addl %edx, hrtime_base / add interval to hrtime_base 3567 adcl %ecx, hrtime_base+4 3568 3569 addl %edx, hrestime+4 / add interval to hrestime.tv_nsec 3570 3571 / 3572 / Now that we have CLOCK_LOCK, we can update hres_last_tick. 3573 / 3574 movl %ebx, (%eax) 3575 movl %esi, 4(%eax) 3576 3577 / get hrestime at this moment. used as base for pc_gethrestime 3578 / 3579 / Apply adjustment, if any 3580 / 3581 / #define HRES_ADJ (NSEC_PER_CLOCK_TICK >> ADJ_SHIFT) 3582 / (max_hres_adj) 3583 / 3584 / void 3585 / adj_hrestime() 3586 / { 3587 / long long adj; 3588 / 3589 / if (hrestime_adj == 0) 3590 / adj = 0; 3591 / else if (hrestime_adj > 0) { 3592 / if (hrestime_adj < HRES_ADJ) 3593 / adj = hrestime_adj; 3594 / else 3595 / adj = HRES_ADJ; 3596 / } 3597 / else { 3598 / if (hrestime_adj < -(HRES_ADJ)) 3599 / adj = -(HRES_ADJ); 3600 / else 3601 / adj = hrestime_adj; 3602 / } 3603 / 3604 / timedelta -= adj; 3605 / hrestime_adj = timedelta; 3606 / hrestime.tv_nsec += adj; 3607 / 3608 / while (hrestime.tv_nsec >= NANOSEC) { 3609 / one_sec++; 3610 / hrestime.tv_sec++; 3611 / hrestime.tv_nsec -= NANOSEC; 3612 / } 3613 / } 3614__adj_hrestime: 3615 movl hrestime_adj, %esi / if (hrestime_adj == 0) 3616 movl hrestime_adj+4, %edx 3617 andl %esi, %esi 3618 jne .CL4 / no 3619 andl %edx, %edx 3620 jne .CL4 / no 3621 subl %ecx, %ecx / yes, adj = 0; 3622 subl %edx, %edx 3623 jmp .CL5 3624.CL4: 3625 subl %ecx, %ecx 3626 subl %eax, %eax 3627 subl %esi, %ecx 3628 sbbl %edx, %eax 3629 andl %eax, %eax / if (hrestime_adj > 0) 3630 jge .CL6 3631 3632 / In the following comments, HRES_ADJ is used, while in the code 3633 / max_hres_adj is used. 3634 / 3635 / The test for "hrestime_adj < HRES_ADJ" is complicated because 3636 / hrestime_adj is 64-bits, while HRES_ADJ is 32-bits. We rely 3637 / on the logical equivalence of: 3638 / 3639 / !(hrestime_adj < HRES_ADJ) 3640 / 3641 / and the two step sequence: 3642 / 3643 / (HRES_ADJ - lsw(hrestime_adj)) generates a Borrow/Carry 3644 / 3645 / which computes whether or not the least significant 32-bits 3646 / of hrestime_adj is greater than HRES_ADJ, followed by: 3647 / 3648 / Previous Borrow/Carry + -1 + msw(hrestime_adj) generates a Carry 3649 / 3650 / which generates a carry whenever step 1 is true or the most 3651 / significant long of the longlong hrestime_adj is non-zero. 3652 3653 movl max_hres_adj, %ecx / hrestime_adj is positive 3654 subl %esi, %ecx 3655 movl %edx, %eax 3656 adcl $-1, %eax 3657 jnc .CL7 3658 movl max_hres_adj, %ecx / adj = HRES_ADJ; 3659 subl %edx, %edx 3660 jmp .CL5 3661 3662 / The following computation is similar to the one above. 3663 / 3664 / The test for "hrestime_adj < -(HRES_ADJ)" is complicated because 3665 / hrestime_adj is 64-bits, while HRES_ADJ is 32-bits. We rely 3666 / on the logical equivalence of: 3667 / 3668 / (hrestime_adj > -HRES_ADJ) 3669 / 3670 / and the two step sequence: 3671 / 3672 / (HRES_ADJ + lsw(hrestime_adj)) generates a Carry 3673 / 3674 / which means the least significant 32-bits of hrestime_adj is 3675 / greater than -HRES_ADJ, followed by: 3676 / 3677 / Previous Carry + 0 + msw(hrestime_adj) generates a Carry 3678 / 3679 / which generates a carry only when step 1 is true and the most 3680 / significant long of the longlong hrestime_adj is -1. 3681 3682.CL6: / hrestime_adj is negative 3683 movl %esi, %ecx 3684 addl max_hres_adj, %ecx 3685 movl %edx, %eax 3686 adcl $0, %eax 3687 jc .CL7 3688 xor %ecx, %ecx 3689 subl max_hres_adj, %ecx / adj = -(HRES_ADJ); 3690 movl $-1, %edx 3691 jmp .CL5 3692.CL7: 3693 movl %esi, %ecx / adj = hrestime_adj; 3694.CL5: 3695 movl timedelta, %esi 3696 subl %ecx, %esi 3697 movl timedelta+4, %eax 3698 sbbl %edx, %eax 3699 movl %esi, timedelta 3700 movl %eax, timedelta+4 / timedelta -= adj; 3701 movl %esi, hrestime_adj 3702 movl %eax, hrestime_adj+4 / hrestime_adj = timedelta; 3703 addl hrestime+4, %ecx 3704 3705 movl %ecx, %eax / eax = tv_nsec 37061: 3707 cmpl $NANOSEC, %eax / if ((unsigned long)tv_nsec >= NANOSEC) 3708 jb .CL8 / no 3709 incl one_sec / yes, one_sec++; 3710 incl hrestime / hrestime.tv_sec++; 3711 addl $-NANOSEC, %eax / tv_nsec -= NANOSEC 3712 jmp 1b / check for more seconds 3713 3714.CL8: 3715 movl %eax, hrestime+4 / store final into hrestime.tv_nsec 3716 incl hres_lock / release the hres_lock 3717 3718 popl %ebx 3719 popl %esi 3720 leave 3721 ret 3722 SET_SIZE(hres_tick) 3723 3724#endif /* __i386 */ 3725#endif /* __lint */ 3726 3727/* 3728 * void prefetch_smap_w(void *) 3729 * 3730 * Prefetch ahead within a linear list of smap structures. 3731 * Not implemented for ia32. Stub for compatibility. 3732 */ 3733 3734#if defined(__lint) 3735 3736/*ARGSUSED*/ 3737void prefetch_smap_w(void *smp) 3738{} 3739 3740#else /* __lint */ 3741 3742 ENTRY(prefetch_smap_w) 3743 rep; ret /* use 2 byte return instruction when branch target */ 3744 /* AMD Software Optimization Guide - Section 6.2 */ 3745 SET_SIZE(prefetch_smap_w) 3746 3747#endif /* __lint */ 3748 3749/* 3750 * prefetch_page_r(page_t *) 3751 * issue prefetch instructions for a page_t 3752 */ 3753#if defined(__lint) 3754 3755/*ARGSUSED*/ 3756void 3757prefetch_page_r(void *pp) 3758{} 3759 3760#else /* __lint */ 3761 3762 ENTRY(prefetch_page_r) 3763 rep; ret /* use 2 byte return instruction when branch target */ 3764 /* AMD Software Optimization Guide - Section 6.2 */ 3765 SET_SIZE(prefetch_page_r) 3766 3767#endif /* __lint */ 3768 3769#if defined(__lint) 3770 3771/*ARGSUSED*/ 3772int 3773bcmp(const void *s1, const void *s2, size_t count) 3774{ return (0); } 3775 3776#else /* __lint */ 3777 3778#if defined(__amd64) 3779 3780 ENTRY(bcmp) 3781 pushq %rbp 3782 movq %rsp, %rbp 3783#ifdef DEBUG 3784 movq kernelbase(%rip), %r11 3785 cmpq %r11, %rdi 3786 jb 0f 3787 cmpq %r11, %rsi 3788 jnb 1f 37890: leaq .bcmp_panic_msg(%rip), %rdi 3790 xorl %eax, %eax 3791 call panic 37921: 3793#endif /* DEBUG */ 3794 call memcmp 3795 testl %eax, %eax 3796 setne %dl 3797 leave 3798 movzbl %dl, %eax 3799 ret 3800 SET_SIZE(bcmp) 3801 3802#elif defined(__i386) 3803 3804#define ARG_S1 8 3805#define ARG_S2 12 3806#define ARG_LENGTH 16 3807 3808 ENTRY(bcmp) 3809#ifdef DEBUG 3810 pushl %ebp 3811 movl %esp, %ebp 3812 movl kernelbase, %eax 3813 cmpl %eax, ARG_S1(%ebp) 3814 jb 0f 3815 cmpl %eax, ARG_S2(%ebp) 3816 jnb 1f 38170: pushl $.bcmp_panic_msg 3818 call panic 38191: popl %ebp 3820#endif /* DEBUG */ 3821 3822 pushl %edi / save register variable 3823 movl ARG_S1(%esp), %eax / %eax = address of string 1 3824 movl ARG_S2(%esp), %ecx / %ecx = address of string 2 3825 cmpl %eax, %ecx / if the same string 3826 je .equal / goto .equal 3827 movl ARG_LENGTH(%esp), %edi / %edi = length in bytes 3828 cmpl $4, %edi / if %edi < 4 3829 jb .byte_check / goto .byte_check 3830 .align 4 3831.word_loop: 3832 movl (%ecx), %edx / move 1 word from (%ecx) to %edx 3833 leal -4(%edi), %edi / %edi -= 4 3834 cmpl (%eax), %edx / compare 1 word from (%eax) with %edx 3835 jne .word_not_equal / if not equal, goto .word_not_equal 3836 leal 4(%ecx), %ecx / %ecx += 4 (next word) 3837 leal 4(%eax), %eax / %eax += 4 (next word) 3838 cmpl $4, %edi / if %edi >= 4 3839 jae .word_loop / goto .word_loop 3840.byte_check: 3841 cmpl $0, %edi / if %edi == 0 3842 je .equal / goto .equal 3843 jmp .byte_loop / goto .byte_loop (checks in bytes) 3844.word_not_equal: 3845 leal 4(%edi), %edi / %edi += 4 (post-decremented) 3846 .align 4 3847.byte_loop: 3848 movb (%ecx), %dl / move 1 byte from (%ecx) to %dl 3849 cmpb %dl, (%eax) / compare %dl with 1 byte from (%eax) 3850 jne .not_equal / if not equal, goto .not_equal 3851 incl %ecx / %ecx++ (next byte) 3852 incl %eax / %eax++ (next byte) 3853 decl %edi / %edi-- 3854 jnz .byte_loop / if not zero, goto .byte_loop 3855.equal: 3856 xorl %eax, %eax / %eax = 0 3857 popl %edi / restore register variable 3858 ret / return (NULL) 3859 .align 4 3860.not_equal: 3861 movl $1, %eax / return 1 3862 popl %edi / restore register variable 3863 ret / return (NULL) 3864 SET_SIZE(bcmp) 3865 3866#endif /* __i386 */ 3867 3868#ifdef DEBUG 3869 .text 3870.bcmp_panic_msg: 3871 .string "bcmp: arguments below kernelbase" 3872#endif /* DEBUG */ 3873 3874#endif /* __lint */ 3875