xref: /titanic_41/usr/src/uts/i86pc/vm/vm_machdep.c (revision feef89cf5f5fee792c1a396bb0e48070935cf65a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
27 /*	All Rights Reserved   */
28 
29 /*
30  * Portions of this source code were derived from Berkeley 4.3 BSD
31  * under license from the Regents of the University of California.
32  */
33 
34 /*
35  * UNIX machine dependent virtual memory support.
36  */
37 
38 #include <sys/types.h>
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/user.h>
42 #include <sys/proc.h>
43 #include <sys/kmem.h>
44 #include <sys/vmem.h>
45 #include <sys/buf.h>
46 #include <sys/cpuvar.h>
47 #include <sys/lgrp.h>
48 #include <sys/disp.h>
49 #include <sys/vm.h>
50 #include <sys/mman.h>
51 #include <sys/vnode.h>
52 #include <sys/cred.h>
53 #include <sys/exec.h>
54 #include <sys/exechdr.h>
55 #include <sys/debug.h>
56 #include <sys/vmsystm.h>
57 
58 #include <vm/hat.h>
59 #include <vm/as.h>
60 #include <vm/seg.h>
61 #include <vm/seg_kp.h>
62 #include <vm/seg_vn.h>
63 #include <vm/page.h>
64 #include <vm/seg_kmem.h>
65 #include <vm/seg_kpm.h>
66 #include <vm/vm_dep.h>
67 
68 #include <sys/cpu.h>
69 #include <sys/vm_machparam.h>
70 #include <sys/memlist.h>
71 #include <sys/bootconf.h> /* XXX the memlist stuff belongs in memlist_plat.h */
72 #include <vm/hat_i86.h>
73 #include <sys/x86_archext.h>
74 #include <sys/elf_386.h>
75 #include <sys/cmn_err.h>
76 #include <sys/archsystm.h>
77 #include <sys/machsystm.h>
78 
79 #include <sys/vtrace.h>
80 #include <sys/ddidmareq.h>
81 #include <sys/promif.h>
82 #include <sys/memnode.h>
83 #include <sys/stack.h>
84 #include <util/qsort.h>
85 #include <sys/taskq.h>
86 
87 #ifdef __xpv
88 
89 #include <sys/hypervisor.h>
90 #include <sys/xen_mmu.h>
91 #include <sys/balloon_impl.h>
92 
93 /*
94  * domain 0 pages usable for DMA are kept pre-allocated and kept in
95  * distinct lists, ordered by increasing mfn.
96  */
97 static kmutex_t io_pool_lock;
98 static kmutex_t contig_list_lock;
99 static page_t *io_pool_4g;	/* pool for 32 bit dma limited devices */
100 static page_t *io_pool_16m;	/* pool for 24 bit dma limited legacy devices */
101 static long io_pool_cnt;
102 static long io_pool_cnt_max = 0;
103 #define	DEFAULT_IO_POOL_MIN	128
104 static long io_pool_cnt_min = DEFAULT_IO_POOL_MIN;
105 static long io_pool_cnt_lowater = 0;
106 static long io_pool_shrink_attempts; /* how many times did we try to shrink */
107 static long io_pool_shrinks;	/* how many times did we really shrink */
108 static long io_pool_grows;	/* how many times did we grow */
109 static mfn_t start_mfn = 1;
110 static caddr_t io_pool_kva;	/* use to alloc pages when needed */
111 
112 static int create_contig_pfnlist(uint_t);
113 
114 /*
115  * percentage of phys mem to hold in the i/o pool
116  */
117 #define	DEFAULT_IO_POOL_PCT	2
118 static long io_pool_physmem_pct = DEFAULT_IO_POOL_PCT;
119 static void page_io_pool_sub(page_t **, page_t *, page_t *);
120 int ioalloc_dbg = 0;
121 
122 #endif /* __xpv */
123 
124 uint_t vac_colors = 1;
125 
126 int largepagesupport = 0;
127 extern uint_t page_create_new;
128 extern uint_t page_create_exists;
129 extern uint_t page_create_putbacks;
130 extern uint_t page_create_putbacks;
131 /*
132  * Allow users to disable the kernel's use of SSE.
133  */
134 extern int use_sse_pagecopy, use_sse_pagezero;
135 
136 /*
137  * combined memory ranges from mnode and memranges[] to manage single
138  * mnode/mtype dimension in the page lists.
139  */
140 typedef struct {
141 	pfn_t	mnr_pfnlo;
142 	pfn_t	mnr_pfnhi;
143 	int	mnr_mnode;
144 	int	mnr_memrange;		/* index into memranges[] */
145 	/* maintain page list stats */
146 	pgcnt_t	mnr_mt_clpgcnt;		/* cache list cnt */
147 	pgcnt_t	mnr_mt_flpgcnt[MMU_PAGE_SIZES];	/* free list cnt per szc */
148 	pgcnt_t	mnr_mt_totcnt;		/* sum of cache and free lists */
149 #ifdef DEBUG
150 	struct mnr_mts {		/* mnode/mtype szc stats */
151 		pgcnt_t	mnr_mts_pgcnt;
152 		int	mnr_mts_colors;
153 		pgcnt_t *mnr_mtsc_pgcnt;
154 	} 	*mnr_mts;
155 #endif
156 } mnoderange_t;
157 
158 #define	MEMRANGEHI(mtype)						\
159 	((mtype > 0) ? memranges[mtype - 1] - 1: physmax)
160 #define	MEMRANGELO(mtype)	(memranges[mtype])
161 
162 #define	MTYPE_FREEMEM(mt)	(mnoderanges[mt].mnr_mt_totcnt)
163 
164 /*
165  * As the PC architecture evolved memory up was clumped into several
166  * ranges for various historical I/O devices to do DMA.
167  * < 16Meg - ISA bus
168  * < 2Gig - ???
169  * < 4Gig - PCI bus or drivers that don't understand PAE mode
170  *
171  * These are listed in reverse order, so that we can skip over unused
172  * ranges on machines with small memories.
173  *
174  * For now under the Hypervisor, we'll only ever have one memrange.
175  */
176 #define	PFN_4GIG	0x100000
177 #define	PFN_16MEG	0x1000
178 static pfn_t arch_memranges[NUM_MEM_RANGES] = {
179     PFN_4GIG,	/* pfn range for 4G and above */
180     0x80000,	/* pfn range for 2G-4G */
181     PFN_16MEG,	/* pfn range for 16M-2G */
182     0x00000,	/* pfn range for 0-16M */
183 };
184 pfn_t *memranges = &arch_memranges[0];
185 int nranges = NUM_MEM_RANGES;
186 
187 /*
188  * This combines mem_node_config and memranges into one data
189  * structure to be used for page list management.
190  */
191 mnoderange_t	*mnoderanges;
192 int		mnoderangecnt;
193 int		mtype4g;
194 
195 /*
196  * 4g memory management variables for systems with more than 4g of memory:
197  *
198  * physical memory below 4g is required for 32bit dma devices and, currently,
199  * for kmem memory. On systems with more than 4g of memory, the pool of memory
200  * below 4g can be depleted without any paging activity given that there is
201  * likely to be sufficient memory above 4g.
202  *
203  * physmax4g is set true if the largest pfn is over 4g. The rest of the
204  * 4g memory management code is enabled only when physmax4g is true.
205  *
206  * maxmem4g is the count of the maximum number of pages on the page lists
207  * with physical addresses below 4g. It can be a lot less then 4g given that
208  * BIOS may reserve large chunks of space below 4g for hot plug pci devices,
209  * agp aperture etc.
210  *
211  * freemem4g maintains the count of the number of available pages on the
212  * page lists with physical addresses below 4g.
213  *
214  * DESFREE4G specifies the desired amount of below 4g memory. It defaults to
215  * 6% (desfree4gshift = 4) of maxmem4g.
216  *
217  * RESTRICT4G_ALLOC returns true if freemem4g falls below DESFREE4G
218  * and the amount of physical memory above 4g is greater than freemem4g.
219  * In this case, page_get_* routines will restrict below 4g allocations
220  * for requests that don't specifically require it.
221  */
222 
223 #define	LOTSFREE4G	(maxmem4g >> lotsfree4gshift)
224 #define	DESFREE4G	(maxmem4g >> desfree4gshift)
225 
226 #define	RESTRICT4G_ALLOC					\
227 	(physmax4g && (freemem4g < DESFREE4G) && ((freemem4g << 1) < freemem))
228 
229 static pgcnt_t	maxmem4g;
230 static pgcnt_t	freemem4g;
231 static int	physmax4g;
232 static int	desfree4gshift = 4;	/* maxmem4g shift to derive DESFREE4G */
233 static int	lotsfree4gshift = 3;
234 
235 /*
236  * 16m memory management:
237  *
238  * reserve some amount of physical memory below 16m for legacy devices.
239  *
240  * RESTRICT16M_ALLOC returns true if an there are sufficient free pages above
241  * 16m or if the 16m pool drops below DESFREE16M.
242  *
243  * In this case, general page allocations via page_get_{free,cache}list
244  * routines will be restricted from allocating from the 16m pool. Allocations
245  * that require specific pfn ranges (page_get_anylist) and PG_PANIC allocations
246  * are not restricted.
247  */
248 
249 #define	FREEMEM16M	MTYPE_FREEMEM(0)
250 #define	DESFREE16M	desfree16m
251 #define	RESTRICT16M_ALLOC(freemem, pgcnt, flags)		\
252 	((freemem != 0) && ((flags & PG_PANIC) == 0) &&		\
253 	    ((freemem >= (FREEMEM16M)) ||			\
254 	    (FREEMEM16M  < (DESFREE16M + pgcnt))))
255 
256 static pgcnt_t	desfree16m = 0x380;
257 
258 /*
259  * This can be patched via /etc/system to allow old non-PAE aware device
260  * drivers to use kmem_alloc'd memory on 32 bit systems with > 4Gig RAM.
261  */
262 int restricted_kmemalloc = 0;
263 
264 #ifdef VM_STATS
265 struct {
266 	ulong_t	pga_alloc;
267 	ulong_t	pga_notfullrange;
268 	ulong_t	pga_nulldmaattr;
269 	ulong_t	pga_allocok;
270 	ulong_t	pga_allocfailed;
271 	ulong_t	pgma_alloc;
272 	ulong_t	pgma_allocok;
273 	ulong_t	pgma_allocfailed;
274 	ulong_t	pgma_allocempty;
275 } pga_vmstats;
276 #endif
277 
278 uint_t mmu_page_sizes;
279 
280 /* How many page sizes the users can see */
281 uint_t mmu_exported_page_sizes;
282 
283 /* page sizes that legacy applications can see */
284 uint_t mmu_legacy_page_sizes;
285 
286 /*
287  * Number of pages in 1 GB.  Don't enable automatic large pages if we have
288  * fewer than this many pages.
289  */
290 pgcnt_t shm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT);
291 pgcnt_t privm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT);
292 
293 /*
294  * Maximum and default segment size tunables for user private
295  * and shared anon memory, and user text and initialized data.
296  * These can be patched via /etc/system to allow large pages
297  * to be used for mapping application private and shared anon memory.
298  */
299 size_t mcntl0_lpsize = MMU_PAGESIZE;
300 size_t max_uheap_lpsize = MMU_PAGESIZE;
301 size_t default_uheap_lpsize = MMU_PAGESIZE;
302 size_t max_ustack_lpsize = MMU_PAGESIZE;
303 size_t default_ustack_lpsize = MMU_PAGESIZE;
304 size_t max_privmap_lpsize = MMU_PAGESIZE;
305 size_t max_uidata_lpsize = MMU_PAGESIZE;
306 size_t max_utext_lpsize = MMU_PAGESIZE;
307 size_t max_shm_lpsize = MMU_PAGESIZE;
308 
309 
310 /*
311  * initialized by page_coloring_init().
312  */
313 uint_t	page_colors;
314 uint_t	page_colors_mask;
315 uint_t	page_coloring_shift;
316 int	cpu_page_colors;
317 static uint_t	l2_colors;
318 
319 /*
320  * Page freelists and cachelists are dynamically allocated once mnoderangecnt
321  * and page_colors are calculated from the l2 cache n-way set size.  Within a
322  * mnode range, the page freelist and cachelist are hashed into bins based on
323  * color. This makes it easier to search for a page within a specific memory
324  * range.
325  */
326 #define	PAGE_COLORS_MIN	16
327 
328 page_t ****page_freelists;
329 page_t ***page_cachelists;
330 
331 
332 /*
333  * Used by page layer to know about page sizes
334  */
335 hw_pagesize_t hw_page_array[MAX_NUM_LEVEL + 1];
336 
337 kmutex_t	*fpc_mutex[NPC_MUTEX];
338 kmutex_t	*cpc_mutex[NPC_MUTEX];
339 
340 /*
341  * Only let one thread at a time try to coalesce large pages, to
342  * prevent them from working against each other.
343  */
344 static kmutex_t	contig_lock;
345 #define	CONTIG_LOCK()	mutex_enter(&contig_lock);
346 #define	CONTIG_UNLOCK()	mutex_exit(&contig_lock);
347 
348 #define	PFN_16M		(mmu_btop((uint64_t)0x1000000))
349 
350 /*
351  * Return the optimum page size for a given mapping
352  */
353 /*ARGSUSED*/
354 size_t
355 map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int memcntl)
356 {
357 	level_t l = 0;
358 	size_t pgsz = MMU_PAGESIZE;
359 	size_t max_lpsize;
360 	uint_t mszc;
361 
362 	ASSERT(maptype != MAPPGSZ_VA);
363 
364 	if (maptype != MAPPGSZ_ISM && physmem < privm_lpg_min_physmem) {
365 		return (MMU_PAGESIZE);
366 	}
367 
368 	switch (maptype) {
369 	case MAPPGSZ_HEAP:
370 	case MAPPGSZ_STK:
371 		max_lpsize = memcntl ? mcntl0_lpsize : (maptype ==
372 		    MAPPGSZ_HEAP ? max_uheap_lpsize : max_ustack_lpsize);
373 		if (max_lpsize == MMU_PAGESIZE) {
374 			return (MMU_PAGESIZE);
375 		}
376 		if (len == 0) {
377 			len = (maptype == MAPPGSZ_HEAP) ? p->p_brkbase +
378 			    p->p_brksize - p->p_bssbase : p->p_stksize;
379 		}
380 		len = (maptype == MAPPGSZ_HEAP) ? MAX(len,
381 		    default_uheap_lpsize) : MAX(len, default_ustack_lpsize);
382 
383 		/*
384 		 * use the pages size that best fits len
385 		 */
386 		for (l = mmu.umax_page_level; l > 0; --l) {
387 			if (LEVEL_SIZE(l) > max_lpsize || len < LEVEL_SIZE(l)) {
388 				continue;
389 			} else {
390 				pgsz = LEVEL_SIZE(l);
391 			}
392 			break;
393 		}
394 
395 		mszc = (maptype == MAPPGSZ_HEAP ? p->p_brkpageszc :
396 		    p->p_stkpageszc);
397 		if (addr == 0 && (pgsz < hw_page_array[mszc].hp_size)) {
398 			pgsz = hw_page_array[mszc].hp_size;
399 		}
400 		return (pgsz);
401 
402 	case MAPPGSZ_ISM:
403 		for (l = mmu.umax_page_level; l > 0; --l) {
404 			if (len >= LEVEL_SIZE(l))
405 				return (LEVEL_SIZE(l));
406 		}
407 		return (LEVEL_SIZE(0));
408 	}
409 	return (pgsz);
410 }
411 
412 static uint_t
413 map_szcvec(caddr_t addr, size_t size, uintptr_t off, size_t max_lpsize,
414     size_t min_physmem)
415 {
416 	caddr_t eaddr = addr + size;
417 	uint_t szcvec = 0;
418 	caddr_t raddr;
419 	caddr_t readdr;
420 	size_t	pgsz;
421 	int i;
422 
423 	if (physmem < min_physmem || max_lpsize <= MMU_PAGESIZE) {
424 		return (0);
425 	}
426 
427 	for (i = mmu_exported_page_sizes - 1; i > 0; i--) {
428 		pgsz = page_get_pagesize(i);
429 		if (pgsz > max_lpsize) {
430 			continue;
431 		}
432 		raddr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
433 		readdr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
434 		if (raddr < addr || raddr >= readdr) {
435 			continue;
436 		}
437 		if (P2PHASE((uintptr_t)addr ^ off, pgsz)) {
438 			continue;
439 		}
440 		/*
441 		 * Set szcvec to the remaining page sizes.
442 		 */
443 		szcvec = ((1 << (i + 1)) - 1) & ~1;
444 		break;
445 	}
446 	return (szcvec);
447 }
448 
449 /*
450  * Return a bit vector of large page size codes that
451  * can be used to map [addr, addr + len) region.
452  */
453 /*ARGSUSED*/
454 uint_t
455 map_pgszcvec(caddr_t addr, size_t size, uintptr_t off, int flags, int type,
456     int memcntl)
457 {
458 	size_t max_lpsize = mcntl0_lpsize;
459 
460 	if (mmu.max_page_level == 0)
461 		return (0);
462 
463 	if (flags & MAP_TEXT) {
464 		if (!memcntl)
465 			max_lpsize = max_utext_lpsize;
466 		return (map_szcvec(addr, size, off, max_lpsize,
467 		    shm_lpg_min_physmem));
468 
469 	} else if (flags & MAP_INITDATA) {
470 		if (!memcntl)
471 			max_lpsize = max_uidata_lpsize;
472 		return (map_szcvec(addr, size, off, max_lpsize,
473 		    privm_lpg_min_physmem));
474 
475 	} else if (type == MAPPGSZC_SHM) {
476 		if (!memcntl)
477 			max_lpsize = max_shm_lpsize;
478 		return (map_szcvec(addr, size, off, max_lpsize,
479 		    shm_lpg_min_physmem));
480 
481 	} else if (type == MAPPGSZC_HEAP) {
482 		if (!memcntl)
483 			max_lpsize = max_uheap_lpsize;
484 		return (map_szcvec(addr, size, off, max_lpsize,
485 		    privm_lpg_min_physmem));
486 
487 	} else if (type == MAPPGSZC_STACK) {
488 		if (!memcntl)
489 			max_lpsize = max_ustack_lpsize;
490 		return (map_szcvec(addr, size, off, max_lpsize,
491 		    privm_lpg_min_physmem));
492 
493 	} else {
494 		if (!memcntl)
495 			max_lpsize = max_privmap_lpsize;
496 		return (map_szcvec(addr, size, off, max_lpsize,
497 		    privm_lpg_min_physmem));
498 	}
499 }
500 
501 /*
502  * Handle a pagefault.
503  */
504 faultcode_t
505 pagefault(
506 	caddr_t addr,
507 	enum fault_type type,
508 	enum seg_rw rw,
509 	int iskernel)
510 {
511 	struct as *as;
512 	struct hat *hat;
513 	struct proc *p;
514 	kthread_t *t;
515 	faultcode_t res;
516 	caddr_t base;
517 	size_t len;
518 	int err;
519 	int mapped_red;
520 	uintptr_t ea;
521 
522 	ASSERT_STACK_ALIGNED();
523 
524 	if (INVALID_VADDR(addr))
525 		return (FC_NOMAP);
526 
527 	mapped_red = segkp_map_red();
528 
529 	if (iskernel) {
530 		as = &kas;
531 		hat = as->a_hat;
532 	} else {
533 		t = curthread;
534 		p = ttoproc(t);
535 		as = p->p_as;
536 		hat = as->a_hat;
537 	}
538 
539 	/*
540 	 * Dispatch pagefault.
541 	 */
542 	res = as_fault(hat, as, addr, 1, type, rw);
543 
544 	/*
545 	 * If this isn't a potential unmapped hole in the user's
546 	 * UNIX data or stack segments, just return status info.
547 	 */
548 	if (res != FC_NOMAP || iskernel)
549 		goto out;
550 
551 	/*
552 	 * Check to see if we happened to faulted on a currently unmapped
553 	 * part of the UNIX data or stack segments.  If so, create a zfod
554 	 * mapping there and then try calling the fault routine again.
555 	 */
556 	base = p->p_brkbase;
557 	len = p->p_brksize;
558 
559 	if (addr < base || addr >= base + len) {		/* data seg? */
560 		base = (caddr_t)p->p_usrstack - p->p_stksize;
561 		len = p->p_stksize;
562 		if (addr < base || addr >= p->p_usrstack) {	/* stack seg? */
563 			/* not in either UNIX data or stack segments */
564 			res = FC_NOMAP;
565 			goto out;
566 		}
567 	}
568 
569 	/*
570 	 * the rest of this function implements a 3.X 4.X 5.X compatibility
571 	 * This code is probably not needed anymore
572 	 */
573 	if (p->p_model == DATAMODEL_ILP32) {
574 
575 		/* expand the gap to the page boundaries on each side */
576 		ea = P2ROUNDUP((uintptr_t)base + len, MMU_PAGESIZE);
577 		base = (caddr_t)P2ALIGN((uintptr_t)base, MMU_PAGESIZE);
578 		len = ea - (uintptr_t)base;
579 
580 		as_rangelock(as);
581 		if (as_gap(as, MMU_PAGESIZE, &base, &len, AH_CONTAIN, addr) ==
582 		    0) {
583 			err = as_map(as, base, len, segvn_create, zfod_argsp);
584 			as_rangeunlock(as);
585 			if (err) {
586 				res = FC_MAKE_ERR(err);
587 				goto out;
588 			}
589 		} else {
590 			/*
591 			 * This page is already mapped by another thread after
592 			 * we returned from as_fault() above.  We just fall
593 			 * through as_fault() below.
594 			 */
595 			as_rangeunlock(as);
596 		}
597 
598 		res = as_fault(hat, as, addr, 1, F_INVAL, rw);
599 	}
600 
601 out:
602 	if (mapped_red)
603 		segkp_unmap_red();
604 
605 	return (res);
606 }
607 
608 void
609 map_addr(caddr_t *addrp, size_t len, offset_t off, int vacalign, uint_t flags)
610 {
611 	struct proc *p = curproc;
612 	caddr_t userlimit = (flags & _MAP_LOW32) ?
613 	    (caddr_t)_userlimit32 : p->p_as->a_userlimit;
614 
615 	map_addr_proc(addrp, len, off, vacalign, userlimit, curproc, flags);
616 }
617 
618 /*ARGSUSED*/
619 int
620 map_addr_vacalign_check(caddr_t addr, u_offset_t off)
621 {
622 	return (0);
623 }
624 
625 /*
626  * map_addr_proc() is the routine called when the system is to
627  * choose an address for the user.  We will pick an address
628  * range which is the highest available below userlimit.
629  *
630  * Every mapping will have a redzone of a single page on either side of
631  * the request. This is done to leave one page unmapped between segments.
632  * This is not required, but it's useful for the user because if their
633  * program strays across a segment boundary, it will catch a fault
634  * immediately making debugging a little easier.  Currently the redzone
635  * is mandatory.
636  *
637  * addrp is a value/result parameter.
638  *	On input it is a hint from the user to be used in a completely
639  *	machine dependent fashion.  We decide to completely ignore this hint.
640  *	If MAP_ALIGN was specified, addrp contains the minimal alignment, which
641  *	must be some "power of two" multiple of pagesize.
642  *
643  *	On output it is NULL if no address can be found in the current
644  *	processes address space or else an address that is currently
645  *	not mapped for len bytes with a page of red zone on either side.
646  *
647  *	vacalign is not needed on x86 (it's for viturally addressed caches)
648  */
649 /*ARGSUSED*/
650 void
651 map_addr_proc(
652 	caddr_t *addrp,
653 	size_t len,
654 	offset_t off,
655 	int vacalign,
656 	caddr_t userlimit,
657 	struct proc *p,
658 	uint_t flags)
659 {
660 	struct as *as = p->p_as;
661 	caddr_t addr;
662 	caddr_t base;
663 	size_t slen;
664 	size_t align_amount;
665 
666 	ASSERT32(userlimit == as->a_userlimit);
667 
668 	base = p->p_brkbase;
669 #if defined(__amd64)
670 	/*
671 	 * XX64 Yes, this needs more work.
672 	 */
673 	if (p->p_model == DATAMODEL_NATIVE) {
674 		if (userlimit < as->a_userlimit) {
675 			/*
676 			 * This happens when a program wants to map
677 			 * something in a range that's accessible to a
678 			 * program in a smaller address space.  For example,
679 			 * a 64-bit program calling mmap32(2) to guarantee
680 			 * that the returned address is below 4Gbytes.
681 			 */
682 			ASSERT((uintptr_t)userlimit < ADDRESS_C(0xffffffff));
683 
684 			if (userlimit > base)
685 				slen = userlimit - base;
686 			else {
687 				*addrp = NULL;
688 				return;
689 			}
690 		} else {
691 			/*
692 			 * XX64 This layout is probably wrong .. but in
693 			 * the event we make the amd64 address space look
694 			 * like sparcv9 i.e. with the stack -above- the
695 			 * heap, this bit of code might even be correct.
696 			 */
697 			slen = p->p_usrstack - base -
698 			    ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK);
699 		}
700 	} else
701 #endif
702 		slen = userlimit - base;
703 
704 	/* Make len be a multiple of PAGESIZE */
705 	len = (len + PAGEOFFSET) & PAGEMASK;
706 
707 	/*
708 	 * figure out what the alignment should be
709 	 *
710 	 * XX64 -- is there an ELF_AMD64_MAXPGSZ or is it the same????
711 	 */
712 	if (len <= ELF_386_MAXPGSZ) {
713 		/*
714 		 * Align virtual addresses to ensure that ELF shared libraries
715 		 * are mapped with the appropriate alignment constraints by
716 		 * the run-time linker.
717 		 */
718 		align_amount = ELF_386_MAXPGSZ;
719 	} else {
720 		/*
721 		 * For 32-bit processes, only those which have specified
722 		 * MAP_ALIGN and an addr will be aligned on a larger page size.
723 		 * Not doing so can potentially waste up to 1G of process
724 		 * address space.
725 		 */
726 		int lvl = (p->p_model == DATAMODEL_ILP32) ? 1 :
727 		    mmu.umax_page_level;
728 
729 		while (lvl && len < LEVEL_SIZE(lvl))
730 			--lvl;
731 
732 		align_amount = LEVEL_SIZE(lvl);
733 	}
734 	if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount))
735 		align_amount = (uintptr_t)*addrp;
736 
737 	ASSERT(ISP2(align_amount));
738 	ASSERT(align_amount == 0 || align_amount >= PAGESIZE);
739 
740 	off = off & (align_amount - 1);
741 	/*
742 	 * Look for a large enough hole starting below userlimit.
743 	 * After finding it, use the upper part.
744 	 */
745 	if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount,
746 	    PAGESIZE, off) == 0) {
747 		caddr_t as_addr;
748 
749 		/*
750 		 * addr is the highest possible address to use since we have
751 		 * a PAGESIZE redzone at the beginning and end.
752 		 */
753 		addr = base + slen - (PAGESIZE + len);
754 		as_addr = addr;
755 		/*
756 		 * Round address DOWN to the alignment amount and
757 		 * add the offset in.
758 		 * If addr is greater than as_addr, len would not be large
759 		 * enough to include the redzone, so we must adjust down
760 		 * by the alignment amount.
761 		 */
762 		addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1)));
763 		addr += (uintptr_t)off;
764 		if (addr > as_addr) {
765 			addr -= align_amount;
766 		}
767 
768 		ASSERT(addr > base);
769 		ASSERT(addr + len < base + slen);
770 		ASSERT(((uintptr_t)addr & (align_amount - 1)) ==
771 		    ((uintptr_t)(off)));
772 		*addrp = addr;
773 	} else {
774 		*addrp = NULL;	/* no more virtual space */
775 	}
776 }
777 
778 int valid_va_range_aligned_wraparound;
779 
780 /*
781  * Determine whether [*basep, *basep + *lenp) contains a mappable range of
782  * addresses at least "minlen" long, where the base of the range is at "off"
783  * phase from an "align" boundary and there is space for a "redzone"-sized
784  * redzone on either side of the range.  On success, 1 is returned and *basep
785  * and *lenp are adjusted to describe the acceptable range (including
786  * the redzone).  On failure, 0 is returned.
787  */
788 /*ARGSUSED3*/
789 int
790 valid_va_range_aligned(caddr_t *basep, size_t *lenp, size_t minlen, int dir,
791     size_t align, size_t redzone, size_t off)
792 {
793 	uintptr_t hi, lo;
794 	size_t tot_len;
795 
796 	ASSERT(align == 0 ? off == 0 : off < align);
797 	ASSERT(ISP2(align));
798 	ASSERT(align == 0 || align >= PAGESIZE);
799 
800 	lo = (uintptr_t)*basep;
801 	hi = lo + *lenp;
802 	tot_len = minlen + 2 * redzone; /* need at least this much space */
803 
804 	/*
805 	 * If hi rolled over the top, try cutting back.
806 	 */
807 	if (hi < lo) {
808 		*lenp = 0UL - lo - 1UL;
809 		/* See if this really happens. If so, then we figure out why */
810 		valid_va_range_aligned_wraparound++;
811 		hi = lo + *lenp;
812 	}
813 	if (*lenp < tot_len) {
814 		return (0);
815 	}
816 
817 #if defined(__amd64)
818 	/*
819 	 * Deal with a possible hole in the address range between
820 	 * hole_start and hole_end that should never be mapped.
821 	 */
822 	if (lo < hole_start) {
823 		if (hi > hole_start) {
824 			if (hi < hole_end) {
825 				hi = hole_start;
826 			} else {
827 				/* lo < hole_start && hi >= hole_end */
828 				if (dir == AH_LO) {
829 					/*
830 					 * prefer lowest range
831 					 */
832 					if (hole_start - lo >= tot_len)
833 						hi = hole_start;
834 					else if (hi - hole_end >= tot_len)
835 						lo = hole_end;
836 					else
837 						return (0);
838 				} else {
839 					/*
840 					 * prefer highest range
841 					 */
842 					if (hi - hole_end >= tot_len)
843 						lo = hole_end;
844 					else if (hole_start - lo >= tot_len)
845 						hi = hole_start;
846 					else
847 						return (0);
848 				}
849 			}
850 		}
851 	} else {
852 		/* lo >= hole_start */
853 		if (hi < hole_end)
854 			return (0);
855 		if (lo < hole_end)
856 			lo = hole_end;
857 	}
858 #endif
859 
860 	if (hi - lo < tot_len)
861 		return (0);
862 
863 	if (align > 1) {
864 		uintptr_t tlo = lo + redzone;
865 		uintptr_t thi = hi - redzone;
866 		tlo = (uintptr_t)P2PHASEUP(tlo, align, off);
867 		if (tlo < lo + redzone) {
868 			return (0);
869 		}
870 		if (thi < tlo || thi - tlo < minlen) {
871 			return (0);
872 		}
873 	}
874 
875 	*basep = (caddr_t)lo;
876 	*lenp = hi - lo;
877 	return (1);
878 }
879 
880 /*
881  * Determine whether [*basep, *basep + *lenp) contains a mappable range of
882  * addresses at least "minlen" long.  On success, 1 is returned and *basep
883  * and *lenp are adjusted to describe the acceptable range.  On failure, 0
884  * is returned.
885  */
886 int
887 valid_va_range(caddr_t *basep, size_t *lenp, size_t minlen, int dir)
888 {
889 	return (valid_va_range_aligned(basep, lenp, minlen, dir, 0, 0, 0));
890 }
891 
892 /*
893  * Determine whether [addr, addr+len] are valid user addresses.
894  */
895 /*ARGSUSED*/
896 int
897 valid_usr_range(caddr_t addr, size_t len, uint_t prot, struct as *as,
898     caddr_t userlimit)
899 {
900 	caddr_t eaddr = addr + len;
901 
902 	if (eaddr <= addr || addr >= userlimit || eaddr > userlimit)
903 		return (RANGE_BADADDR);
904 
905 #if defined(__amd64)
906 	/*
907 	 * Check for the VA hole
908 	 */
909 	if (eaddr > (caddr_t)hole_start && addr < (caddr_t)hole_end)
910 		return (RANGE_BADADDR);
911 #endif
912 
913 	return (RANGE_OKAY);
914 }
915 
916 /*
917  * Return 1 if the page frame is onboard memory, else 0.
918  */
919 int
920 pf_is_memory(pfn_t pf)
921 {
922 	if (pfn_is_foreign(pf))
923 		return (0);
924 	return (address_in_memlist(phys_install, pfn_to_pa(pf), 1));
925 }
926 
927 /*
928  * return the memrange containing pfn
929  */
930 int
931 memrange_num(pfn_t pfn)
932 {
933 	int n;
934 
935 	for (n = 0; n < nranges - 1; ++n) {
936 		if (pfn >= memranges[n])
937 			break;
938 	}
939 	return (n);
940 }
941 
942 /*
943  * return the mnoderange containing pfn
944  */
945 /*ARGSUSED*/
946 int
947 pfn_2_mtype(pfn_t pfn)
948 {
949 #if defined(__xpv)
950 	return (0);
951 #else
952 	int	n;
953 
954 	for (n = mnoderangecnt - 1; n >= 0; n--) {
955 		if (pfn >= mnoderanges[n].mnr_pfnlo) {
956 			break;
957 		}
958 	}
959 	return (n);
960 #endif
961 }
962 
963 #if !defined(__xpv)
964 /*
965  * is_contigpage_free:
966  *	returns a page list of contiguous pages. It minimally has to return
967  *	minctg pages. Caller determines minctg based on the scatter-gather
968  *	list length.
969  *
970  *	pfnp is set to the next page frame to search on return.
971  */
972 static page_t *
973 is_contigpage_free(
974 	pfn_t *pfnp,
975 	pgcnt_t *pgcnt,
976 	pgcnt_t minctg,
977 	uint64_t pfnseg,
978 	int iolock)
979 {
980 	int	i = 0;
981 	pfn_t	pfn = *pfnp;
982 	page_t	*pp;
983 	page_t	*plist = NULL;
984 
985 	/*
986 	 * fail if pfn + minctg crosses a segment boundary.
987 	 * Adjust for next starting pfn to begin at segment boundary.
988 	 */
989 
990 	if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) {
991 		*pfnp = roundup(*pfnp, pfnseg + 1);
992 		return (NULL);
993 	}
994 
995 	do {
996 retry:
997 		pp = page_numtopp_nolock(pfn + i);
998 		if ((pp == NULL) ||
999 		    (page_trylock(pp, SE_EXCL) == 0)) {
1000 			(*pfnp)++;
1001 			break;
1002 		}
1003 		if (page_pptonum(pp) != pfn + i) {
1004 			page_unlock(pp);
1005 			goto retry;
1006 		}
1007 
1008 		if (!(PP_ISFREE(pp))) {
1009 			page_unlock(pp);
1010 			(*pfnp)++;
1011 			break;
1012 		}
1013 
1014 		if (!PP_ISAGED(pp)) {
1015 			page_list_sub(pp, PG_CACHE_LIST);
1016 			page_hashout(pp, (kmutex_t *)NULL);
1017 		} else {
1018 			page_list_sub(pp, PG_FREE_LIST);
1019 		}
1020 
1021 		if (iolock)
1022 			page_io_lock(pp);
1023 		page_list_concat(&plist, &pp);
1024 
1025 		/*
1026 		 * exit loop when pgcnt satisfied or segment boundary reached.
1027 		 */
1028 
1029 	} while ((++i < *pgcnt) && ((pfn + i) & pfnseg));
1030 
1031 	*pfnp += i;		/* set to next pfn to search */
1032 
1033 	if (i >= minctg) {
1034 		*pgcnt -= i;
1035 		return (plist);
1036 	}
1037 
1038 	/*
1039 	 * failure: minctg not satisfied.
1040 	 *
1041 	 * if next request crosses segment boundary, set next pfn
1042 	 * to search from the segment boundary.
1043 	 */
1044 	if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg))
1045 		*pfnp = roundup(*pfnp, pfnseg + 1);
1046 
1047 	/* clean up any pages already allocated */
1048 
1049 	while (plist) {
1050 		pp = plist;
1051 		page_sub(&plist, pp);
1052 		page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
1053 		if (iolock)
1054 			page_io_unlock(pp);
1055 		page_unlock(pp);
1056 	}
1057 
1058 	return (NULL);
1059 }
1060 #endif	/* !__xpv */
1061 
1062 /*
1063  * verify that pages being returned from allocator have correct DMA attribute
1064  */
1065 #ifndef DEBUG
1066 #define	check_dma(a, b, c) (0)
1067 #else
1068 static void
1069 check_dma(ddi_dma_attr_t *dma_attr, page_t *pp, int cnt)
1070 {
1071 	if (dma_attr == NULL)
1072 		return;
1073 
1074 	while (cnt-- > 0) {
1075 		if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) <
1076 		    dma_attr->dma_attr_addr_lo)
1077 			panic("PFN (pp=%p) below dma_attr_addr_lo", (void *)pp);
1078 		if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) >=
1079 		    dma_attr->dma_attr_addr_hi)
1080 			panic("PFN (pp=%p) above dma_attr_addr_hi", (void *)pp);
1081 		pp = pp->p_next;
1082 	}
1083 }
1084 #endif
1085 
1086 #if !defined(__xpv)
1087 static page_t *
1088 page_get_contigpage(pgcnt_t *pgcnt, ddi_dma_attr_t *mattr, int iolock)
1089 {
1090 	pfn_t		pfn;
1091 	int		sgllen;
1092 	uint64_t	pfnseg;
1093 	pgcnt_t		minctg;
1094 	page_t		*pplist = NULL, *plist;
1095 	uint64_t	lo, hi;
1096 	pgcnt_t		pfnalign = 0;
1097 	static pfn_t	startpfn;
1098 	static pgcnt_t	lastctgcnt;
1099 	uintptr_t	align;
1100 
1101 	CONTIG_LOCK();
1102 
1103 	if (mattr) {
1104 		lo = mmu_btop((mattr->dma_attr_addr_lo + MMU_PAGEOFFSET));
1105 		hi = mmu_btop(mattr->dma_attr_addr_hi);
1106 		if (hi >= physmax)
1107 			hi = physmax - 1;
1108 		sgllen = mattr->dma_attr_sgllen;
1109 		pfnseg = mmu_btop(mattr->dma_attr_seg);
1110 
1111 		align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
1112 		if (align > MMU_PAGESIZE)
1113 			pfnalign = mmu_btop(align);
1114 
1115 		/*
1116 		 * in order to satisfy the request, must minimally
1117 		 * acquire minctg contiguous pages
1118 		 */
1119 		minctg = howmany(*pgcnt, sgllen);
1120 
1121 		ASSERT(hi >= lo);
1122 
1123 		/*
1124 		 * start from where last searched if the minctg >= lastctgcnt
1125 		 */
1126 		if (minctg < lastctgcnt || startpfn < lo || startpfn > hi)
1127 			startpfn = lo;
1128 	} else {
1129 		hi = physmax - 1;
1130 		lo = 0;
1131 		sgllen = 1;
1132 		pfnseg = mmu.highest_pfn;
1133 		minctg = *pgcnt;
1134 
1135 		if (minctg < lastctgcnt)
1136 			startpfn = lo;
1137 	}
1138 	lastctgcnt = minctg;
1139 
1140 	ASSERT(pfnseg + 1 >= (uint64_t)minctg);
1141 
1142 	/* conserve 16m memory - start search above 16m when possible */
1143 	if (hi > PFN_16M && startpfn < PFN_16M)
1144 		startpfn = PFN_16M;
1145 
1146 	pfn = startpfn;
1147 	if (pfnalign)
1148 		pfn = P2ROUNDUP(pfn, pfnalign);
1149 
1150 	while (pfn + minctg - 1 <= hi) {
1151 
1152 		plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock);
1153 		if (plist) {
1154 			page_list_concat(&pplist, &plist);
1155 			sgllen--;
1156 			/*
1157 			 * return when contig pages no longer needed
1158 			 */
1159 			if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) {
1160 				startpfn = pfn;
1161 				CONTIG_UNLOCK();
1162 				check_dma(mattr, pplist, *pgcnt);
1163 				return (pplist);
1164 			}
1165 			minctg = howmany(*pgcnt, sgllen);
1166 		}
1167 		if (pfnalign)
1168 			pfn = P2ROUNDUP(pfn, pfnalign);
1169 	}
1170 
1171 	/* cannot find contig pages in specified range */
1172 	if (startpfn == lo) {
1173 		CONTIG_UNLOCK();
1174 		return (NULL);
1175 	}
1176 
1177 	/* did not start with lo previously */
1178 	pfn = lo;
1179 	if (pfnalign)
1180 		pfn = P2ROUNDUP(pfn, pfnalign);
1181 
1182 	/* allow search to go above startpfn */
1183 	while (pfn < startpfn) {
1184 
1185 		plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock);
1186 		if (plist != NULL) {
1187 
1188 			page_list_concat(&pplist, &plist);
1189 			sgllen--;
1190 
1191 			/*
1192 			 * return when contig pages no longer needed
1193 			 */
1194 			if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) {
1195 				startpfn = pfn;
1196 				CONTIG_UNLOCK();
1197 				check_dma(mattr, pplist, *pgcnt);
1198 				return (pplist);
1199 			}
1200 			minctg = howmany(*pgcnt, sgllen);
1201 		}
1202 		if (pfnalign)
1203 			pfn = P2ROUNDUP(pfn, pfnalign);
1204 	}
1205 	CONTIG_UNLOCK();
1206 	return (NULL);
1207 }
1208 #endif	/* !__xpv */
1209 
1210 /*
1211  * mnode_range_cnt() calculates the number of memory ranges for mnode and
1212  * memranges[]. Used to determine the size of page lists and mnoderanges.
1213  */
1214 int
1215 mnode_range_cnt(int mnode)
1216 {
1217 #if defined(__xpv)
1218 	ASSERT(mnode == 0);
1219 	return (1);
1220 #else	/* __xpv */
1221 	int	mri;
1222 	int	mnrcnt = 0;
1223 
1224 	if (mem_node_config[mnode].exists != 0) {
1225 		mri = nranges - 1;
1226 
1227 		/* find the memranges index below contained in mnode range */
1228 
1229 		while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase)
1230 			mri--;
1231 
1232 		/*
1233 		 * increment mnode range counter when memranges or mnode
1234 		 * boundary is reached.
1235 		 */
1236 		while (mri >= 0 &&
1237 		    mem_node_config[mnode].physmax >= MEMRANGELO(mri)) {
1238 			mnrcnt++;
1239 			if (mem_node_config[mnode].physmax > MEMRANGEHI(mri))
1240 				mri--;
1241 			else
1242 				break;
1243 		}
1244 	}
1245 	ASSERT(mnrcnt <= MAX_MNODE_MRANGES);
1246 	return (mnrcnt);
1247 #endif	/* __xpv */
1248 }
1249 
1250 /*
1251  * mnode_range_setup() initializes mnoderanges.
1252  */
1253 void
1254 mnode_range_setup(mnoderange_t *mnoderanges)
1255 {
1256 	int	mnode, mri;
1257 
1258 	for (mnode = 0; mnode < max_mem_nodes; mnode++) {
1259 		if (mem_node_config[mnode].exists == 0)
1260 			continue;
1261 
1262 		mri = nranges - 1;
1263 
1264 		while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase)
1265 			mri--;
1266 
1267 		while (mri >= 0 && mem_node_config[mnode].physmax >=
1268 		    MEMRANGELO(mri)) {
1269 			mnoderanges->mnr_pfnlo = MAX(MEMRANGELO(mri),
1270 			    mem_node_config[mnode].physbase);
1271 			mnoderanges->mnr_pfnhi = MIN(MEMRANGEHI(mri),
1272 			    mem_node_config[mnode].physmax);
1273 			mnoderanges->mnr_mnode = mnode;
1274 			mnoderanges->mnr_memrange = mri;
1275 			mnoderanges++;
1276 			if (mem_node_config[mnode].physmax > MEMRANGEHI(mri))
1277 				mri--;
1278 			else
1279 				break;
1280 		}
1281 	}
1282 }
1283 
1284 /*ARGSUSED*/
1285 int
1286 mtype_init(vnode_t *vp, caddr_t vaddr, uint_t *flags, size_t pgsz)
1287 {
1288 	int mtype = mnoderangecnt - 1;
1289 
1290 #if !defined(__xpv)
1291 #if defined(__i386)
1292 	/*
1293 	 * set the mtype range
1294 	 * - kmem requests needs to be below 4g if restricted_kmemalloc is set.
1295 	 * - for non kmem requests, set range to above 4g if memory below 4g
1296 	 * runs low.
1297 	 */
1298 	if (restricted_kmemalloc && VN_ISKAS(vp) &&
1299 	    (caddr_t)(vaddr) >= kernelheap &&
1300 	    (caddr_t)(vaddr) < ekernelheap) {
1301 		ASSERT(physmax4g);
1302 		mtype = mtype4g;
1303 		if (RESTRICT16M_ALLOC(freemem4g - btop(pgsz),
1304 		    btop(pgsz), *flags)) {
1305 			*flags |= PGI_MT_RANGE16M;
1306 		} else {
1307 			VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);
1308 			VM_STAT_COND_ADD((*flags & PG_PANIC),
1309 			    vmm_vmstats.pgpanicalloc);
1310 			*flags |= PGI_MT_RANGE0;
1311 		}
1312 		return (mtype);
1313 	}
1314 #endif	/* __i386 */
1315 
1316 	if (RESTRICT4G_ALLOC) {
1317 		VM_STAT_ADD(vmm_vmstats.restrict4gcnt);
1318 		/* here only for > 4g systems */
1319 		*flags |= PGI_MT_RANGE4G;
1320 	} else if (RESTRICT16M_ALLOC(freemem, btop(pgsz), *flags)) {
1321 		*flags |= PGI_MT_RANGE16M;
1322 	} else {
1323 		VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);
1324 		VM_STAT_COND_ADD((*flags & PG_PANIC), vmm_vmstats.pgpanicalloc);
1325 		*flags |= PGI_MT_RANGE0;
1326 	}
1327 #endif /* !__xpv */
1328 	return (mtype);
1329 }
1330 
1331 
1332 /* mtype init for page_get_replacement_page */
1333 /*ARGSUSED*/
1334 int
1335 mtype_pgr_init(int *flags, page_t *pp, int mnode, pgcnt_t pgcnt)
1336 {
1337 	int mtype = mnoderangecnt - 1;
1338 #if !defined(__ixpv)
1339 	if (RESTRICT16M_ALLOC(freemem, pgcnt, *flags)) {
1340 		*flags |= PGI_MT_RANGE16M;
1341 	} else {
1342 		VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);
1343 		*flags |= PGI_MT_RANGE0;
1344 	}
1345 #endif
1346 	return (mtype);
1347 }
1348 
1349 /*
1350  * Determine if the mnode range specified in mtype contains memory belonging
1351  * to memory node mnode.  If flags & PGI_MT_RANGE is set then mtype contains
1352  * the range of indices from high pfn to 0, 16m or 4g.
1353  *
1354  * Return first mnode range type index found otherwise return -1 if none found.
1355  */
1356 int
1357 mtype_func(int mnode, int mtype, uint_t flags)
1358 {
1359 	if (flags & PGI_MT_RANGE) {
1360 		int	mtlim = 0;
1361 
1362 		if (flags & PGI_MT_NEXT)
1363 			mtype--;
1364 		if (flags & PGI_MT_RANGE4G)
1365 			mtlim = mtype4g + 1;	/* exclude 0-4g range */
1366 		else if (flags & PGI_MT_RANGE16M)
1367 			mtlim = 1;		/* exclude 0-16m range */
1368 		while (mtype >= mtlim) {
1369 			if (mnoderanges[mtype].mnr_mnode == mnode)
1370 				return (mtype);
1371 			mtype--;
1372 		}
1373 	} else if (mnoderanges[mtype].mnr_mnode == mnode) {
1374 		return (mtype);
1375 	}
1376 	return (-1);
1377 }
1378 
1379 /*
1380  * Update the page list max counts with the pfn range specified by the
1381  * input parameters.  Called from add_physmem() when physical memory with
1382  * page_t's are initially added to the page lists.
1383  */
1384 void
1385 mtype_modify_max(pfn_t startpfn, long cnt)
1386 {
1387 	int	mtype = 0;
1388 	pfn_t	endpfn = startpfn + cnt, pfn;
1389 	pgcnt_t	inc;
1390 
1391 	ASSERT(cnt > 0);
1392 
1393 	if (!physmax4g)
1394 		return;
1395 
1396 	for (pfn = startpfn; pfn < endpfn; ) {
1397 		if (pfn <= mnoderanges[mtype].mnr_pfnhi) {
1398 			if (endpfn < mnoderanges[mtype].mnr_pfnhi) {
1399 				inc = endpfn - pfn;
1400 			} else {
1401 				inc = mnoderanges[mtype].mnr_pfnhi - pfn + 1;
1402 			}
1403 			if (mtype <= mtype4g)
1404 				maxmem4g += inc;
1405 			pfn += inc;
1406 		}
1407 		mtype++;
1408 		ASSERT(mtype < mnoderangecnt || pfn >= endpfn);
1409 	}
1410 }
1411 
1412 int
1413 mtype_2_mrange(int mtype)
1414 {
1415 	return (mnoderanges[mtype].mnr_memrange);
1416 }
1417 
1418 void
1419 mnodetype_2_pfn(int mnode, int mtype, pfn_t *pfnlo, pfn_t *pfnhi)
1420 {
1421 	ASSERT(mnoderanges[mtype].mnr_mnode == mnode);
1422 	*pfnlo = mnoderanges[mtype].mnr_pfnlo;
1423 	*pfnhi = mnoderanges[mtype].mnr_pfnhi;
1424 }
1425 
1426 size_t
1427 plcnt_sz(size_t ctrs_sz)
1428 {
1429 #ifdef DEBUG
1430 	int	szc, colors;
1431 
1432 	ctrs_sz += mnoderangecnt * sizeof (struct mnr_mts) * mmu_page_sizes;
1433 	for (szc = 0; szc < mmu_page_sizes; szc++) {
1434 		colors = page_get_pagecolors(szc);
1435 		ctrs_sz += mnoderangecnt * sizeof (pgcnt_t) * colors;
1436 	}
1437 #endif
1438 	return (ctrs_sz);
1439 }
1440 
1441 caddr_t
1442 plcnt_init(caddr_t addr)
1443 {
1444 #ifdef DEBUG
1445 	int	mt, szc, colors;
1446 
1447 	for (mt = 0; mt < mnoderangecnt; mt++) {
1448 		mnoderanges[mt].mnr_mts = (struct mnr_mts *)addr;
1449 		addr += (sizeof (struct mnr_mts) * mmu_page_sizes);
1450 		for (szc = 0; szc < mmu_page_sizes; szc++) {
1451 			colors = page_get_pagecolors(szc);
1452 			mnoderanges[mt].mnr_mts[szc].mnr_mts_colors = colors;
1453 			mnoderanges[mt].mnr_mts[szc].mnr_mtsc_pgcnt =
1454 			    (pgcnt_t *)addr;
1455 			addr += (sizeof (pgcnt_t) * colors);
1456 		}
1457 	}
1458 #endif
1459 	return (addr);
1460 }
1461 
1462 void
1463 plcnt_inc_dec(page_t *pp, int mtype, int szc, long cnt, int flags)
1464 {
1465 #ifdef DEBUG
1466 	int	bin = PP_2_BIN(pp);
1467 
1468 	atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mts_pgcnt, cnt);
1469 	atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mtsc_pgcnt[bin],
1470 	    cnt);
1471 #endif
1472 	ASSERT(mtype == PP_2_MTYPE(pp));
1473 	if (physmax4g && mtype <= mtype4g)
1474 		atomic_add_long(&freemem4g, cnt);
1475 	if (flags & PG_CACHE_LIST)
1476 		atomic_add_long(&mnoderanges[mtype].mnr_mt_clpgcnt, cnt);
1477 	else
1478 		atomic_add_long(&mnoderanges[mtype].mnr_mt_flpgcnt[szc], cnt);
1479 	atomic_add_long(&mnoderanges[mtype].mnr_mt_totcnt, cnt);
1480 }
1481 
1482 /*
1483  * Returns the free page count for mnode
1484  */
1485 int
1486 mnode_pgcnt(int mnode)
1487 {
1488 	int	mtype = mnoderangecnt - 1;
1489 	int	flags = PGI_MT_RANGE0;
1490 	pgcnt_t	pgcnt = 0;
1491 
1492 	mtype = mtype_func(mnode, mtype, flags);
1493 
1494 	while (mtype != -1) {
1495 		pgcnt += MTYPE_FREEMEM(mtype);
1496 		mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT);
1497 	}
1498 	return (pgcnt);
1499 }
1500 
1501 /*
1502  * Initialize page coloring variables based on the l2 cache parameters.
1503  * Calculate and return memory needed for page coloring data structures.
1504  */
1505 size_t
1506 page_coloring_init(uint_t l2_sz, int l2_linesz, int l2_assoc)
1507 {
1508 	size_t	colorsz = 0;
1509 	int	i;
1510 	int	colors;
1511 
1512 #if defined(__xpv)
1513 	/*
1514 	 * Hypervisor domains currently don't have any concept of NUMA.
1515 	 * Hence we'll act like there is only 1 memrange.
1516 	 */
1517 	i = memrange_num(1);
1518 #else /* !__xpv */
1519 	/*
1520 	 * Reduce the memory ranges lists if we don't have large amounts
1521 	 * of memory. This avoids searching known empty free lists.
1522 	 */
1523 	i = memrange_num(physmax);
1524 #if defined(__i386)
1525 	if (i > 0)
1526 		restricted_kmemalloc = 0;
1527 #endif
1528 	/* physmax greater than 4g */
1529 	if (i == 0)
1530 		physmax4g = 1;
1531 #endif /* !__xpv */
1532 	memranges += i;
1533 	nranges -= i;
1534 
1535 	ASSERT(mmu_page_sizes <= MMU_PAGE_SIZES);
1536 
1537 	ASSERT(ISP2(l2_linesz));
1538 	ASSERT(l2_sz > MMU_PAGESIZE);
1539 
1540 	/* l2_assoc is 0 for fully associative l2 cache */
1541 	if (l2_assoc)
1542 		l2_colors = MAX(1, l2_sz / (l2_assoc * MMU_PAGESIZE));
1543 	else
1544 		l2_colors = 1;
1545 
1546 	ASSERT(ISP2(l2_colors));
1547 
1548 	/* for scalability, configure at least PAGE_COLORS_MIN color bins */
1549 	page_colors = MAX(l2_colors, PAGE_COLORS_MIN);
1550 
1551 	/*
1552 	 * cpu_page_colors is non-zero when a page color may be spread across
1553 	 * multiple bins.
1554 	 */
1555 	if (l2_colors < page_colors)
1556 		cpu_page_colors = l2_colors;
1557 
1558 	ASSERT(ISP2(page_colors));
1559 
1560 	page_colors_mask = page_colors - 1;
1561 
1562 	ASSERT(ISP2(CPUSETSIZE()));
1563 	page_coloring_shift = lowbit(CPUSETSIZE());
1564 
1565 	/* initialize number of colors per page size */
1566 	for (i = 0; i <= mmu.max_page_level; i++) {
1567 		hw_page_array[i].hp_size = LEVEL_SIZE(i);
1568 		hw_page_array[i].hp_shift = LEVEL_SHIFT(i);
1569 		hw_page_array[i].hp_pgcnt = LEVEL_SIZE(i) >> LEVEL_SHIFT(0);
1570 		hw_page_array[i].hp_colors = (page_colors_mask >>
1571 		    (hw_page_array[i].hp_shift - hw_page_array[0].hp_shift))
1572 		    + 1;
1573 		colorequivszc[i] = 0;
1574 	}
1575 
1576 	/*
1577 	 * The value of cpu_page_colors determines if additional color bins
1578 	 * need to be checked for a particular color in the page_get routines.
1579 	 */
1580 	if (cpu_page_colors != 0) {
1581 
1582 		int a = lowbit(page_colors) - lowbit(cpu_page_colors);
1583 		ASSERT(a > 0);
1584 		ASSERT(a < 16);
1585 
1586 		for (i = 0; i <= mmu.max_page_level; i++) {
1587 			if ((colors = hw_page_array[i].hp_colors) <= 1) {
1588 				colorequivszc[i] = 0;
1589 				continue;
1590 			}
1591 			while ((colors >> a) == 0)
1592 				a--;
1593 			ASSERT(a >= 0);
1594 
1595 			/* higher 4 bits encodes color equiv mask */
1596 			colorequivszc[i] = (a << 4);
1597 		}
1598 	}
1599 
1600 	/* factor in colorequiv to check additional 'equivalent' bins. */
1601 	if (colorequiv > 1) {
1602 
1603 		int a = lowbit(colorequiv) - 1;
1604 		if (a > 15)
1605 			a = 15;
1606 
1607 		for (i = 0; i <= mmu.max_page_level; i++) {
1608 			if ((colors = hw_page_array[i].hp_colors) <= 1) {
1609 				continue;
1610 			}
1611 			while ((colors >> a) == 0)
1612 				a--;
1613 			if ((a << 4) > colorequivszc[i]) {
1614 				colorequivszc[i] = (a << 4);
1615 			}
1616 		}
1617 	}
1618 
1619 	/* size for mnoderanges */
1620 	for (mnoderangecnt = 0, i = 0; i < max_mem_nodes; i++)
1621 		mnoderangecnt += mnode_range_cnt(i);
1622 	colorsz = mnoderangecnt * sizeof (mnoderange_t);
1623 
1624 	/* size for fpc_mutex and cpc_mutex */
1625 	colorsz += (2 * max_mem_nodes * sizeof (kmutex_t) * NPC_MUTEX);
1626 
1627 	/* size of page_freelists */
1628 	colorsz += mnoderangecnt * sizeof (page_t ***);
1629 	colorsz += mnoderangecnt * mmu_page_sizes * sizeof (page_t **);
1630 
1631 	for (i = 0; i < mmu_page_sizes; i++) {
1632 		colors = page_get_pagecolors(i);
1633 		colorsz += mnoderangecnt * colors * sizeof (page_t *);
1634 	}
1635 
1636 	/* size of page_cachelists */
1637 	colorsz += mnoderangecnt * sizeof (page_t **);
1638 	colorsz += mnoderangecnt * page_colors * sizeof (page_t *);
1639 
1640 	return (colorsz);
1641 }
1642 
1643 /*
1644  * Called once at startup to configure page_coloring data structures and
1645  * does the 1st page_free()/page_freelist_add().
1646  */
1647 void
1648 page_coloring_setup(caddr_t pcmemaddr)
1649 {
1650 	int	i;
1651 	int	j;
1652 	int	k;
1653 	caddr_t	addr;
1654 	int	colors;
1655 
1656 	/*
1657 	 * do page coloring setup
1658 	 */
1659 	addr = pcmemaddr;
1660 
1661 	mnoderanges = (mnoderange_t *)addr;
1662 	addr += (mnoderangecnt * sizeof (mnoderange_t));
1663 
1664 	mnode_range_setup(mnoderanges);
1665 
1666 	if (physmax4g)
1667 		mtype4g = pfn_2_mtype(0xfffff);
1668 
1669 	for (k = 0; k < NPC_MUTEX; k++) {
1670 		fpc_mutex[k] = (kmutex_t *)addr;
1671 		addr += (max_mem_nodes * sizeof (kmutex_t));
1672 	}
1673 	for (k = 0; k < NPC_MUTEX; k++) {
1674 		cpc_mutex[k] = (kmutex_t *)addr;
1675 		addr += (max_mem_nodes * sizeof (kmutex_t));
1676 	}
1677 	page_freelists = (page_t ****)addr;
1678 	addr += (mnoderangecnt * sizeof (page_t ***));
1679 
1680 	page_cachelists = (page_t ***)addr;
1681 	addr += (mnoderangecnt * sizeof (page_t **));
1682 
1683 	for (i = 0; i < mnoderangecnt; i++) {
1684 		page_freelists[i] = (page_t ***)addr;
1685 		addr += (mmu_page_sizes * sizeof (page_t **));
1686 
1687 		for (j = 0; j < mmu_page_sizes; j++) {
1688 			colors = page_get_pagecolors(j);
1689 			page_freelists[i][j] = (page_t **)addr;
1690 			addr += (colors * sizeof (page_t *));
1691 		}
1692 		page_cachelists[i] = (page_t **)addr;
1693 		addr += (page_colors * sizeof (page_t *));
1694 	}
1695 }
1696 
1697 #if defined(__xpv)
1698 /*
1699  * Give back 10% of the io_pool pages to the free list.
1700  * Don't shrink the pool below some absolute minimum.
1701  */
1702 static void
1703 page_io_pool_shrink()
1704 {
1705 	int retcnt;
1706 	page_t *pp, *pp_first, *pp_last, **curpool;
1707 	mfn_t mfn;
1708 	int bothpools = 0;
1709 
1710 	mutex_enter(&io_pool_lock);
1711 	io_pool_shrink_attempts++;	/* should be a kstat? */
1712 	retcnt = io_pool_cnt / 10;
1713 	if (io_pool_cnt - retcnt < io_pool_cnt_min)
1714 		retcnt = io_pool_cnt - io_pool_cnt_min;
1715 	if (retcnt <= 0)
1716 		goto done;
1717 	io_pool_shrinks++;	/* should be a kstat? */
1718 	curpool = &io_pool_4g;
1719 domore:
1720 	/*
1721 	 * Loop through taking pages from the end of the list
1722 	 * (highest mfns) till amount to return reached.
1723 	 */
1724 	for (pp = *curpool; pp && retcnt > 0; ) {
1725 		pp_first = pp_last = pp->p_prev;
1726 		if (pp_first == *curpool)
1727 			break;
1728 		retcnt--;
1729 		io_pool_cnt--;
1730 		page_io_pool_sub(curpool, pp_first, pp_last);
1731 		if ((mfn = pfn_to_mfn(pp->p_pagenum)) < start_mfn)
1732 			start_mfn = mfn;
1733 		page_free(pp_first, 1);
1734 		pp = *curpool;
1735 	}
1736 	if (retcnt != 0 && !bothpools) {
1737 		/*
1738 		 * If not enough found in less constrained pool try the
1739 		 * more constrained one.
1740 		 */
1741 		curpool = &io_pool_16m;
1742 		bothpools = 1;
1743 		goto domore;
1744 	}
1745 done:
1746 	mutex_exit(&io_pool_lock);
1747 }
1748 
1749 #endif	/* __xpv */
1750 
1751 uint_t
1752 page_create_update_flags_x86(uint_t flags)
1753 {
1754 #if defined(__xpv)
1755 	/*
1756 	 * Check this is an urgent allocation and free pages are depleted.
1757 	 */
1758 	if (!(flags & PG_WAIT) && freemem < desfree)
1759 		page_io_pool_shrink();
1760 #else /* !__xpv */
1761 	/*
1762 	 * page_create_get_something may call this because 4g memory may be
1763 	 * depleted. Set flags to allow for relocation of base page below
1764 	 * 4g if necessary.
1765 	 */
1766 	if (physmax4g)
1767 		flags |= (PGI_PGCPSZC0 | PGI_PGCPHIPRI);
1768 #endif /* __xpv */
1769 	return (flags);
1770 }
1771 
1772 /*ARGSUSED*/
1773 int
1774 bp_color(struct buf *bp)
1775 {
1776 	return (0);
1777 }
1778 
1779 #if defined(__xpv)
1780 
1781 /*
1782  * Take pages out of an io_pool
1783  */
1784 static void
1785 page_io_pool_sub(page_t **poolp, page_t *pp_first, page_t *pp_last)
1786 {
1787 	if (*poolp == pp_first) {
1788 		*poolp = pp_last->p_next;
1789 		if (*poolp == pp_first)
1790 			*poolp = NULL;
1791 	}
1792 	pp_first->p_prev->p_next = pp_last->p_next;
1793 	pp_last->p_next->p_prev = pp_first->p_prev;
1794 	pp_first->p_prev = pp_last;
1795 	pp_last->p_next = pp_first;
1796 }
1797 
1798 /*
1799  * Put a page on the io_pool list. The list is ordered by increasing MFN.
1800  */
1801 static void
1802 page_io_pool_add(page_t **poolp, page_t *pp)
1803 {
1804 	page_t	*look;
1805 	mfn_t	mfn = mfn_list[pp->p_pagenum];
1806 
1807 	if (*poolp == NULL) {
1808 		*poolp = pp;
1809 		pp->p_next = pp;
1810 		pp->p_prev = pp;
1811 		return;
1812 	}
1813 
1814 	/*
1815 	 * Since we try to take pages from the high end of the pool
1816 	 * chances are good that the pages to be put on the list will
1817 	 * go at or near the end of the list. so start at the end and
1818 	 * work backwards.
1819 	 */
1820 	look = (*poolp)->p_prev;
1821 	while (mfn < mfn_list[look->p_pagenum]) {
1822 		look = look->p_prev;
1823 		if (look == (*poolp)->p_prev)
1824 			break; /* backed all the way to front of list */
1825 	}
1826 
1827 	/* insert after look */
1828 	pp->p_prev = look;
1829 	pp->p_next = look->p_next;
1830 	pp->p_next->p_prev = pp;
1831 	look->p_next = pp;
1832 	if (mfn < mfn_list[(*poolp)->p_pagenum]) {
1833 		/*
1834 		 * we inserted a new first list element
1835 		 * adjust pool pointer to newly inserted element
1836 		 */
1837 		*poolp = pp;
1838 	}
1839 }
1840 
1841 /*
1842  * Add a page to the io_pool.  Setting the force flag will force the page
1843  * into the io_pool no matter what.
1844  */
1845 static void
1846 add_page_to_pool(page_t *pp, int force)
1847 {
1848 	page_t *highest;
1849 	page_t *freep = NULL;
1850 
1851 	mutex_enter(&io_pool_lock);
1852 	/*
1853 	 * Always keep the scarce low memory pages
1854 	 */
1855 	if (mfn_list[pp->p_pagenum] < PFN_16MEG) {
1856 		++io_pool_cnt;
1857 		page_io_pool_add(&io_pool_16m, pp);
1858 		goto done;
1859 	}
1860 	if (io_pool_cnt < io_pool_cnt_max || force || io_pool_4g == NULL) {
1861 		++io_pool_cnt;
1862 		page_io_pool_add(&io_pool_4g, pp);
1863 	} else {
1864 		highest = io_pool_4g->p_prev;
1865 		if (mfn_list[pp->p_pagenum] < mfn_list[highest->p_pagenum]) {
1866 			page_io_pool_sub(&io_pool_4g, highest, highest);
1867 			page_io_pool_add(&io_pool_4g, pp);
1868 			freep = highest;
1869 		} else {
1870 			freep = pp;
1871 		}
1872 	}
1873 done:
1874 	mutex_exit(&io_pool_lock);
1875 	if (freep)
1876 		page_free(freep, 1);
1877 }
1878 
1879 
1880 int contig_pfn_cnt;	/* no of pfns in the contig pfn list */
1881 int contig_pfn_max;	/* capacity of the contig pfn list */
1882 int next_alloc_pfn;	/* next position in list to start a contig search */
1883 int contig_pfnlist_updates;	/* pfn list update count */
1884 int contig_pfnlist_builds;	/* how many times have we (re)built list */
1885 int contig_pfnlist_buildfailed;	/* how many times has list build failed */
1886 int create_contig_pending;	/* nonzero means taskq creating contig list */
1887 pfn_t *contig_pfn_list = NULL;	/* list of contig pfns in ascending mfn order */
1888 
1889 /*
1890  * Function to use in sorting a list of pfns by their underlying mfns.
1891  */
1892 static int
1893 mfn_compare(const void *pfnp1, const void *pfnp2)
1894 {
1895 	mfn_t mfn1 = mfn_list[*(pfn_t *)pfnp1];
1896 	mfn_t mfn2 = mfn_list[*(pfn_t *)pfnp2];
1897 
1898 	if (mfn1 > mfn2)
1899 		return (1);
1900 	if (mfn1 < mfn2)
1901 		return (-1);
1902 	return (0);
1903 }
1904 
1905 /*
1906  * Compact the contig_pfn_list by tossing all the non-contiguous
1907  * elements from the list.
1908  */
1909 static void
1910 compact_contig_pfn_list(void)
1911 {
1912 	pfn_t pfn, lapfn, prev_lapfn;
1913 	mfn_t mfn;
1914 	int i, newcnt = 0;
1915 
1916 	prev_lapfn = 0;
1917 	for (i = 0; i < contig_pfn_cnt - 1; i++) {
1918 		pfn = contig_pfn_list[i];
1919 		lapfn = contig_pfn_list[i + 1];
1920 		mfn = mfn_list[pfn];
1921 		/*
1922 		 * See if next pfn is for a contig mfn
1923 		 */
1924 		if (mfn_list[lapfn] != mfn + 1)
1925 			continue;
1926 		/*
1927 		 * pfn and lookahead are both put in list
1928 		 * unless pfn is the previous lookahead.
1929 		 */
1930 		if (pfn != prev_lapfn)
1931 			contig_pfn_list[newcnt++] = pfn;
1932 		contig_pfn_list[newcnt++] = lapfn;
1933 		prev_lapfn = lapfn;
1934 	}
1935 	for (i = newcnt; i < contig_pfn_cnt; i++)
1936 		contig_pfn_list[i] = 0;
1937 	contig_pfn_cnt = newcnt;
1938 }
1939 
1940 /*ARGSUSED*/
1941 static void
1942 call_create_contiglist(void *arg)
1943 {
1944 	(void) create_contig_pfnlist(PG_WAIT);
1945 }
1946 
1947 /*
1948  * Create list of freelist pfns that have underlying
1949  * contiguous mfns.  The list is kept in ascending mfn order.
1950  * returns 1 if list created else 0.
1951  */
1952 static int
1953 create_contig_pfnlist(uint_t flags)
1954 {
1955 	pfn_t pfn;
1956 	page_t *pp;
1957 	int ret = 1;
1958 
1959 	mutex_enter(&contig_list_lock);
1960 	if (contig_pfn_list != NULL)
1961 		goto out;
1962 	contig_pfn_max = freemem + (freemem / 10);
1963 	contig_pfn_list = kmem_zalloc(contig_pfn_max * sizeof (pfn_t),
1964 	    (flags & PG_WAIT) ? KM_SLEEP : KM_NOSLEEP);
1965 	if (contig_pfn_list == NULL) {
1966 		/*
1967 		 * If we could not create the contig list (because
1968 		 * we could not sleep for memory).  Dispatch a taskq that can
1969 		 * sleep to get the memory.
1970 		 */
1971 		if (!create_contig_pending) {
1972 			if (taskq_dispatch(system_taskq, call_create_contiglist,
1973 			    NULL, TQ_NOSLEEP) != NULL)
1974 				create_contig_pending = 1;
1975 		}
1976 		contig_pfnlist_buildfailed++;	/* count list build failures */
1977 		ret = 0;
1978 		goto out;
1979 	}
1980 	create_contig_pending = 0;
1981 	ASSERT(contig_pfn_cnt == 0);
1982 	for (pfn = 0; pfn < mfn_count; pfn++) {
1983 		pp = page_numtopp_nolock(pfn);
1984 		if (pp == NULL || !PP_ISFREE(pp))
1985 			continue;
1986 		contig_pfn_list[contig_pfn_cnt] = pfn;
1987 		if (++contig_pfn_cnt == contig_pfn_max)
1988 			break;
1989 	}
1990 	/*
1991 	 * Sanity check the new list.
1992 	 */
1993 	if (contig_pfn_cnt < 2) { /* no contig pfns */
1994 		contig_pfn_cnt = 0;
1995 		contig_pfnlist_buildfailed++;
1996 		kmem_free(contig_pfn_list, contig_pfn_max * sizeof (pfn_t));
1997 		contig_pfn_list = NULL;
1998 		contig_pfn_max = 0;
1999 		ret = 0;
2000 		goto out;
2001 	}
2002 	qsort(contig_pfn_list, contig_pfn_cnt, sizeof (pfn_t), mfn_compare);
2003 	compact_contig_pfn_list();
2004 	/*
2005 	 * Make sure next search of the newly created contiguous pfn
2006 	 * list starts at the beginning of the list.
2007 	 */
2008 	next_alloc_pfn = 0;
2009 	contig_pfnlist_builds++;	/* count list builds */
2010 out:
2011 	mutex_exit(&contig_list_lock);
2012 	return (ret);
2013 }
2014 
2015 
2016 /*
2017  * Toss the current contig pfnlist.  Someone is about to do a massive
2018  * update to pfn<->mfn mappings.  So we have them destroy the list and lock
2019  * it till they are done with their update.
2020  */
2021 void
2022 clear_and_lock_contig_pfnlist()
2023 {
2024 	pfn_t *listp = NULL;
2025 	size_t listsize;
2026 
2027 	mutex_enter(&contig_list_lock);
2028 	if (contig_pfn_list != NULL) {
2029 		listp = contig_pfn_list;
2030 		listsize = contig_pfn_max * sizeof (pfn_t);
2031 		contig_pfn_list = NULL;
2032 		contig_pfn_max = contig_pfn_cnt = 0;
2033 	}
2034 	if (listp != NULL)
2035 		kmem_free(listp, listsize);
2036 }
2037 
2038 /*
2039  * Unlock the contig_pfn_list.  The next attempted use of it will cause
2040  * it to be re-created.
2041  */
2042 void
2043 unlock_contig_pfnlist()
2044 {
2045 	mutex_exit(&contig_list_lock);
2046 }
2047 
2048 /*
2049  * Update the contiguous pfn list in response to a pfn <-> mfn reassignment
2050  */
2051 void
2052 update_contig_pfnlist(pfn_t pfn, mfn_t oldmfn, mfn_t newmfn)
2053 {
2054 	int probe_hi, probe_lo, probe_pos, insert_after, insert_point;
2055 	pfn_t probe_pfn;
2056 	mfn_t probe_mfn;
2057 	int drop_lock = 0;
2058 
2059 	if (mutex_owner(&contig_list_lock) != curthread) {
2060 		drop_lock = 1;
2061 		mutex_enter(&contig_list_lock);
2062 	}
2063 	if (contig_pfn_list == NULL)
2064 		goto done;
2065 	contig_pfnlist_updates++;
2066 	/*
2067 	 * Find the pfn in the current list.  Use a binary chop to locate it.
2068 	 */
2069 	probe_hi = contig_pfn_cnt - 1;
2070 	probe_lo = 0;
2071 	probe_pos = (probe_hi + probe_lo) / 2;
2072 	while ((probe_pfn = contig_pfn_list[probe_pos]) != pfn) {
2073 		if (probe_pos == probe_lo) { /* pfn not in list */
2074 			probe_pos = -1;
2075 			break;
2076 		}
2077 		if (pfn_to_mfn(probe_pfn) <= oldmfn)
2078 			probe_lo = probe_pos;
2079 		else
2080 			probe_hi = probe_pos;
2081 		probe_pos = (probe_hi + probe_lo) / 2;
2082 	}
2083 	if (probe_pos >= 0) {
2084 		/*
2085 		 * Remove pfn from list and ensure next alloc
2086 		 * position stays in bounds.
2087 		 */
2088 		if (--contig_pfn_cnt <= next_alloc_pfn)
2089 			next_alloc_pfn = 0;
2090 		if (contig_pfn_cnt < 2) { /* no contig pfns */
2091 			contig_pfn_cnt = 0;
2092 			kmem_free(contig_pfn_list,
2093 			    contig_pfn_max * sizeof (pfn_t));
2094 			contig_pfn_list = NULL;
2095 			contig_pfn_max = 0;
2096 			goto done;
2097 		}
2098 		ovbcopy(&contig_pfn_list[probe_pos + 1],
2099 		    &contig_pfn_list[probe_pos],
2100 		    (contig_pfn_cnt - probe_pos) * sizeof (pfn_t));
2101 	}
2102 	if (newmfn == MFN_INVALID)
2103 		goto done;
2104 	/*
2105 	 * Check if new mfn has adjacent mfns in the list
2106 	 */
2107 	probe_hi = contig_pfn_cnt - 1;
2108 	probe_lo = 0;
2109 	insert_after = -2;
2110 	do {
2111 		probe_pos = (probe_hi + probe_lo) / 2;
2112 		probe_mfn = pfn_to_mfn(contig_pfn_list[probe_pos]);
2113 		if (newmfn == probe_mfn + 1)
2114 			insert_after = probe_pos;
2115 		else if (newmfn == probe_mfn - 1)
2116 			insert_after = probe_pos - 1;
2117 		if (probe_pos == probe_lo)
2118 			break;
2119 		if (probe_mfn <= newmfn)
2120 			probe_lo = probe_pos;
2121 		else
2122 			probe_hi = probe_pos;
2123 	} while (insert_after == -2);
2124 	/*
2125 	 * If there is space in the list and there are adjacent mfns
2126 	 * insert the pfn in to its proper place in the list.
2127 	 */
2128 	if (insert_after != -2 && contig_pfn_cnt + 1 <= contig_pfn_max) {
2129 		insert_point = insert_after + 1;
2130 		ovbcopy(&contig_pfn_list[insert_point],
2131 		    &contig_pfn_list[insert_point + 1],
2132 		    (contig_pfn_cnt - insert_point) * sizeof (pfn_t));
2133 		contig_pfn_list[insert_point] = pfn;
2134 		contig_pfn_cnt++;
2135 	}
2136 done:
2137 	if (drop_lock)
2138 		mutex_exit(&contig_list_lock);
2139 }
2140 
2141 /*
2142  * Called to (re-)populate the io_pool from the free page lists.
2143  */
2144 long
2145 populate_io_pool(void)
2146 {
2147 	pfn_t pfn;
2148 	mfn_t mfn, max_mfn;
2149 	page_t *pp;
2150 
2151 	/*
2152 	 * Figure out the bounds of the pool on first invocation.
2153 	 * We use a percentage of memory for the io pool size.
2154 	 * we allow that to shrink, but not to less than a fixed minimum
2155 	 */
2156 	if (io_pool_cnt_max == 0) {
2157 		io_pool_cnt_max = physmem / (100 / io_pool_physmem_pct);
2158 		io_pool_cnt_lowater = io_pool_cnt_max;
2159 		/*
2160 		 * This is the first time in populate_io_pool, grab a va to use
2161 		 * when we need to allocate pages.
2162 		 */
2163 		io_pool_kva = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
2164 	}
2165 	/*
2166 	 * If we are out of pages in the pool, then grow the size of the pool
2167 	 */
2168 	if (io_pool_cnt == 0) {
2169 		/*
2170 		 * Grow the max size of the io pool by 5%, but never more than
2171 		 * 25% of physical memory.
2172 		 */
2173 		if (io_pool_cnt_max < physmem / 4)
2174 			io_pool_cnt_max += io_pool_cnt_max / 20;
2175 	}
2176 	io_pool_grows++;	/* should be a kstat? */
2177 
2178 	/*
2179 	 * Get highest mfn on this platform, but limit to the 32 bit DMA max.
2180 	 */
2181 	(void) mfn_to_pfn(start_mfn);
2182 	max_mfn = MIN(cached_max_mfn, PFN_4GIG);
2183 	for (mfn = start_mfn; mfn < max_mfn; start_mfn = ++mfn) {
2184 		pfn = mfn_to_pfn(mfn);
2185 		if (pfn & PFN_IS_FOREIGN_MFN)
2186 			continue;
2187 		/*
2188 		 * try to allocate it from free pages
2189 		 */
2190 		pp = page_numtopp_alloc(pfn);
2191 		if (pp == NULL)
2192 			continue;
2193 		PP_CLRFREE(pp);
2194 		add_page_to_pool(pp, 1);
2195 		if (io_pool_cnt >= io_pool_cnt_max)
2196 			break;
2197 	}
2198 
2199 	return (io_pool_cnt);
2200 }
2201 
2202 /*
2203  * Destroy a page that was being used for DMA I/O. It may or
2204  * may not actually go back to the io_pool.
2205  */
2206 void
2207 page_destroy_io(page_t *pp)
2208 {
2209 	mfn_t mfn = mfn_list[pp->p_pagenum];
2210 
2211 	/*
2212 	 * When the page was alloc'd a reservation was made, release it now
2213 	 */
2214 	page_unresv(1);
2215 	/*
2216 	 * Unload translations, if any, then hash out the
2217 	 * page to erase its identity.
2218 	 */
2219 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
2220 	page_hashout(pp, NULL);
2221 
2222 	/*
2223 	 * If the page came from the free lists, just put it back to them.
2224 	 * DomU pages always go on the free lists as well.
2225 	 */
2226 	if (!DOMAIN_IS_INITDOMAIN(xen_info) || mfn >= PFN_4GIG) {
2227 		page_free(pp, 1);
2228 		return;
2229 	}
2230 
2231 	add_page_to_pool(pp, 0);
2232 }
2233 
2234 
2235 long contig_searches;		/* count of times contig pages requested */
2236 long contig_search_restarts;	/* count of contig ranges tried */
2237 long contig_search_failed;	/* count of contig alloc failures */
2238 
2239 /*
2240  * Free partial page list
2241  */
2242 static void
2243 free_partial_list(page_t **pplist)
2244 {
2245 	page_t *pp;
2246 
2247 	while (*pplist != NULL) {
2248 		pp = *pplist;
2249 		page_io_pool_sub(pplist, pp, pp);
2250 		page_free(pp, 1);
2251 	}
2252 }
2253 
2254 /*
2255  * Look thru the contiguous pfns that are not part of the io_pool for
2256  * contiguous free pages.  Return a list of the found pages or NULL.
2257  */
2258 page_t *
2259 find_contig_free(uint_t npages, uint_t flags, uint64_t pfnseg,
2260     pgcnt_t pfnalign)
2261 {
2262 	page_t *pp, *plist = NULL;
2263 	mfn_t mfn, prev_mfn, start_mfn;
2264 	pfn_t pfn;
2265 	int pages_needed, pages_requested;
2266 	int search_start;
2267 
2268 	/*
2269 	 * create the contig pfn list if not already done
2270 	 */
2271 retry:
2272 	mutex_enter(&contig_list_lock);
2273 	if (contig_pfn_list == NULL) {
2274 		mutex_exit(&contig_list_lock);
2275 		if (!create_contig_pfnlist(flags)) {
2276 			return (NULL);
2277 		}
2278 		goto retry;
2279 	}
2280 	contig_searches++;
2281 	/*
2282 	 * Search contiguous pfn list for physically contiguous pages not in
2283 	 * the io_pool.  Start the search where the last search left off.
2284 	 */
2285 	pages_requested = pages_needed = npages;
2286 	search_start = next_alloc_pfn;
2287 	start_mfn = prev_mfn = 0;
2288 	while (pages_needed) {
2289 		pfn = contig_pfn_list[next_alloc_pfn];
2290 		mfn = pfn_to_mfn(pfn);
2291 		/*
2292 		 * Check if mfn is first one or contig to previous one and
2293 		 * if page corresponding to mfn is free and that mfn
2294 		 * range is not crossing a segment boundary.
2295 		 */
2296 		if ((prev_mfn == 0 || mfn == prev_mfn + 1) &&
2297 		    (pp = page_numtopp_alloc(pfn)) != NULL &&
2298 		    !((mfn & pfnseg) < (start_mfn & pfnseg))) {
2299 			PP_CLRFREE(pp);
2300 			page_io_pool_add(&plist, pp);
2301 			pages_needed--;
2302 			if (prev_mfn == 0) {
2303 				if (pfnalign &&
2304 				    mfn != P2ROUNDUP(mfn, pfnalign)) {
2305 					/*
2306 					 * not properly aligned
2307 					 */
2308 					contig_search_restarts++;
2309 					free_partial_list(&plist);
2310 					pages_needed = pages_requested;
2311 					start_mfn = prev_mfn = 0;
2312 					goto skip;
2313 				}
2314 				start_mfn = mfn;
2315 			}
2316 			prev_mfn = mfn;
2317 		} else {
2318 			contig_search_restarts++;
2319 			free_partial_list(&plist);
2320 			pages_needed = pages_requested;
2321 			start_mfn = prev_mfn = 0;
2322 		}
2323 skip:
2324 		if (++next_alloc_pfn == contig_pfn_cnt)
2325 			next_alloc_pfn = 0;
2326 		if (next_alloc_pfn == search_start)
2327 			break; /* all pfns searched */
2328 	}
2329 	mutex_exit(&contig_list_lock);
2330 	if (pages_needed) {
2331 		contig_search_failed++;
2332 		/*
2333 		 * Failed to find enough contig pages.
2334 		 * free partial page list
2335 		 */
2336 		free_partial_list(&plist);
2337 	}
2338 	return (plist);
2339 }
2340 
2341 /*
2342  * Search the reserved io pool pages for a page range with the
2343  * desired characteristics.
2344  */
2345 page_t *
2346 page_io_pool_alloc(ddi_dma_attr_t *mattr, int contig, pgcnt_t minctg)
2347 {
2348 	page_t *pp_first, *pp_last;
2349 	page_t *pp, **poolp;
2350 	pgcnt_t nwanted, pfnalign;
2351 	uint64_t pfnseg;
2352 	mfn_t mfn, tmfn, hi_mfn, lo_mfn;
2353 	int align, attempt = 0;
2354 
2355 	if (minctg == 1)
2356 		contig = 0;
2357 	lo_mfn = mmu_btop(mattr->dma_attr_addr_lo);
2358 	hi_mfn = mmu_btop(mattr->dma_attr_addr_hi);
2359 	pfnseg = mmu_btop(mattr->dma_attr_seg);
2360 	align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
2361 	if (align > MMU_PAGESIZE)
2362 		pfnalign = mmu_btop(align);
2363 	else
2364 		pfnalign = 0;
2365 
2366 try_again:
2367 	/*
2368 	 * See if we want pages for a legacy device
2369 	 */
2370 	if (hi_mfn < PFN_16MEG)
2371 		poolp = &io_pool_16m;
2372 	else
2373 		poolp = &io_pool_4g;
2374 try_smaller:
2375 	/*
2376 	 * Take pages from I/O pool. We'll use pages from the highest
2377 	 * MFN range possible.
2378 	 */
2379 	pp_first = pp_last = NULL;
2380 	mutex_enter(&io_pool_lock);
2381 	nwanted = minctg;
2382 	for (pp = *poolp; pp && nwanted > 0; ) {
2383 		pp = pp->p_prev;
2384 
2385 		/*
2386 		 * skip pages above allowable range
2387 		 */
2388 		mfn = mfn_list[pp->p_pagenum];
2389 		if (hi_mfn < mfn)
2390 			goto skip;
2391 
2392 		/*
2393 		 * stop at pages below allowable range
2394 		 */
2395 		if (lo_mfn > mfn)
2396 			break;
2397 restart:
2398 		if (pp_last == NULL) {
2399 			/*
2400 			 * Check alignment
2401 			 */
2402 			tmfn = mfn - (minctg - 1);
2403 			if (pfnalign && tmfn != P2ROUNDUP(tmfn, pfnalign))
2404 				goto skip; /* not properly aligned */
2405 			/*
2406 			 * Check segment
2407 			 */
2408 			if ((mfn & pfnseg) < (tmfn & pfnseg))
2409 				goto skip; /* crosses seg boundary */
2410 			/*
2411 			 * Start building page list
2412 			 */
2413 			pp_first = pp_last = pp;
2414 			nwanted--;
2415 		} else {
2416 			/*
2417 			 * check physical contiguity if required
2418 			 */
2419 			if (contig &&
2420 			    mfn_list[pp_first->p_pagenum] != mfn + 1) {
2421 				/*
2422 				 * not a contiguous page, restart list.
2423 				 */
2424 				pp_last = NULL;
2425 				nwanted = minctg;
2426 				goto restart;
2427 			} else { /* add page to list */
2428 				pp_first = pp;
2429 				nwanted--;
2430 			}
2431 		}
2432 skip:
2433 		if (pp == *poolp)
2434 			break;
2435 	}
2436 
2437 	/*
2438 	 * If we didn't find memory. Try the more constrained pool, then
2439 	 * sweep free pages into the DMA pool and try again.
2440 	 */
2441 	if (nwanted != 0) {
2442 		mutex_exit(&io_pool_lock);
2443 		/*
2444 		 * If we were looking in the less constrained pool and
2445 		 * didn't find pages, try the more constrained pool.
2446 		 */
2447 		if (poolp == &io_pool_4g) {
2448 			poolp = &io_pool_16m;
2449 			goto try_smaller;
2450 		}
2451 		kmem_reap();
2452 		if (++attempt < 4) {
2453 			/*
2454 			 * Grab some more io_pool pages
2455 			 */
2456 			(void) populate_io_pool();
2457 			goto try_again; /* go around and retry */
2458 		}
2459 		return (NULL);
2460 	}
2461 	/*
2462 	 * Found the pages, now snip them from the list
2463 	 */
2464 	page_io_pool_sub(poolp, pp_first, pp_last);
2465 	io_pool_cnt -= minctg;
2466 	/*
2467 	 * reset low water mark
2468 	 */
2469 	if (io_pool_cnt < io_pool_cnt_lowater)
2470 		io_pool_cnt_lowater = io_pool_cnt;
2471 	mutex_exit(&io_pool_lock);
2472 	return (pp_first);
2473 }
2474 
2475 page_t *
2476 page_swap_with_hypervisor(struct vnode *vp, u_offset_t off, caddr_t vaddr,
2477     ddi_dma_attr_t *mattr, uint_t flags, pgcnt_t minctg)
2478 {
2479 	uint_t kflags;
2480 	int order, extra, extpages, i, contig, nbits, extents;
2481 	page_t *pp, *expp, *pp_first, **pplist = NULL;
2482 	mfn_t *mfnlist = NULL;
2483 
2484 	contig = flags & PG_PHYSCONTIG;
2485 	if (minctg == 1)
2486 		contig = 0;
2487 	flags &= ~PG_PHYSCONTIG;
2488 	kflags = flags & PG_WAIT ? KM_SLEEP : KM_NOSLEEP;
2489 	/*
2490 	 * Hypervisor will allocate extents, if we want contig
2491 	 * pages extent must be >= minctg
2492 	 */
2493 	if (contig) {
2494 		order = highbit(minctg) - 1;
2495 		if (minctg & ((1 << order) - 1))
2496 			order++;
2497 		extpages = 1 << order;
2498 	} else {
2499 		order = 0;
2500 		extpages = minctg;
2501 	}
2502 	if (extpages > minctg) {
2503 		extra = extpages - minctg;
2504 		if (!page_resv(extra, kflags))
2505 			return (NULL);
2506 	}
2507 	pp_first = NULL;
2508 	pplist = kmem_alloc(extpages * sizeof (page_t *), kflags);
2509 	if (pplist == NULL)
2510 		goto balloon_fail;
2511 	mfnlist = kmem_alloc(extpages * sizeof (mfn_t), kflags);
2512 	if (mfnlist == NULL)
2513 		goto balloon_fail;
2514 	pp = page_create_va(vp, off, minctg * PAGESIZE, flags, &kvseg, vaddr);
2515 	if (pp == NULL)
2516 		goto balloon_fail;
2517 	pp_first = pp;
2518 	if (extpages > minctg) {
2519 		/*
2520 		 * fill out the rest of extent pages to swap
2521 		 * with the hypervisor
2522 		 */
2523 		for (i = 0; i < extra; i++) {
2524 			expp = page_create_va(vp,
2525 			    (u_offset_t)(uintptr_t)io_pool_kva,
2526 			    PAGESIZE, flags, &kvseg, io_pool_kva);
2527 			if (expp == NULL)
2528 				goto balloon_fail;
2529 			(void) hat_pageunload(expp, HAT_FORCE_PGUNLOAD);
2530 			page_io_unlock(expp);
2531 			page_hashout(expp, NULL);
2532 			page_io_lock(expp);
2533 			/*
2534 			 * add page to end of list
2535 			 */
2536 			expp->p_prev = pp_first->p_prev;
2537 			expp->p_next = pp_first;
2538 			expp->p_prev->p_next = expp;
2539 			pp_first->p_prev = expp;
2540 		}
2541 
2542 	}
2543 	for (i = 0; i < extpages; i++) {
2544 		pplist[i] = pp;
2545 		pp = pp->p_next;
2546 	}
2547 	nbits = highbit(mattr->dma_attr_addr_hi);
2548 	extents = contig ? 1 : minctg;
2549 	if (balloon_replace_pages(extents, pplist, nbits, order,
2550 	    mfnlist) != extents) {
2551 		if (ioalloc_dbg)
2552 			cmn_err(CE_NOTE, "request to hypervisor"
2553 			    " for %d pages, maxaddr %" PRIx64 " failed",
2554 			    extpages, mattr->dma_attr_addr_hi);
2555 		goto balloon_fail;
2556 	}
2557 
2558 	kmem_free(pplist, extpages * sizeof (page_t *));
2559 	kmem_free(mfnlist, extpages * sizeof (mfn_t));
2560 	/*
2561 	 * Return any excess pages to free list
2562 	 */
2563 	if (extpages > minctg) {
2564 		for (i = 0; i < extra; i++) {
2565 			pp = pp_first->p_prev;
2566 			page_sub(&pp_first, pp);
2567 			page_io_unlock(pp);
2568 			page_unresv(1);
2569 			page_free(pp, 1);
2570 		}
2571 	}
2572 	return (pp_first);
2573 balloon_fail:
2574 	/*
2575 	 * Return pages to free list and return failure
2576 	 */
2577 	while (pp_first != NULL) {
2578 		pp = pp_first;
2579 		page_sub(&pp_first, pp);
2580 		page_io_unlock(pp);
2581 		if (pp->p_vnode != NULL)
2582 			page_hashout(pp, NULL);
2583 		page_free(pp, 1);
2584 	}
2585 	if (pplist)
2586 		kmem_free(pplist, extpages * sizeof (page_t *));
2587 	if (mfnlist)
2588 		kmem_free(mfnlist, extpages * sizeof (mfn_t));
2589 	page_unresv(extpages - minctg);
2590 	return (NULL);
2591 }
2592 
2593 static void
2594 return_partial_alloc(page_t *plist)
2595 {
2596 	page_t *pp;
2597 
2598 	while (plist != NULL) {
2599 		pp = plist;
2600 		page_sub(&plist, pp);
2601 		page_io_unlock(pp);
2602 		page_destroy_io(pp);
2603 	}
2604 }
2605 
2606 static page_t *
2607 page_get_contigpages(
2608 	struct vnode	*vp,
2609 	u_offset_t	off,
2610 	int		*npagesp,
2611 	uint_t		flags,
2612 	caddr_t		vaddr,
2613 	ddi_dma_attr_t	*mattr)
2614 {
2615 	mfn_t	max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
2616 	page_t	*plist;	/* list to return */
2617 	page_t	*pp, *mcpl;
2618 	int	contig, anyaddr, npages, getone = 0;
2619 	mfn_t	lo_mfn;
2620 	mfn_t	hi_mfn;
2621 	pgcnt_t	pfnalign = 0;
2622 	int	align, sgllen;
2623 	uint64_t pfnseg;
2624 	pgcnt_t	minctg;
2625 
2626 	npages = *npagesp;
2627 	ASSERT(mattr != NULL);
2628 	lo_mfn = mmu_btop(mattr->dma_attr_addr_lo);
2629 	hi_mfn = mmu_btop(mattr->dma_attr_addr_hi);
2630 	sgllen = mattr->dma_attr_sgllen;
2631 	pfnseg = mmu_btop(mattr->dma_attr_seg);
2632 	align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
2633 	if (align > MMU_PAGESIZE)
2634 		pfnalign = mmu_btop(align);
2635 
2636 	contig = flags & PG_PHYSCONTIG;
2637 	if (npages == -1) {
2638 		npages = 1;
2639 		pfnalign = 0;
2640 	}
2641 	/*
2642 	 * Clear the contig flag if only one page is needed.
2643 	 */
2644 	if (npages == 1) {
2645 		getone = 1;
2646 		contig = 0;
2647 	}
2648 
2649 	/*
2650 	 * Check if any page in the system is fine.
2651 	 */
2652 	anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn;
2653 	if (!contig && anyaddr && !pfnalign) {
2654 		flags &= ~PG_PHYSCONTIG;
2655 		plist = page_create_va(vp, off, npages * MMU_PAGESIZE,
2656 		    flags, &kvseg, vaddr);
2657 		if (plist != NULL) {
2658 			*npagesp = 0;
2659 			return (plist);
2660 		}
2661 	}
2662 	plist = NULL;
2663 	minctg = howmany(npages, sgllen);
2664 	while (npages > sgllen || getone) {
2665 		if (minctg > npages)
2666 			minctg = npages;
2667 		mcpl = NULL;
2668 		/*
2669 		 * We could want contig pages with no address range limits.
2670 		 */
2671 		if (anyaddr && contig) {
2672 			/*
2673 			 * Look for free contig pages to satisfy the request.
2674 			 */
2675 			mcpl = find_contig_free(minctg, flags, pfnseg,
2676 			    pfnalign);
2677 		}
2678 		/*
2679 		 * Try the reserved io pools next
2680 		 */
2681 		if (mcpl == NULL)
2682 			mcpl = page_io_pool_alloc(mattr, contig, minctg);
2683 		if (mcpl != NULL) {
2684 			pp = mcpl;
2685 			do {
2686 				if (!page_hashin(pp, vp, off, NULL)) {
2687 					panic("page_get_contigpages:"
2688 					    " hashin failed"
2689 					    " pp %p, vp %p, off %llx",
2690 					    (void *)pp, (void *)vp, off);
2691 				}
2692 				off += MMU_PAGESIZE;
2693 				PP_CLRFREE(pp);
2694 				PP_CLRAGED(pp);
2695 				page_set_props(pp, P_REF);
2696 				page_io_lock(pp);
2697 				pp = pp->p_next;
2698 			} while (pp != mcpl);
2699 		} else {
2700 			/*
2701 			 * Hypervisor exchange doesn't handle segment or
2702 			 * alignment constraints
2703 			 */
2704 			if (mattr->dma_attr_seg < mattr->dma_attr_addr_hi ||
2705 			    pfnalign)
2706 				goto fail;
2707 			/*
2708 			 * Try exchanging pages with the hypervisor
2709 			 */
2710 			mcpl = page_swap_with_hypervisor(vp, off, vaddr, mattr,
2711 			    flags, minctg);
2712 			if (mcpl == NULL)
2713 				goto fail;
2714 			off += minctg * MMU_PAGESIZE;
2715 		}
2716 		check_dma(mattr, mcpl, minctg);
2717 		/*
2718 		 * Here with a minctg run of contiguous pages, add them to the
2719 		 * list we will return for this request.
2720 		 */
2721 		page_list_concat(&plist, &mcpl);
2722 		npages -= minctg;
2723 		*npagesp = npages;
2724 		sgllen--;
2725 		if (getone)
2726 			break;
2727 	}
2728 	return (plist);
2729 fail:
2730 	return_partial_alloc(plist);
2731 	return (NULL);
2732 }
2733 
2734 /*
2735  * Allocator for domain 0 I/O pages. We match the required
2736  * DMA attributes and contiguity constraints.
2737  */
2738 /*ARGSUSED*/
2739 page_t *
2740 page_create_io(
2741 	struct vnode	*vp,
2742 	u_offset_t	off,
2743 	uint_t		bytes,
2744 	uint_t		flags,
2745 	struct as	*as,
2746 	caddr_t		vaddr,
2747 	ddi_dma_attr_t	*mattr)
2748 {
2749 	page_t	*plist = NULL, *pp;
2750 	int	npages = 0, contig, anyaddr, pages_req;
2751 	mfn_t	lo_mfn;
2752 	mfn_t	hi_mfn;
2753 	pgcnt_t	pfnalign = 0;
2754 	int	align;
2755 	int	is_domu = 0;
2756 	int	dummy, bytes_got;
2757 	mfn_t	max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
2758 
2759 	ASSERT(mattr != NULL);
2760 	lo_mfn = mmu_btop(mattr->dma_attr_addr_lo);
2761 	hi_mfn = mmu_btop(mattr->dma_attr_addr_hi);
2762 	align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
2763 	if (align > MMU_PAGESIZE)
2764 		pfnalign = mmu_btop(align);
2765 
2766 	/*
2767 	 * Clear the contig flag if only one page is needed or the scatter
2768 	 * gather list length is >= npages.
2769 	 */
2770 	pages_req = npages = mmu_btopr(bytes);
2771 	contig = (flags & PG_PHYSCONTIG);
2772 	bytes = P2ROUNDUP(bytes, MMU_PAGESIZE);
2773 	if (bytes == MMU_PAGESIZE || mattr->dma_attr_sgllen >= npages)
2774 		contig = 0;
2775 
2776 	/*
2777 	 * Check if any old page in the system is fine.
2778 	 * DomU should always go down this path.
2779 	 */
2780 	is_domu = !DOMAIN_IS_INITDOMAIN(xen_info);
2781 	anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn && !pfnalign;
2782 	if ((!contig && anyaddr) || is_domu) {
2783 		flags &= ~PG_PHYSCONTIG;
2784 		plist = page_create_va(vp, off, bytes, flags, &kvseg, vaddr);
2785 		if (plist != NULL)
2786 			return (plist);
2787 		else if (is_domu)
2788 			return (NULL); /* no memory available */
2789 	}
2790 	/*
2791 	 * DomU should never reach here
2792 	 */
2793 	if (contig) {
2794 		plist = page_get_contigpages(vp, off, &npages, flags, vaddr,
2795 		    mattr);
2796 		if (plist == NULL)
2797 			goto fail;
2798 		bytes_got = (pages_req - npages) << MMU_PAGESHIFT;
2799 		vaddr += bytes_got;
2800 		off += bytes_got;
2801 		/*
2802 		 * We now have all the contiguous pages we need, but
2803 		 * we may still need additional non-contiguous pages.
2804 		 */
2805 	}
2806 	/*
2807 	 * now loop collecting the requested number of pages, these do
2808 	 * not have to be contiguous pages but we will use the contig
2809 	 * page alloc code to get the pages since it will honor any
2810 	 * other constraints the pages may have.
2811 	 */
2812 	while (npages--) {
2813 		dummy = -1;
2814 		pp = page_get_contigpages(vp, off, &dummy, flags, vaddr, mattr);
2815 		if (pp == NULL)
2816 			goto fail;
2817 		page_add(&plist, pp);
2818 		vaddr += MMU_PAGESIZE;
2819 		off += MMU_PAGESIZE;
2820 	}
2821 	return (plist);
2822 fail:
2823 	/*
2824 	 * Failed to get enough pages, return ones we did get
2825 	 */
2826 	return_partial_alloc(plist);
2827 	return (NULL);
2828 }
2829 
2830 /*
2831  * Lock and return the page with the highest mfn that we can find.  last_mfn
2832  * holds the last one found, so the next search can start from there.  We
2833  * also keep a counter so that we don't loop forever if the machine has no
2834  * free pages.
2835  *
2836  * This is called from the balloon thread to find pages to give away.  new_high
2837  * is used when new mfn's have been added to the system - we will reset our
2838  * search if the new mfn's are higher than our current search position.
2839  */
2840 page_t *
2841 page_get_high_mfn(mfn_t new_high)
2842 {
2843 	static mfn_t last_mfn = 0;
2844 	pfn_t pfn;
2845 	page_t *pp;
2846 	ulong_t loop_count = 0;
2847 
2848 	if (new_high > last_mfn)
2849 		last_mfn = new_high;
2850 
2851 	for (; loop_count < mfn_count; loop_count++, last_mfn--) {
2852 		if (last_mfn == 0) {
2853 			last_mfn = cached_max_mfn;
2854 		}
2855 
2856 		pfn = mfn_to_pfn(last_mfn);
2857 		if (pfn & PFN_IS_FOREIGN_MFN)
2858 			continue;
2859 
2860 		/* See if the page is free.  If so, lock it. */
2861 		pp = page_numtopp_alloc(pfn);
2862 		if (pp == NULL)
2863 			continue;
2864 		PP_CLRFREE(pp);
2865 
2866 		ASSERT(PAGE_EXCL(pp));
2867 		ASSERT(pp->p_vnode == NULL);
2868 		ASSERT(!hat_page_is_mapped(pp));
2869 		last_mfn--;
2870 		return (pp);
2871 	}
2872 	return (NULL);
2873 }
2874 
2875 #else /* !__xpv */
2876 
2877 /*
2878  * get a page from any list with the given mnode
2879  */
2880 static page_t *
2881 page_get_mnode_anylist(ulong_t origbin, uchar_t szc, uint_t flags,
2882     int mnode, int mtype, ddi_dma_attr_t *dma_attr)
2883 {
2884 	kmutex_t		*pcm;
2885 	int			i;
2886 	page_t			*pp;
2887 	page_t			*first_pp;
2888 	uint64_t		pgaddr;
2889 	ulong_t			bin;
2890 	int			mtypestart;
2891 	int			plw_initialized;
2892 	page_list_walker_t	plw;
2893 
2894 	VM_STAT_ADD(pga_vmstats.pgma_alloc);
2895 
2896 	ASSERT((flags & PG_MATCH_COLOR) == 0);
2897 	ASSERT(szc == 0);
2898 	ASSERT(dma_attr != NULL);
2899 
2900 	MTYPE_START(mnode, mtype, flags);
2901 	if (mtype < 0) {
2902 		VM_STAT_ADD(pga_vmstats.pgma_allocempty);
2903 		return (NULL);
2904 	}
2905 
2906 	mtypestart = mtype;
2907 
2908 	bin = origbin;
2909 
2910 	/*
2911 	 * check up to page_colors + 1 bins - origbin may be checked twice
2912 	 * because of BIN_STEP skip
2913 	 */
2914 	do {
2915 		plw_initialized = 0;
2916 
2917 		for (plw.plw_count = 0;
2918 		    plw.plw_count < page_colors; plw.plw_count++) {
2919 
2920 			if (PAGE_FREELISTS(mnode, szc, bin, mtype) == NULL)
2921 				goto nextfreebin;
2922 
2923 			pcm = PC_BIN_MUTEX(mnode, bin, PG_FREE_LIST);
2924 			mutex_enter(pcm);
2925 			pp = PAGE_FREELISTS(mnode, szc, bin, mtype);
2926 			first_pp = pp;
2927 			while (pp != NULL) {
2928 				if (page_trylock(pp, SE_EXCL) == 0) {
2929 					pp = pp->p_next;
2930 					if (pp == first_pp) {
2931 						pp = NULL;
2932 					}
2933 					continue;
2934 				}
2935 
2936 				ASSERT(PP_ISFREE(pp));
2937 				ASSERT(PP_ISAGED(pp));
2938 				ASSERT(pp->p_vnode == NULL);
2939 				ASSERT(pp->p_hash == NULL);
2940 				ASSERT(pp->p_offset == (u_offset_t)-1);
2941 				ASSERT(pp->p_szc == szc);
2942 				ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode);
2943 				/* check if page within DMA attributes */
2944 				pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum));
2945 				if ((pgaddr >= dma_attr->dma_attr_addr_lo) &&
2946 				    (pgaddr + MMU_PAGESIZE - 1 <=
2947 				    dma_attr->dma_attr_addr_hi)) {
2948 					break;
2949 				}
2950 
2951 				/* continue looking */
2952 				page_unlock(pp);
2953 				pp = pp->p_next;
2954 				if (pp == first_pp)
2955 					pp = NULL;
2956 
2957 			}
2958 			if (pp != NULL) {
2959 				ASSERT(mtype == PP_2_MTYPE(pp));
2960 				ASSERT(pp->p_szc == 0);
2961 
2962 				/* found a page with specified DMA attributes */
2963 				page_sub(&PAGE_FREELISTS(mnode, szc, bin,
2964 				    mtype), pp);
2965 				page_ctr_sub(mnode, mtype, pp, PG_FREE_LIST);
2966 
2967 				if ((PP_ISFREE(pp) == 0) ||
2968 				    (PP_ISAGED(pp) == 0)) {
2969 					cmn_err(CE_PANIC, "page %p is not free",
2970 					    (void *)pp);
2971 				}
2972 
2973 				mutex_exit(pcm);
2974 				check_dma(dma_attr, pp, 1);
2975 				VM_STAT_ADD(pga_vmstats.pgma_allocok);
2976 				return (pp);
2977 			}
2978 			mutex_exit(pcm);
2979 nextfreebin:
2980 			if (plw_initialized == 0) {
2981 				page_list_walk_init(szc, 0, bin, 1, 0, &plw);
2982 				ASSERT(plw.plw_ceq_dif == page_colors);
2983 				plw_initialized = 1;
2984 			}
2985 
2986 			if (plw.plw_do_split) {
2987 				pp = page_freelist_split(szc, bin, mnode,
2988 				    mtype,
2989 				    mmu_btop(dma_attr->dma_attr_addr_lo),
2990 				    mmu_btop(dma_attr->dma_attr_addr_hi + 1),
2991 				    &plw);
2992 				if (pp != NULL) {
2993 					check_dma(dma_attr, pp, 1);
2994 					return (pp);
2995 				}
2996 			}
2997 
2998 			bin = page_list_walk_next_bin(szc, bin, &plw);
2999 		}
3000 
3001 		MTYPE_NEXT(mnode, mtype, flags);
3002 	} while (mtype >= 0);
3003 
3004 	/* failed to find a page in the freelist; try it in the cachelist */
3005 
3006 	/* reset mtype start for cachelist search */
3007 	mtype = mtypestart;
3008 	ASSERT(mtype >= 0);
3009 
3010 	/* start with the bin of matching color */
3011 	bin = origbin;
3012 
3013 	do {
3014 		for (i = 0; i <= page_colors; i++) {
3015 			if (PAGE_CACHELISTS(mnode, bin, mtype) == NULL)
3016 				goto nextcachebin;
3017 			pcm = PC_BIN_MUTEX(mnode, bin, PG_CACHE_LIST);
3018 			mutex_enter(pcm);
3019 			pp = PAGE_CACHELISTS(mnode, bin, mtype);
3020 			first_pp = pp;
3021 			while (pp != NULL) {
3022 				if (page_trylock(pp, SE_EXCL) == 0) {
3023 					pp = pp->p_next;
3024 					if (pp == first_pp)
3025 						pp = NULL;
3026 					continue;
3027 				}
3028 				ASSERT(pp->p_vnode);
3029 				ASSERT(PP_ISAGED(pp) == 0);
3030 				ASSERT(pp->p_szc == 0);
3031 				ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode);
3032 
3033 				/* check if page within DMA attributes */
3034 
3035 				pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum));
3036 				if ((pgaddr >= dma_attr->dma_attr_addr_lo) &&
3037 				    (pgaddr + MMU_PAGESIZE - 1 <=
3038 				    dma_attr->dma_attr_addr_hi)) {
3039 					break;
3040 				}
3041 
3042 				/* continue looking */
3043 				page_unlock(pp);
3044 				pp = pp->p_next;
3045 				if (pp == first_pp)
3046 					pp = NULL;
3047 			}
3048 
3049 			if (pp != NULL) {
3050 				ASSERT(mtype == PP_2_MTYPE(pp));
3051 				ASSERT(pp->p_szc == 0);
3052 
3053 				/* found a page with specified DMA attributes */
3054 				page_sub(&PAGE_CACHELISTS(mnode, bin,
3055 				    mtype), pp);
3056 				page_ctr_sub(mnode, mtype, pp, PG_CACHE_LIST);
3057 
3058 				mutex_exit(pcm);
3059 				ASSERT(pp->p_vnode);
3060 				ASSERT(PP_ISAGED(pp) == 0);
3061 				check_dma(dma_attr, pp, 1);
3062 				VM_STAT_ADD(pga_vmstats.pgma_allocok);
3063 				return (pp);
3064 			}
3065 			mutex_exit(pcm);
3066 nextcachebin:
3067 			bin += (i == 0) ? BIN_STEP : 1;
3068 			bin &= page_colors_mask;
3069 		}
3070 		MTYPE_NEXT(mnode, mtype, flags);
3071 	} while (mtype >= 0);
3072 
3073 	VM_STAT_ADD(pga_vmstats.pgma_allocfailed);
3074 	return (NULL);
3075 }
3076 
3077 /*
3078  * This function is similar to page_get_freelist()/page_get_cachelist()
3079  * but it searches both the lists to find a page with the specified
3080  * color (or no color) and DMA attributes. The search is done in the
3081  * freelist first and then in the cache list within the highest memory
3082  * range (based on DMA attributes) before searching in the lower
3083  * memory ranges.
3084  *
3085  * Note: This function is called only by page_create_io().
3086  */
3087 /*ARGSUSED*/
3088 static page_t *
3089 page_get_anylist(struct vnode *vp, u_offset_t off, struct as *as, caddr_t vaddr,
3090     size_t size, uint_t flags, ddi_dma_attr_t *dma_attr, lgrp_t	*lgrp)
3091 {
3092 	uint_t		bin;
3093 	int		mtype;
3094 	page_t		*pp;
3095 	int		n;
3096 	int		m;
3097 	int		szc;
3098 	int		fullrange;
3099 	int		mnode;
3100 	int		local_failed_stat = 0;
3101 	lgrp_mnode_cookie_t	lgrp_cookie;
3102 
3103 	VM_STAT_ADD(pga_vmstats.pga_alloc);
3104 
3105 	/* only base pagesize currently supported */
3106 	if (size != MMU_PAGESIZE)
3107 		return (NULL);
3108 
3109 	/*
3110 	 * If we're passed a specific lgroup, we use it.  Otherwise,
3111 	 * assume first-touch placement is desired.
3112 	 */
3113 	if (!LGRP_EXISTS(lgrp))
3114 		lgrp = lgrp_home_lgrp();
3115 
3116 	/* LINTED */
3117 	AS_2_BIN(as, seg, vp, vaddr, bin, 0);
3118 
3119 	/*
3120 	 * Only hold one freelist or cachelist lock at a time, that way we
3121 	 * can start anywhere and not have to worry about lock
3122 	 * ordering.
3123 	 */
3124 	if (dma_attr == NULL) {
3125 		n = 0;
3126 		m = mnoderangecnt - 1;
3127 		fullrange = 1;
3128 		VM_STAT_ADD(pga_vmstats.pga_nulldmaattr);
3129 	} else {
3130 		pfn_t pfnlo = mmu_btop(dma_attr->dma_attr_addr_lo);
3131 		pfn_t pfnhi = mmu_btop(dma_attr->dma_attr_addr_hi);
3132 
3133 		/*
3134 		 * We can guarantee alignment only for page boundary.
3135 		 */
3136 		if (dma_attr->dma_attr_align > MMU_PAGESIZE)
3137 			return (NULL);
3138 
3139 		n = pfn_2_mtype(pfnlo);
3140 		m = pfn_2_mtype(pfnhi);
3141 
3142 		fullrange = ((pfnlo == mnoderanges[n].mnr_pfnlo) &&
3143 		    (pfnhi >= mnoderanges[m].mnr_pfnhi));
3144 	}
3145 	VM_STAT_COND_ADD(fullrange == 0, pga_vmstats.pga_notfullrange);
3146 
3147 	if (n > m)
3148 		return (NULL);
3149 
3150 	szc = 0;
3151 
3152 	/* cylcing thru mtype handled by RANGE0 if n == 0 */
3153 	if (n == 0) {
3154 		flags |= PGI_MT_RANGE0;
3155 		n = m;
3156 	}
3157 
3158 	/*
3159 	 * Try local memory node first, but try remote if we can't
3160 	 * get a page of the right color.
3161 	 */
3162 	LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp, LGRP_SRCH_HIER);
3163 	while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) {
3164 		/*
3165 		 * allocate pages from high pfn to low.
3166 		 */
3167 		for (mtype = m; mtype >= n; mtype--) {
3168 			if (fullrange != 0) {
3169 				pp = page_get_mnode_freelist(mnode,
3170 				    bin, mtype, szc, flags);
3171 				if (pp == NULL) {
3172 					pp = page_get_mnode_cachelist(
3173 					    bin, flags, mnode, mtype);
3174 				}
3175 			} else {
3176 				pp = page_get_mnode_anylist(bin, szc,
3177 				    flags, mnode, mtype, dma_attr);
3178 			}
3179 			if (pp != NULL) {
3180 				VM_STAT_ADD(pga_vmstats.pga_allocok);
3181 				check_dma(dma_attr, pp, 1);
3182 				return (pp);
3183 			}
3184 		}
3185 		if (!local_failed_stat) {
3186 			lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_ALLOC_FAIL, 1);
3187 			local_failed_stat = 1;
3188 		}
3189 	}
3190 	VM_STAT_ADD(pga_vmstats.pga_allocfailed);
3191 
3192 	return (NULL);
3193 }
3194 
3195 /*
3196  * page_create_io()
3197  *
3198  * This function is a copy of page_create_va() with an additional
3199  * argument 'mattr' that specifies DMA memory requirements to
3200  * the page list functions. This function is used by the segkmem
3201  * allocator so it is only to create new pages (i.e PG_EXCL is
3202  * set).
3203  *
3204  * Note: This interface is currently used by x86 PSM only and is
3205  *	 not fully specified so the commitment level is only for
3206  *	 private interface specific to x86. This interface uses PSM
3207  *	 specific page_get_anylist() interface.
3208  */
3209 
3210 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
3211 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \
3212 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
3213 			break; \
3214 	} \
3215 }
3216 
3217 
3218 page_t *
3219 page_create_io(
3220 	struct vnode	*vp,
3221 	u_offset_t	off,
3222 	uint_t		bytes,
3223 	uint_t		flags,
3224 	struct as	*as,
3225 	caddr_t		vaddr,
3226 	ddi_dma_attr_t	*mattr)	/* DMA memory attributes if any */
3227 {
3228 	page_t		*plist = NULL;
3229 	uint_t		plist_len = 0;
3230 	pgcnt_t		npages;
3231 	page_t		*npp = NULL;
3232 	uint_t		pages_req;
3233 	page_t		*pp;
3234 	kmutex_t	*phm = NULL;
3235 	uint_t		index;
3236 
3237 	TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
3238 	    "page_create_start:vp %p off %llx bytes %u flags %x",
3239 	    vp, off, bytes, flags);
3240 
3241 	ASSERT((flags & ~(PG_EXCL | PG_WAIT | PG_PHYSCONTIG)) == 0);
3242 
3243 	pages_req = npages = mmu_btopr(bytes);
3244 
3245 	/*
3246 	 * Do the freemem and pcf accounting.
3247 	 */
3248 	if (!page_create_wait(npages, flags)) {
3249 		return (NULL);
3250 	}
3251 
3252 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
3253 	    "page_create_success:vp %p off %llx", vp, off);
3254 
3255 	/*
3256 	 * If satisfying this request has left us with too little
3257 	 * memory, start the wheels turning to get some back.  The
3258 	 * first clause of the test prevents waking up the pageout
3259 	 * daemon in situations where it would decide that there's
3260 	 * nothing to do.
3261 	 */
3262 	if (nscan < desscan && freemem < minfree) {
3263 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
3264 		    "pageout_cv_signal:freemem %ld", freemem);
3265 		cv_signal(&proc_pageout->p_cv);
3266 	}
3267 
3268 	if (flags & PG_PHYSCONTIG) {
3269 
3270 		plist = page_get_contigpage(&npages, mattr, 1);
3271 		if (plist == NULL) {
3272 			page_create_putback(npages);
3273 			return (NULL);
3274 		}
3275 
3276 		pp = plist;
3277 
3278 		do {
3279 			if (!page_hashin(pp, vp, off, NULL)) {
3280 				panic("pg_creat_io: hashin failed %p %p %llx",
3281 				    (void *)pp, (void *)vp, off);
3282 			}
3283 			VM_STAT_ADD(page_create_new);
3284 			off += MMU_PAGESIZE;
3285 			PP_CLRFREE(pp);
3286 			PP_CLRAGED(pp);
3287 			page_set_props(pp, P_REF);
3288 			pp = pp->p_next;
3289 		} while (pp != plist);
3290 
3291 		if (!npages) {
3292 			check_dma(mattr, plist, pages_req);
3293 			return (plist);
3294 		} else {
3295 			vaddr += (pages_req - npages) << MMU_PAGESHIFT;
3296 		}
3297 
3298 		/*
3299 		 * fall-thru:
3300 		 *
3301 		 * page_get_contigpage returns when npages <= sgllen.
3302 		 * Grab the rest of the non-contig pages below from anylist.
3303 		 */
3304 	}
3305 
3306 	/*
3307 	 * Loop around collecting the requested number of pages.
3308 	 * Most of the time, we have to `create' a new page. With
3309 	 * this in mind, pull the page off the free list before
3310 	 * getting the hash lock.  This will minimize the hash
3311 	 * lock hold time, nesting, and the like.  If it turns
3312 	 * out we don't need the page, we put it back at the end.
3313 	 */
3314 	while (npages--) {
3315 		phm = NULL;
3316 
3317 		index = PAGE_HASH_FUNC(vp, off);
3318 top:
3319 		ASSERT(phm == NULL);
3320 		ASSERT(index == PAGE_HASH_FUNC(vp, off));
3321 		ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3322 
3323 		if (npp == NULL) {
3324 			/*
3325 			 * Try to get the page of any color either from
3326 			 * the freelist or from the cache list.
3327 			 */
3328 			npp = page_get_anylist(vp, off, as, vaddr, MMU_PAGESIZE,
3329 			    flags & ~PG_MATCH_COLOR, mattr, NULL);
3330 			if (npp == NULL) {
3331 				if (mattr == NULL) {
3332 					/*
3333 					 * Not looking for a special page;
3334 					 * panic!
3335 					 */
3336 					panic("no page found %d", (int)npages);
3337 				}
3338 				/*
3339 				 * No page found! This can happen
3340 				 * if we are looking for a page
3341 				 * within a specific memory range
3342 				 * for DMA purposes. If PG_WAIT is
3343 				 * specified then we wait for a
3344 				 * while and then try again. The
3345 				 * wait could be forever if we
3346 				 * don't get the page(s) we need.
3347 				 *
3348 				 * Note: XXX We really need a mechanism
3349 				 * to wait for pages in the desired
3350 				 * range. For now, we wait for any
3351 				 * pages and see if we can use it.
3352 				 */
3353 
3354 				if ((mattr != NULL) && (flags & PG_WAIT)) {
3355 					delay(10);
3356 					goto top;
3357 				}
3358 				goto fail; /* undo accounting stuff */
3359 			}
3360 
3361 			if (PP_ISAGED(npp) == 0) {
3362 				/*
3363 				 * Since this page came from the
3364 				 * cachelist, we must destroy the
3365 				 * old vnode association.
3366 				 */
3367 				page_hashout(npp, (kmutex_t *)NULL);
3368 			}
3369 		}
3370 
3371 		/*
3372 		 * We own this page!
3373 		 */
3374 		ASSERT(PAGE_EXCL(npp));
3375 		ASSERT(npp->p_vnode == NULL);
3376 		ASSERT(!hat_page_is_mapped(npp));
3377 		PP_CLRFREE(npp);
3378 		PP_CLRAGED(npp);
3379 
3380 		/*
3381 		 * Here we have a page in our hot little mits and are
3382 		 * just waiting to stuff it on the appropriate lists.
3383 		 * Get the mutex and check to see if it really does
3384 		 * not exist.
3385 		 */
3386 		phm = PAGE_HASH_MUTEX(index);
3387 		mutex_enter(phm);
3388 		PAGE_HASH_SEARCH(index, pp, vp, off);
3389 		if (pp == NULL) {
3390 			VM_STAT_ADD(page_create_new);
3391 			pp = npp;
3392 			npp = NULL;
3393 			if (!page_hashin(pp, vp, off, phm)) {
3394 				/*
3395 				 * Since we hold the page hash mutex and
3396 				 * just searched for this page, page_hashin
3397 				 * had better not fail.  If it does, that
3398 				 * means somethread did not follow the
3399 				 * page hash mutex rules.  Panic now and
3400 				 * get it over with.  As usual, go down
3401 				 * holding all the locks.
3402 				 */
3403 				ASSERT(MUTEX_HELD(phm));
3404 				panic("page_create: hashin fail %p %p %llx %p",
3405 				    (void *)pp, (void *)vp, off, (void *)phm);
3406 
3407 			}
3408 			ASSERT(MUTEX_HELD(phm));
3409 			mutex_exit(phm);
3410 			phm = NULL;
3411 
3412 			/*
3413 			 * Hat layer locking need not be done to set
3414 			 * the following bits since the page is not hashed
3415 			 * and was on the free list (i.e., had no mappings).
3416 			 *
3417 			 * Set the reference bit to protect
3418 			 * against immediate pageout
3419 			 *
3420 			 * XXXmh modify freelist code to set reference
3421 			 * bit so we don't have to do it here.
3422 			 */
3423 			page_set_props(pp, P_REF);
3424 		} else {
3425 			ASSERT(MUTEX_HELD(phm));
3426 			mutex_exit(phm);
3427 			phm = NULL;
3428 			/*
3429 			 * NOTE: This should not happen for pages associated
3430 			 *	 with kernel vnode 'kvp'.
3431 			 */
3432 			/* XX64 - to debug why this happens! */
3433 			ASSERT(!VN_ISKAS(vp));
3434 			if (VN_ISKAS(vp))
3435 				cmn_err(CE_NOTE,
3436 				    "page_create: page not expected "
3437 				    "in hash list for kernel vnode - pp 0x%p",
3438 				    (void *)pp);
3439 			VM_STAT_ADD(page_create_exists);
3440 			goto fail;
3441 		}
3442 
3443 		/*
3444 		 * Got a page!  It is locked.  Acquire the i/o
3445 		 * lock since we are going to use the p_next and
3446 		 * p_prev fields to link the requested pages together.
3447 		 */
3448 		page_io_lock(pp);
3449 		page_add(&plist, pp);
3450 		plist = plist->p_next;
3451 		off += MMU_PAGESIZE;
3452 		vaddr += MMU_PAGESIZE;
3453 	}
3454 
3455 	check_dma(mattr, plist, pages_req);
3456 	return (plist);
3457 
3458 fail:
3459 	if (npp != NULL) {
3460 		/*
3461 		 * Did not need this page after all.
3462 		 * Put it back on the free list.
3463 		 */
3464 		VM_STAT_ADD(page_create_putbacks);
3465 		PP_SETFREE(npp);
3466 		PP_SETAGED(npp);
3467 		npp->p_offset = (u_offset_t)-1;
3468 		page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
3469 		page_unlock(npp);
3470 	}
3471 
3472 	/*
3473 	 * Give up the pages we already got.
3474 	 */
3475 	while (plist != NULL) {
3476 		pp = plist;
3477 		page_sub(&plist, pp);
3478 		page_io_unlock(pp);
3479 		plist_len++;
3480 		/*LINTED: constant in conditional ctx*/
3481 		VN_DISPOSE(pp, B_INVAL, 0, kcred);
3482 	}
3483 
3484 	/*
3485 	 * VN_DISPOSE does freemem accounting for the pages in plist
3486 	 * by calling page_free. So, we need to undo the pcf accounting
3487 	 * for only the remaining pages.
3488 	 */
3489 	VM_STAT_ADD(page_create_putbacks);
3490 	page_create_putback(pages_req - plist_len);
3491 
3492 	return (NULL);
3493 }
3494 #endif /* !__xpv */
3495 
3496 
3497 /*
3498  * Copy the data from the physical page represented by "frompp" to
3499  * that represented by "topp". ppcopy uses CPU->cpu_caddr1 and
3500  * CPU->cpu_caddr2.  It assumes that no one uses either map at interrupt
3501  * level and no one sleeps with an active mapping there.
3502  *
3503  * Note that the ref/mod bits in the page_t's are not affected by
3504  * this operation, hence it is up to the caller to update them appropriately.
3505  */
3506 int
3507 ppcopy(page_t *frompp, page_t *topp)
3508 {
3509 	caddr_t		pp_addr1;
3510 	caddr_t		pp_addr2;
3511 	hat_mempte_t	pte1;
3512 	hat_mempte_t	pte2;
3513 	kmutex_t	*ppaddr_mutex;
3514 	label_t		ljb;
3515 	int		ret = 1;
3516 
3517 	ASSERT_STACK_ALIGNED();
3518 	ASSERT(PAGE_LOCKED(frompp));
3519 	ASSERT(PAGE_LOCKED(topp));
3520 
3521 	if (kpm_enable) {
3522 		pp_addr1 = hat_kpm_page2va(frompp, 0);
3523 		pp_addr2 = hat_kpm_page2va(topp, 0);
3524 		kpreempt_disable();
3525 	} else {
3526 		/*
3527 		 * disable pre-emption so that CPU can't change
3528 		 */
3529 		kpreempt_disable();
3530 
3531 		pp_addr1 = CPU->cpu_caddr1;
3532 		pp_addr2 = CPU->cpu_caddr2;
3533 		pte1 = CPU->cpu_caddr1pte;
3534 		pte2 = CPU->cpu_caddr2pte;
3535 
3536 		ppaddr_mutex = &CPU->cpu_ppaddr_mutex;
3537 		mutex_enter(ppaddr_mutex);
3538 
3539 		hat_mempte_remap(page_pptonum(frompp), pp_addr1, pte1,
3540 		    PROT_READ | HAT_STORECACHING_OK, HAT_LOAD_NOCONSIST);
3541 		hat_mempte_remap(page_pptonum(topp), pp_addr2, pte2,
3542 		    PROT_READ | PROT_WRITE | HAT_STORECACHING_OK,
3543 		    HAT_LOAD_NOCONSIST);
3544 	}
3545 
3546 	if (on_fault(&ljb)) {
3547 		ret = 0;
3548 		goto faulted;
3549 	}
3550 	if (use_sse_pagecopy)
3551 #ifdef __xpv
3552 		page_copy_no_xmm(pp_addr2, pp_addr1);
3553 #else
3554 		hwblkpagecopy(pp_addr1, pp_addr2);
3555 #endif
3556 	else
3557 		bcopy(pp_addr1, pp_addr2, PAGESIZE);
3558 
3559 	no_fault();
3560 faulted:
3561 	if (!kpm_enable) {
3562 #ifdef __xpv
3563 		/*
3564 		 * We can't leave unused mappings laying about under the
3565 		 * hypervisor, so blow them away.
3566 		 */
3567 		if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr1, 0,
3568 		    UVMF_INVLPG | UVMF_LOCAL) < 0)
3569 			panic("HYPERVISOR_update_va_mapping() failed");
3570 		if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0,
3571 		    UVMF_INVLPG | UVMF_LOCAL) < 0)
3572 			panic("HYPERVISOR_update_va_mapping() failed");
3573 #endif
3574 		mutex_exit(ppaddr_mutex);
3575 	}
3576 	kpreempt_enable();
3577 	return (ret);
3578 }
3579 
3580 void
3581 pagezero(page_t *pp, uint_t off, uint_t len)
3582 {
3583 	ASSERT(PAGE_LOCKED(pp));
3584 	pfnzero(page_pptonum(pp), off, len);
3585 }
3586 
3587 /*
3588  * Zero the physical page from off to off + len given by pfn
3589  * without changing the reference and modified bits of page.
3590  *
3591  * We use this using CPU private page address #2, see ppcopy() for more info.
3592  * pfnzero() must not be called at interrupt level.
3593  */
3594 void
3595 pfnzero(pfn_t pfn, uint_t off, uint_t len)
3596 {
3597 	caddr_t		pp_addr2;
3598 	hat_mempte_t	pte2;
3599 	kmutex_t	*ppaddr_mutex = NULL;
3600 
3601 	ASSERT_STACK_ALIGNED();
3602 	ASSERT(len <= MMU_PAGESIZE);
3603 	ASSERT(off <= MMU_PAGESIZE);
3604 	ASSERT(off + len <= MMU_PAGESIZE);
3605 
3606 	if (kpm_enable && !pfn_is_foreign(pfn)) {
3607 		pp_addr2 = hat_kpm_pfn2va(pfn);
3608 		kpreempt_disable();
3609 	} else {
3610 		kpreempt_disable();
3611 
3612 		pp_addr2 = CPU->cpu_caddr2;
3613 		pte2 = CPU->cpu_caddr2pte;
3614 
3615 		ppaddr_mutex = &CPU->cpu_ppaddr_mutex;
3616 		mutex_enter(ppaddr_mutex);
3617 
3618 		hat_mempte_remap(pfn, pp_addr2, pte2,
3619 		    PROT_READ | PROT_WRITE | HAT_STORECACHING_OK,
3620 		    HAT_LOAD_NOCONSIST);
3621 	}
3622 
3623 	if (use_sse_pagezero) {
3624 #ifdef __xpv
3625 		uint_t rem;
3626 
3627 		/*
3628 		 * zero a byte at a time until properly aligned for
3629 		 * block_zero_no_xmm().
3630 		 */
3631 		while (!P2NPHASE(off, ((uint_t)BLOCKZEROALIGN)) && len-- > 0)
3632 			pp_addr2[off++] = 0;
3633 
3634 		/*
3635 		 * Now use faster block_zero_no_xmm() for any range
3636 		 * that is properly aligned and sized.
3637 		 */
3638 		rem = P2PHASE(len, ((uint_t)BLOCKZEROALIGN));
3639 		len -= rem;
3640 		if (len != 0) {
3641 			block_zero_no_xmm(pp_addr2 + off, len);
3642 			off += len;
3643 		}
3644 
3645 		/*
3646 		 * zero remainder with byte stores.
3647 		 */
3648 		while (rem-- > 0)
3649 			pp_addr2[off++] = 0;
3650 #else
3651 		hwblkclr(pp_addr2 + off, len);
3652 #endif
3653 	} else {
3654 		bzero(pp_addr2 + off, len);
3655 	}
3656 
3657 	if (!kpm_enable || pfn_is_foreign(pfn)) {
3658 #ifdef __xpv
3659 		/*
3660 		 * On the hypervisor this page might get used for a page
3661 		 * table before any intervening change to this mapping,
3662 		 * so blow it away.
3663 		 */
3664 		if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0,
3665 		    UVMF_INVLPG) < 0)
3666 			panic("HYPERVISOR_update_va_mapping() failed");
3667 #endif
3668 		mutex_exit(ppaddr_mutex);
3669 	}
3670 
3671 	kpreempt_enable();
3672 }
3673 
3674 /*
3675  * Platform-dependent page scrub call.
3676  */
3677 void
3678 pagescrub(page_t *pp, uint_t off, uint_t len)
3679 {
3680 	/*
3681 	 * For now, we rely on the fact that pagezero() will
3682 	 * always clear UEs.
3683 	 */
3684 	pagezero(pp, off, len);
3685 }
3686 
3687 /*
3688  * set up two private addresses for use on a given CPU for use in ppcopy()
3689  */
3690 void
3691 setup_vaddr_for_ppcopy(struct cpu *cpup)
3692 {
3693 	void *addr;
3694 	hat_mempte_t pte_pa;
3695 
3696 	addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP);
3697 	pte_pa = hat_mempte_setup(addr);
3698 	cpup->cpu_caddr1 = addr;
3699 	cpup->cpu_caddr1pte = pte_pa;
3700 
3701 	addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP);
3702 	pte_pa = hat_mempte_setup(addr);
3703 	cpup->cpu_caddr2 = addr;
3704 	cpup->cpu_caddr2pte = pte_pa;
3705 
3706 	mutex_init(&cpup->cpu_ppaddr_mutex, NULL, MUTEX_DEFAULT, NULL);
3707 }
3708 
3709 /*
3710  * Undo setup_vaddr_for_ppcopy
3711  */
3712 void
3713 teardown_vaddr_for_ppcopy(struct cpu *cpup)
3714 {
3715 	mutex_destroy(&cpup->cpu_ppaddr_mutex);
3716 
3717 	hat_mempte_release(cpup->cpu_caddr2, cpup->cpu_caddr2pte);
3718 	cpup->cpu_caddr2pte = 0;
3719 	vmem_free(heap_arena, cpup->cpu_caddr2, mmu_ptob(1));
3720 	cpup->cpu_caddr2 = 0;
3721 
3722 	hat_mempte_release(cpup->cpu_caddr1, cpup->cpu_caddr1pte);
3723 	cpup->cpu_caddr1pte = 0;
3724 	vmem_free(heap_arena, cpup->cpu_caddr1, mmu_ptob(1));
3725 	cpup->cpu_caddr1 = 0;
3726 }
3727 
3728 /*
3729  * Function for flushing D-cache when performing module relocations
3730  * to an alternate mapping.  Unnecessary on Intel / AMD platforms.
3731  */
3732 void
3733 dcache_flushall()
3734 {}
3735 
3736 size_t
3737 exec_get_spslew(void)
3738 {
3739 	return (0);
3740 }
3741 
3742 /*
3743  * Allocate a memory page.  The argument 'seed' can be any pseudo-random
3744  * number to vary where the pages come from.  This is quite a hacked up
3745  * method -- it works for now, but really needs to be fixed up a bit.
3746  *
3747  * We currently use page_create_va() on the kvp with fake offsets,
3748  * segments and virt address.  This is pretty bogus, but was copied from the
3749  * old hat_i86.c code.  A better approach would be to specify either mnode
3750  * random or mnode local and takes a page from whatever color has the MOST
3751  * available - this would have a minimal impact on page coloring.
3752  */
3753 page_t *
3754 page_get_physical(uintptr_t seed)
3755 {
3756 	page_t *pp;
3757 	u_offset_t offset;
3758 	static struct seg tmpseg;
3759 	static uintptr_t ctr = 0;
3760 
3761 	/*
3762 	 * This code is gross, we really need a simpler page allocator.
3763 	 *
3764 	 * We need to assign an offset for the page to call page_create_va()
3765 	 * To avoid conflicts with other pages, we get creative with the offset.
3766 	 * For 32 bits, we need an offset > 4Gig
3767 	 * For 64 bits, need an offset somewhere in the VA hole.
3768 	 */
3769 	offset = seed;
3770 	if (offset > kernelbase)
3771 		offset -= kernelbase;
3772 	offset <<= MMU_PAGESHIFT;
3773 #if defined(__amd64)
3774 	offset += mmu.hole_start;	/* something in VA hole */
3775 #else
3776 	offset += 1ULL << 40;	/* something > 4 Gig */
3777 #endif
3778 
3779 	if (page_resv(1, KM_NOSLEEP) == 0)
3780 		return (NULL);
3781 
3782 #ifdef	DEBUG
3783 	pp = page_exists(&kvp, offset);
3784 	if (pp != NULL)
3785 		panic("page already exists %p", (void *)pp);
3786 #endif
3787 
3788 	pp = page_create_va(&kvp, offset, MMU_PAGESIZE, PG_EXCL,
3789 	    &tmpseg, (caddr_t)(ctr += MMU_PAGESIZE));	/* changing VA usage */
3790 	if (pp != NULL) {
3791 		page_io_unlock(pp);
3792 		page_hashout(pp, NULL);
3793 		page_downgrade(pp);
3794 	}
3795 	return (pp);
3796 }
3797