xref: /titanic_41/usr/src/uts/i86xpv/os/xpv_panic.c (revision 159d09a20817016f09b3ea28d1bdada4a336bb91)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/clock.h>
29 #include <sys/psm.h>
30 #include <sys/archsystm.h>
31 #include <sys/machsystm.h>
32 #include <sys/compress.h>
33 #include <sys/modctl.h>
34 #include <sys/trap.h>
35 #include <sys/panic.h>
36 #include <sys/regset.h>
37 #include <sys/frame.h>
38 #include <sys/kobj.h>
39 #include <sys/apic.h>
40 #include <sys/dumphdr.h>
41 #include <sys/mem.h>
42 #include <sys/x86_archext.h>
43 #include <sys/xpv_panic.h>
44 #include <sys/boot_console.h>
45 #include <sys/bootsvcs.h>
46 #include <sys/consdev.h>
47 #include <vm/hat_pte.h>
48 #include <vm/hat_i86.h>
49 
50 /* XXX: need to add a PAE version too, if we ever support both PAE and non */
51 #if defined(__i386)
52 #define	XPV_FILENAME	"/boot/xen-syms"
53 #else
54 #define	XPV_FILENAME	"/boot/amd64/xen-syms"
55 #endif
56 #define	XPV_MODNAME	"xpv"
57 
58 int xpv_panicking = 0;
59 
60 struct module *xpv_module;
61 struct modctl *xpv_modctl;
62 
63 #define	ALIGN(x, a)	((a) == 0 ? (uintptr_t)(x) : \
64 	(((uintptr_t)(x) + (uintptr_t)(a) - 1l) & ~((uintptr_t)(a) - 1l)))
65 
66 /* Pointer to the xpv_panic_info structure handed to us by Xen.  */
67 static struct panic_info *xpv_panic_info = NULL;
68 
69 /* Timer support */
70 #define	NSEC_SHIFT 5
71 #define	T_XPV_TIMER	0xd1
72 #define	XPV_TIMER_INTERVAL	1000	/* 1000 microseconds */
73 static uint32_t *xpv_apicadr = NULL;
74 static uint_t	nsec_scale;
75 
76 /* IDT support */
77 #pragma	align	16(xpv_panic_idt)
78 static gate_desc_t	xpv_panic_idt[NIDT];	/* interrupt descriptor table */
79 
80 /* Xen pagetables mapped into our HAT's ptable windows */
81 static pfn_t ptable_pfn[MAX_NUM_LEVEL];
82 
83 /* Number of MMU_PAGESIZE pages we're adding to the Solaris dump */
84 static int xpv_dump_pages;
85 
86 /*
87  * There are up to two large swathes of RAM that we don't want to include
88  * in the dump: those that comprise the Xen version of segkpm.  On 32-bit
89  * systems there is no such region of memory.  On 64-bit systems, there
90  * should be just a single contiguous region that corresponds to all of
91  * physical memory.  The tricky bit is that Xen's heap sometimes lives in
92  * the middle of their segkpm, and is mapped using only kpm-like addresses.
93  * In that case, we need to skip the swathes before and after Xen's heap.
94  */
95 uintptr_t kpm1_low = 0;
96 uintptr_t kpm1_high = 0;
97 uintptr_t kpm2_low = 0;
98 uintptr_t kpm2_high = 0;
99 
100 /*
101  * Some commonly used values that we don't want to recompute over and over.
102  */
103 static int xpv_panic_nptes[MAX_NUM_LEVEL];
104 static ulong_t xpv_panic_cr3;
105 static uintptr_t xpv_end;
106 
107 static void xpv_panic_console_print(const char *fmt, ...);
108 static void (*xpv_panic_printf)(const char *, ...) = xpv_panic_console_print;
109 
110 #define	CONSOLE_BUF_SIZE	256
111 static char console_buffer[CONSOLE_BUF_SIZE];
112 static boolean_t use_polledio;
113 
114 /*
115  * Pointers to machine check panic info (if any).
116  */
117 xpv_mca_panic_data_t *xpv_mca_panic_data = NULL;
118 
119 static void
120 xpv_panic_putc(int m)
121 {
122 	struct cons_polledio *c = cons_polledio;
123 
124 	/* This really shouldn't happen */
125 	if (console == CONS_HYPERVISOR)
126 		return;
127 
128 	if (use_polledio == B_TRUE)
129 		c->cons_polledio_putchar(c->cons_polledio_argument, m);
130 	else
131 		bcons_putchar(m);
132 }
133 
134 static void
135 xpv_panic_puts(char *msg)
136 {
137 	char *m;
138 
139 	dump_timeleft = dump_timeout;
140 	for (m = msg; *m; m++)
141 		xpv_panic_putc((int)*m);
142 }
143 
144 static void
145 xpv_panic_console_print(const char *fmt, ...)
146 {
147 	va_list ap;
148 
149 	va_start(ap, fmt);
150 	(void) vsnprintf(console_buffer, sizeof (console_buffer), fmt, ap);
151 	va_end(ap);
152 
153 	xpv_panic_puts(console_buffer);
154 }
155 
156 static void
157 xpv_panic_map(int level, pfn_t pfn)
158 {
159 	x86pte_t pte, *pteptr;
160 
161 	/*
162 	 * The provided pfn represents a level 'level' page table.  Map it
163 	 * into the 'level' slot in the list of page table windows.
164 	 */
165 	pteptr = (x86pte_t *)PWIN_PTE_VA(level);
166 	pte = pfn_to_pa(pfn) | PT_VALID;
167 
168 	XPV_ALLOW_PAGETABLE_UPDATES();
169 	if (mmu.pae_hat)
170 		*pteptr = pte;
171 	else
172 		*(x86pte32_t *)pteptr = pte;
173 	XPV_DISALLOW_PAGETABLE_UPDATES();
174 
175 	mmu_tlbflush_entry(PWIN_VA(level));
176 }
177 
178 /*
179  * Walk the page tables to find the pfn mapped by the given va.
180  */
181 static pfn_t
182 xpv_va_walk(uintptr_t *vaddr)
183 {
184 	int l, idx;
185 	pfn_t pfn;
186 	x86pte_t pte;
187 	x86pte_t *ptep;
188 	uintptr_t va = *vaddr;
189 	uintptr_t scan_va;
190 	caddr_t ptable_window;
191 	static pfn_t toplevel_pfn;
192 	static uintptr_t lastva;
193 
194 	/*
195 	 * If we do anything other than a simple scan through memory, don't
196 	 * trust the mapped page tables.
197 	 */
198 	if (va != lastva + MMU_PAGESIZE)
199 		for (l = mmu.max_level; l >= 0; l--)
200 			ptable_pfn[l] = PFN_INVALID;
201 
202 	toplevel_pfn = mmu_btop(xpv_panic_cr3);
203 
204 	while (va < xpv_end && va >= *vaddr) {
205 		/* Find the lowest table with any entry for va */
206 		pfn = toplevel_pfn;
207 		for (l = mmu.max_level; l >= 0; l--) {
208 			if (ptable_pfn[l] != pfn) {
209 				xpv_panic_map(l, pfn);
210 				ptable_pfn[l] = pfn;
211 			}
212 
213 			/*
214 			 * Search this pagetable for any mapping to an
215 			 * address >= va.
216 			 */
217 			ptable_window = PWIN_VA(l);
218 			if (l == mmu.max_level && mmu.pae_hat)
219 				ptable_window +=
220 				    (xpv_panic_cr3 & MMU_PAGEOFFSET);
221 
222 			idx = (va >> LEVEL_SHIFT(l)) & (xpv_panic_nptes[l] - 1);
223 			scan_va = va;
224 			while (idx < xpv_panic_nptes[l] && scan_va < xpv_end &&
225 			    scan_va >= *vaddr) {
226 				ptep = (x86pte_t *)(ptable_window +
227 				    (idx << mmu.pte_size_shift));
228 				pte = GET_PTE(ptep);
229 				if (pte & PTE_VALID)
230 					break;
231 				idx++;
232 				scan_va += mmu.level_size[l];
233 			}
234 
235 			/*
236 			 * If there are no valid mappings in this table, we
237 			 * can skip to the end of the VA range it covers.
238 			 */
239 			if (idx == xpv_panic_nptes[l]) {
240 				va = NEXT_ENTRY_VA(va, l + 1);
241 				break;
242 			}
243 
244 			va = scan_va;
245 			/*
246 			 * See if we've hit the end of the range.
247 			 */
248 			if (va >= xpv_end || va < *vaddr)
249 				break;
250 
251 			/*
252 			 * If this mapping is for a pagetable, we drop down
253 			 * to the next level in the hierarchy and look for
254 			 * a mapping in it.
255 			 */
256 			pfn = PTE2MFN(pte, l);
257 			if (!PTE_ISPAGE(pte, l))
258 				continue;
259 
260 			/*
261 			 * The APIC page is magic.  Nothing to see here;
262 			 * move along.
263 			 */
264 			if (((uintptr_t)xpv_apicadr & MMU_PAGEMASK) ==
265 			    (va & MMU_PAGEMASK)) {
266 				va += MMU_PAGESIZE;
267 				break;
268 			}
269 
270 			/*
271 			 * See if the address is within one of the two
272 			 * kpm-like regions we want to skip.
273 			 */
274 			if (va >= kpm1_low && va < kpm1_high) {
275 				va = kpm1_high;
276 				break;
277 			}
278 			if (va >= kpm2_low && va < kpm2_high) {
279 				va = kpm2_high;
280 				break;
281 			}
282 
283 			/*
284 			 * The Xen panic code only handles small pages.  If
285 			 * this mapping is for a large page, we need to
286 			 * identify the consituent page that covers the
287 			 * specific VA we were looking for.
288 			 */
289 			if (l > 0) {
290 				if (l > 1)
291 					panic("Xen panic can't cope with "
292 					    "giant pages.");
293 				idx = (va >> LEVEL_SHIFT(0)) &
294 				    (xpv_panic_nptes[0] - 1);
295 				pfn += idx;
296 			}
297 
298 			*vaddr = va;
299 			lastva = va;
300 			return (pfn | PFN_IS_FOREIGN_MFN);
301 		}
302 	}
303 	return (PFN_INVALID);
304 }
305 
306 /*
307  * Walk through the Xen VA space, finding pages that are mapped in.
308  *
309  * These pages all have MFNs rather than PFNs, meaning they may be outside
310  * the physical address space the kernel knows about, or they may collide
311  * with PFNs the kernel is using.
312  *
313  * The obvious trick of just adding the PFN_IS_FOREIGN_MFN bit to the MFNs
314  * to avoid collisions doesn't work.  The pages need to be written to disk
315  * in PFN-order or savecore gets confused.  We can't allocate memory to
316  * contruct a sorted pfn->VA reverse mapping, so we have to write the pages
317  * to disk in VA order.
318  *
319  * To square this circle, we simply make up PFNs for each of Xen's pages.
320  * We assign each mapped page a fake PFN in ascending order.  These fake
321  * PFNs each have the FOREIGN bit set, ensuring that they fall outside the
322  * range of Solaris PFNs written by the kernel.
323  */
324 int
325 dump_xpv_addr()
326 {
327 	uintptr_t va;
328 	mem_vtop_t mem_vtop;
329 
330 	xpv_dump_pages = 0;
331 	va = xen_virt_start;
332 
333 	while (xpv_va_walk(&va) != PFN_INVALID) {
334 		mem_vtop.m_as = &kas;
335 		mem_vtop.m_va = (void *)va;
336 		mem_vtop.m_pfn = (pfn_t)xpv_dump_pages | PFN_IS_FOREIGN_MFN;
337 
338 		dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
339 		xpv_dump_pages++;
340 
341 		va += MMU_PAGESIZE;
342 	}
343 
344 	/*
345 	 * Add the shared_info page.  This page actually ends up in the
346 	 * dump twice: once for the Xen va and once for the Solaris va.
347 	 * This isn't ideal, but we don't know the address Xen is using for
348 	 * the page, so we can't share it.
349 	 */
350 	mem_vtop.m_as = &kas;
351 	mem_vtop.m_va = HYPERVISOR_shared_info;
352 	mem_vtop.m_pfn = (pfn_t)xpv_dump_pages | PFN_IS_FOREIGN_MFN;
353 	dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
354 	xpv_dump_pages++;
355 
356 	return (xpv_dump_pages);
357 }
358 
359 void
360 dump_xpv_pfn()
361 {
362 	pfn_t pfn;
363 	int cnt;
364 
365 	for (cnt = 0; cnt < xpv_dump_pages; cnt++) {
366 		pfn = (pfn_t)cnt | PFN_IS_FOREIGN_MFN;
367 		dumpvp_write(&pfn, sizeof (pfn));
368 	}
369 }
370 
371 int
372 dump_xpv_data(void *dump_cbuf)
373 {
374 	uintptr_t va;
375 	uint32_t csize;
376 	int cnt = 0;
377 
378 	/*
379 	 * XXX: we should probably run this data through a UE check.  The
380 	 * catch is that the UE code relies on on_trap() and getpfnum()
381 	 * working.
382 	 */
383 	va = xen_virt_start;
384 
385 	while (xpv_va_walk(&va) != PFN_INVALID) {
386 		csize = (uint32_t)compress((void *)va, dump_cbuf, PAGESIZE);
387 		dumpvp_write(&csize, sizeof (uint32_t));
388 		dumpvp_write(dump_cbuf, csize);
389 		if (dump_ioerr) {
390 			dumphdr->dump_flags &= ~DF_COMPLETE;
391 			return (cnt);
392 		}
393 		cnt++;
394 		va += MMU_PAGESIZE;
395 	}
396 
397 	/*
398 	 * Finally, dump the shared_info page
399 	 */
400 	csize = (uint32_t)compress((void *)HYPERVISOR_shared_info, dump_cbuf,
401 	    PAGESIZE);
402 	dumpvp_write(&csize, sizeof (uint32_t));
403 	dumpvp_write(dump_cbuf, csize);
404 	if (dump_ioerr)
405 		dumphdr->dump_flags &= ~DF_COMPLETE;
406 	cnt++;
407 
408 	return (cnt);
409 }
410 
411 static void *
412 showstack(void *fpreg, int xpv_only)
413 {
414 	struct frame *fpp;
415 	ulong_t off;
416 	char *sym;
417 	uintptr_t pc, fp, lastfp;
418 	uintptr_t minaddr = min(KERNELBASE, xen_virt_start);
419 
420 	fp = (uintptr_t)fpreg;
421 	if (fp < minaddr) {
422 		xpv_panic_printf("Bad frame ptr: 0x%p\n", fpreg);
423 		return (fpreg);
424 	}
425 
426 	do {
427 		fpp = (struct frame *)fp;
428 		pc = fpp->fr_savpc;
429 
430 		if ((xpv_only != 0) &&
431 		    (fp > xpv_end || fp < xen_virt_start))
432 			break;
433 		if ((sym = kobj_getsymname(pc, &off)) != NULL)
434 			xpv_panic_printf("%08lx %s:%s+%lx\n", fp,
435 			    mod_containing_pc((caddr_t)pc), sym, off);
436 		else if ((pc >= xen_virt_start) && (pc <= xpv_end))
437 			xpv_panic_printf("%08lx 0x%lx (in Xen)\n", fp, pc);
438 		else
439 			xpv_panic_printf("%08lx %lx\n", fp, pc);
440 
441 		lastfp = fp;
442 		fp = fpp->fr_savfp;
443 
444 		/*
445 		 * Xen marks an exception frame by inverting the frame
446 		 * pointer.
447 		 */
448 		if (fp < lastfp) {
449 			if ((~fp > minaddr) && ((~fp) ^ lastfp) < 0xfff)
450 				fp = ~fp;
451 		}
452 	} while (fp > lastfp);
453 	return ((void *)fp);
454 }
455 
456 void *
457 xpv_traceback(void *fpreg)
458 {
459 	return (showstack(fpreg, 1));
460 }
461 
462 #if defined(__amd64)
463 static void
464 xpv_panic_hypercall(ulong_t call)
465 {
466 	panic("Illegally issued hypercall %d during panic!\n", (int)call);
467 }
468 #endif
469 
470 void
471 xpv_die(struct regs *rp)
472 {
473 	struct panic_trap_info ti;
474 	struct cregs creg;
475 
476 	ti.trap_regs = rp;
477 	ti.trap_type = rp->r_trapno;
478 
479 	curthread->t_panic_trap = &ti;
480 	if (ti.trap_type == T_PGFLT) {
481 		getcregs(&creg);
482 		ti.trap_addr = (caddr_t)creg.cr_cr2;
483 		panic("Fatal pagefault at 0x%lx.  fault addr=0x%p  rp=0x%p",
484 		    rp->r_pc, (void *)ti.trap_addr, (void *)rp);
485 	} else {
486 		ti.trap_addr = (caddr_t)rp->r_pc;
487 		panic("Fatal trap %ld at 0x%lx.  rp=0x%p", rp->r_trapno,
488 		    rp->r_pc, (void *)rp);
489 	}
490 }
491 
492 /*
493  * Build IDT to handle a Xen panic
494  */
495 static void
496 switch_to_xpv_panic_idt()
497 {
498 	int i;
499 	desctbr_t idtr;
500 	gate_desc_t *idt = xpv_panic_idt;
501 	selector_t cs = get_cs_register();
502 
503 	for (i = 0; i < 32; i++)
504 		set_gatesegd(&idt[i], &xpv_invaltrap, cs, SDT_SYSIGT, TRP_XPL);
505 
506 	set_gatesegd(&idt[T_ZERODIV], &xpv_div0trap, cs, SDT_SYSIGT, TRP_XPL);
507 	set_gatesegd(&idt[T_SGLSTP], &xpv_dbgtrap, cs, SDT_SYSIGT, TRP_XPL);
508 	set_gatesegd(&idt[T_NMIFLT], &xpv_nmiint, cs, SDT_SYSIGT, TRP_XPL);
509 	set_gatesegd(&idt[T_BOUNDFLT], &xpv_boundstrap, cs, SDT_SYSIGT,
510 	    TRP_XPL);
511 	set_gatesegd(&idt[T_ILLINST], &xpv_invoptrap, cs, SDT_SYSIGT, TRP_XPL);
512 	set_gatesegd(&idt[T_NOEXTFLT], &xpv_ndptrap, cs, SDT_SYSIGT, TRP_XPL);
513 	set_gatesegd(&idt[T_TSSFLT], &xpv_invtsstrap, cs, SDT_SYSIGT, TRP_XPL);
514 	set_gatesegd(&idt[T_SEGFLT], &xpv_segnptrap, cs, SDT_SYSIGT, TRP_XPL);
515 	set_gatesegd(&idt[T_STKFLT], &xpv_stktrap, cs, SDT_SYSIGT, TRP_XPL);
516 	set_gatesegd(&idt[T_GPFLT], &xpv_gptrap, cs, SDT_SYSIGT, TRP_XPL);
517 	set_gatesegd(&idt[T_PGFLT], &xpv_pftrap, cs, SDT_SYSIGT, TRP_XPL);
518 	set_gatesegd(&idt[T_EXTERRFLT], &xpv_ndperr, cs, SDT_SYSIGT, TRP_XPL);
519 	set_gatesegd(&idt[T_ALIGNMENT], &xpv_achktrap, cs, SDT_SYSIGT, TRP_XPL);
520 	set_gatesegd(&idt[T_MCE], &xpv_mcetrap, cs, SDT_SYSIGT, TRP_XPL);
521 	set_gatesegd(&idt[T_SIMDFPE], &xpv_xmtrap, cs, SDT_SYSIGT, TRP_XPL);
522 
523 	/*
524 	 * We have no double fault handler.  Any single fault represents a
525 	 * catastrophic failure for us, so there is no attempt to handle
526 	 * them cleanly: we just print a message and reboot.  If we
527 	 * encounter a second fault while doing that, there is nothing
528 	 * else we can do.
529 	 */
530 
531 	/*
532 	 * Be prepared to absorb any stray device interrupts received
533 	 * while writing the core to disk.
534 	 */
535 	for (i = 33; i < NIDT; i++)
536 		set_gatesegd(&idt[i], &xpv_surprise_intr, cs, SDT_SYSIGT,
537 		    TRP_XPL);
538 
539 	/* The one interrupt we expect to get is from the APIC timer.  */
540 	set_gatesegd(&idt[T_XPV_TIMER], &xpv_timer_trap, cs, SDT_SYSIGT,
541 	    TRP_XPL);
542 
543 	idtr.dtr_base = (uintptr_t)xpv_panic_idt;
544 	idtr.dtr_limit = sizeof (xpv_panic_idt) - 1;
545 	wr_idtr(&idtr);
546 
547 #if defined(__amd64)
548 	/* Catch any hypercalls. */
549 	wrmsr(MSR_AMD_LSTAR, (uintptr_t)xpv_panic_hypercall);
550 	wrmsr(MSR_AMD_CSTAR, (uintptr_t)xpv_panic_hypercall);
551 #endif
552 }
553 
554 static void
555 xpv_apic_clkinit()
556 {
557 	uint_t		apic_ticks = 0;
558 
559 	/*
560 	 * Measure how many APIC ticks there are within a fixed time
561 	 * period.  We're going to be fairly coarse here.  This timer is
562 	 * just being used to detect a stalled panic, so as long as we have
563 	 * the right order of magnitude, everything should be fine.
564 	 */
565 	xpv_apicadr[APIC_SPUR_INT_REG] = AV_UNIT_ENABLE | APIC_SPUR_INTR;
566 	xpv_apicadr[APIC_LOCAL_TIMER] = AV_MASK;
567 	xpv_apicadr[APIC_INT_VECT0] = AV_MASK;	/* local intr reg 0 */
568 
569 	xpv_apicadr[APIC_DIVIDE_REG] = 0;
570 	xpv_apicadr[APIC_INIT_COUNT] = APIC_MAXVAL;
571 	drv_usecwait(XPV_TIMER_INTERVAL);
572 	apic_ticks = APIC_MAXVAL - xpv_apicadr[APIC_CURR_COUNT];
573 
574 	/*
575 	 * apic_ticks now represents roughly how many apic ticks comprise
576 	 * one timeout interval.  Program the timer to send us an interrupt
577 	 * every time that interval expires.
578 	 */
579 	xpv_apicadr[APIC_LOCAL_TIMER] = T_XPV_TIMER | AV_TIME;
580 	xpv_apicadr[APIC_INIT_COUNT] = apic_ticks;
581 	xpv_apicadr[APIC_EOI_REG] = 0;
582 }
583 
584 void
585 xpv_timer_tick(void)
586 {
587 	static int ticks = 0;
588 
589 	if (ticks++ >= MICROSEC / XPV_TIMER_INTERVAL) {
590 		ticks = 0;
591 		if (dump_timeleft && (--dump_timeleft == 0))
592 			panic("Xen panic timeout\n");
593 	}
594 	xpv_apicadr[APIC_EOI_REG] = 0;
595 }
596 
597 void
598 xpv_interrupt(void)
599 {
600 #ifdef	DEBUG
601 	static int cnt = 0;
602 
603 	if (cnt++ < 10)
604 		xpv_panic_printf("Unexpected interrupt received.\n");
605 	if ((cnt < 1000) && ((cnt % 100) == 0))
606 		xpv_panic_printf("%d unexpected interrupts received.\n", cnt);
607 #endif
608 
609 	xpv_apicadr[APIC_EOI_REG] = 0;
610 }
611 
612 /*
613  * Managing time in panic context is trivial.  We only have a single CPU,
614  * we never get rescheduled, we never get suspended.  We just need to
615  * convert clock ticks into nanoseconds.
616  */
617 static hrtime_t
618 xpv_panic_gethrtime(void)
619 {
620 	hrtime_t tsc, hrt;
621 	unsigned int *l = (unsigned int *)&(tsc);
622 
623 	tsc = __rdtsc_insn();
624 	hrt = (mul32(l[1], nsec_scale) << NSEC_SHIFT) +
625 	    (mul32(l[0], nsec_scale) >> (32 - NSEC_SHIFT));
626 
627 	return (hrt);
628 }
629 
630 static void
631 xpv_panic_time_init()
632 {
633 	nsec_scale =
634 	    CPU->cpu_m.mcpu_vcpu_info->time.tsc_to_system_mul >> NSEC_SHIFT;
635 
636 	gethrtimef = xpv_panic_gethrtime;
637 }
638 
639 static void
640 xpv_panicsys(struct regs *rp, char *fmt, ...)
641 {
642 	extern void panicsys(const char *, va_list, struct regs *, int);
643 	va_list alist;
644 
645 	va_start(alist, fmt);
646 	panicsys(fmt, alist, rp, 1);
647 	va_end(alist);
648 }
649 
650 void
651 xpv_do_panic(void *arg)
652 {
653 	struct panic_info *pip = (struct panic_info *)arg;
654 	int l;
655 	struct cregs creg;
656 #if defined(__amd64)
657 	extern uintptr_t postbootkernelbase;
658 #endif
659 
660 	if (xpv_panicking++ > 0)
661 		panic("multiple calls to xpv_do_panic()");
662 
663 	/*
664 	 * Indicate to the underlying panic framework that a panic has been
665 	 * initiated.  This is ordinarily done as part of vpanic().  Since
666 	 * we already have all the register state saved by the hypervisor,
667 	 * we skip that and jump straight into the panic processing code.
668 	 *
669 	 * XXX If another thread grabs and wins the panic_quiesce trigger
670 	 * then we'll have two threads in panicsys believing they are in
671 	 * charge of the panic attempt!
672 	 */
673 	(void) panic_trigger(&panic_quiesce);
674 
675 #if defined(__amd64)
676 	/*
677 	 * bzero() and bcopy() get unhappy when asked to operate on
678 	 * addresses outside of the kernel.  At this point Xen is really a
679 	 * part of the kernel, so we update the routines' notion of where
680 	 * the kernel starts.
681 	 */
682 	postbootkernelbase = xen_virt_start;
683 #endif
684 
685 #if defined(HYPERVISOR_VIRT_END)
686 	xpv_end = HYPERVISOR_VIRT_END;
687 #else
688 	xpv_end = (uintptr_t)UINTPTR_MAX - sizeof (uintptr_t);
689 #endif
690 
691 	/*
692 	 * If we were redirecting console output to the hypervisor, we have
693 	 * to stop.
694 	 */
695 	use_polledio = B_FALSE;
696 	if (console == CONS_HYPERVISOR) {
697 		bcons_device_change(CONS_HYPERVISOR);
698 	} else if (cons_polledio != NULL &&
699 	    cons_polledio->cons_polledio_putchar != NULL)  {
700 		if (cons_polledio->cons_polledio_enter != NULL)
701 			cons_polledio->cons_polledio_enter(
702 			    cons_polledio->cons_polledio_argument);
703 		use_polledio = 1;
704 	}
705 
706 	/* Make sure we handle all console output from here on. */
707 	sysp->bsvc_putchar = xpv_panic_putc;
708 
709 	/*
710 	 * If we find an unsupported panic_info structure, there's not much
711 	 * we can do other than complain, plow on, and hope for the best.
712 	 */
713 	if (pip->pi_version != PANIC_INFO_VERSION)
714 		xpv_panic_printf("Warning: Xen is using an unsupported "
715 		    "version of the panic_info structure.\n");
716 
717 	xpv_panic_info = pip;
718 
719 #if defined(__amd64)
720 	kpm1_low = (uintptr_t)xpv_panic_info->pi_ram_start;
721 	if (xpv_panic_info->pi_xen_start == NULL) {
722 		kpm1_high = (uintptr_t)xpv_panic_info->pi_ram_end;
723 	} else {
724 		kpm1_high = (uintptr_t)xpv_panic_info->pi_xen_start;
725 		kpm2_low = (uintptr_t)xpv_panic_info->pi_xen_end;
726 		kpm2_high = (uintptr_t)xpv_panic_info->pi_ram_end;
727 	}
728 #endif
729 
730 	/*
731 	 * Make sure we are running on the Solaris %gs.  The Xen panic code
732 	 * should already have set up the GDT properly.
733 	 */
734 	xpv_panic_resetgs();
735 #if defined(__amd64)
736 	wrmsr(MSR_AMD_GSBASE, (uint64_t)&cpus[0]);
737 #endif
738 
739 	xpv_panic_time_init();
740 
741 	/*
742 	 * Switch to our own IDT, avoiding any accidental returns to Xen
743 	 * world.
744 	 */
745 	switch_to_xpv_panic_idt();
746 
747 	/*
748 	 * Initialize the APIC timer, which is used to detect a hung dump
749 	 * attempt.
750 	 */
751 	xpv_apicadr = pip->pi_apic;
752 	xpv_apic_clkinit();
753 
754 	/*
755 	 * Set up a few values that we'll need repeatedly.
756 	 */
757 	getcregs(&creg);
758 	xpv_panic_cr3 = creg.cr_cr3;
759 	for (l = mmu.max_level; l >= 0; l--)
760 		xpv_panic_nptes[l] = mmu.ptes_per_table;
761 #ifdef __i386
762 	if (mmu.pae_hat)
763 		xpv_panic_nptes[mmu.max_level] = 4;
764 #endif
765 
766 	/* Add the fake Xen module to the module list */
767 	if (xpv_module != NULL) {
768 		extern int last_module_id;
769 
770 		xpv_modctl->mod_id = last_module_id++;
771 		xpv_modctl->mod_next = &modules;
772 		xpv_modctl->mod_prev = modules.mod_prev;
773 		modules.mod_prev->mod_next = xpv_modctl;
774 		modules.mod_prev = xpv_modctl;
775 	}
776 
777 	if (pip->pi_mca.mpd_magic == MCA_PANICDATA_MAGIC)
778 		xpv_mca_panic_data = &pip->pi_mca;
779 
780 	xpv_panic_printf = printf;
781 	xpv_panicsys((struct regs *)pip->pi_regs, pip->pi_panicstr);
782 	xpv_panic_printf("Failed to reboot following panic.\n");
783 	for (;;)
784 		;
785 }
786 
787 /*
788  * Set up the necessary data structures to pretend that the Xen hypervisor
789  * is a loadable module, allowing mdb to find the Xen symbols in a crash
790  * dump.  Since these symbols all map to VA space Solaris doesn't normally
791  * have access to, we don't link these structures into the kernel's lists
792  * until/unless we hit a Xen panic.
793  *
794  * The observant reader will note a striking amount of overlap between this
795  * code and that found in krtld.  While it would be handy if we could just
796  * ask krtld to do this work for us, it's not that simple.  Among the
797  * complications: we're not actually loading the text here (grub did it at
798  * boot), the .text section is writable, there are no relocations to do,
799  * none of the module text/data is in readable memory, etc.  Training krtld
800  * to deal with this weird module is as complicated, and more risky, than
801  * reimplementing the necessary subset of it here.
802  */
803 static void
804 init_xen_module()
805 {
806 	struct _buf *file = NULL;
807 	struct module *mp;
808 	struct modctl *mcp;
809 	int i, shn;
810 	Shdr *shp, *ctf_shp;
811 	char *names = NULL;
812 	size_t n, namesize, text_align, data_align;
813 #if defined(__amd64)
814 	const char machine = EM_AMD64;
815 #else
816 	const char machine = EM_386;
817 #endif
818 
819 	/* Allocate and init the module structure */
820 	mp = kmem_zalloc(sizeof (*mp), KM_SLEEP);
821 	mp->filename = kobj_zalloc(strlen(XPV_FILENAME) + 1, KM_SLEEP);
822 	(void) strcpy(mp->filename, XPV_FILENAME);
823 
824 	/* Allocate and init the modctl structure */
825 	mcp = kmem_zalloc(sizeof (*mcp), KM_SLEEP);
826 	mcp->mod_modname = kobj_zalloc(strlen(XPV_MODNAME) + 1, KM_SLEEP);
827 	(void) strcpy(mcp->mod_modname, XPV_MODNAME);
828 	mcp->mod_filename = kobj_zalloc(strlen(XPV_FILENAME) + 1, KM_SLEEP);
829 	(void) strcpy(mcp->mod_filename, XPV_FILENAME);
830 	mcp->mod_inprogress_thread = (kthread_id_t)-1;
831 	mcp->mod_ref = 1;
832 	mcp->mod_loaded = 1;
833 	mcp->mod_loadcnt = 1;
834 	mcp->mod_mp = mp;
835 
836 	/*
837 	 * Try to open a Xen image that hasn't had its symbol and CTF
838 	 * information stripped off.
839 	 */
840 	file = kobj_open_file(XPV_FILENAME);
841 	if (file == (struct _buf *)-1) {
842 		file = NULL;
843 		goto err;
844 	}
845 
846 	/*
847 	 * Read the header and ensure that this is an ELF file for the
848 	 * proper ISA.  If it's not, somebody has done something very
849 	 * stupid.  Why bother?  See Mencken.
850 	 */
851 	if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0)
852 		goto err;
853 	for (i = 0; i < SELFMAG; i++)
854 		if (mp->hdr.e_ident[i] != ELFMAG[i])
855 			goto err;
856 	if ((mp->hdr.e_ident[EI_DATA] != ELFDATA2LSB) ||
857 	    (mp->hdr.e_machine != machine))
858 		goto err;
859 
860 	/* Read in the section headers */
861 	n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
862 	mp->shdrs = kmem_zalloc(n, KM_SLEEP);
863 	if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0)
864 		goto err;
865 
866 	/* Read the section names */
867 	shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
868 	namesize = shp->sh_size;
869 	names = kmem_zalloc(shp->sh_size, KM_SLEEP);
870 	if (kobj_read_file(file, names, shp->sh_size, shp->sh_offset) < 0)
871 		goto err;
872 
873 	/*
874 	 * Fill in the text and data size fields.
875 	 */
876 	ctf_shp = NULL;
877 	text_align = data_align = 0;
878 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
879 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
880 
881 		/* Sanity check the offset of the section name */
882 		if (shp->sh_name >= namesize)
883 			continue;
884 
885 		/* If we find the symtab section, remember it for later. */
886 		if (shp->sh_type == SHT_SYMTAB) {
887 			mp->symtbl_section = shn;
888 			mp->symhdr = shp;
889 			continue;
890 		}
891 
892 		/* If we find the CTF section, remember it for later. */
893 		if ((shp->sh_size != 0) &&
894 		    (strcmp(names + shp->sh_name, ".SUNW_ctf") == 0)) {
895 			ctf_shp = shp;
896 			continue;
897 		}
898 
899 		if (!(shp->sh_flags & SHF_ALLOC))
900 			continue;
901 
902 		/*
903 		 * Xen marks its text section as writable, so we need to
904 		 * look for the name - not just the flag.
905 		 */
906 		if ((strcmp(&names[shp->sh_name], ".text") != NULL) &&
907 		    (shp->sh_flags & SHF_WRITE) != 0) {
908 			if (shp->sh_addralign > data_align)
909 				data_align = shp->sh_addralign;
910 			mp->data_size = ALIGN(mp->data_size, data_align);
911 			mp->data_size += ALIGN(shp->sh_size, 8);
912 			if (mp->data == NULL || mp->data > (char *)shp->sh_addr)
913 				mp->data = (char *)shp->sh_addr;
914 		} else {
915 			if (shp->sh_addralign > text_align)
916 				text_align = shp->sh_addralign;
917 			mp->text_size = ALIGN(mp->text_size, text_align);
918 			mp->text_size += ALIGN(shp->sh_size, 8);
919 			if (mp->text == NULL || mp->text > (char *)shp->sh_addr)
920 				mp->text = (char *)shp->sh_addr;
921 		}
922 	}
923 	kmem_free(names, namesize);
924 	names = NULL;
925 	shp = NULL;
926 	mcp->mod_text = mp->text;
927 	mcp->mod_text_size = mp->text_size;
928 
929 	/*
930 	 * If we have symbol table and string table sections, read them in
931 	 * now.  If we don't, we just plow on.  We'll still get a valid
932 	 * core dump, but finding anything useful will be just a bit
933 	 * harder.
934 	 *
935 	 * Note: we don't bother with a hash table.  We'll never do a
936 	 * symbol lookup unless we crash, and then mdb creates its own.  We
937 	 * also don't try to perform any relocations.  Xen should be loaded
938 	 * exactly where the ELF file indicates, and the symbol information
939 	 * in the file should be complete and correct already.  Static
940 	 * linking ain't all bad.
941 	 */
942 	if ((mp->symhdr != NULL) && (mp->symhdr->sh_link < mp->hdr.e_shnum)) {
943 		mp->strhdr = (Shdr *)
944 		    (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
945 		mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
946 
947 		/* Allocate space for the symbol table and strings.  */
948 		mp->symsize = mp->symhdr->sh_size +
949 		    mp->nsyms * sizeof (symid_t) + mp->strhdr->sh_size;
950 		mp->symspace = kmem_zalloc(mp->symsize, KM_SLEEP);
951 		mp->symtbl = mp->symspace;
952 		mp->strings = (char *)(mp->symtbl + mp->symhdr->sh_size);
953 
954 		if ((kobj_read_file(file, mp->symtbl,
955 		    mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0) ||
956 		    (kobj_read_file(file, mp->strings,
957 		    mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0))
958 			goto err;
959 	}
960 
961 	/*
962 	 * Read in the CTF section
963 	 */
964 	if ((ctf_shp != NULL) && ((moddebug & MODDEBUG_NOCTF) == 0)) {
965 		mp->ctfdata = kmem_zalloc(ctf_shp->sh_size, KM_SLEEP);
966 		mp->ctfsize = ctf_shp->sh_size;
967 		if (kobj_read_file(file, mp->ctfdata, mp->ctfsize,
968 		    ctf_shp->sh_offset) < 0)
969 			goto err;
970 	}
971 
972 	kobj_close_file(file);
973 
974 	xpv_module = mp;
975 	xpv_modctl = mcp;
976 	return;
977 
978 err:
979 	cmn_err(CE_WARN, "Failed to initialize xpv module.");
980 	if (file != NULL)
981 		kobj_close_file(file);
982 
983 	kmem_free(mp->filename, strlen(XPV_FILENAME) + 1);
984 	if (mp->shdrs != NULL)
985 		kmem_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum);
986 	if (mp->symspace != NULL)
987 		kmem_free(mp->symspace, mp->symsize);
988 	if (mp->ctfdata != NULL)
989 		kmem_free(mp->ctfdata, mp->ctfsize);
990 	kmem_free(mp, sizeof (*mp));
991 	kmem_free(mcp->mod_filename, strlen(XPV_FILENAME) + 1);
992 	kmem_free(mcp->mod_modname, strlen(XPV_MODNAME) + 1);
993 	kmem_free(mcp, sizeof (*mcp));
994 	if (names != NULL)
995 		kmem_free(names, namesize);
996 }
997 
998 void
999 xpv_panic_init()
1000 {
1001 	xen_platform_op_t op;
1002 	int i;
1003 
1004 	ASSERT(DOMAIN_IS_INITDOMAIN(xen_info));
1005 
1006 	for (i = 0; i < mmu.num_level; i++)
1007 		ptable_pfn[i] = PFN_INVALID;
1008 
1009 	/* Let Xen know where to jump if/when it panics. */
1010 	op.cmd = XENPF_panic_init;
1011 	op.interface_version = XENPF_INTERFACE_VERSION;
1012 	op.u.panic_init.panic_addr = (unsigned long)xpv_panic_hdlr;
1013 
1014 	(void) HYPERVISOR_platform_op(&op);
1015 
1016 	init_xen_module();
1017 }
1018