1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 27 #include <sys/modctl.h> 28 #include <sys/sunddi.h> 29 #include <sys/dtrace.h> 30 #include <sys/kobj.h> 31 #include <sys/stat.h> 32 #include <sys/conf.h> 33 #include <vm/seg_kmem.h> 34 #include <sys/stack.h> 35 #include <sys/frame.h> 36 #include <sys/dtrace_impl.h> 37 #include <sys/cmn_err.h> 38 #include <sys/sysmacros.h> 39 #include <sys/privregs.h> 40 #include <sys/sdt_impl.h> 41 42 #define SDT_PATCHVAL 0xf0 43 #define SDT_ADDR2NDX(addr) ((((uintptr_t)(addr)) >> 4) & sdt_probetab_mask) 44 #define SDT_PROBETAB_SIZE 0x1000 /* 4k entries -- 16K total */ 45 46 static dev_info_t *sdt_devi; 47 static int sdt_verbose = 0; 48 static sdt_probe_t **sdt_probetab; 49 static int sdt_probetab_size; 50 static int sdt_probetab_mask; 51 52 /*ARGSUSED*/ 53 static int 54 sdt_invop(uintptr_t addr, uintptr_t *stack, uintptr_t eax) 55 { 56 uintptr_t stack0, stack1, stack2, stack3, stack4; 57 int i = 0; 58 sdt_probe_t *sdt = sdt_probetab[SDT_ADDR2NDX(addr)]; 59 60 #ifdef __amd64 61 /* 62 * On amd64, stack[0] contains the dereferenced stack pointer, 63 * stack[1] contains savfp, stack[2] contains savpc. We want 64 * to step over these entries. 65 */ 66 i += 3; 67 #endif 68 69 for (; sdt != NULL; sdt = sdt->sdp_hashnext) { 70 if ((uintptr_t)sdt->sdp_patchpoint == addr) { 71 /* 72 * When accessing the arguments on the stack, we must 73 * protect against accessing beyond the stack. We can 74 * safely set NOFAULT here -- we know that interrupts 75 * are already disabled. 76 */ 77 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 78 stack0 = stack[i++]; 79 stack1 = stack[i++]; 80 stack2 = stack[i++]; 81 stack3 = stack[i++]; 82 stack4 = stack[i++]; 83 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | 84 CPU_DTRACE_BADADDR); 85 86 dtrace_probe(sdt->sdp_id, stack0, stack1, 87 stack2, stack3, stack4); 88 89 return (DTRACE_INVOP_NOP); 90 } 91 } 92 93 return (0); 94 } 95 96 /*ARGSUSED*/ 97 static void 98 sdt_provide_module(void *arg, struct modctl *ctl) 99 { 100 struct module *mp = ctl->mod_mp; 101 char *modname = ctl->mod_modname; 102 sdt_probedesc_t *sdpd; 103 sdt_probe_t *sdp, *old; 104 sdt_provider_t *prov; 105 int len; 106 107 /* 108 * One for all, and all for one: if we haven't yet registered all of 109 * our providers, we'll refuse to provide anything. 110 */ 111 for (prov = sdt_providers; prov->sdtp_name != NULL; prov++) { 112 if (prov->sdtp_id == DTRACE_PROVNONE) 113 return; 114 } 115 116 if (mp->sdt_nprobes != 0 || (sdpd = mp->sdt_probes) == NULL) 117 return; 118 119 for (sdpd = mp->sdt_probes; sdpd != NULL; sdpd = sdpd->sdpd_next) { 120 char *name = sdpd->sdpd_name, *func, *nname; 121 int i, j; 122 sdt_provider_t *prov; 123 ulong_t offs; 124 dtrace_id_t id; 125 126 for (prov = sdt_providers; prov->sdtp_prefix != NULL; prov++) { 127 char *prefix = prov->sdtp_prefix; 128 129 if (strncmp(name, prefix, strlen(prefix)) == 0) { 130 name += strlen(prefix); 131 break; 132 } 133 } 134 135 nname = kmem_alloc(len = strlen(name) + 1, KM_SLEEP); 136 137 for (i = 0, j = 0; name[j] != '\0'; i++) { 138 if (name[j] == '_' && name[j + 1] == '_') { 139 nname[i] = '-'; 140 j += 2; 141 } else { 142 nname[i] = name[j++]; 143 } 144 } 145 146 nname[i] = '\0'; 147 148 sdp = kmem_zalloc(sizeof (sdt_probe_t), KM_SLEEP); 149 sdp->sdp_loadcnt = ctl->mod_loadcnt; 150 sdp->sdp_ctl = ctl; 151 sdp->sdp_name = nname; 152 sdp->sdp_namelen = len; 153 sdp->sdp_provider = prov; 154 155 func = kobj_searchsym(mp, sdpd->sdpd_offset, &offs); 156 157 if (func == NULL) 158 func = "<unknown>"; 159 160 /* 161 * We have our provider. Now create the probe. 162 */ 163 if ((id = dtrace_probe_lookup(prov->sdtp_id, modname, 164 func, nname)) != DTRACE_IDNONE) { 165 old = dtrace_probe_arg(prov->sdtp_id, id); 166 ASSERT(old != NULL); 167 168 sdp->sdp_next = old->sdp_next; 169 sdp->sdp_id = id; 170 old->sdp_next = sdp; 171 } else { 172 sdp->sdp_id = dtrace_probe_create(prov->sdtp_id, 173 modname, func, nname, 3, sdp); 174 175 mp->sdt_nprobes++; 176 } 177 178 sdp->sdp_hashnext = 179 sdt_probetab[SDT_ADDR2NDX(sdpd->sdpd_offset)]; 180 sdt_probetab[SDT_ADDR2NDX(sdpd->sdpd_offset)] = sdp; 181 182 sdp->sdp_patchval = SDT_PATCHVAL; 183 sdp->sdp_patchpoint = (uint8_t *)sdpd->sdpd_offset; 184 sdp->sdp_savedval = *sdp->sdp_patchpoint; 185 } 186 } 187 188 /*ARGSUSED*/ 189 static void 190 sdt_destroy(void *arg, dtrace_id_t id, void *parg) 191 { 192 sdt_probe_t *sdp = parg, *old, *last, *hash; 193 struct modctl *ctl = sdp->sdp_ctl; 194 int ndx; 195 196 if (ctl != NULL && ctl->mod_loadcnt == sdp->sdp_loadcnt) { 197 if ((ctl->mod_loadcnt == sdp->sdp_loadcnt && 198 ctl->mod_loaded)) { 199 ((struct module *)(ctl->mod_mp))->sdt_nprobes--; 200 } 201 } 202 203 while (sdp != NULL) { 204 old = sdp; 205 206 /* 207 * Now we need to remove this probe from the sdt_probetab. 208 */ 209 ndx = SDT_ADDR2NDX(sdp->sdp_patchpoint); 210 last = NULL; 211 hash = sdt_probetab[ndx]; 212 213 while (hash != sdp) { 214 ASSERT(hash != NULL); 215 last = hash; 216 hash = hash->sdp_hashnext; 217 } 218 219 if (last != NULL) { 220 last->sdp_hashnext = sdp->sdp_hashnext; 221 } else { 222 sdt_probetab[ndx] = sdp->sdp_hashnext; 223 } 224 225 kmem_free(sdp->sdp_name, sdp->sdp_namelen); 226 sdp = sdp->sdp_next; 227 kmem_free(old, sizeof (sdt_probe_t)); 228 } 229 } 230 231 /*ARGSUSED*/ 232 static void 233 sdt_enable(void *arg, dtrace_id_t id, void *parg) 234 { 235 sdt_probe_t *sdp = parg; 236 struct modctl *ctl = sdp->sdp_ctl; 237 238 ctl->mod_nenabled++; 239 240 /* 241 * If this module has disappeared since we discovered its probes, 242 * refuse to enable it. 243 */ 244 if (!ctl->mod_loaded) { 245 if (sdt_verbose) { 246 cmn_err(CE_NOTE, "sdt is failing for probe %s " 247 "(module %s unloaded)", 248 sdp->sdp_name, ctl->mod_modname); 249 } 250 goto err; 251 } 252 253 /* 254 * Now check that our modctl has the expected load count. If it 255 * doesn't, this module must have been unloaded and reloaded -- and 256 * we're not going to touch it. 257 */ 258 if (ctl->mod_loadcnt != sdp->sdp_loadcnt) { 259 if (sdt_verbose) { 260 cmn_err(CE_NOTE, "sdt is failing for probe %s " 261 "(module %s reloaded)", 262 sdp->sdp_name, ctl->mod_modname); 263 } 264 goto err; 265 } 266 267 while (sdp != NULL) { 268 *sdp->sdp_patchpoint = sdp->sdp_patchval; 269 sdp = sdp->sdp_next; 270 } 271 err: 272 ; 273 } 274 275 /*ARGSUSED*/ 276 static void 277 sdt_disable(void *arg, dtrace_id_t id, void *parg) 278 { 279 sdt_probe_t *sdp = parg; 280 struct modctl *ctl = sdp->sdp_ctl; 281 282 ctl->mod_nenabled--; 283 284 if (!ctl->mod_loaded || ctl->mod_loadcnt != sdp->sdp_loadcnt) 285 goto err; 286 287 while (sdp != NULL) { 288 *sdp->sdp_patchpoint = sdp->sdp_savedval; 289 sdp = sdp->sdp_next; 290 } 291 292 err: 293 ; 294 } 295 296 /*ARGSUSED*/ 297 uint64_t 298 sdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno, int aframes) 299 { 300 uintptr_t val; 301 struct frame *fp = (struct frame *)dtrace_getfp(); 302 uintptr_t *stack; 303 int i; 304 #if defined(__amd64) 305 /* 306 * A total of 6 arguments are passed via registers; any argument with 307 * index of 5 or lower is therefore in a register. 308 */ 309 int inreg = 5; 310 #endif 311 312 for (i = 1; i <= aframes; i++) { 313 fp = (struct frame *)(fp->fr_savfp); 314 315 if (fp->fr_savpc == (pc_t)dtrace_invop_callsite) { 316 #if !defined(__amd64) 317 /* 318 * If we pass through the invalid op handler, we will 319 * use the pointer that it passed to the stack as the 320 * second argument to dtrace_invop() as the pointer to 321 * the stack. 322 */ 323 stack = ((uintptr_t **)&fp[1])[1]; 324 #else 325 /* 326 * In the case of amd64, we will use the pointer to the 327 * regs structure that was pushed when we took the 328 * trap. To get this structure, we must increment 329 * beyond the frame structure. If the argument that 330 * we're seeking is passed on the stack, we'll pull 331 * the true stack pointer out of the saved registers 332 * and decrement our argument by the number of 333 * arguments passed in registers; if the argument 334 * we're seeking is passed in regsiters, we can just 335 * load it directly. 336 */ 337 struct regs *rp = (struct regs *)((uintptr_t)&fp[1] + 338 sizeof (uintptr_t)); 339 340 if (argno <= inreg) { 341 stack = (uintptr_t *)&rp->r_rdi; 342 } else { 343 stack = (uintptr_t *)(rp->r_rsp); 344 argno -= (inreg + 1); 345 } 346 #endif 347 goto load; 348 } 349 } 350 351 /* 352 * We know that we did not come through a trap to get into 353 * dtrace_probe() -- the provider simply called dtrace_probe() 354 * directly. As this is the case, we need to shift the argument 355 * that we're looking for: the probe ID is the first argument to 356 * dtrace_probe(), so the argument n will actually be found where 357 * one would expect to find argument (n + 1). 358 */ 359 argno++; 360 361 #if defined(__amd64) 362 if (argno <= inreg) { 363 /* 364 * This shouldn't happen. If the argument is passed in a 365 * register then it should have been, well, passed in a 366 * register... 367 */ 368 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 369 return (0); 370 } 371 372 argno -= (inreg + 1); 373 #endif 374 stack = (uintptr_t *)&fp[1]; 375 376 load: 377 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 378 val = stack[argno]; 379 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 380 381 return (val); 382 } 383 384 static dtrace_pops_t sdt_pops = { 385 NULL, 386 sdt_provide_module, 387 sdt_enable, 388 sdt_disable, 389 NULL, 390 NULL, 391 sdt_getargdesc, 392 sdt_getarg, 393 NULL, 394 sdt_destroy 395 }; 396 397 /*ARGSUSED*/ 398 static int 399 sdt_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 400 { 401 sdt_provider_t *prov; 402 403 if (ddi_create_minor_node(devi, "sdt", S_IFCHR, 404 0, DDI_PSEUDO, NULL) == DDI_FAILURE) { 405 cmn_err(CE_NOTE, "/dev/sdt couldn't create minor node"); 406 ddi_remove_minor_node(devi, NULL); 407 return (DDI_FAILURE); 408 } 409 410 ddi_report_dev(devi); 411 sdt_devi = devi; 412 413 if (sdt_probetab_size == 0) 414 sdt_probetab_size = SDT_PROBETAB_SIZE; 415 416 sdt_probetab_mask = sdt_probetab_size - 1; 417 sdt_probetab = 418 kmem_zalloc(sdt_probetab_size * sizeof (sdt_probe_t *), KM_SLEEP); 419 dtrace_invop_add(sdt_invop); 420 421 for (prov = sdt_providers; prov->sdtp_name != NULL; prov++) { 422 if (dtrace_register(prov->sdtp_name, prov->sdtp_attr, 423 DTRACE_PRIV_KERNEL, NULL, 424 &sdt_pops, prov, &prov->sdtp_id) != 0) { 425 cmn_err(CE_WARN, "failed to register sdt provider %s", 426 prov->sdtp_name); 427 } 428 } 429 430 return (DDI_SUCCESS); 431 } 432 433 /*ARGSUSED*/ 434 static int 435 sdt_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 436 { 437 sdt_provider_t *prov; 438 439 switch (cmd) { 440 case DDI_DETACH: 441 break; 442 443 case DDI_SUSPEND: 444 return (DDI_SUCCESS); 445 446 default: 447 return (DDI_FAILURE); 448 } 449 450 for (prov = sdt_providers; prov->sdtp_name != NULL; prov++) { 451 if (prov->sdtp_id != DTRACE_PROVNONE) { 452 if (dtrace_unregister(prov->sdtp_id) != 0) 453 return (DDI_FAILURE); 454 455 prov->sdtp_id = DTRACE_PROVNONE; 456 } 457 } 458 459 dtrace_invop_remove(sdt_invop); 460 kmem_free(sdt_probetab, sdt_probetab_size * sizeof (sdt_probe_t *)); 461 462 return (DDI_SUCCESS); 463 } 464 465 /*ARGSUSED*/ 466 static int 467 sdt_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 468 { 469 int error; 470 471 switch (infocmd) { 472 case DDI_INFO_DEVT2DEVINFO: 473 *result = (void *)sdt_devi; 474 error = DDI_SUCCESS; 475 break; 476 case DDI_INFO_DEVT2INSTANCE: 477 *result = (void *)0; 478 error = DDI_SUCCESS; 479 break; 480 default: 481 error = DDI_FAILURE; 482 } 483 return (error); 484 } 485 486 /*ARGSUSED*/ 487 static int 488 sdt_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 489 { 490 return (0); 491 } 492 493 static struct cb_ops sdt_cb_ops = { 494 sdt_open, /* open */ 495 nodev, /* close */ 496 nulldev, /* strategy */ 497 nulldev, /* print */ 498 nodev, /* dump */ 499 nodev, /* read */ 500 nodev, /* write */ 501 nodev, /* ioctl */ 502 nodev, /* devmap */ 503 nodev, /* mmap */ 504 nodev, /* segmap */ 505 nochpoll, /* poll */ 506 ddi_prop_op, /* cb_prop_op */ 507 0, /* streamtab */ 508 D_NEW | D_MP /* Driver compatibility flag */ 509 }; 510 511 static struct dev_ops sdt_ops = { 512 DEVO_REV, /* devo_rev, */ 513 0, /* refcnt */ 514 sdt_info, /* get_dev_info */ 515 nulldev, /* identify */ 516 nulldev, /* probe */ 517 sdt_attach, /* attach */ 518 sdt_detach, /* detach */ 519 nodev, /* reset */ 520 &sdt_cb_ops, /* driver operations */ 521 NULL, /* bus operations */ 522 nodev, /* dev power */ 523 ddi_quiesce_not_needed, /* quiesce */ 524 }; 525 526 /* 527 * Module linkage information for the kernel. 528 */ 529 static struct modldrv modldrv = { 530 &mod_driverops, /* module type (this is a pseudo driver) */ 531 "Statically Defined Tracing", /* name of module */ 532 &sdt_ops, /* driver ops */ 533 }; 534 535 static struct modlinkage modlinkage = { 536 MODREV_1, 537 (void *)&modldrv, 538 NULL 539 }; 540 541 int 542 _init(void) 543 { 544 return (mod_install(&modlinkage)); 545 } 546 547 int 548 _info(struct modinfo *modinfop) 549 { 550 return (mod_info(&modlinkage, modinfop)); 551 } 552 553 int 554 _fini(void) 555 { 556 return (mod_remove(&modlinkage)); 557 } 558