1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/types.h> 33 #include <sys/t_lock.h> 34 #include <sys/param.h> 35 #include <sys/cred.h> 36 #include <sys/debug.h> 37 #include <sys/inline.h> 38 #include <sys/kmem.h> 39 #include <sys/proc.h> 40 #include <sys/regset.h> 41 #include <sys/privregs.h> 42 #include <sys/sysmacros.h> 43 #include <sys/systm.h> 44 #include <sys/vfs.h> 45 #include <sys/vnode.h> 46 #include <sys/psw.h> 47 #include <sys/pcb.h> 48 #include <sys/buf.h> 49 #include <sys/signal.h> 50 #include <sys/user.h> 51 #include <sys/cpuvar.h> 52 53 #include <sys/fault.h> 54 #include <sys/syscall.h> 55 #include <sys/procfs.h> 56 #include <sys/cmn_err.h> 57 #include <sys/stack.h> 58 #include <sys/debugreg.h> 59 #include <sys/copyops.h> 60 61 #include <sys/vmem.h> 62 #include <sys/mman.h> 63 #include <sys/vmparam.h> 64 #include <sys/fp.h> 65 #include <sys/archsystm.h> 66 #include <sys/vmsystm.h> 67 #include <vm/hat.h> 68 #include <vm/as.h> 69 #include <vm/seg.h> 70 #include <vm/seg_kmem.h> 71 #include <vm/seg_kp.h> 72 #include <vm/page.h> 73 74 #include <sys/sysi86.h> 75 76 #include <fs/proc/prdata.h> 77 78 int prnwatch = 10000; /* maximum number of watched areas */ 79 80 /* 81 * Force a thread into the kernel if it is not already there. 82 * This is a no-op on uniprocessors. 83 */ 84 /* ARGSUSED */ 85 void 86 prpokethread(kthread_t *t) 87 { 88 if (t->t_state == TS_ONPROC && t->t_cpu != CPU) 89 poke_cpu(t->t_cpu->cpu_id); 90 } 91 92 /* 93 * Return general registers. 94 */ 95 void 96 prgetprregs(klwp_t *lwp, prgregset_t prp) 97 { 98 ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock)); 99 100 getgregs(lwp, prp); 101 } 102 103 /* 104 * Set general registers. 105 * (Note: This can be an alias to setgregs().) 106 */ 107 void 108 prsetprregs(klwp_t *lwp, prgregset_t prp, int initial) 109 { 110 if (initial) /* set initial values */ 111 lwptoregs(lwp)->r_ps = PSL_USER; 112 (void) setgregs(lwp, prp); 113 } 114 115 #ifdef _SYSCALL32_IMPL 116 117 /* 118 * Convert prgregset32 to native prgregset 119 */ 120 void 121 prgregset_32ton(klwp_t *lwp, prgregset32_t src, prgregset_t dst) 122 { 123 struct regs *rp = lwptoregs(lwp); 124 125 dst[REG_GSBASE] = lwp->lwp_pcb.pcb_gsbase; 126 dst[REG_FSBASE] = lwp->lwp_pcb.pcb_fsbase; 127 128 dst[REG_DS] = (uint16_t)src[DS]; 129 dst[REG_ES] = (uint16_t)src[ES]; 130 131 dst[REG_GS] = (uint16_t)src[GS]; 132 dst[REG_FS] = (uint16_t)src[FS]; 133 dst[REG_SS] = (uint16_t)src[SS]; 134 dst[REG_RSP] = (uint32_t)src[UESP]; 135 dst[REG_RFL] = 136 (rp->r_ps & ~PSL_USERMASK) | (src[EFL] & PSL_USERMASK); 137 dst[REG_CS] = (uint16_t)src[CS]; 138 dst[REG_RIP] = (uint32_t)src[EIP]; 139 dst[REG_ERR] = (uint32_t)src[ERR]; 140 dst[REG_TRAPNO] = (uint32_t)src[TRAPNO]; 141 dst[REG_RAX] = (uint32_t)src[EAX]; 142 dst[REG_RCX] = (uint32_t)src[ECX]; 143 dst[REG_RDX] = (uint32_t)src[EDX]; 144 dst[REG_RBX] = (uint32_t)src[EBX]; 145 dst[REG_RBP] = (uint32_t)src[EBP]; 146 dst[REG_RSI] = (uint32_t)src[ESI]; 147 dst[REG_RDI] = (uint32_t)src[EDI]; 148 dst[REG_R8] = dst[REG_R9] = dst[REG_R10] = dst[REG_R11] = 149 dst[REG_R12] = dst[REG_R13] = dst[REG_R14] = dst[REG_R15] = 0; 150 } 151 152 /* 153 * Return 32-bit general registers 154 */ 155 void 156 prgetprregs32(klwp_t *lwp, prgregset32_t prp) 157 { 158 ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock)); 159 getgregs32(lwp, prp); 160 } 161 162 #endif /* _SYSCALL32_IMPL */ 163 164 /* 165 * Get the syscall return values for the lwp. 166 */ 167 int 168 prgetrvals(klwp_t *lwp, long *rval1, long *rval2) 169 { 170 struct regs *r = lwptoregs(lwp); 171 172 if (r->r_ps & PS_C) 173 return (r->r_r0); 174 if (lwp->lwp_eosys == JUSTRETURN) { 175 *rval1 = 0; 176 *rval2 = 0; 177 } else if (lwp_getdatamodel(lwp) != DATAMODEL_NATIVE) { 178 /* 179 * XX64 Not sure we -really- need to do this, because the 180 * syscall return already masks off the bottom values ..? 181 */ 182 *rval1 = r->r_r0 & (uint32_t)0xffffffffu; 183 *rval2 = r->r_r1 & (uint32_t)0xffffffffu; 184 } else { 185 *rval1 = r->r_r0; 186 *rval2 = r->r_r1; 187 } 188 return (0); 189 } 190 191 /* 192 * Does the system support floating-point, either through hardware 193 * or by trapping and emulating floating-point machine instructions? 194 */ 195 int 196 prhasfp(void) 197 { 198 extern int fp_kind; 199 200 return (fp_kind != FP_NO); 201 } 202 203 /* 204 * Get floating-point registers. 205 */ 206 void 207 prgetprfpregs(klwp_t *lwp, prfpregset_t *pfp) 208 { 209 bzero(pfp, sizeof (prfpregset_t)); 210 getfpregs(lwp, pfp); 211 } 212 213 #if defined(_SYSCALL32_IMPL) 214 void 215 prgetprfpregs32(klwp_t *lwp, prfpregset32_t *pfp) 216 { 217 bzero(pfp, sizeof (*pfp)); 218 getfpregs32(lwp, pfp); 219 } 220 #endif /* _SYSCALL32_IMPL */ 221 222 /* 223 * Set floating-point registers. 224 * (Note: This can be an alias to setfpregs().) 225 */ 226 void 227 prsetprfpregs(klwp_t *lwp, prfpregset_t *pfp) 228 { 229 setfpregs(lwp, pfp); 230 } 231 232 #if defined(_SYSCALL32_IMPL) 233 void 234 prsetprfpregs32(klwp_t *lwp, prfpregset32_t *pfp) 235 { 236 setfpregs32(lwp, pfp); 237 } 238 #endif /* _SYSCALL32_IMPL */ 239 240 /* 241 * Does the system support extra register state? 242 */ 243 /* ARGSUSED */ 244 int 245 prhasx(proc_t *p) 246 { 247 return (0); 248 } 249 250 /* 251 * Get the size of the extra registers. 252 */ 253 /* ARGSUSED */ 254 int 255 prgetprxregsize(proc_t *p) 256 { 257 return (0); 258 } 259 260 /* 261 * Get extra registers. 262 */ 263 /*ARGSUSED*/ 264 void 265 prgetprxregs(klwp_t *lwp, caddr_t prx) 266 { 267 /* no extra registers */ 268 } 269 270 /* 271 * Set extra registers. 272 */ 273 /*ARGSUSED*/ 274 void 275 prsetprxregs(klwp_t *lwp, caddr_t prx) 276 { 277 /* no extra registers */ 278 } 279 280 /* 281 * Return the base (lower limit) of the process stack. 282 */ 283 caddr_t 284 prgetstackbase(proc_t *p) 285 { 286 return (p->p_usrstack - p->p_stksize); 287 } 288 289 /* 290 * Return the "addr" field for pr_addr in prpsinfo_t. 291 * This is a vestige of the past, so whatever we return is OK. 292 */ 293 caddr_t 294 prgetpsaddr(proc_t *p) 295 { 296 return ((caddr_t)p); 297 } 298 299 /* 300 * Arrange to single-step the lwp. 301 */ 302 void 303 prstep(klwp_t *lwp, int watchstep) 304 { 305 ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock)); 306 307 /* 308 * flag LWP so that its r_efl trace bit (PS_T) will be set on 309 * next return to usermode. 310 */ 311 lwp->lwp_pcb.pcb_flags |= REQUEST_STEP; 312 lwp->lwp_pcb.pcb_flags &= ~REQUEST_NOSTEP; 313 314 if (watchstep) 315 lwp->lwp_pcb.pcb_flags |= WATCH_STEP; 316 else 317 lwp->lwp_pcb.pcb_flags |= NORMAL_STEP; 318 319 aston(lwptot(lwp)); /* let trap() set PS_T in rp->r_efl */ 320 } 321 322 /* 323 * Undo prstep(). 324 */ 325 void 326 prnostep(klwp_t *lwp) 327 { 328 ASSERT(ttolwp(curthread) == lwp || 329 MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock)); 330 331 /* 332 * flag LWP so that its r_efl trace bit (PS_T) will be cleared on 333 * next return to usermode. 334 */ 335 lwp->lwp_pcb.pcb_flags |= REQUEST_NOSTEP; 336 337 lwp->lwp_pcb.pcb_flags &= 338 ~(REQUEST_STEP|NORMAL_STEP|WATCH_STEP|DEBUG_PENDING); 339 340 aston(lwptot(lwp)); /* let trap() clear PS_T in rp->r_efl */ 341 } 342 343 /* 344 * Return non-zero if a single-step is in effect. 345 */ 346 int 347 prisstep(klwp_t *lwp) 348 { 349 ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock)); 350 351 return ((lwp->lwp_pcb.pcb_flags & 352 (NORMAL_STEP|WATCH_STEP|DEBUG_PENDING)) != 0); 353 } 354 355 /* 356 * Set the PC to the specified virtual address. 357 */ 358 void 359 prsvaddr(klwp_t *lwp, caddr_t vaddr) 360 { 361 struct regs *r = lwptoregs(lwp); 362 363 ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock)); 364 365 r->r_pc = (uintptr_t)vaddr; 366 } 367 368 /* 369 * Map address "addr" in address space "as" into a kernel virtual address. 370 * The memory is guaranteed to be resident and locked down. 371 */ 372 caddr_t 373 prmapin(struct as *as, caddr_t addr, int writing) 374 { 375 page_t *pp; 376 caddr_t kaddr; 377 pfn_t pfnum; 378 379 /* 380 * XXX - Because of past mistakes, we have bits being returned 381 * by getpfnum that are actually the page type bits of the pte. 382 * When the object we are trying to map is a memory page with 383 * a page structure everything is ok and we can use the optimal 384 * method, ppmapin. Otherwise, we have to do something special. 385 */ 386 pfnum = hat_getpfnum(as->a_hat, addr); 387 if (pf_is_memory(pfnum)) { 388 pp = page_numtopp_nolock(pfnum); 389 if (pp != NULL) { 390 ASSERT(PAGE_LOCKED(pp)); 391 kaddr = ppmapin(pp, writing ? 392 (PROT_READ | PROT_WRITE) : PROT_READ, (caddr_t)-1); 393 return (kaddr + ((uintptr_t)addr & PAGEOFFSET)); 394 } 395 } 396 397 /* 398 * Oh well, we didn't have a page struct for the object we were 399 * trying to map in; ppmapin doesn't handle devices, but allocating a 400 * heap address allows ppmapout to free virtual space when done. 401 */ 402 kaddr = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP); 403 404 hat_devload(kas.a_hat, kaddr, MMU_PAGESIZE, pfnum, 405 writing ? (PROT_READ | PROT_WRITE) : PROT_READ, 0); 406 407 return (kaddr + ((uintptr_t)addr & PAGEOFFSET)); 408 } 409 410 /* 411 * Unmap address "addr" in address space "as"; inverse of prmapin(). 412 */ 413 /* ARGSUSED */ 414 void 415 prmapout(struct as *as, caddr_t addr, caddr_t vaddr, int writing) 416 { 417 extern void ppmapout(caddr_t); 418 419 vaddr = (caddr_t)((uintptr_t)vaddr & PAGEMASK); 420 ppmapout(vaddr); 421 } 422 423 /* 424 * Make sure the lwp is in an orderly state 425 * for inspection by a debugger through /proc. 426 * Called from stop() and from syslwp_create(). 427 */ 428 /* ARGSUSED */ 429 void 430 prstop(int why, int what) 431 { 432 klwp_t *lwp = ttolwp(curthread); 433 struct regs *r = lwptoregs(lwp); 434 435 /* 436 * Make sure we don't deadlock on a recursive call 437 * to prstop(). stop() tests the lwp_nostop flag. 438 */ 439 ASSERT(lwp->lwp_nostop == 0); 440 lwp->lwp_nostop = 1; 441 442 if (copyin_nowatch((caddr_t)r->r_pc, &lwp->lwp_pcb.pcb_instr, 443 sizeof (lwp->lwp_pcb.pcb_instr)) == 0) 444 lwp->lwp_pcb.pcb_flags |= INSTR_VALID; 445 else { 446 lwp->lwp_pcb.pcb_flags &= ~INSTR_VALID; 447 lwp->lwp_pcb.pcb_instr = 0; 448 } 449 450 (void) save_syscall_args(); 451 ASSERT(lwp->lwp_nostop == 1); 452 lwp->lwp_nostop = 0; 453 } 454 455 /* 456 * Fetch the user-level instruction on which the lwp is stopped. 457 * It was saved by the lwp itself, in prstop(). 458 * Return non-zero if the instruction is valid. 459 */ 460 int 461 prfetchinstr(klwp_t *lwp, ulong_t *ip) 462 { 463 *ip = (ulong_t)(instr_t)lwp->lwp_pcb.pcb_instr; 464 return (lwp->lwp_pcb.pcb_flags & INSTR_VALID); 465 } 466 467 /* 468 * Called from trap() when a load or store instruction 469 * falls in a watched page but is not a watchpoint. 470 * We emulate the instruction in the kernel. 471 */ 472 /* ARGSUSED */ 473 int 474 pr_watch_emul(struct regs *rp, caddr_t addr, enum seg_rw rw) 475 { 476 #ifdef SOMEDAY 477 int res; 478 proc_t *p = curproc; 479 char *badaddr = (caddr_t)(-1); 480 int mapped; 481 482 /* prevent recursive calls to pr_watch_emul() */ 483 ASSERT(!(curthread->t_flag & T_WATCHPT)); 484 curthread->t_flag |= T_WATCHPT; 485 486 watch_disable_addr(addr, 8, rw); 487 res = do_unaligned(rp, &badaddr); 488 watch_enable_addr(addr, 8, rw); 489 490 curthread->t_flag &= ~T_WATCHPT; 491 if (res == SIMU_SUCCESS) { 492 /* adjust the pc */ 493 return (1); 494 } 495 #endif 496 return (0); 497 } 498 499 /* 500 * Return the number of active entries in the local descriptor table. 501 */ 502 int 503 prnldt(proc_t *p) 504 { 505 int limit, i, n; 506 user_desc_t *udp; 507 508 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 509 510 /* 511 * Currently 64 bit processes cannot have private LDTs. 512 */ 513 ASSERT(p->p_model != DATAMODEL_LP64 || p->p_ldt == NULL); 514 515 if (p->p_ldt == NULL) 516 return (0); 517 n = 0; 518 limit = p->p_ldtlimit; 519 ASSERT(limit >= 0 && limit < MAXNLDT); 520 521 /* 522 * Count all present user descriptors. 523 */ 524 for (i = LDT_UDBASE, udp = &p->p_ldt[i]; i <= limit; i++, udp++) 525 if (udp->usd_type != 0 || udp->usd_dpl != 0 || udp->usd_p != 0) 526 n++; 527 return (n); 528 } 529 530 /* 531 * Fetch the active entries from the local descriptor table. 532 */ 533 void 534 prgetldt(proc_t *p, struct ssd *ssd) 535 { 536 int i, limit; 537 user_desc_t *udp; 538 539 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 540 541 if (p->p_ldt == NULL) 542 return; 543 544 limit = p->p_ldtlimit; 545 ASSERT(limit >= 0 && limit < MAXNLDT); 546 547 /* 548 * All present user descriptors. 549 */ 550 for (i = LDT_UDBASE, udp = &p->p_ldt[i]; i <= limit; i++, udp++) 551 if (udp->usd_type != 0 || udp->usd_dpl != 0 || 552 udp->usd_p != 0) 553 usd_to_ssd(udp, ssd++, SEL_LDT(i)); 554 } 555