1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * Portions of this source code were derived from Berkeley 4.3 BSD 31 * under license from the Regents of the University of California. 32 */ 33 34 /* 35 * UNIX machine dependent virtual memory support. 36 */ 37 38 #include <sys/types.h> 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/user.h> 42 #include <sys/proc.h> 43 #include <sys/kmem.h> 44 #include <sys/vmem.h> 45 #include <sys/buf.h> 46 #include <sys/cpuvar.h> 47 #include <sys/lgrp.h> 48 #include <sys/disp.h> 49 #include <sys/vm.h> 50 #include <sys/mman.h> 51 #include <sys/vnode.h> 52 #include <sys/cred.h> 53 #include <sys/exec.h> 54 #include <sys/exechdr.h> 55 #include <sys/debug.h> 56 #include <sys/vmsystm.h> 57 58 #include <vm/hat.h> 59 #include <vm/as.h> 60 #include <vm/seg.h> 61 #include <vm/seg_kp.h> 62 #include <vm/seg_vn.h> 63 #include <vm/page.h> 64 #include <vm/seg_kmem.h> 65 #include <vm/seg_kpm.h> 66 #include <vm/vm_dep.h> 67 68 #include <sys/cpu.h> 69 #include <sys/vm_machparam.h> 70 #include <sys/memlist.h> 71 #include <sys/bootconf.h> /* XXX the memlist stuff belongs in memlist_plat.h */ 72 #include <vm/hat_i86.h> 73 #include <sys/x86_archext.h> 74 #include <sys/elf_386.h> 75 #include <sys/cmn_err.h> 76 #include <sys/archsystm.h> 77 #include <sys/machsystm.h> 78 79 #include <sys/vtrace.h> 80 #include <sys/ddidmareq.h> 81 #include <sys/promif.h> 82 #include <sys/memnode.h> 83 #include <sys/stack.h> 84 #include <util/qsort.h> 85 #include <sys/taskq.h> 86 87 #ifdef __xpv 88 89 #include <sys/hypervisor.h> 90 #include <sys/xen_mmu.h> 91 #include <sys/balloon_impl.h> 92 93 /* 94 * domain 0 pages usable for DMA are kept pre-allocated and kept in 95 * distinct lists, ordered by increasing mfn. 96 */ 97 static kmutex_t io_pool_lock; 98 static kmutex_t contig_list_lock; 99 static page_t *io_pool_4g; /* pool for 32 bit dma limited devices */ 100 static page_t *io_pool_16m; /* pool for 24 bit dma limited legacy devices */ 101 static long io_pool_cnt; 102 static long io_pool_cnt_max = 0; 103 #define DEFAULT_IO_POOL_MIN 128 104 static long io_pool_cnt_min = DEFAULT_IO_POOL_MIN; 105 static long io_pool_cnt_lowater = 0; 106 static long io_pool_shrink_attempts; /* how many times did we try to shrink */ 107 static long io_pool_shrinks; /* how many times did we really shrink */ 108 static long io_pool_grows; /* how many times did we grow */ 109 static mfn_t start_mfn = 1; 110 static caddr_t io_pool_kva; /* use to alloc pages when needed */ 111 112 static int create_contig_pfnlist(uint_t); 113 114 /* 115 * percentage of phys mem to hold in the i/o pool 116 */ 117 #define DEFAULT_IO_POOL_PCT 2 118 static long io_pool_physmem_pct = DEFAULT_IO_POOL_PCT; 119 static void page_io_pool_sub(page_t **, page_t *, page_t *); 120 int ioalloc_dbg = 0; 121 122 #endif /* __xpv */ 123 124 uint_t vac_colors = 1; 125 126 int largepagesupport = 0; 127 extern uint_t page_create_new; 128 extern uint_t page_create_exists; 129 extern uint_t page_create_putbacks; 130 extern uint_t page_create_putbacks; 131 /* 132 * Allow users to disable the kernel's use of SSE. 133 */ 134 extern int use_sse_pagecopy, use_sse_pagezero; 135 136 /* 137 * combined memory ranges from mnode and memranges[] to manage single 138 * mnode/mtype dimension in the page lists. 139 */ 140 typedef struct { 141 pfn_t mnr_pfnlo; 142 pfn_t mnr_pfnhi; 143 int mnr_mnode; 144 int mnr_memrange; /* index into memranges[] */ 145 /* maintain page list stats */ 146 pgcnt_t mnr_mt_clpgcnt; /* cache list cnt */ 147 pgcnt_t mnr_mt_flpgcnt[MMU_PAGE_SIZES]; /* free list cnt per szc */ 148 pgcnt_t mnr_mt_totcnt; /* sum of cache and free lists */ 149 #ifdef DEBUG 150 struct mnr_mts { /* mnode/mtype szc stats */ 151 pgcnt_t mnr_mts_pgcnt; 152 int mnr_mts_colors; 153 pgcnt_t *mnr_mtsc_pgcnt; 154 } *mnr_mts; 155 #endif 156 } mnoderange_t; 157 158 #define MEMRANGEHI(mtype) \ 159 ((mtype > 0) ? memranges[mtype - 1] - 1: physmax) 160 #define MEMRANGELO(mtype) (memranges[mtype]) 161 162 #define MTYPE_FREEMEM(mt) (mnoderanges[mt].mnr_mt_totcnt) 163 164 /* 165 * As the PC architecture evolved memory up was clumped into several 166 * ranges for various historical I/O devices to do DMA. 167 * < 16Meg - ISA bus 168 * < 2Gig - ??? 169 * < 4Gig - PCI bus or drivers that don't understand PAE mode 170 * 171 * These are listed in reverse order, so that we can skip over unused 172 * ranges on machines with small memories. 173 * 174 * For now under the Hypervisor, we'll only ever have one memrange. 175 */ 176 #define PFN_4GIG 0x100000 177 #define PFN_16MEG 0x1000 178 static pfn_t arch_memranges[NUM_MEM_RANGES] = { 179 PFN_4GIG, /* pfn range for 4G and above */ 180 0x80000, /* pfn range for 2G-4G */ 181 PFN_16MEG, /* pfn range for 16M-2G */ 182 0x00000, /* pfn range for 0-16M */ 183 }; 184 pfn_t *memranges = &arch_memranges[0]; 185 int nranges = NUM_MEM_RANGES; 186 187 /* 188 * This combines mem_node_config and memranges into one data 189 * structure to be used for page list management. 190 */ 191 mnoderange_t *mnoderanges; 192 int mnoderangecnt; 193 int mtype4g; 194 195 /* 196 * 4g memory management variables for systems with more than 4g of memory: 197 * 198 * physical memory below 4g is required for 32bit dma devices and, currently, 199 * for kmem memory. On systems with more than 4g of memory, the pool of memory 200 * below 4g can be depleted without any paging activity given that there is 201 * likely to be sufficient memory above 4g. 202 * 203 * physmax4g is set true if the largest pfn is over 4g. The rest of the 204 * 4g memory management code is enabled only when physmax4g is true. 205 * 206 * maxmem4g is the count of the maximum number of pages on the page lists 207 * with physical addresses below 4g. It can be a lot less then 4g given that 208 * BIOS may reserve large chunks of space below 4g for hot plug pci devices, 209 * agp aperture etc. 210 * 211 * freemem4g maintains the count of the number of available pages on the 212 * page lists with physical addresses below 4g. 213 * 214 * DESFREE4G specifies the desired amount of below 4g memory. It defaults to 215 * 6% (desfree4gshift = 4) of maxmem4g. 216 * 217 * RESTRICT4G_ALLOC returns true if freemem4g falls below DESFREE4G 218 * and the amount of physical memory above 4g is greater than freemem4g. 219 * In this case, page_get_* routines will restrict below 4g allocations 220 * for requests that don't specifically require it. 221 */ 222 223 #define LOTSFREE4G (maxmem4g >> lotsfree4gshift) 224 #define DESFREE4G (maxmem4g >> desfree4gshift) 225 226 #define RESTRICT4G_ALLOC \ 227 (physmax4g && (freemem4g < DESFREE4G) && ((freemem4g << 1) < freemem)) 228 229 static pgcnt_t maxmem4g; 230 static pgcnt_t freemem4g; 231 static int physmax4g; 232 static int desfree4gshift = 4; /* maxmem4g shift to derive DESFREE4G */ 233 static int lotsfree4gshift = 3; 234 235 /* 236 * 16m memory management: 237 * 238 * reserve some amount of physical memory below 16m for legacy devices. 239 * 240 * RESTRICT16M_ALLOC returns true if an there are sufficient free pages above 241 * 16m or if the 16m pool drops below DESFREE16M. 242 * 243 * In this case, general page allocations via page_get_{free,cache}list 244 * routines will be restricted from allocating from the 16m pool. Allocations 245 * that require specific pfn ranges (page_get_anylist) and PG_PANIC allocations 246 * are not restricted. 247 */ 248 249 #define FREEMEM16M MTYPE_FREEMEM(0) 250 #define DESFREE16M desfree16m 251 #define RESTRICT16M_ALLOC(freemem, pgcnt, flags) \ 252 ((freemem != 0) && ((flags & PG_PANIC) == 0) && \ 253 ((freemem >= (FREEMEM16M)) || \ 254 (FREEMEM16M < (DESFREE16M + pgcnt)))) 255 256 static pgcnt_t desfree16m = 0x380; 257 258 /* 259 * This can be patched via /etc/system to allow old non-PAE aware device 260 * drivers to use kmem_alloc'd memory on 32 bit systems with > 4Gig RAM. 261 */ 262 int restricted_kmemalloc = 0; 263 264 #ifdef VM_STATS 265 struct { 266 ulong_t pga_alloc; 267 ulong_t pga_notfullrange; 268 ulong_t pga_nulldmaattr; 269 ulong_t pga_allocok; 270 ulong_t pga_allocfailed; 271 ulong_t pgma_alloc; 272 ulong_t pgma_allocok; 273 ulong_t pgma_allocfailed; 274 ulong_t pgma_allocempty; 275 } pga_vmstats; 276 #endif 277 278 uint_t mmu_page_sizes; 279 280 /* How many page sizes the users can see */ 281 uint_t mmu_exported_page_sizes; 282 283 /* page sizes that legacy applications can see */ 284 uint_t mmu_legacy_page_sizes; 285 286 /* 287 * Number of pages in 1 GB. Don't enable automatic large pages if we have 288 * fewer than this many pages. 289 */ 290 pgcnt_t shm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT); 291 pgcnt_t privm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT); 292 293 /* 294 * Maximum and default segment size tunables for user private 295 * and shared anon memory, and user text and initialized data. 296 * These can be patched via /etc/system to allow large pages 297 * to be used for mapping application private and shared anon memory. 298 */ 299 size_t mcntl0_lpsize = MMU_PAGESIZE; 300 size_t max_uheap_lpsize = MMU_PAGESIZE; 301 size_t default_uheap_lpsize = MMU_PAGESIZE; 302 size_t max_ustack_lpsize = MMU_PAGESIZE; 303 size_t default_ustack_lpsize = MMU_PAGESIZE; 304 size_t max_privmap_lpsize = MMU_PAGESIZE; 305 size_t max_uidata_lpsize = MMU_PAGESIZE; 306 size_t max_utext_lpsize = MMU_PAGESIZE; 307 size_t max_shm_lpsize = MMU_PAGESIZE; 308 309 310 /* 311 * initialized by page_coloring_init(). 312 */ 313 uint_t page_colors; 314 uint_t page_colors_mask; 315 uint_t page_coloring_shift; 316 int cpu_page_colors; 317 static uint_t l2_colors; 318 319 /* 320 * Page freelists and cachelists are dynamically allocated once mnoderangecnt 321 * and page_colors are calculated from the l2 cache n-way set size. Within a 322 * mnode range, the page freelist and cachelist are hashed into bins based on 323 * color. This makes it easier to search for a page within a specific memory 324 * range. 325 */ 326 #define PAGE_COLORS_MIN 16 327 328 page_t ****page_freelists; 329 page_t ***page_cachelists; 330 331 332 /* 333 * Used by page layer to know about page sizes 334 */ 335 hw_pagesize_t hw_page_array[MAX_NUM_LEVEL + 1]; 336 337 kmutex_t *fpc_mutex[NPC_MUTEX]; 338 kmutex_t *cpc_mutex[NPC_MUTEX]; 339 340 /* 341 * Only let one thread at a time try to coalesce large pages, to 342 * prevent them from working against each other. 343 */ 344 static kmutex_t contig_lock; 345 #define CONTIG_LOCK() mutex_enter(&contig_lock); 346 #define CONTIG_UNLOCK() mutex_exit(&contig_lock); 347 348 #define PFN_16M (mmu_btop((uint64_t)0x1000000)) 349 350 /* 351 * Return the optimum page size for a given mapping 352 */ 353 /*ARGSUSED*/ 354 size_t 355 map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int memcntl) 356 { 357 level_t l = 0; 358 size_t pgsz = MMU_PAGESIZE; 359 size_t max_lpsize; 360 uint_t mszc; 361 362 ASSERT(maptype != MAPPGSZ_VA); 363 364 if (maptype != MAPPGSZ_ISM && physmem < privm_lpg_min_physmem) { 365 return (MMU_PAGESIZE); 366 } 367 368 switch (maptype) { 369 case MAPPGSZ_HEAP: 370 case MAPPGSZ_STK: 371 max_lpsize = memcntl ? mcntl0_lpsize : (maptype == 372 MAPPGSZ_HEAP ? max_uheap_lpsize : max_ustack_lpsize); 373 if (max_lpsize == MMU_PAGESIZE) { 374 return (MMU_PAGESIZE); 375 } 376 if (len == 0) { 377 len = (maptype == MAPPGSZ_HEAP) ? p->p_brkbase + 378 p->p_brksize - p->p_bssbase : p->p_stksize; 379 } 380 len = (maptype == MAPPGSZ_HEAP) ? MAX(len, 381 default_uheap_lpsize) : MAX(len, default_ustack_lpsize); 382 383 /* 384 * use the pages size that best fits len 385 */ 386 for (l = mmu.umax_page_level; l > 0; --l) { 387 if (LEVEL_SIZE(l) > max_lpsize || len < LEVEL_SIZE(l)) { 388 continue; 389 } else { 390 pgsz = LEVEL_SIZE(l); 391 } 392 break; 393 } 394 395 mszc = (maptype == MAPPGSZ_HEAP ? p->p_brkpageszc : 396 p->p_stkpageszc); 397 if (addr == 0 && (pgsz < hw_page_array[mszc].hp_size)) { 398 pgsz = hw_page_array[mszc].hp_size; 399 } 400 return (pgsz); 401 402 case MAPPGSZ_ISM: 403 for (l = mmu.umax_page_level; l > 0; --l) { 404 if (len >= LEVEL_SIZE(l)) 405 return (LEVEL_SIZE(l)); 406 } 407 return (LEVEL_SIZE(0)); 408 } 409 return (pgsz); 410 } 411 412 static uint_t 413 map_szcvec(caddr_t addr, size_t size, uintptr_t off, size_t max_lpsize, 414 size_t min_physmem) 415 { 416 caddr_t eaddr = addr + size; 417 uint_t szcvec = 0; 418 caddr_t raddr; 419 caddr_t readdr; 420 size_t pgsz; 421 int i; 422 423 if (physmem < min_physmem || max_lpsize <= MMU_PAGESIZE) { 424 return (0); 425 } 426 427 for (i = mmu_exported_page_sizes - 1; i > 0; i--) { 428 pgsz = page_get_pagesize(i); 429 if (pgsz > max_lpsize) { 430 continue; 431 } 432 raddr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 433 readdr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 434 if (raddr < addr || raddr >= readdr) { 435 continue; 436 } 437 if (P2PHASE((uintptr_t)addr ^ off, pgsz)) { 438 continue; 439 } 440 /* 441 * Set szcvec to the remaining page sizes. 442 */ 443 szcvec = ((1 << (i + 1)) - 1) & ~1; 444 break; 445 } 446 return (szcvec); 447 } 448 449 /* 450 * Return a bit vector of large page size codes that 451 * can be used to map [addr, addr + len) region. 452 */ 453 /*ARGSUSED*/ 454 uint_t 455 map_pgszcvec(caddr_t addr, size_t size, uintptr_t off, int flags, int type, 456 int memcntl) 457 { 458 size_t max_lpsize = mcntl0_lpsize; 459 460 if (mmu.max_page_level == 0) 461 return (0); 462 463 if (flags & MAP_TEXT) { 464 if (!memcntl) 465 max_lpsize = max_utext_lpsize; 466 return (map_szcvec(addr, size, off, max_lpsize, 467 shm_lpg_min_physmem)); 468 469 } else if (flags & MAP_INITDATA) { 470 if (!memcntl) 471 max_lpsize = max_uidata_lpsize; 472 return (map_szcvec(addr, size, off, max_lpsize, 473 privm_lpg_min_physmem)); 474 475 } else if (type == MAPPGSZC_SHM) { 476 if (!memcntl) 477 max_lpsize = max_shm_lpsize; 478 return (map_szcvec(addr, size, off, max_lpsize, 479 shm_lpg_min_physmem)); 480 481 } else if (type == MAPPGSZC_HEAP) { 482 if (!memcntl) 483 max_lpsize = max_uheap_lpsize; 484 return (map_szcvec(addr, size, off, max_lpsize, 485 privm_lpg_min_physmem)); 486 487 } else if (type == MAPPGSZC_STACK) { 488 if (!memcntl) 489 max_lpsize = max_ustack_lpsize; 490 return (map_szcvec(addr, size, off, max_lpsize, 491 privm_lpg_min_physmem)); 492 493 } else { 494 if (!memcntl) 495 max_lpsize = max_privmap_lpsize; 496 return (map_szcvec(addr, size, off, max_lpsize, 497 privm_lpg_min_physmem)); 498 } 499 } 500 501 /* 502 * Handle a pagefault. 503 */ 504 faultcode_t 505 pagefault( 506 caddr_t addr, 507 enum fault_type type, 508 enum seg_rw rw, 509 int iskernel) 510 { 511 struct as *as; 512 struct hat *hat; 513 struct proc *p; 514 kthread_t *t; 515 faultcode_t res; 516 caddr_t base; 517 size_t len; 518 int err; 519 int mapped_red; 520 uintptr_t ea; 521 522 ASSERT_STACK_ALIGNED(); 523 524 if (INVALID_VADDR(addr)) 525 return (FC_NOMAP); 526 527 mapped_red = segkp_map_red(); 528 529 if (iskernel) { 530 as = &kas; 531 hat = as->a_hat; 532 } else { 533 t = curthread; 534 p = ttoproc(t); 535 as = p->p_as; 536 hat = as->a_hat; 537 } 538 539 /* 540 * Dispatch pagefault. 541 */ 542 res = as_fault(hat, as, addr, 1, type, rw); 543 544 /* 545 * If this isn't a potential unmapped hole in the user's 546 * UNIX data or stack segments, just return status info. 547 */ 548 if (res != FC_NOMAP || iskernel) 549 goto out; 550 551 /* 552 * Check to see if we happened to faulted on a currently unmapped 553 * part of the UNIX data or stack segments. If so, create a zfod 554 * mapping there and then try calling the fault routine again. 555 */ 556 base = p->p_brkbase; 557 len = p->p_brksize; 558 559 if (addr < base || addr >= base + len) { /* data seg? */ 560 base = (caddr_t)p->p_usrstack - p->p_stksize; 561 len = p->p_stksize; 562 if (addr < base || addr >= p->p_usrstack) { /* stack seg? */ 563 /* not in either UNIX data or stack segments */ 564 res = FC_NOMAP; 565 goto out; 566 } 567 } 568 569 /* 570 * the rest of this function implements a 3.X 4.X 5.X compatibility 571 * This code is probably not needed anymore 572 */ 573 if (p->p_model == DATAMODEL_ILP32) { 574 575 /* expand the gap to the page boundaries on each side */ 576 ea = P2ROUNDUP((uintptr_t)base + len, MMU_PAGESIZE); 577 base = (caddr_t)P2ALIGN((uintptr_t)base, MMU_PAGESIZE); 578 len = ea - (uintptr_t)base; 579 580 as_rangelock(as); 581 if (as_gap(as, MMU_PAGESIZE, &base, &len, AH_CONTAIN, addr) == 582 0) { 583 err = as_map(as, base, len, segvn_create, zfod_argsp); 584 as_rangeunlock(as); 585 if (err) { 586 res = FC_MAKE_ERR(err); 587 goto out; 588 } 589 } else { 590 /* 591 * This page is already mapped by another thread after 592 * we returned from as_fault() above. We just fall 593 * through as_fault() below. 594 */ 595 as_rangeunlock(as); 596 } 597 598 res = as_fault(hat, as, addr, 1, F_INVAL, rw); 599 } 600 601 out: 602 if (mapped_red) 603 segkp_unmap_red(); 604 605 return (res); 606 } 607 608 void 609 map_addr(caddr_t *addrp, size_t len, offset_t off, int vacalign, uint_t flags) 610 { 611 struct proc *p = curproc; 612 caddr_t userlimit = (flags & _MAP_LOW32) ? 613 (caddr_t)_userlimit32 : p->p_as->a_userlimit; 614 615 map_addr_proc(addrp, len, off, vacalign, userlimit, curproc, flags); 616 } 617 618 /*ARGSUSED*/ 619 int 620 map_addr_vacalign_check(caddr_t addr, u_offset_t off) 621 { 622 return (0); 623 } 624 625 /* 626 * map_addr_proc() is the routine called when the system is to 627 * choose an address for the user. We will pick an address 628 * range which is the highest available below userlimit. 629 * 630 * Every mapping will have a redzone of a single page on either side of 631 * the request. This is done to leave one page unmapped between segments. 632 * This is not required, but it's useful for the user because if their 633 * program strays across a segment boundary, it will catch a fault 634 * immediately making debugging a little easier. Currently the redzone 635 * is mandatory. 636 * 637 * addrp is a value/result parameter. 638 * On input it is a hint from the user to be used in a completely 639 * machine dependent fashion. We decide to completely ignore this hint. 640 * If MAP_ALIGN was specified, addrp contains the minimal alignment, which 641 * must be some "power of two" multiple of pagesize. 642 * 643 * On output it is NULL if no address can be found in the current 644 * processes address space or else an address that is currently 645 * not mapped for len bytes with a page of red zone on either side. 646 * 647 * vacalign is not needed on x86 (it's for viturally addressed caches) 648 */ 649 /*ARGSUSED*/ 650 void 651 map_addr_proc( 652 caddr_t *addrp, 653 size_t len, 654 offset_t off, 655 int vacalign, 656 caddr_t userlimit, 657 struct proc *p, 658 uint_t flags) 659 { 660 struct as *as = p->p_as; 661 caddr_t addr; 662 caddr_t base; 663 size_t slen; 664 size_t align_amount; 665 666 ASSERT32(userlimit == as->a_userlimit); 667 668 base = p->p_brkbase; 669 #if defined(__amd64) 670 /* 671 * XX64 Yes, this needs more work. 672 */ 673 if (p->p_model == DATAMODEL_NATIVE) { 674 if (userlimit < as->a_userlimit) { 675 /* 676 * This happens when a program wants to map 677 * something in a range that's accessible to a 678 * program in a smaller address space. For example, 679 * a 64-bit program calling mmap32(2) to guarantee 680 * that the returned address is below 4Gbytes. 681 */ 682 ASSERT((uintptr_t)userlimit < ADDRESS_C(0xffffffff)); 683 684 if (userlimit > base) 685 slen = userlimit - base; 686 else { 687 *addrp = NULL; 688 return; 689 } 690 } else { 691 /* 692 * XX64 This layout is probably wrong .. but in 693 * the event we make the amd64 address space look 694 * like sparcv9 i.e. with the stack -above- the 695 * heap, this bit of code might even be correct. 696 */ 697 slen = p->p_usrstack - base - 698 (((size_t)rctl_enforced_value( 699 rctlproc_legacy[RLIMIT_STACK], 700 p->p_rctls, p) + PAGEOFFSET) & PAGEMASK); 701 } 702 } else 703 #endif 704 slen = userlimit - base; 705 706 /* Make len be a multiple of PAGESIZE */ 707 len = (len + PAGEOFFSET) & PAGEMASK; 708 709 /* 710 * figure out what the alignment should be 711 * 712 * XX64 -- is there an ELF_AMD64_MAXPGSZ or is it the same???? 713 */ 714 if (len <= ELF_386_MAXPGSZ) { 715 /* 716 * Align virtual addresses to ensure that ELF shared libraries 717 * are mapped with the appropriate alignment constraints by 718 * the run-time linker. 719 */ 720 align_amount = ELF_386_MAXPGSZ; 721 } else { 722 int l = mmu.umax_page_level; 723 724 while (l && len < LEVEL_SIZE(l)) 725 --l; 726 727 align_amount = LEVEL_SIZE(l); 728 } 729 730 if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) 731 align_amount = (uintptr_t)*addrp; 732 733 ASSERT(ISP2(align_amount)); 734 ASSERT(align_amount == 0 || align_amount >= PAGESIZE); 735 736 off = off & (align_amount - 1); 737 /* 738 * Look for a large enough hole starting below userlimit. 739 * After finding it, use the upper part. 740 */ 741 if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount, 742 PAGESIZE, off) == 0) { 743 caddr_t as_addr; 744 745 /* 746 * addr is the highest possible address to use since we have 747 * a PAGESIZE redzone at the beginning and end. 748 */ 749 addr = base + slen - (PAGESIZE + len); 750 as_addr = addr; 751 /* 752 * Round address DOWN to the alignment amount and 753 * add the offset in. 754 * If addr is greater than as_addr, len would not be large 755 * enough to include the redzone, so we must adjust down 756 * by the alignment amount. 757 */ 758 addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1))); 759 addr += (uintptr_t)off; 760 if (addr > as_addr) { 761 addr -= align_amount; 762 } 763 764 ASSERT(addr > base); 765 ASSERT(addr + len < base + slen); 766 ASSERT(((uintptr_t)addr & (align_amount - 1)) == 767 ((uintptr_t)(off))); 768 *addrp = addr; 769 } else { 770 *addrp = NULL; /* no more virtual space */ 771 } 772 } 773 774 int valid_va_range_aligned_wraparound; 775 776 /* 777 * Determine whether [*basep, *basep + *lenp) contains a mappable range of 778 * addresses at least "minlen" long, where the base of the range is at "off" 779 * phase from an "align" boundary and there is space for a "redzone"-sized 780 * redzone on either side of the range. On success, 1 is returned and *basep 781 * and *lenp are adjusted to describe the acceptable range (including 782 * the redzone). On failure, 0 is returned. 783 */ 784 /*ARGSUSED3*/ 785 int 786 valid_va_range_aligned(caddr_t *basep, size_t *lenp, size_t minlen, int dir, 787 size_t align, size_t redzone, size_t off) 788 { 789 uintptr_t hi, lo; 790 size_t tot_len; 791 792 ASSERT(align == 0 ? off == 0 : off < align); 793 ASSERT(ISP2(align)); 794 ASSERT(align == 0 || align >= PAGESIZE); 795 796 lo = (uintptr_t)*basep; 797 hi = lo + *lenp; 798 tot_len = minlen + 2 * redzone; /* need at least this much space */ 799 800 /* 801 * If hi rolled over the top, try cutting back. 802 */ 803 if (hi < lo) { 804 *lenp = 0UL - lo - 1UL; 805 /* See if this really happens. If so, then we figure out why */ 806 valid_va_range_aligned_wraparound++; 807 hi = lo + *lenp; 808 } 809 if (*lenp < tot_len) { 810 return (0); 811 } 812 813 #if defined(__amd64) 814 /* 815 * Deal with a possible hole in the address range between 816 * hole_start and hole_end that should never be mapped. 817 */ 818 if (lo < hole_start) { 819 if (hi > hole_start) { 820 if (hi < hole_end) { 821 hi = hole_start; 822 } else { 823 /* lo < hole_start && hi >= hole_end */ 824 if (dir == AH_LO) { 825 /* 826 * prefer lowest range 827 */ 828 if (hole_start - lo >= tot_len) 829 hi = hole_start; 830 else if (hi - hole_end >= tot_len) 831 lo = hole_end; 832 else 833 return (0); 834 } else { 835 /* 836 * prefer highest range 837 */ 838 if (hi - hole_end >= tot_len) 839 lo = hole_end; 840 else if (hole_start - lo >= tot_len) 841 hi = hole_start; 842 else 843 return (0); 844 } 845 } 846 } 847 } else { 848 /* lo >= hole_start */ 849 if (hi < hole_end) 850 return (0); 851 if (lo < hole_end) 852 lo = hole_end; 853 } 854 #endif 855 856 if (hi - lo < tot_len) 857 return (0); 858 859 if (align > 1) { 860 uintptr_t tlo = lo + redzone; 861 uintptr_t thi = hi - redzone; 862 tlo = (uintptr_t)P2PHASEUP(tlo, align, off); 863 if (tlo < lo + redzone) { 864 return (0); 865 } 866 if (thi < tlo || thi - tlo < minlen) { 867 return (0); 868 } 869 } 870 871 *basep = (caddr_t)lo; 872 *lenp = hi - lo; 873 return (1); 874 } 875 876 /* 877 * Determine whether [*basep, *basep + *lenp) contains a mappable range of 878 * addresses at least "minlen" long. On success, 1 is returned and *basep 879 * and *lenp are adjusted to describe the acceptable range. On failure, 0 880 * is returned. 881 */ 882 int 883 valid_va_range(caddr_t *basep, size_t *lenp, size_t minlen, int dir) 884 { 885 return (valid_va_range_aligned(basep, lenp, minlen, dir, 0, 0, 0)); 886 } 887 888 /* 889 * Determine whether [addr, addr+len] are valid user addresses. 890 */ 891 /*ARGSUSED*/ 892 int 893 valid_usr_range(caddr_t addr, size_t len, uint_t prot, struct as *as, 894 caddr_t userlimit) 895 { 896 caddr_t eaddr = addr + len; 897 898 if (eaddr <= addr || addr >= userlimit || eaddr > userlimit) 899 return (RANGE_BADADDR); 900 901 #if defined(__amd64) 902 /* 903 * Check for the VA hole 904 */ 905 if (eaddr > (caddr_t)hole_start && addr < (caddr_t)hole_end) 906 return (RANGE_BADADDR); 907 #endif 908 909 return (RANGE_OKAY); 910 } 911 912 /* 913 * Return 1 if the page frame is onboard memory, else 0. 914 */ 915 int 916 pf_is_memory(pfn_t pf) 917 { 918 if (pfn_is_foreign(pf)) 919 return (0); 920 return (address_in_memlist(phys_install, pfn_to_pa(pf), 1)); 921 } 922 923 /* 924 * return the memrange containing pfn 925 */ 926 int 927 memrange_num(pfn_t pfn) 928 { 929 int n; 930 931 for (n = 0; n < nranges - 1; ++n) { 932 if (pfn >= memranges[n]) 933 break; 934 } 935 return (n); 936 } 937 938 /* 939 * return the mnoderange containing pfn 940 */ 941 /*ARGSUSED*/ 942 int 943 pfn_2_mtype(pfn_t pfn) 944 { 945 #if defined(__xpv) 946 return (0); 947 #else 948 int n; 949 950 for (n = mnoderangecnt - 1; n >= 0; n--) { 951 if (pfn >= mnoderanges[n].mnr_pfnlo) { 952 break; 953 } 954 } 955 return (n); 956 #endif 957 } 958 959 #if !defined(__xpv) 960 /* 961 * is_contigpage_free: 962 * returns a page list of contiguous pages. It minimally has to return 963 * minctg pages. Caller determines minctg based on the scatter-gather 964 * list length. 965 * 966 * pfnp is set to the next page frame to search on return. 967 */ 968 static page_t * 969 is_contigpage_free( 970 pfn_t *pfnp, 971 pgcnt_t *pgcnt, 972 pgcnt_t minctg, 973 uint64_t pfnseg, 974 int iolock) 975 { 976 int i = 0; 977 pfn_t pfn = *pfnp; 978 page_t *pp; 979 page_t *plist = NULL; 980 981 /* 982 * fail if pfn + minctg crosses a segment boundary. 983 * Adjust for next starting pfn to begin at segment boundary. 984 */ 985 986 if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) { 987 *pfnp = roundup(*pfnp, pfnseg + 1); 988 return (NULL); 989 } 990 991 do { 992 retry: 993 pp = page_numtopp_nolock(pfn + i); 994 if ((pp == NULL) || 995 (page_trylock(pp, SE_EXCL) == 0)) { 996 (*pfnp)++; 997 break; 998 } 999 if (page_pptonum(pp) != pfn + i) { 1000 page_unlock(pp); 1001 goto retry; 1002 } 1003 1004 if (!(PP_ISFREE(pp))) { 1005 page_unlock(pp); 1006 (*pfnp)++; 1007 break; 1008 } 1009 1010 if (!PP_ISAGED(pp)) { 1011 page_list_sub(pp, PG_CACHE_LIST); 1012 page_hashout(pp, (kmutex_t *)NULL); 1013 } else { 1014 page_list_sub(pp, PG_FREE_LIST); 1015 } 1016 1017 if (iolock) 1018 page_io_lock(pp); 1019 page_list_concat(&plist, &pp); 1020 1021 /* 1022 * exit loop when pgcnt satisfied or segment boundary reached. 1023 */ 1024 1025 } while ((++i < *pgcnt) && ((pfn + i) & pfnseg)); 1026 1027 *pfnp += i; /* set to next pfn to search */ 1028 1029 if (i >= minctg) { 1030 *pgcnt -= i; 1031 return (plist); 1032 } 1033 1034 /* 1035 * failure: minctg not satisfied. 1036 * 1037 * if next request crosses segment boundary, set next pfn 1038 * to search from the segment boundary. 1039 */ 1040 if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) 1041 *pfnp = roundup(*pfnp, pfnseg + 1); 1042 1043 /* clean up any pages already allocated */ 1044 1045 while (plist) { 1046 pp = plist; 1047 page_sub(&plist, pp); 1048 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 1049 if (iolock) 1050 page_io_unlock(pp); 1051 page_unlock(pp); 1052 } 1053 1054 return (NULL); 1055 } 1056 #endif /* !__xpv */ 1057 1058 /* 1059 * verify that pages being returned from allocator have correct DMA attribute 1060 */ 1061 #ifndef DEBUG 1062 #define check_dma(a, b, c) (0) 1063 #else 1064 static void 1065 check_dma(ddi_dma_attr_t *dma_attr, page_t *pp, int cnt) 1066 { 1067 if (dma_attr == NULL) 1068 return; 1069 1070 while (cnt-- > 0) { 1071 if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) < 1072 dma_attr->dma_attr_addr_lo) 1073 panic("PFN (pp=%p) below dma_attr_addr_lo", (void *)pp); 1074 if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) >= 1075 dma_attr->dma_attr_addr_hi) 1076 panic("PFN (pp=%p) above dma_attr_addr_hi", (void *)pp); 1077 pp = pp->p_next; 1078 } 1079 } 1080 #endif 1081 1082 #if !defined(__xpv) 1083 static page_t * 1084 page_get_contigpage(pgcnt_t *pgcnt, ddi_dma_attr_t *mattr, int iolock) 1085 { 1086 pfn_t pfn; 1087 int sgllen; 1088 uint64_t pfnseg; 1089 pgcnt_t minctg; 1090 page_t *pplist = NULL, *plist; 1091 uint64_t lo, hi; 1092 pgcnt_t pfnalign = 0; 1093 static pfn_t startpfn; 1094 static pgcnt_t lastctgcnt; 1095 uintptr_t align; 1096 1097 CONTIG_LOCK(); 1098 1099 if (mattr) { 1100 lo = mmu_btop((mattr->dma_attr_addr_lo + MMU_PAGEOFFSET)); 1101 hi = mmu_btop(mattr->dma_attr_addr_hi); 1102 if (hi >= physmax) 1103 hi = physmax - 1; 1104 sgllen = mattr->dma_attr_sgllen; 1105 pfnseg = mmu_btop(mattr->dma_attr_seg); 1106 1107 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 1108 if (align > MMU_PAGESIZE) 1109 pfnalign = mmu_btop(align); 1110 1111 /* 1112 * in order to satisfy the request, must minimally 1113 * acquire minctg contiguous pages 1114 */ 1115 minctg = howmany(*pgcnt, sgllen); 1116 1117 ASSERT(hi >= lo); 1118 1119 /* 1120 * start from where last searched if the minctg >= lastctgcnt 1121 */ 1122 if (minctg < lastctgcnt || startpfn < lo || startpfn > hi) 1123 startpfn = lo; 1124 } else { 1125 hi = physmax - 1; 1126 lo = 0; 1127 sgllen = 1; 1128 pfnseg = mmu.highest_pfn; 1129 minctg = *pgcnt; 1130 1131 if (minctg < lastctgcnt) 1132 startpfn = lo; 1133 } 1134 lastctgcnt = minctg; 1135 1136 ASSERT(pfnseg + 1 >= (uint64_t)minctg); 1137 1138 /* conserve 16m memory - start search above 16m when possible */ 1139 if (hi > PFN_16M && startpfn < PFN_16M) 1140 startpfn = PFN_16M; 1141 1142 pfn = startpfn; 1143 if (pfnalign) 1144 pfn = P2ROUNDUP(pfn, pfnalign); 1145 1146 while (pfn + minctg - 1 <= hi) { 1147 1148 plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock); 1149 if (plist) { 1150 page_list_concat(&pplist, &plist); 1151 sgllen--; 1152 /* 1153 * return when contig pages no longer needed 1154 */ 1155 if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) { 1156 startpfn = pfn; 1157 CONTIG_UNLOCK(); 1158 check_dma(mattr, pplist, *pgcnt); 1159 return (pplist); 1160 } 1161 minctg = howmany(*pgcnt, sgllen); 1162 } 1163 if (pfnalign) 1164 pfn = P2ROUNDUP(pfn, pfnalign); 1165 } 1166 1167 /* cannot find contig pages in specified range */ 1168 if (startpfn == lo) { 1169 CONTIG_UNLOCK(); 1170 return (NULL); 1171 } 1172 1173 /* did not start with lo previously */ 1174 pfn = lo; 1175 if (pfnalign) 1176 pfn = P2ROUNDUP(pfn, pfnalign); 1177 1178 /* allow search to go above startpfn */ 1179 while (pfn < startpfn) { 1180 1181 plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock); 1182 if (plist != NULL) { 1183 1184 page_list_concat(&pplist, &plist); 1185 sgllen--; 1186 1187 /* 1188 * return when contig pages no longer needed 1189 */ 1190 if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) { 1191 startpfn = pfn; 1192 CONTIG_UNLOCK(); 1193 check_dma(mattr, pplist, *pgcnt); 1194 return (pplist); 1195 } 1196 minctg = howmany(*pgcnt, sgllen); 1197 } 1198 if (pfnalign) 1199 pfn = P2ROUNDUP(pfn, pfnalign); 1200 } 1201 CONTIG_UNLOCK(); 1202 return (NULL); 1203 } 1204 #endif /* !__xpv */ 1205 1206 /* 1207 * mnode_range_cnt() calculates the number of memory ranges for mnode and 1208 * memranges[]. Used to determine the size of page lists and mnoderanges. 1209 */ 1210 int 1211 mnode_range_cnt(int mnode) 1212 { 1213 #if defined(__xpv) 1214 ASSERT(mnode == 0); 1215 return (1); 1216 #else /* __xpv */ 1217 int mri; 1218 int mnrcnt = 0; 1219 1220 if (mem_node_config[mnode].exists != 0) { 1221 mri = nranges - 1; 1222 1223 /* find the memranges index below contained in mnode range */ 1224 1225 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase) 1226 mri--; 1227 1228 /* 1229 * increment mnode range counter when memranges or mnode 1230 * boundary is reached. 1231 */ 1232 while (mri >= 0 && 1233 mem_node_config[mnode].physmax >= MEMRANGELO(mri)) { 1234 mnrcnt++; 1235 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri)) 1236 mri--; 1237 else 1238 break; 1239 } 1240 } 1241 ASSERT(mnrcnt <= MAX_MNODE_MRANGES); 1242 return (mnrcnt); 1243 #endif /* __xpv */ 1244 } 1245 1246 /* 1247 * mnode_range_setup() initializes mnoderanges. 1248 */ 1249 void 1250 mnode_range_setup(mnoderange_t *mnoderanges) 1251 { 1252 int mnode, mri; 1253 1254 for (mnode = 0; mnode < max_mem_nodes; mnode++) { 1255 if (mem_node_config[mnode].exists == 0) 1256 continue; 1257 1258 mri = nranges - 1; 1259 1260 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase) 1261 mri--; 1262 1263 while (mri >= 0 && mem_node_config[mnode].physmax >= 1264 MEMRANGELO(mri)) { 1265 mnoderanges->mnr_pfnlo = MAX(MEMRANGELO(mri), 1266 mem_node_config[mnode].physbase); 1267 mnoderanges->mnr_pfnhi = MIN(MEMRANGEHI(mri), 1268 mem_node_config[mnode].physmax); 1269 mnoderanges->mnr_mnode = mnode; 1270 mnoderanges->mnr_memrange = mri; 1271 mnoderanges++; 1272 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri)) 1273 mri--; 1274 else 1275 break; 1276 } 1277 } 1278 } 1279 1280 /*ARGSUSED*/ 1281 int 1282 mtype_init(vnode_t *vp, caddr_t vaddr, uint_t *flags, size_t pgsz) 1283 { 1284 int mtype = mnoderangecnt - 1; 1285 1286 #if !defined(__xpv) 1287 #if defined(__i386) 1288 /* 1289 * set the mtype range 1290 * - kmem requests needs to be below 4g if restricted_kmemalloc is set. 1291 * - for non kmem requests, set range to above 4g if memory below 4g 1292 * runs low. 1293 */ 1294 if (restricted_kmemalloc && VN_ISKAS(vp) && 1295 (caddr_t)(vaddr) >= kernelheap && 1296 (caddr_t)(vaddr) < ekernelheap) { 1297 ASSERT(physmax4g); 1298 mtype = mtype4g; 1299 if (RESTRICT16M_ALLOC(freemem4g - btop(pgsz), 1300 btop(pgsz), *flags)) { 1301 *flags |= PGI_MT_RANGE16M; 1302 } else { 1303 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); 1304 VM_STAT_COND_ADD((*flags & PG_PANIC), 1305 vmm_vmstats.pgpanicalloc); 1306 *flags |= PGI_MT_RANGE0; 1307 } 1308 return (mtype); 1309 } 1310 #endif /* __i386 */ 1311 1312 if (RESTRICT4G_ALLOC) { 1313 VM_STAT_ADD(vmm_vmstats.restrict4gcnt); 1314 /* here only for > 4g systems */ 1315 *flags |= PGI_MT_RANGE4G; 1316 } else if (RESTRICT16M_ALLOC(freemem, btop(pgsz), *flags)) { 1317 *flags |= PGI_MT_RANGE16M; 1318 } else { 1319 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); 1320 VM_STAT_COND_ADD((*flags & PG_PANIC), vmm_vmstats.pgpanicalloc); 1321 *flags |= PGI_MT_RANGE0; 1322 } 1323 #endif /* !__xpv */ 1324 return (mtype); 1325 } 1326 1327 1328 /* mtype init for page_get_replacement_page */ 1329 /*ARGSUSED*/ 1330 int 1331 mtype_pgr_init(int *flags, page_t *pp, int mnode, pgcnt_t pgcnt) 1332 { 1333 int mtype = mnoderangecnt - 1; 1334 #if !defined(__ixpv) 1335 if (RESTRICT16M_ALLOC(freemem, pgcnt, *flags)) { 1336 *flags |= PGI_MT_RANGE16M; 1337 } else { 1338 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); 1339 *flags |= PGI_MT_RANGE0; 1340 } 1341 #endif 1342 return (mtype); 1343 } 1344 1345 /* 1346 * Determine if the mnode range specified in mtype contains memory belonging 1347 * to memory node mnode. If flags & PGI_MT_RANGE is set then mtype contains 1348 * the range of indices from high pfn to 0, 16m or 4g. 1349 * 1350 * Return first mnode range type index found otherwise return -1 if none found. 1351 */ 1352 int 1353 mtype_func(int mnode, int mtype, uint_t flags) 1354 { 1355 if (flags & PGI_MT_RANGE) { 1356 int mtlim = 0; 1357 1358 if (flags & PGI_MT_NEXT) 1359 mtype--; 1360 if (flags & PGI_MT_RANGE4G) 1361 mtlim = mtype4g + 1; /* exclude 0-4g range */ 1362 else if (flags & PGI_MT_RANGE16M) 1363 mtlim = 1; /* exclude 0-16m range */ 1364 while (mtype >= mtlim) { 1365 if (mnoderanges[mtype].mnr_mnode == mnode) 1366 return (mtype); 1367 mtype--; 1368 } 1369 } else if (mnoderanges[mtype].mnr_mnode == mnode) { 1370 return (mtype); 1371 } 1372 return (-1); 1373 } 1374 1375 /* 1376 * Update the page list max counts with the pfn range specified by the 1377 * input parameters. Called from add_physmem() when physical memory with 1378 * page_t's are initially added to the page lists. 1379 */ 1380 void 1381 mtype_modify_max(pfn_t startpfn, long cnt) 1382 { 1383 int mtype = 0; 1384 pfn_t endpfn = startpfn + cnt, pfn; 1385 pgcnt_t inc; 1386 1387 ASSERT(cnt > 0); 1388 1389 if (!physmax4g) 1390 return; 1391 1392 for (pfn = startpfn; pfn < endpfn; ) { 1393 if (pfn <= mnoderanges[mtype].mnr_pfnhi) { 1394 if (endpfn < mnoderanges[mtype].mnr_pfnhi) { 1395 inc = endpfn - pfn; 1396 } else { 1397 inc = mnoderanges[mtype].mnr_pfnhi - pfn + 1; 1398 } 1399 if (mtype <= mtype4g) 1400 maxmem4g += inc; 1401 pfn += inc; 1402 } 1403 mtype++; 1404 ASSERT(mtype < mnoderangecnt || pfn >= endpfn); 1405 } 1406 } 1407 1408 int 1409 mtype_2_mrange(int mtype) 1410 { 1411 return (mnoderanges[mtype].mnr_memrange); 1412 } 1413 1414 void 1415 mnodetype_2_pfn(int mnode, int mtype, pfn_t *pfnlo, pfn_t *pfnhi) 1416 { 1417 ASSERT(mnoderanges[mtype].mnr_mnode == mnode); 1418 *pfnlo = mnoderanges[mtype].mnr_pfnlo; 1419 *pfnhi = mnoderanges[mtype].mnr_pfnhi; 1420 } 1421 1422 size_t 1423 plcnt_sz(size_t ctrs_sz) 1424 { 1425 #ifdef DEBUG 1426 int szc, colors; 1427 1428 ctrs_sz += mnoderangecnt * sizeof (struct mnr_mts) * mmu_page_sizes; 1429 for (szc = 0; szc < mmu_page_sizes; szc++) { 1430 colors = page_get_pagecolors(szc); 1431 ctrs_sz += mnoderangecnt * sizeof (pgcnt_t) * colors; 1432 } 1433 #endif 1434 return (ctrs_sz); 1435 } 1436 1437 caddr_t 1438 plcnt_init(caddr_t addr) 1439 { 1440 #ifdef DEBUG 1441 int mt, szc, colors; 1442 1443 for (mt = 0; mt < mnoderangecnt; mt++) { 1444 mnoderanges[mt].mnr_mts = (struct mnr_mts *)addr; 1445 addr += (sizeof (struct mnr_mts) * mmu_page_sizes); 1446 for (szc = 0; szc < mmu_page_sizes; szc++) { 1447 colors = page_get_pagecolors(szc); 1448 mnoderanges[mt].mnr_mts[szc].mnr_mts_colors = colors; 1449 mnoderanges[mt].mnr_mts[szc].mnr_mtsc_pgcnt = 1450 (pgcnt_t *)addr; 1451 addr += (sizeof (pgcnt_t) * colors); 1452 } 1453 } 1454 #endif 1455 return (addr); 1456 } 1457 1458 void 1459 plcnt_inc_dec(page_t *pp, int mtype, int szc, long cnt, int flags) 1460 { 1461 #ifdef DEBUG 1462 int bin = PP_2_BIN(pp); 1463 1464 atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mts_pgcnt, cnt); 1465 atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mtsc_pgcnt[bin], 1466 cnt); 1467 #endif 1468 ASSERT(mtype == PP_2_MTYPE(pp)); 1469 if (physmax4g && mtype <= mtype4g) 1470 atomic_add_long(&freemem4g, cnt); 1471 if (flags & PG_CACHE_LIST) 1472 atomic_add_long(&mnoderanges[mtype].mnr_mt_clpgcnt, cnt); 1473 else 1474 atomic_add_long(&mnoderanges[mtype].mnr_mt_flpgcnt[szc], cnt); 1475 atomic_add_long(&mnoderanges[mtype].mnr_mt_totcnt, cnt); 1476 } 1477 1478 /* 1479 * Returns the free page count for mnode 1480 */ 1481 int 1482 mnode_pgcnt(int mnode) 1483 { 1484 int mtype = mnoderangecnt - 1; 1485 int flags = PGI_MT_RANGE0; 1486 pgcnt_t pgcnt = 0; 1487 1488 mtype = mtype_func(mnode, mtype, flags); 1489 1490 while (mtype != -1) { 1491 pgcnt += MTYPE_FREEMEM(mtype); 1492 mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT); 1493 } 1494 return (pgcnt); 1495 } 1496 1497 /* 1498 * Initialize page coloring variables based on the l2 cache parameters. 1499 * Calculate and return memory needed for page coloring data structures. 1500 */ 1501 size_t 1502 page_coloring_init(uint_t l2_sz, int l2_linesz, int l2_assoc) 1503 { 1504 size_t colorsz = 0; 1505 int i; 1506 int colors; 1507 1508 #if defined(__xpv) 1509 /* 1510 * Hypervisor domains currently don't have any concept of NUMA. 1511 * Hence we'll act like there is only 1 memrange. 1512 */ 1513 i = memrange_num(1); 1514 #else /* !__xpv */ 1515 /* 1516 * Reduce the memory ranges lists if we don't have large amounts 1517 * of memory. This avoids searching known empty free lists. 1518 */ 1519 i = memrange_num(physmax); 1520 #if defined(__i386) 1521 if (i > 0) 1522 restricted_kmemalloc = 0; 1523 #endif 1524 /* physmax greater than 4g */ 1525 if (i == 0) 1526 physmax4g = 1; 1527 #endif /* !__xpv */ 1528 memranges += i; 1529 nranges -= i; 1530 1531 ASSERT(mmu_page_sizes <= MMU_PAGE_SIZES); 1532 1533 ASSERT(ISP2(l2_linesz)); 1534 ASSERT(l2_sz > MMU_PAGESIZE); 1535 1536 /* l2_assoc is 0 for fully associative l2 cache */ 1537 if (l2_assoc) 1538 l2_colors = MAX(1, l2_sz / (l2_assoc * MMU_PAGESIZE)); 1539 else 1540 l2_colors = 1; 1541 1542 ASSERT(ISP2(l2_colors)); 1543 1544 /* for scalability, configure at least PAGE_COLORS_MIN color bins */ 1545 page_colors = MAX(l2_colors, PAGE_COLORS_MIN); 1546 1547 /* 1548 * cpu_page_colors is non-zero when a page color may be spread across 1549 * multiple bins. 1550 */ 1551 if (l2_colors < page_colors) 1552 cpu_page_colors = l2_colors; 1553 1554 ASSERT(ISP2(page_colors)); 1555 1556 page_colors_mask = page_colors - 1; 1557 1558 ASSERT(ISP2(CPUSETSIZE())); 1559 page_coloring_shift = lowbit(CPUSETSIZE()); 1560 1561 /* initialize number of colors per page size */ 1562 for (i = 0; i <= mmu.max_page_level; i++) { 1563 hw_page_array[i].hp_size = LEVEL_SIZE(i); 1564 hw_page_array[i].hp_shift = LEVEL_SHIFT(i); 1565 hw_page_array[i].hp_pgcnt = LEVEL_SIZE(i) >> LEVEL_SHIFT(0); 1566 hw_page_array[i].hp_colors = (page_colors_mask >> 1567 (hw_page_array[i].hp_shift - hw_page_array[0].hp_shift)) 1568 + 1; 1569 colorequivszc[i] = 0; 1570 } 1571 1572 /* 1573 * The value of cpu_page_colors determines if additional color bins 1574 * need to be checked for a particular color in the page_get routines. 1575 */ 1576 if (cpu_page_colors != 0) { 1577 1578 int a = lowbit(page_colors) - lowbit(cpu_page_colors); 1579 ASSERT(a > 0); 1580 ASSERT(a < 16); 1581 1582 for (i = 0; i <= mmu.max_page_level; i++) { 1583 if ((colors = hw_page_array[i].hp_colors) <= 1) { 1584 colorequivszc[i] = 0; 1585 continue; 1586 } 1587 while ((colors >> a) == 0) 1588 a--; 1589 ASSERT(a >= 0); 1590 1591 /* higher 4 bits encodes color equiv mask */ 1592 colorequivszc[i] = (a << 4); 1593 } 1594 } 1595 1596 /* factor in colorequiv to check additional 'equivalent' bins. */ 1597 if (colorequiv > 1) { 1598 1599 int a = lowbit(colorequiv) - 1; 1600 if (a > 15) 1601 a = 15; 1602 1603 for (i = 0; i <= mmu.max_page_level; i++) { 1604 if ((colors = hw_page_array[i].hp_colors) <= 1) { 1605 continue; 1606 } 1607 while ((colors >> a) == 0) 1608 a--; 1609 if ((a << 4) > colorequivszc[i]) { 1610 colorequivszc[i] = (a << 4); 1611 } 1612 } 1613 } 1614 1615 /* size for mnoderanges */ 1616 for (mnoderangecnt = 0, i = 0; i < max_mem_nodes; i++) 1617 mnoderangecnt += mnode_range_cnt(i); 1618 colorsz = mnoderangecnt * sizeof (mnoderange_t); 1619 1620 /* size for fpc_mutex and cpc_mutex */ 1621 colorsz += (2 * max_mem_nodes * sizeof (kmutex_t) * NPC_MUTEX); 1622 1623 /* size of page_freelists */ 1624 colorsz += mnoderangecnt * sizeof (page_t ***); 1625 colorsz += mnoderangecnt * mmu_page_sizes * sizeof (page_t **); 1626 1627 for (i = 0; i < mmu_page_sizes; i++) { 1628 colors = page_get_pagecolors(i); 1629 colorsz += mnoderangecnt * colors * sizeof (page_t *); 1630 } 1631 1632 /* size of page_cachelists */ 1633 colorsz += mnoderangecnt * sizeof (page_t **); 1634 colorsz += mnoderangecnt * page_colors * sizeof (page_t *); 1635 1636 return (colorsz); 1637 } 1638 1639 /* 1640 * Called once at startup to configure page_coloring data structures and 1641 * does the 1st page_free()/page_freelist_add(). 1642 */ 1643 void 1644 page_coloring_setup(caddr_t pcmemaddr) 1645 { 1646 int i; 1647 int j; 1648 int k; 1649 caddr_t addr; 1650 int colors; 1651 1652 /* 1653 * do page coloring setup 1654 */ 1655 addr = pcmemaddr; 1656 1657 mnoderanges = (mnoderange_t *)addr; 1658 addr += (mnoderangecnt * sizeof (mnoderange_t)); 1659 1660 mnode_range_setup(mnoderanges); 1661 1662 if (physmax4g) 1663 mtype4g = pfn_2_mtype(0xfffff); 1664 1665 for (k = 0; k < NPC_MUTEX; k++) { 1666 fpc_mutex[k] = (kmutex_t *)addr; 1667 addr += (max_mem_nodes * sizeof (kmutex_t)); 1668 } 1669 for (k = 0; k < NPC_MUTEX; k++) { 1670 cpc_mutex[k] = (kmutex_t *)addr; 1671 addr += (max_mem_nodes * sizeof (kmutex_t)); 1672 } 1673 page_freelists = (page_t ****)addr; 1674 addr += (mnoderangecnt * sizeof (page_t ***)); 1675 1676 page_cachelists = (page_t ***)addr; 1677 addr += (mnoderangecnt * sizeof (page_t **)); 1678 1679 for (i = 0; i < mnoderangecnt; i++) { 1680 page_freelists[i] = (page_t ***)addr; 1681 addr += (mmu_page_sizes * sizeof (page_t **)); 1682 1683 for (j = 0; j < mmu_page_sizes; j++) { 1684 colors = page_get_pagecolors(j); 1685 page_freelists[i][j] = (page_t **)addr; 1686 addr += (colors * sizeof (page_t *)); 1687 } 1688 page_cachelists[i] = (page_t **)addr; 1689 addr += (page_colors * sizeof (page_t *)); 1690 } 1691 } 1692 1693 #if defined(__xpv) 1694 /* 1695 * Give back 10% of the io_pool pages to the free list. 1696 * Don't shrink the pool below some absolute minimum. 1697 */ 1698 static void 1699 page_io_pool_shrink() 1700 { 1701 int retcnt; 1702 page_t *pp, *pp_first, *pp_last, **curpool; 1703 mfn_t mfn; 1704 int bothpools = 0; 1705 1706 mutex_enter(&io_pool_lock); 1707 io_pool_shrink_attempts++; /* should be a kstat? */ 1708 retcnt = io_pool_cnt / 10; 1709 if (io_pool_cnt - retcnt < io_pool_cnt_min) 1710 retcnt = io_pool_cnt - io_pool_cnt_min; 1711 if (retcnt <= 0) 1712 goto done; 1713 io_pool_shrinks++; /* should be a kstat? */ 1714 curpool = &io_pool_4g; 1715 domore: 1716 /* 1717 * Loop through taking pages from the end of the list 1718 * (highest mfns) till amount to return reached. 1719 */ 1720 for (pp = *curpool; pp && retcnt > 0; ) { 1721 pp_first = pp_last = pp->p_prev; 1722 if (pp_first == *curpool) 1723 break; 1724 retcnt--; 1725 io_pool_cnt--; 1726 page_io_pool_sub(curpool, pp_first, pp_last); 1727 if ((mfn = pfn_to_mfn(pp->p_pagenum)) < start_mfn) 1728 start_mfn = mfn; 1729 page_free(pp_first, 1); 1730 pp = *curpool; 1731 } 1732 if (retcnt != 0 && !bothpools) { 1733 /* 1734 * If not enough found in less constrained pool try the 1735 * more constrained one. 1736 */ 1737 curpool = &io_pool_16m; 1738 bothpools = 1; 1739 goto domore; 1740 } 1741 done: 1742 mutex_exit(&io_pool_lock); 1743 } 1744 1745 #endif /* __xpv */ 1746 1747 uint_t 1748 page_create_update_flags_x86(uint_t flags) 1749 { 1750 #if defined(__xpv) 1751 /* 1752 * Check this is an urgent allocation and free pages are depleted. 1753 */ 1754 if (!(flags & PG_WAIT) && freemem < desfree) 1755 page_io_pool_shrink(); 1756 #else /* !__xpv */ 1757 /* 1758 * page_create_get_something may call this because 4g memory may be 1759 * depleted. Set flags to allow for relocation of base page below 1760 * 4g if necessary. 1761 */ 1762 if (physmax4g) 1763 flags |= (PGI_PGCPSZC0 | PGI_PGCPHIPRI); 1764 #endif /* __xpv */ 1765 return (flags); 1766 } 1767 1768 /*ARGSUSED*/ 1769 int 1770 bp_color(struct buf *bp) 1771 { 1772 return (0); 1773 } 1774 1775 #if defined(__xpv) 1776 1777 /* 1778 * Take pages out of an io_pool 1779 */ 1780 static void 1781 page_io_pool_sub(page_t **poolp, page_t *pp_first, page_t *pp_last) 1782 { 1783 if (*poolp == pp_first) { 1784 *poolp = pp_last->p_next; 1785 if (*poolp == pp_first) 1786 *poolp = NULL; 1787 } 1788 pp_first->p_prev->p_next = pp_last->p_next; 1789 pp_last->p_next->p_prev = pp_first->p_prev; 1790 pp_first->p_prev = pp_last; 1791 pp_last->p_next = pp_first; 1792 } 1793 1794 /* 1795 * Put a page on the io_pool list. The list is ordered by increasing MFN. 1796 */ 1797 static void 1798 page_io_pool_add(page_t **poolp, page_t *pp) 1799 { 1800 page_t *look; 1801 mfn_t mfn = mfn_list[pp->p_pagenum]; 1802 1803 if (*poolp == NULL) { 1804 *poolp = pp; 1805 pp->p_next = pp; 1806 pp->p_prev = pp; 1807 return; 1808 } 1809 1810 /* 1811 * Since we try to take pages from the high end of the pool 1812 * chances are good that the pages to be put on the list will 1813 * go at or near the end of the list. so start at the end and 1814 * work backwards. 1815 */ 1816 look = (*poolp)->p_prev; 1817 while (mfn < mfn_list[look->p_pagenum]) { 1818 look = look->p_prev; 1819 if (look == (*poolp)->p_prev) 1820 break; /* backed all the way to front of list */ 1821 } 1822 1823 /* insert after look */ 1824 pp->p_prev = look; 1825 pp->p_next = look->p_next; 1826 pp->p_next->p_prev = pp; 1827 look->p_next = pp; 1828 if (mfn < mfn_list[(*poolp)->p_pagenum]) { 1829 /* 1830 * we inserted a new first list element 1831 * adjust pool pointer to newly inserted element 1832 */ 1833 *poolp = pp; 1834 } 1835 } 1836 1837 /* 1838 * Add a page to the io_pool. Setting the force flag will force the page 1839 * into the io_pool no matter what. 1840 */ 1841 static void 1842 add_page_to_pool(page_t *pp, int force) 1843 { 1844 page_t *highest; 1845 page_t *freep = NULL; 1846 1847 mutex_enter(&io_pool_lock); 1848 /* 1849 * Always keep the scarce low memory pages 1850 */ 1851 if (mfn_list[pp->p_pagenum] < PFN_16MEG) { 1852 ++io_pool_cnt; 1853 page_io_pool_add(&io_pool_16m, pp); 1854 goto done; 1855 } 1856 if (io_pool_cnt < io_pool_cnt_max || force || io_pool_4g == NULL) { 1857 ++io_pool_cnt; 1858 page_io_pool_add(&io_pool_4g, pp); 1859 } else { 1860 highest = io_pool_4g->p_prev; 1861 if (mfn_list[pp->p_pagenum] < mfn_list[highest->p_pagenum]) { 1862 page_io_pool_sub(&io_pool_4g, highest, highest); 1863 page_io_pool_add(&io_pool_4g, pp); 1864 freep = highest; 1865 } else { 1866 freep = pp; 1867 } 1868 } 1869 done: 1870 mutex_exit(&io_pool_lock); 1871 if (freep) 1872 page_free(freep, 1); 1873 } 1874 1875 1876 int contig_pfn_cnt; /* no of pfns in the contig pfn list */ 1877 int contig_pfn_max; /* capacity of the contig pfn list */ 1878 int next_alloc_pfn; /* next position in list to start a contig search */ 1879 int contig_pfnlist_updates; /* pfn list update count */ 1880 int contig_pfnlist_builds; /* how many times have we (re)built list */ 1881 int contig_pfnlist_buildfailed; /* how many times has list build failed */ 1882 int create_contig_pending; /* nonzero means taskq creating contig list */ 1883 pfn_t *contig_pfn_list = NULL; /* list of contig pfns in ascending mfn order */ 1884 1885 /* 1886 * Function to use in sorting a list of pfns by their underlying mfns. 1887 */ 1888 static int 1889 mfn_compare(const void *pfnp1, const void *pfnp2) 1890 { 1891 mfn_t mfn1 = mfn_list[*(pfn_t *)pfnp1]; 1892 mfn_t mfn2 = mfn_list[*(pfn_t *)pfnp2]; 1893 1894 if (mfn1 > mfn2) 1895 return (1); 1896 if (mfn1 < mfn2) 1897 return (-1); 1898 return (0); 1899 } 1900 1901 /* 1902 * Compact the contig_pfn_list by tossing all the non-contiguous 1903 * elements from the list. 1904 */ 1905 static void 1906 compact_contig_pfn_list(void) 1907 { 1908 pfn_t pfn, lapfn, prev_lapfn; 1909 mfn_t mfn; 1910 int i, newcnt = 0; 1911 1912 prev_lapfn = 0; 1913 for (i = 0; i < contig_pfn_cnt - 1; i++) { 1914 pfn = contig_pfn_list[i]; 1915 lapfn = contig_pfn_list[i + 1]; 1916 mfn = mfn_list[pfn]; 1917 /* 1918 * See if next pfn is for a contig mfn 1919 */ 1920 if (mfn_list[lapfn] != mfn + 1) 1921 continue; 1922 /* 1923 * pfn and lookahead are both put in list 1924 * unless pfn is the previous lookahead. 1925 */ 1926 if (pfn != prev_lapfn) 1927 contig_pfn_list[newcnt++] = pfn; 1928 contig_pfn_list[newcnt++] = lapfn; 1929 prev_lapfn = lapfn; 1930 } 1931 for (i = newcnt; i < contig_pfn_cnt; i++) 1932 contig_pfn_list[i] = 0; 1933 contig_pfn_cnt = newcnt; 1934 } 1935 1936 /*ARGSUSED*/ 1937 static void 1938 call_create_contiglist(void *arg) 1939 { 1940 (void) create_contig_pfnlist(PG_WAIT); 1941 } 1942 1943 /* 1944 * Create list of freelist pfns that have underlying 1945 * contiguous mfns. The list is kept in ascending mfn order. 1946 * returns 1 if list created else 0. 1947 */ 1948 static int 1949 create_contig_pfnlist(uint_t flags) 1950 { 1951 pfn_t pfn; 1952 page_t *pp; 1953 int ret = 1; 1954 1955 mutex_enter(&contig_list_lock); 1956 if (contig_pfn_list != NULL) 1957 goto out; 1958 contig_pfn_max = freemem + (freemem / 10); 1959 contig_pfn_list = kmem_zalloc(contig_pfn_max * sizeof (pfn_t), 1960 (flags & PG_WAIT) ? KM_SLEEP : KM_NOSLEEP); 1961 if (contig_pfn_list == NULL) { 1962 /* 1963 * If we could not create the contig list (because 1964 * we could not sleep for memory). Dispatch a taskq that can 1965 * sleep to get the memory. 1966 */ 1967 if (!create_contig_pending) { 1968 if (taskq_dispatch(system_taskq, call_create_contiglist, 1969 NULL, TQ_NOSLEEP) != NULL) 1970 create_contig_pending = 1; 1971 } 1972 contig_pfnlist_buildfailed++; /* count list build failures */ 1973 ret = 0; 1974 goto out; 1975 } 1976 create_contig_pending = 0; 1977 ASSERT(contig_pfn_cnt == 0); 1978 for (pfn = 0; pfn < mfn_count; pfn++) { 1979 pp = page_numtopp_nolock(pfn); 1980 if (pp == NULL || !PP_ISFREE(pp)) 1981 continue; 1982 contig_pfn_list[contig_pfn_cnt] = pfn; 1983 if (++contig_pfn_cnt == contig_pfn_max) 1984 break; 1985 } 1986 qsort(contig_pfn_list, contig_pfn_cnt, sizeof (pfn_t), mfn_compare); 1987 compact_contig_pfn_list(); 1988 /* 1989 * Make sure next search of the newly created contiguous pfn 1990 * list starts at the beginning of the list. 1991 */ 1992 next_alloc_pfn = 0; 1993 contig_pfnlist_builds++; /* count list builds */ 1994 out: 1995 mutex_exit(&contig_list_lock); 1996 return (ret); 1997 } 1998 1999 2000 /* 2001 * Toss the current contig pfnlist. Someone is about to do a massive 2002 * update to pfn<->mfn mappings. So we have them destroy the list and lock 2003 * it till they are done with their update. 2004 */ 2005 void 2006 clear_and_lock_contig_pfnlist() 2007 { 2008 pfn_t *listp = NULL; 2009 size_t listsize; 2010 2011 mutex_enter(&contig_list_lock); 2012 if (contig_pfn_list != NULL) { 2013 listp = contig_pfn_list; 2014 listsize = contig_pfn_max * sizeof (pfn_t); 2015 contig_pfn_list = NULL; 2016 contig_pfn_max = contig_pfn_cnt = 0; 2017 } 2018 if (listp != NULL) 2019 kmem_free(listp, listsize); 2020 } 2021 2022 /* 2023 * Unlock the contig_pfn_list. The next attempted use of it will cause 2024 * it to be re-created. 2025 */ 2026 void 2027 unlock_contig_pfnlist() 2028 { 2029 mutex_exit(&contig_list_lock); 2030 } 2031 2032 /* 2033 * Update the contiguous pfn list in response to a pfn <-> mfn reassignment 2034 */ 2035 void 2036 update_contig_pfnlist(pfn_t pfn, mfn_t oldmfn, mfn_t newmfn) 2037 { 2038 int probe_hi, probe_lo, probe_pos, insert_after, insert_point; 2039 pfn_t probe_pfn; 2040 mfn_t probe_mfn; 2041 int drop_lock = 0; 2042 2043 if (mutex_owner(&contig_list_lock) != curthread) { 2044 drop_lock = 1; 2045 mutex_enter(&contig_list_lock); 2046 } 2047 if (contig_pfn_list == NULL) 2048 goto done; 2049 contig_pfnlist_updates++; 2050 /* 2051 * Find the pfn in the current list. Use a binary chop to locate it. 2052 */ 2053 probe_hi = contig_pfn_cnt - 1; 2054 probe_lo = 0; 2055 probe_pos = (probe_hi + probe_lo) / 2; 2056 while ((probe_pfn = contig_pfn_list[probe_pos]) != pfn) { 2057 if (probe_pos == probe_lo) { /* pfn not in list */ 2058 probe_pos = -1; 2059 break; 2060 } 2061 if (pfn_to_mfn(probe_pfn) <= oldmfn) 2062 probe_lo = probe_pos; 2063 else 2064 probe_hi = probe_pos; 2065 probe_pos = (probe_hi + probe_lo) / 2; 2066 } 2067 if (probe_pos >= 0) { /* remove pfn fom list */ 2068 contig_pfn_cnt--; 2069 ovbcopy(&contig_pfn_list[probe_pos + 1], 2070 &contig_pfn_list[probe_pos], 2071 (contig_pfn_cnt - probe_pos) * sizeof (pfn_t)); 2072 } 2073 if (newmfn == MFN_INVALID) 2074 goto done; 2075 /* 2076 * Check if new mfn has adjacent mfns in the list 2077 */ 2078 probe_hi = contig_pfn_cnt - 1; 2079 probe_lo = 0; 2080 insert_after = -2; 2081 do { 2082 probe_pos = (probe_hi + probe_lo) / 2; 2083 probe_mfn = pfn_to_mfn(contig_pfn_list[probe_pos]); 2084 if (newmfn == probe_mfn + 1) 2085 insert_after = probe_pos; 2086 else if (newmfn == probe_mfn - 1) 2087 insert_after = probe_pos - 1; 2088 if (probe_pos == probe_lo) 2089 break; 2090 if (probe_mfn <= newmfn) 2091 probe_lo = probe_pos; 2092 else 2093 probe_hi = probe_pos; 2094 } while (insert_after == -2); 2095 /* 2096 * If there is space in the list and there are adjacent mfns 2097 * insert the pfn in to its proper place in the list. 2098 */ 2099 if (insert_after != -2 && contig_pfn_cnt + 1 <= contig_pfn_max) { 2100 insert_point = insert_after + 1; 2101 ovbcopy(&contig_pfn_list[insert_point], 2102 &contig_pfn_list[insert_point + 1], 2103 (contig_pfn_cnt - insert_point) * sizeof (pfn_t)); 2104 contig_pfn_list[insert_point] = pfn; 2105 contig_pfn_cnt++; 2106 } 2107 done: 2108 if (drop_lock) 2109 mutex_exit(&contig_list_lock); 2110 } 2111 2112 /* 2113 * Called to (re-)populate the io_pool from the free page lists. 2114 */ 2115 long 2116 populate_io_pool(void) 2117 { 2118 pfn_t pfn; 2119 mfn_t mfn, max_mfn; 2120 page_t *pp; 2121 2122 /* 2123 * Figure out the bounds of the pool on first invocation. 2124 * We use a percentage of memory for the io pool size. 2125 * we allow that to shrink, but not to less than a fixed minimum 2126 */ 2127 if (io_pool_cnt_max == 0) { 2128 io_pool_cnt_max = physmem / (100 / io_pool_physmem_pct); 2129 io_pool_cnt_lowater = io_pool_cnt_max; 2130 /* 2131 * This is the first time in populate_io_pool, grab a va to use 2132 * when we need to allocate pages. 2133 */ 2134 io_pool_kva = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP); 2135 } 2136 /* 2137 * If we are out of pages in the pool, then grow the size of the pool 2138 */ 2139 if (io_pool_cnt == 0) { 2140 /* 2141 * Grow the max size of the io pool by 5%, but never more than 2142 * 25% of physical memory. 2143 */ 2144 if (io_pool_cnt_max < physmem / 4) 2145 io_pool_cnt_max += io_pool_cnt_max / 20; 2146 } 2147 io_pool_grows++; /* should be a kstat? */ 2148 2149 /* 2150 * Get highest mfn on this platform, but limit to the 32 bit DMA max. 2151 */ 2152 (void) mfn_to_pfn(start_mfn); 2153 max_mfn = MIN(cached_max_mfn, PFN_4GIG); 2154 for (mfn = start_mfn; mfn < max_mfn; start_mfn = ++mfn) { 2155 pfn = mfn_to_pfn(mfn); 2156 if (pfn & PFN_IS_FOREIGN_MFN) 2157 continue; 2158 /* 2159 * try to allocate it from free pages 2160 */ 2161 pp = page_numtopp_alloc(pfn); 2162 if (pp == NULL) 2163 continue; 2164 PP_CLRFREE(pp); 2165 add_page_to_pool(pp, 1); 2166 if (io_pool_cnt >= io_pool_cnt_max) 2167 break; 2168 } 2169 2170 return (io_pool_cnt); 2171 } 2172 2173 /* 2174 * Destroy a page that was being used for DMA I/O. It may or 2175 * may not actually go back to the io_pool. 2176 */ 2177 void 2178 page_destroy_io(page_t *pp) 2179 { 2180 mfn_t mfn = mfn_list[pp->p_pagenum]; 2181 2182 /* 2183 * When the page was alloc'd a reservation was made, release it now 2184 */ 2185 page_unresv(1); 2186 /* 2187 * Unload translations, if any, then hash out the 2188 * page to erase its identity. 2189 */ 2190 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 2191 page_hashout(pp, NULL); 2192 2193 /* 2194 * If the page came from the free lists, just put it back to them. 2195 * DomU pages always go on the free lists as well. 2196 */ 2197 if (!DOMAIN_IS_INITDOMAIN(xen_info) || mfn >= PFN_4GIG) { 2198 page_free(pp, 1); 2199 return; 2200 } 2201 2202 add_page_to_pool(pp, 0); 2203 } 2204 2205 2206 long contig_searches; /* count of times contig pages requested */ 2207 long contig_search_restarts; /* count of contig ranges tried */ 2208 long contig_search_failed; /* count of contig alloc failures */ 2209 2210 /* 2211 * Look thru the contiguous pfns that are not part of the io_pool for 2212 * contiguous free pages. Return a list of the found pages or NULL. 2213 */ 2214 page_t * 2215 find_contig_free(uint_t npages, uint_t flags, uint64_t pfnseg) 2216 { 2217 page_t *pp, *plist = NULL; 2218 mfn_t mfn, prev_mfn, start_mfn; 2219 pfn_t pfn; 2220 int pages_needed, pages_requested; 2221 int search_start; 2222 2223 /* 2224 * create the contig pfn list if not already done 2225 */ 2226 retry: 2227 mutex_enter(&contig_list_lock); 2228 if (contig_pfn_list == NULL) { 2229 mutex_exit(&contig_list_lock); 2230 if (!create_contig_pfnlist(flags)) { 2231 return (NULL); 2232 } 2233 goto retry; 2234 } 2235 contig_searches++; 2236 /* 2237 * Search contiguous pfn list for physically contiguous pages not in 2238 * the io_pool. Start the search where the last search left off. 2239 */ 2240 pages_requested = pages_needed = npages; 2241 search_start = next_alloc_pfn; 2242 start_mfn = prev_mfn = 0; 2243 while (pages_needed) { 2244 pfn = contig_pfn_list[next_alloc_pfn]; 2245 mfn = pfn_to_mfn(pfn); 2246 /* 2247 * Check if mfn is first one or contig to previous one and 2248 * if page corresponding to mfn is free and that mfn 2249 * range is not crossing a segment boundary. 2250 */ 2251 if ((prev_mfn == 0 || mfn == prev_mfn + 1) && 2252 (pp = page_numtopp_alloc(pfn)) != NULL && 2253 !((mfn & pfnseg) < (start_mfn & pfnseg))) { 2254 PP_CLRFREE(pp); 2255 page_io_pool_add(&plist, pp); 2256 pages_needed--; 2257 if (prev_mfn == 0) 2258 start_mfn = mfn; 2259 prev_mfn = mfn; 2260 } else { 2261 contig_search_restarts++; 2262 /* 2263 * free partial page list 2264 */ 2265 while (plist != NULL) { 2266 pp = plist; 2267 page_io_pool_sub(&plist, pp, pp); 2268 page_free(pp, 1); 2269 } 2270 pages_needed = pages_requested; 2271 start_mfn = prev_mfn = 0; 2272 } 2273 if (++next_alloc_pfn == contig_pfn_cnt) 2274 next_alloc_pfn = 0; 2275 if (next_alloc_pfn == search_start) 2276 break; /* all pfns searched */ 2277 } 2278 mutex_exit(&contig_list_lock); 2279 if (pages_needed) { 2280 contig_search_failed++; 2281 /* 2282 * Failed to find enough contig pages. 2283 * free partial page list 2284 */ 2285 while (plist != NULL) { 2286 pp = plist; 2287 page_io_pool_sub(&plist, pp, pp); 2288 page_free(pp, 1); 2289 } 2290 } 2291 return (plist); 2292 } 2293 2294 /* 2295 * Search the reserved io pool pages for a page range with the 2296 * desired characteristics. 2297 */ 2298 page_t * 2299 page_io_pool_alloc(ddi_dma_attr_t *mattr, int contig, pgcnt_t minctg) 2300 { 2301 page_t *pp_first, *pp_last; 2302 page_t *pp, **poolp; 2303 pgcnt_t nwanted, pfnalign; 2304 uint64_t pfnseg; 2305 mfn_t mfn, tmfn, hi_mfn, lo_mfn; 2306 int align, attempt = 0; 2307 2308 if (minctg == 1) 2309 contig = 0; 2310 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo); 2311 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi); 2312 pfnseg = mmu_btop(mattr->dma_attr_seg); 2313 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 2314 if (align > MMU_PAGESIZE) 2315 pfnalign = mmu_btop(align); 2316 else 2317 pfnalign = 0; 2318 2319 try_again: 2320 /* 2321 * See if we want pages for a legacy device 2322 */ 2323 if (hi_mfn < PFN_16MEG) 2324 poolp = &io_pool_16m; 2325 else 2326 poolp = &io_pool_4g; 2327 try_smaller: 2328 /* 2329 * Take pages from I/O pool. We'll use pages from the highest 2330 * MFN range possible. 2331 */ 2332 pp_first = pp_last = NULL; 2333 mutex_enter(&io_pool_lock); 2334 nwanted = minctg; 2335 for (pp = *poolp; pp && nwanted > 0; ) { 2336 pp = pp->p_prev; 2337 2338 /* 2339 * skip pages above allowable range 2340 */ 2341 mfn = mfn_list[pp->p_pagenum]; 2342 if (hi_mfn < mfn) 2343 goto skip; 2344 2345 /* 2346 * stop at pages below allowable range 2347 */ 2348 if (lo_mfn > mfn) 2349 break; 2350 restart: 2351 if (pp_last == NULL) { 2352 /* 2353 * Check alignment 2354 */ 2355 tmfn = mfn - (minctg - 1); 2356 if (pfnalign && tmfn != P2ROUNDUP(tmfn, pfnalign)) 2357 goto skip; /* not properly aligned */ 2358 /* 2359 * Check segment 2360 */ 2361 if ((mfn & pfnseg) < (tmfn & pfnseg)) 2362 goto skip; /* crosses seg boundary */ 2363 /* 2364 * Start building page list 2365 */ 2366 pp_first = pp_last = pp; 2367 nwanted--; 2368 } else { 2369 /* 2370 * check physical contiguity if required 2371 */ 2372 if (contig && 2373 mfn_list[pp_first->p_pagenum] != mfn + 1) { 2374 /* 2375 * not a contiguous page, restart list. 2376 */ 2377 pp_last = NULL; 2378 nwanted = minctg; 2379 goto restart; 2380 } else { /* add page to list */ 2381 pp_first = pp; 2382 nwanted--; 2383 } 2384 } 2385 skip: 2386 if (pp == *poolp) 2387 break; 2388 } 2389 2390 /* 2391 * If we didn't find memory. Try the more constrained pool, then 2392 * sweep free pages into the DMA pool and try again. 2393 */ 2394 if (nwanted != 0) { 2395 mutex_exit(&io_pool_lock); 2396 /* 2397 * If we were looking in the less constrained pool and 2398 * didn't find pages, try the more constrained pool. 2399 */ 2400 if (poolp == &io_pool_4g) { 2401 poolp = &io_pool_16m; 2402 goto try_smaller; 2403 } 2404 kmem_reap(); 2405 if (++attempt < 4) { 2406 /* 2407 * Grab some more io_pool pages 2408 */ 2409 (void) populate_io_pool(); 2410 goto try_again; /* go around and retry */ 2411 } 2412 return (NULL); 2413 } 2414 /* 2415 * Found the pages, now snip them from the list 2416 */ 2417 page_io_pool_sub(poolp, pp_first, pp_last); 2418 io_pool_cnt -= minctg; 2419 /* 2420 * reset low water mark 2421 */ 2422 if (io_pool_cnt < io_pool_cnt_lowater) 2423 io_pool_cnt_lowater = io_pool_cnt; 2424 mutex_exit(&io_pool_lock); 2425 return (pp_first); 2426 } 2427 2428 page_t * 2429 page_swap_with_hypervisor(struct vnode *vp, u_offset_t off, caddr_t vaddr, 2430 ddi_dma_attr_t *mattr, uint_t flags, pgcnt_t minctg) 2431 { 2432 uint_t kflags; 2433 int order, extra, extpages, i, contig, nbits, extents; 2434 page_t *pp, *expp, *pp_first, **pplist = NULL; 2435 mfn_t *mfnlist = NULL; 2436 2437 contig = flags & PG_PHYSCONTIG; 2438 if (minctg == 1) 2439 contig = 0; 2440 flags &= ~PG_PHYSCONTIG; 2441 kflags = flags & PG_WAIT ? KM_SLEEP : KM_NOSLEEP; 2442 /* 2443 * Hypervisor will allocate extents, if we want contig 2444 * pages extent must be >= minctg 2445 */ 2446 if (contig) { 2447 order = highbit(minctg) - 1; 2448 if (minctg & ((1 << order) - 1)) 2449 order++; 2450 extpages = 1 << order; 2451 } else { 2452 order = 0; 2453 extpages = minctg; 2454 } 2455 if (extpages > minctg) { 2456 extra = extpages - minctg; 2457 if (!page_resv(extra, kflags)) 2458 return (NULL); 2459 } 2460 pp_first = NULL; 2461 pplist = kmem_alloc(extpages * sizeof (page_t *), kflags); 2462 if (pplist == NULL) 2463 goto balloon_fail; 2464 mfnlist = kmem_alloc(extpages * sizeof (mfn_t), kflags); 2465 if (mfnlist == NULL) 2466 goto balloon_fail; 2467 pp = page_create_va(vp, off, minctg * PAGESIZE, flags, &kvseg, vaddr); 2468 if (pp == NULL) 2469 goto balloon_fail; 2470 pp_first = pp; 2471 if (extpages > minctg) { 2472 /* 2473 * fill out the rest of extent pages to swap 2474 * with the hypervisor 2475 */ 2476 for (i = 0; i < extra; i++) { 2477 expp = page_create_va(vp, 2478 (u_offset_t)(uintptr_t)io_pool_kva, 2479 PAGESIZE, flags, &kvseg, io_pool_kva); 2480 if (expp == NULL) 2481 goto balloon_fail; 2482 (void) hat_pageunload(expp, HAT_FORCE_PGUNLOAD); 2483 page_io_unlock(expp); 2484 page_hashout(expp, NULL); 2485 page_io_lock(expp); 2486 /* 2487 * add page to end of list 2488 */ 2489 expp->p_prev = pp_first->p_prev; 2490 expp->p_next = pp_first; 2491 expp->p_prev->p_next = expp; 2492 pp_first->p_prev = expp; 2493 } 2494 2495 } 2496 for (i = 0; i < extpages; i++) { 2497 pplist[i] = pp; 2498 pp = pp->p_next; 2499 } 2500 nbits = highbit(mattr->dma_attr_addr_hi); 2501 extents = contig ? 1 : minctg; 2502 if (balloon_replace_pages(extents, pplist, nbits, order, 2503 mfnlist) != extents) { 2504 if (ioalloc_dbg) 2505 cmn_err(CE_NOTE, "request to hypervisor" 2506 " for %d pages, maxaddr %" PRIx64 " failed", 2507 extpages, mattr->dma_attr_addr_hi); 2508 goto balloon_fail; 2509 } 2510 2511 kmem_free(pplist, extpages * sizeof (page_t *)); 2512 kmem_free(mfnlist, extpages * sizeof (mfn_t)); 2513 /* 2514 * Return any excess pages to free list 2515 */ 2516 if (extpages > minctg) { 2517 for (i = 0; i < extra; i++) { 2518 pp = pp_first->p_prev; 2519 page_sub(&pp_first, pp); 2520 page_io_unlock(pp); 2521 page_unresv(1); 2522 page_free(pp, 1); 2523 } 2524 } 2525 return (pp_first); 2526 balloon_fail: 2527 /* 2528 * Return pages to free list and return failure 2529 */ 2530 while (pp_first != NULL) { 2531 pp = pp_first; 2532 page_sub(&pp_first, pp); 2533 page_io_unlock(pp); 2534 if (pp->p_vnode != NULL) 2535 page_hashout(pp, NULL); 2536 page_free(pp, 1); 2537 } 2538 if (pplist) 2539 kmem_free(pplist, extpages * sizeof (page_t *)); 2540 if (mfnlist) 2541 kmem_free(mfnlist, extpages * sizeof (mfn_t)); 2542 page_unresv(extpages - minctg); 2543 return (NULL); 2544 } 2545 2546 static void 2547 return_partial_alloc(page_t *plist) 2548 { 2549 page_t *pp; 2550 2551 while (plist != NULL) { 2552 pp = plist; 2553 page_sub(&plist, pp); 2554 page_io_unlock(pp); 2555 page_destroy_io(pp); 2556 } 2557 } 2558 2559 static page_t * 2560 page_get_contigpages( 2561 struct vnode *vp, 2562 u_offset_t off, 2563 int *npagesp, 2564 uint_t flags, 2565 caddr_t vaddr, 2566 ddi_dma_attr_t *mattr) 2567 { 2568 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 2569 page_t *plist; /* list to return */ 2570 page_t *pp, *mcpl; 2571 int contig, anyaddr, npages, getone = 0; 2572 mfn_t lo_mfn; 2573 mfn_t hi_mfn; 2574 pgcnt_t pfnalign = 0; 2575 int align, sgllen; 2576 uint64_t pfnseg; 2577 pgcnt_t minctg; 2578 2579 npages = *npagesp; 2580 ASSERT(mattr != NULL); 2581 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo); 2582 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi); 2583 sgllen = mattr->dma_attr_sgllen; 2584 pfnseg = mmu_btop(mattr->dma_attr_seg); 2585 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 2586 if (align > MMU_PAGESIZE) 2587 pfnalign = mmu_btop(align); 2588 2589 /* 2590 * Clear the contig flag if only one page is needed. 2591 */ 2592 contig = flags & PG_PHYSCONTIG; 2593 if (npages == 1) { 2594 getone = 1; 2595 contig = 0; 2596 } 2597 2598 /* 2599 * Check if any page in the system is fine. 2600 */ 2601 anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn && !pfnalign; 2602 if (!contig && anyaddr) { 2603 flags &= ~PG_PHYSCONTIG; 2604 plist = page_create_va(vp, off, npages * MMU_PAGESIZE, 2605 flags, &kvseg, vaddr); 2606 if (plist != NULL) { 2607 *npagesp = 0; 2608 return (plist); 2609 } 2610 } 2611 plist = NULL; 2612 minctg = howmany(npages, sgllen); 2613 while (npages > sgllen || getone) { 2614 if (minctg > npages) 2615 minctg = npages; 2616 mcpl = NULL; 2617 /* 2618 * We could just want unconstrained but contig pages. 2619 */ 2620 if (anyaddr && contig) { 2621 /* 2622 * Look for free contig pages to satisfy the request. 2623 */ 2624 mcpl = find_contig_free(minctg, flags, pfnseg); 2625 } 2626 /* 2627 * Try the reserved io pools next 2628 */ 2629 if (mcpl == NULL) 2630 mcpl = page_io_pool_alloc(mattr, contig, minctg); 2631 if (mcpl != NULL) { 2632 pp = mcpl; 2633 do { 2634 if (!page_hashin(pp, vp, off, NULL)) { 2635 panic("page_get_contigpages:" 2636 " hashin failed" 2637 " pp %p, vp %p, off %llx", 2638 (void *)pp, (void *)vp, off); 2639 } 2640 off += MMU_PAGESIZE; 2641 PP_CLRFREE(pp); 2642 PP_CLRAGED(pp); 2643 page_set_props(pp, P_REF); 2644 page_io_lock(pp); 2645 pp = pp->p_next; 2646 } while (pp != mcpl); 2647 } else { 2648 /* 2649 * Hypervisor exchange doesn't handle segment or 2650 * alignment constraints 2651 */ 2652 if (mattr->dma_attr_seg < mattr->dma_attr_addr_hi || 2653 pfnalign) 2654 goto fail; 2655 /* 2656 * Try exchanging pages with the hypervisor 2657 */ 2658 mcpl = page_swap_with_hypervisor(vp, off, vaddr, mattr, 2659 flags, minctg); 2660 if (mcpl == NULL) 2661 goto fail; 2662 off += minctg * MMU_PAGESIZE; 2663 } 2664 check_dma(mattr, mcpl, minctg); 2665 /* 2666 * Here with a minctg run of contiguous pages, add them to the 2667 * list we will return for this request. 2668 */ 2669 page_list_concat(&plist, &mcpl); 2670 npages -= minctg; 2671 *npagesp = npages; 2672 sgllen--; 2673 if (getone) 2674 break; 2675 } 2676 return (plist); 2677 fail: 2678 return_partial_alloc(plist); 2679 return (NULL); 2680 } 2681 2682 /* 2683 * Allocator for domain 0 I/O pages. We match the required 2684 * DMA attributes and contiguity constraints. 2685 */ 2686 /*ARGSUSED*/ 2687 page_t * 2688 page_create_io( 2689 struct vnode *vp, 2690 u_offset_t off, 2691 uint_t bytes, 2692 uint_t flags, 2693 struct as *as, 2694 caddr_t vaddr, 2695 ddi_dma_attr_t *mattr) 2696 { 2697 page_t *plist = NULL, *pp; 2698 int npages = 0, contig, anyaddr, pages_req; 2699 mfn_t lo_mfn; 2700 mfn_t hi_mfn; 2701 pgcnt_t pfnalign = 0; 2702 int align; 2703 int is_domu = 0; 2704 int dummy, bytes_got; 2705 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 2706 2707 ASSERT(mattr != NULL); 2708 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo); 2709 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi); 2710 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 2711 if (align > MMU_PAGESIZE) 2712 pfnalign = mmu_btop(align); 2713 2714 /* 2715 * Clear the contig flag if only one page is needed or the scatter 2716 * gather list length is >= npages. 2717 */ 2718 pages_req = npages = mmu_btopr(bytes); 2719 contig = (flags & PG_PHYSCONTIG); 2720 bytes = P2ROUNDUP(bytes, MMU_PAGESIZE); 2721 if (bytes == MMU_PAGESIZE || mattr->dma_attr_sgllen >= npages) 2722 contig = 0; 2723 2724 /* 2725 * Check if any old page in the system is fine. 2726 * DomU should always go down this path. 2727 */ 2728 is_domu = !DOMAIN_IS_INITDOMAIN(xen_info); 2729 anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn && !pfnalign; 2730 if ((!contig && anyaddr) || is_domu) { 2731 flags &= ~PG_PHYSCONTIG; 2732 plist = page_create_va(vp, off, bytes, flags, &kvseg, vaddr); 2733 if (plist != NULL) 2734 return (plist); 2735 else if (is_domu) 2736 return (NULL); /* no memory available */ 2737 } 2738 /* 2739 * DomU should never reach here 2740 */ 2741 if (contig) { 2742 plist = page_get_contigpages(vp, off, &npages, flags, vaddr, 2743 mattr); 2744 if (plist == NULL) 2745 goto fail; 2746 bytes_got = (pages_req - npages) << MMU_PAGESHIFT; 2747 vaddr += bytes_got; 2748 off += bytes_got; 2749 /* 2750 * We now have all the contiguous pages we need, but 2751 * we may still need additional non-contiguous pages. 2752 */ 2753 } 2754 /* 2755 * now loop collecting the requested number of pages, these do 2756 * not have to be contiguous pages but we will use the contig 2757 * page alloc code to get the pages since it will honor any 2758 * other constraints the pages may have. 2759 */ 2760 while (npages--) { 2761 dummy = 1; 2762 pp = page_get_contigpages(vp, off, &dummy, flags, vaddr, mattr); 2763 if (pp == NULL) 2764 goto fail; 2765 page_add(&plist, pp); 2766 vaddr += MMU_PAGESIZE; 2767 off += MMU_PAGESIZE; 2768 } 2769 return (plist); 2770 fail: 2771 /* 2772 * Failed to get enough pages, return ones we did get 2773 */ 2774 return_partial_alloc(plist); 2775 return (NULL); 2776 } 2777 2778 /* 2779 * Lock and return the page with the highest mfn that we can find. last_mfn 2780 * holds the last one found, so the next search can start from there. We 2781 * also keep a counter so that we don't loop forever if the machine has no 2782 * free pages. 2783 * 2784 * This is called from the balloon thread to find pages to give away. new_high 2785 * is used when new mfn's have been added to the system - we will reset our 2786 * search if the new mfn's are higher than our current search position. 2787 */ 2788 page_t * 2789 page_get_high_mfn(mfn_t new_high) 2790 { 2791 static mfn_t last_mfn = 0; 2792 pfn_t pfn; 2793 page_t *pp; 2794 ulong_t loop_count = 0; 2795 2796 if (new_high > last_mfn) 2797 last_mfn = new_high; 2798 2799 for (; loop_count < mfn_count; loop_count++, last_mfn--) { 2800 if (last_mfn == 0) { 2801 last_mfn = cached_max_mfn; 2802 } 2803 2804 pfn = mfn_to_pfn(last_mfn); 2805 if (pfn & PFN_IS_FOREIGN_MFN) 2806 continue; 2807 2808 /* See if the page is free. If so, lock it. */ 2809 pp = page_numtopp_alloc(pfn); 2810 if (pp == NULL) 2811 continue; 2812 PP_CLRFREE(pp); 2813 2814 ASSERT(PAGE_EXCL(pp)); 2815 ASSERT(pp->p_vnode == NULL); 2816 ASSERT(!hat_page_is_mapped(pp)); 2817 last_mfn--; 2818 return (pp); 2819 } 2820 return (NULL); 2821 } 2822 2823 #else /* !__xpv */ 2824 2825 /* 2826 * get a page from any list with the given mnode 2827 */ 2828 static page_t * 2829 page_get_mnode_anylist(ulong_t origbin, uchar_t szc, uint_t flags, 2830 int mnode, int mtype, ddi_dma_attr_t *dma_attr) 2831 { 2832 kmutex_t *pcm; 2833 int i; 2834 page_t *pp; 2835 page_t *first_pp; 2836 uint64_t pgaddr; 2837 ulong_t bin; 2838 int mtypestart; 2839 int plw_initialized; 2840 page_list_walker_t plw; 2841 2842 VM_STAT_ADD(pga_vmstats.pgma_alloc); 2843 2844 ASSERT((flags & PG_MATCH_COLOR) == 0); 2845 ASSERT(szc == 0); 2846 ASSERT(dma_attr != NULL); 2847 2848 MTYPE_START(mnode, mtype, flags); 2849 if (mtype < 0) { 2850 VM_STAT_ADD(pga_vmstats.pgma_allocempty); 2851 return (NULL); 2852 } 2853 2854 mtypestart = mtype; 2855 2856 bin = origbin; 2857 2858 /* 2859 * check up to page_colors + 1 bins - origbin may be checked twice 2860 * because of BIN_STEP skip 2861 */ 2862 do { 2863 plw_initialized = 0; 2864 2865 for (plw.plw_count = 0; 2866 plw.plw_count < page_colors; plw.plw_count++) { 2867 2868 if (PAGE_FREELISTS(mnode, szc, bin, mtype) == NULL) 2869 goto nextfreebin; 2870 2871 pcm = PC_BIN_MUTEX(mnode, bin, PG_FREE_LIST); 2872 mutex_enter(pcm); 2873 pp = PAGE_FREELISTS(mnode, szc, bin, mtype); 2874 first_pp = pp; 2875 while (pp != NULL) { 2876 if (page_trylock(pp, SE_EXCL) == 0) { 2877 pp = pp->p_next; 2878 if (pp == first_pp) { 2879 pp = NULL; 2880 } 2881 continue; 2882 } 2883 2884 ASSERT(PP_ISFREE(pp)); 2885 ASSERT(PP_ISAGED(pp)); 2886 ASSERT(pp->p_vnode == NULL); 2887 ASSERT(pp->p_hash == NULL); 2888 ASSERT(pp->p_offset == (u_offset_t)-1); 2889 ASSERT(pp->p_szc == szc); 2890 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode); 2891 /* check if page within DMA attributes */ 2892 pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum)); 2893 if ((pgaddr >= dma_attr->dma_attr_addr_lo) && 2894 (pgaddr + MMU_PAGESIZE - 1 <= 2895 dma_attr->dma_attr_addr_hi)) { 2896 break; 2897 } 2898 2899 /* continue looking */ 2900 page_unlock(pp); 2901 pp = pp->p_next; 2902 if (pp == first_pp) 2903 pp = NULL; 2904 2905 } 2906 if (pp != NULL) { 2907 ASSERT(mtype == PP_2_MTYPE(pp)); 2908 ASSERT(pp->p_szc == 0); 2909 2910 /* found a page with specified DMA attributes */ 2911 page_sub(&PAGE_FREELISTS(mnode, szc, bin, 2912 mtype), pp); 2913 page_ctr_sub(mnode, mtype, pp, PG_FREE_LIST); 2914 2915 if ((PP_ISFREE(pp) == 0) || 2916 (PP_ISAGED(pp) == 0)) { 2917 cmn_err(CE_PANIC, "page %p is not free", 2918 (void *)pp); 2919 } 2920 2921 mutex_exit(pcm); 2922 check_dma(dma_attr, pp, 1); 2923 VM_STAT_ADD(pga_vmstats.pgma_allocok); 2924 return (pp); 2925 } 2926 mutex_exit(pcm); 2927 nextfreebin: 2928 if (plw_initialized == 0) { 2929 page_list_walk_init(szc, 0, bin, 1, 0, &plw); 2930 ASSERT(plw.plw_ceq_dif == page_colors); 2931 plw_initialized = 1; 2932 } 2933 2934 if (plw.plw_do_split) { 2935 pp = page_freelist_split(szc, bin, mnode, 2936 mtype, 2937 mmu_btop(dma_attr->dma_attr_addr_lo), 2938 mmu_btop(dma_attr->dma_attr_addr_hi + 1), 2939 &plw); 2940 if (pp != NULL) { 2941 check_dma(dma_attr, pp, 1); 2942 return (pp); 2943 } 2944 } 2945 2946 bin = page_list_walk_next_bin(szc, bin, &plw); 2947 } 2948 2949 MTYPE_NEXT(mnode, mtype, flags); 2950 } while (mtype >= 0); 2951 2952 /* failed to find a page in the freelist; try it in the cachelist */ 2953 2954 /* reset mtype start for cachelist search */ 2955 mtype = mtypestart; 2956 ASSERT(mtype >= 0); 2957 2958 /* start with the bin of matching color */ 2959 bin = origbin; 2960 2961 do { 2962 for (i = 0; i <= page_colors; i++) { 2963 if (PAGE_CACHELISTS(mnode, bin, mtype) == NULL) 2964 goto nextcachebin; 2965 pcm = PC_BIN_MUTEX(mnode, bin, PG_CACHE_LIST); 2966 mutex_enter(pcm); 2967 pp = PAGE_CACHELISTS(mnode, bin, mtype); 2968 first_pp = pp; 2969 while (pp != NULL) { 2970 if (page_trylock(pp, SE_EXCL) == 0) { 2971 pp = pp->p_next; 2972 if (pp == first_pp) 2973 break; 2974 continue; 2975 } 2976 ASSERT(pp->p_vnode); 2977 ASSERT(PP_ISAGED(pp) == 0); 2978 ASSERT(pp->p_szc == 0); 2979 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode); 2980 2981 /* check if page within DMA attributes */ 2982 2983 pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum)); 2984 if ((pgaddr >= dma_attr->dma_attr_addr_lo) && 2985 (pgaddr + MMU_PAGESIZE - 1 <= 2986 dma_attr->dma_attr_addr_hi)) { 2987 break; 2988 } 2989 2990 /* continue looking */ 2991 page_unlock(pp); 2992 pp = pp->p_next; 2993 if (pp == first_pp) 2994 pp = NULL; 2995 } 2996 2997 if (pp != NULL) { 2998 ASSERT(mtype == PP_2_MTYPE(pp)); 2999 ASSERT(pp->p_szc == 0); 3000 3001 /* found a page with specified DMA attributes */ 3002 page_sub(&PAGE_CACHELISTS(mnode, bin, 3003 mtype), pp); 3004 page_ctr_sub(mnode, mtype, pp, PG_CACHE_LIST); 3005 3006 mutex_exit(pcm); 3007 ASSERT(pp->p_vnode); 3008 ASSERT(PP_ISAGED(pp) == 0); 3009 check_dma(dma_attr, pp, 1); 3010 VM_STAT_ADD(pga_vmstats.pgma_allocok); 3011 return (pp); 3012 } 3013 mutex_exit(pcm); 3014 nextcachebin: 3015 bin += (i == 0) ? BIN_STEP : 1; 3016 bin &= page_colors_mask; 3017 } 3018 MTYPE_NEXT(mnode, mtype, flags); 3019 } while (mtype >= 0); 3020 3021 VM_STAT_ADD(pga_vmstats.pgma_allocfailed); 3022 return (NULL); 3023 } 3024 3025 /* 3026 * This function is similar to page_get_freelist()/page_get_cachelist() 3027 * but it searches both the lists to find a page with the specified 3028 * color (or no color) and DMA attributes. The search is done in the 3029 * freelist first and then in the cache list within the highest memory 3030 * range (based on DMA attributes) before searching in the lower 3031 * memory ranges. 3032 * 3033 * Note: This function is called only by page_create_io(). 3034 */ 3035 /*ARGSUSED*/ 3036 static page_t * 3037 page_get_anylist(struct vnode *vp, u_offset_t off, struct as *as, caddr_t vaddr, 3038 size_t size, uint_t flags, ddi_dma_attr_t *dma_attr, lgrp_t *lgrp) 3039 { 3040 uint_t bin; 3041 int mtype; 3042 page_t *pp; 3043 int n; 3044 int m; 3045 int szc; 3046 int fullrange; 3047 int mnode; 3048 int local_failed_stat = 0; 3049 lgrp_mnode_cookie_t lgrp_cookie; 3050 3051 VM_STAT_ADD(pga_vmstats.pga_alloc); 3052 3053 /* only base pagesize currently supported */ 3054 if (size != MMU_PAGESIZE) 3055 return (NULL); 3056 3057 /* 3058 * If we're passed a specific lgroup, we use it. Otherwise, 3059 * assume first-touch placement is desired. 3060 */ 3061 if (!LGRP_EXISTS(lgrp)) 3062 lgrp = lgrp_home_lgrp(); 3063 3064 /* LINTED */ 3065 AS_2_BIN(as, seg, vp, vaddr, bin, 0); 3066 3067 /* 3068 * Only hold one freelist or cachelist lock at a time, that way we 3069 * can start anywhere and not have to worry about lock 3070 * ordering. 3071 */ 3072 if (dma_attr == NULL) { 3073 n = 0; 3074 m = mnoderangecnt - 1; 3075 fullrange = 1; 3076 VM_STAT_ADD(pga_vmstats.pga_nulldmaattr); 3077 } else { 3078 pfn_t pfnlo = mmu_btop(dma_attr->dma_attr_addr_lo); 3079 pfn_t pfnhi = mmu_btop(dma_attr->dma_attr_addr_hi); 3080 3081 /* 3082 * We can guarantee alignment only for page boundary. 3083 */ 3084 if (dma_attr->dma_attr_align > MMU_PAGESIZE) 3085 return (NULL); 3086 3087 n = pfn_2_mtype(pfnlo); 3088 m = pfn_2_mtype(pfnhi); 3089 3090 fullrange = ((pfnlo == mnoderanges[n].mnr_pfnlo) && 3091 (pfnhi >= mnoderanges[m].mnr_pfnhi)); 3092 } 3093 VM_STAT_COND_ADD(fullrange == 0, pga_vmstats.pga_notfullrange); 3094 3095 if (n > m) 3096 return (NULL); 3097 3098 szc = 0; 3099 3100 /* cylcing thru mtype handled by RANGE0 if n == 0 */ 3101 if (n == 0) { 3102 flags |= PGI_MT_RANGE0; 3103 n = m; 3104 } 3105 3106 /* 3107 * Try local memory node first, but try remote if we can't 3108 * get a page of the right color. 3109 */ 3110 LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp, LGRP_SRCH_HIER); 3111 while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) { 3112 /* 3113 * allocate pages from high pfn to low. 3114 */ 3115 for (mtype = m; mtype >= n; mtype--) { 3116 if (fullrange != 0) { 3117 pp = page_get_mnode_freelist(mnode, 3118 bin, mtype, szc, flags); 3119 if (pp == NULL) { 3120 pp = page_get_mnode_cachelist( 3121 bin, flags, mnode, mtype); 3122 } 3123 } else { 3124 pp = page_get_mnode_anylist(bin, szc, 3125 flags, mnode, mtype, dma_attr); 3126 } 3127 if (pp != NULL) { 3128 VM_STAT_ADD(pga_vmstats.pga_allocok); 3129 check_dma(dma_attr, pp, 1); 3130 return (pp); 3131 } 3132 } 3133 if (!local_failed_stat) { 3134 lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_ALLOC_FAIL, 1); 3135 local_failed_stat = 1; 3136 } 3137 } 3138 VM_STAT_ADD(pga_vmstats.pga_allocfailed); 3139 3140 return (NULL); 3141 } 3142 3143 /* 3144 * page_create_io() 3145 * 3146 * This function is a copy of page_create_va() with an additional 3147 * argument 'mattr' that specifies DMA memory requirements to 3148 * the page list functions. This function is used by the segkmem 3149 * allocator so it is only to create new pages (i.e PG_EXCL is 3150 * set). 3151 * 3152 * Note: This interface is currently used by x86 PSM only and is 3153 * not fully specified so the commitment level is only for 3154 * private interface specific to x86. This interface uses PSM 3155 * specific page_get_anylist() interface. 3156 */ 3157 3158 #define PAGE_HASH_SEARCH(index, pp, vp, off) { \ 3159 for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \ 3160 if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \ 3161 break; \ 3162 } \ 3163 } 3164 3165 3166 page_t * 3167 page_create_io( 3168 struct vnode *vp, 3169 u_offset_t off, 3170 uint_t bytes, 3171 uint_t flags, 3172 struct as *as, 3173 caddr_t vaddr, 3174 ddi_dma_attr_t *mattr) /* DMA memory attributes if any */ 3175 { 3176 page_t *plist = NULL; 3177 uint_t plist_len = 0; 3178 pgcnt_t npages; 3179 page_t *npp = NULL; 3180 uint_t pages_req; 3181 page_t *pp; 3182 kmutex_t *phm = NULL; 3183 uint_t index; 3184 3185 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START, 3186 "page_create_start:vp %p off %llx bytes %u flags %x", 3187 vp, off, bytes, flags); 3188 3189 ASSERT((flags & ~(PG_EXCL | PG_WAIT | PG_PHYSCONTIG)) == 0); 3190 3191 pages_req = npages = mmu_btopr(bytes); 3192 3193 /* 3194 * Do the freemem and pcf accounting. 3195 */ 3196 if (!page_create_wait(npages, flags)) { 3197 return (NULL); 3198 } 3199 3200 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS, 3201 "page_create_success:vp %p off %llx", vp, off); 3202 3203 /* 3204 * If satisfying this request has left us with too little 3205 * memory, start the wheels turning to get some back. The 3206 * first clause of the test prevents waking up the pageout 3207 * daemon in situations where it would decide that there's 3208 * nothing to do. 3209 */ 3210 if (nscan < desscan && freemem < minfree) { 3211 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL, 3212 "pageout_cv_signal:freemem %ld", freemem); 3213 cv_signal(&proc_pageout->p_cv); 3214 } 3215 3216 if (flags & PG_PHYSCONTIG) { 3217 3218 plist = page_get_contigpage(&npages, mattr, 1); 3219 if (plist == NULL) { 3220 page_create_putback(npages); 3221 return (NULL); 3222 } 3223 3224 pp = plist; 3225 3226 do { 3227 if (!page_hashin(pp, vp, off, NULL)) { 3228 panic("pg_creat_io: hashin failed %p %p %llx", 3229 (void *)pp, (void *)vp, off); 3230 } 3231 VM_STAT_ADD(page_create_new); 3232 off += MMU_PAGESIZE; 3233 PP_CLRFREE(pp); 3234 PP_CLRAGED(pp); 3235 page_set_props(pp, P_REF); 3236 pp = pp->p_next; 3237 } while (pp != plist); 3238 3239 if (!npages) { 3240 check_dma(mattr, plist, pages_req); 3241 return (plist); 3242 } else { 3243 vaddr += (pages_req - npages) << MMU_PAGESHIFT; 3244 } 3245 3246 /* 3247 * fall-thru: 3248 * 3249 * page_get_contigpage returns when npages <= sgllen. 3250 * Grab the rest of the non-contig pages below from anylist. 3251 */ 3252 } 3253 3254 /* 3255 * Loop around collecting the requested number of pages. 3256 * Most of the time, we have to `create' a new page. With 3257 * this in mind, pull the page off the free list before 3258 * getting the hash lock. This will minimize the hash 3259 * lock hold time, nesting, and the like. If it turns 3260 * out we don't need the page, we put it back at the end. 3261 */ 3262 while (npages--) { 3263 phm = NULL; 3264 3265 index = PAGE_HASH_FUNC(vp, off); 3266 top: 3267 ASSERT(phm == NULL); 3268 ASSERT(index == PAGE_HASH_FUNC(vp, off)); 3269 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 3270 3271 if (npp == NULL) { 3272 /* 3273 * Try to get the page of any color either from 3274 * the freelist or from the cache list. 3275 */ 3276 npp = page_get_anylist(vp, off, as, vaddr, MMU_PAGESIZE, 3277 flags & ~PG_MATCH_COLOR, mattr, NULL); 3278 if (npp == NULL) { 3279 if (mattr == NULL) { 3280 /* 3281 * Not looking for a special page; 3282 * panic! 3283 */ 3284 panic("no page found %d", (int)npages); 3285 } 3286 /* 3287 * No page found! This can happen 3288 * if we are looking for a page 3289 * within a specific memory range 3290 * for DMA purposes. If PG_WAIT is 3291 * specified then we wait for a 3292 * while and then try again. The 3293 * wait could be forever if we 3294 * don't get the page(s) we need. 3295 * 3296 * Note: XXX We really need a mechanism 3297 * to wait for pages in the desired 3298 * range. For now, we wait for any 3299 * pages and see if we can use it. 3300 */ 3301 3302 if ((mattr != NULL) && (flags & PG_WAIT)) { 3303 delay(10); 3304 goto top; 3305 } 3306 goto fail; /* undo accounting stuff */ 3307 } 3308 3309 if (PP_ISAGED(npp) == 0) { 3310 /* 3311 * Since this page came from the 3312 * cachelist, we must destroy the 3313 * old vnode association. 3314 */ 3315 page_hashout(npp, (kmutex_t *)NULL); 3316 } 3317 } 3318 3319 /* 3320 * We own this page! 3321 */ 3322 ASSERT(PAGE_EXCL(npp)); 3323 ASSERT(npp->p_vnode == NULL); 3324 ASSERT(!hat_page_is_mapped(npp)); 3325 PP_CLRFREE(npp); 3326 PP_CLRAGED(npp); 3327 3328 /* 3329 * Here we have a page in our hot little mits and are 3330 * just waiting to stuff it on the appropriate lists. 3331 * Get the mutex and check to see if it really does 3332 * not exist. 3333 */ 3334 phm = PAGE_HASH_MUTEX(index); 3335 mutex_enter(phm); 3336 PAGE_HASH_SEARCH(index, pp, vp, off); 3337 if (pp == NULL) { 3338 VM_STAT_ADD(page_create_new); 3339 pp = npp; 3340 npp = NULL; 3341 if (!page_hashin(pp, vp, off, phm)) { 3342 /* 3343 * Since we hold the page hash mutex and 3344 * just searched for this page, page_hashin 3345 * had better not fail. If it does, that 3346 * means somethread did not follow the 3347 * page hash mutex rules. Panic now and 3348 * get it over with. As usual, go down 3349 * holding all the locks. 3350 */ 3351 ASSERT(MUTEX_HELD(phm)); 3352 panic("page_create: hashin fail %p %p %llx %p", 3353 (void *)pp, (void *)vp, off, (void *)phm); 3354 3355 } 3356 ASSERT(MUTEX_HELD(phm)); 3357 mutex_exit(phm); 3358 phm = NULL; 3359 3360 /* 3361 * Hat layer locking need not be done to set 3362 * the following bits since the page is not hashed 3363 * and was on the free list (i.e., had no mappings). 3364 * 3365 * Set the reference bit to protect 3366 * against immediate pageout 3367 * 3368 * XXXmh modify freelist code to set reference 3369 * bit so we don't have to do it here. 3370 */ 3371 page_set_props(pp, P_REF); 3372 } else { 3373 ASSERT(MUTEX_HELD(phm)); 3374 mutex_exit(phm); 3375 phm = NULL; 3376 /* 3377 * NOTE: This should not happen for pages associated 3378 * with kernel vnode 'kvp'. 3379 */ 3380 /* XX64 - to debug why this happens! */ 3381 ASSERT(!VN_ISKAS(vp)); 3382 if (VN_ISKAS(vp)) 3383 cmn_err(CE_NOTE, 3384 "page_create: page not expected " 3385 "in hash list for kernel vnode - pp 0x%p", 3386 (void *)pp); 3387 VM_STAT_ADD(page_create_exists); 3388 goto fail; 3389 } 3390 3391 /* 3392 * Got a page! It is locked. Acquire the i/o 3393 * lock since we are going to use the p_next and 3394 * p_prev fields to link the requested pages together. 3395 */ 3396 page_io_lock(pp); 3397 page_add(&plist, pp); 3398 plist = plist->p_next; 3399 off += MMU_PAGESIZE; 3400 vaddr += MMU_PAGESIZE; 3401 } 3402 3403 check_dma(mattr, plist, pages_req); 3404 return (plist); 3405 3406 fail: 3407 if (npp != NULL) { 3408 /* 3409 * Did not need this page after all. 3410 * Put it back on the free list. 3411 */ 3412 VM_STAT_ADD(page_create_putbacks); 3413 PP_SETFREE(npp); 3414 PP_SETAGED(npp); 3415 npp->p_offset = (u_offset_t)-1; 3416 page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL); 3417 page_unlock(npp); 3418 } 3419 3420 /* 3421 * Give up the pages we already got. 3422 */ 3423 while (plist != NULL) { 3424 pp = plist; 3425 page_sub(&plist, pp); 3426 page_io_unlock(pp); 3427 plist_len++; 3428 /*LINTED: constant in conditional ctx*/ 3429 VN_DISPOSE(pp, B_INVAL, 0, kcred); 3430 } 3431 3432 /* 3433 * VN_DISPOSE does freemem accounting for the pages in plist 3434 * by calling page_free. So, we need to undo the pcf accounting 3435 * for only the remaining pages. 3436 */ 3437 VM_STAT_ADD(page_create_putbacks); 3438 page_create_putback(pages_req - plist_len); 3439 3440 return (NULL); 3441 } 3442 #endif /* !__xpv */ 3443 3444 3445 /* 3446 * Copy the data from the physical page represented by "frompp" to 3447 * that represented by "topp". ppcopy uses CPU->cpu_caddr1 and 3448 * CPU->cpu_caddr2. It assumes that no one uses either map at interrupt 3449 * level and no one sleeps with an active mapping there. 3450 * 3451 * Note that the ref/mod bits in the page_t's are not affected by 3452 * this operation, hence it is up to the caller to update them appropriately. 3453 */ 3454 int 3455 ppcopy(page_t *frompp, page_t *topp) 3456 { 3457 caddr_t pp_addr1; 3458 caddr_t pp_addr2; 3459 hat_mempte_t pte1; 3460 hat_mempte_t pte2; 3461 kmutex_t *ppaddr_mutex; 3462 label_t ljb; 3463 int ret = 1; 3464 3465 ASSERT_STACK_ALIGNED(); 3466 ASSERT(PAGE_LOCKED(frompp)); 3467 ASSERT(PAGE_LOCKED(topp)); 3468 3469 if (kpm_enable) { 3470 pp_addr1 = hat_kpm_page2va(frompp, 0); 3471 pp_addr2 = hat_kpm_page2va(topp, 0); 3472 kpreempt_disable(); 3473 } else { 3474 /* 3475 * disable pre-emption so that CPU can't change 3476 */ 3477 kpreempt_disable(); 3478 3479 pp_addr1 = CPU->cpu_caddr1; 3480 pp_addr2 = CPU->cpu_caddr2; 3481 pte1 = CPU->cpu_caddr1pte; 3482 pte2 = CPU->cpu_caddr2pte; 3483 3484 ppaddr_mutex = &CPU->cpu_ppaddr_mutex; 3485 mutex_enter(ppaddr_mutex); 3486 3487 hat_mempte_remap(page_pptonum(frompp), pp_addr1, pte1, 3488 PROT_READ | HAT_STORECACHING_OK, HAT_LOAD_NOCONSIST); 3489 hat_mempte_remap(page_pptonum(topp), pp_addr2, pte2, 3490 PROT_READ | PROT_WRITE | HAT_STORECACHING_OK, 3491 HAT_LOAD_NOCONSIST); 3492 } 3493 3494 if (on_fault(&ljb)) { 3495 ret = 0; 3496 goto faulted; 3497 } 3498 if (use_sse_pagecopy) 3499 #ifdef __xpv 3500 page_copy_no_xmm(pp_addr2, pp_addr1); 3501 #else 3502 hwblkpagecopy(pp_addr1, pp_addr2); 3503 #endif 3504 else 3505 bcopy(pp_addr1, pp_addr2, PAGESIZE); 3506 3507 no_fault(); 3508 faulted: 3509 if (!kpm_enable) { 3510 #ifdef __xpv 3511 /* 3512 * We can't leave unused mappings laying about under the 3513 * hypervisor, so blow them away. 3514 */ 3515 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr1, 0, 3516 UVMF_INVLPG | UVMF_LOCAL) < 0) 3517 panic("HYPERVISOR_update_va_mapping() failed"); 3518 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0, 3519 UVMF_INVLPG | UVMF_LOCAL) < 0) 3520 panic("HYPERVISOR_update_va_mapping() failed"); 3521 #endif 3522 mutex_exit(ppaddr_mutex); 3523 } 3524 kpreempt_enable(); 3525 return (ret); 3526 } 3527 3528 void 3529 pagezero(page_t *pp, uint_t off, uint_t len) 3530 { 3531 ASSERT(PAGE_LOCKED(pp)); 3532 pfnzero(page_pptonum(pp), off, len); 3533 } 3534 3535 /* 3536 * Zero the physical page from off to off + len given by pfn 3537 * without changing the reference and modified bits of page. 3538 * 3539 * We use this using CPU private page address #2, see ppcopy() for more info. 3540 * pfnzero() must not be called at interrupt level. 3541 */ 3542 void 3543 pfnzero(pfn_t pfn, uint_t off, uint_t len) 3544 { 3545 caddr_t pp_addr2; 3546 hat_mempte_t pte2; 3547 kmutex_t *ppaddr_mutex = NULL; 3548 3549 ASSERT_STACK_ALIGNED(); 3550 ASSERT(len <= MMU_PAGESIZE); 3551 ASSERT(off <= MMU_PAGESIZE); 3552 ASSERT(off + len <= MMU_PAGESIZE); 3553 3554 if (kpm_enable && !pfn_is_foreign(pfn)) { 3555 pp_addr2 = hat_kpm_pfn2va(pfn); 3556 kpreempt_disable(); 3557 } else { 3558 kpreempt_disable(); 3559 3560 pp_addr2 = CPU->cpu_caddr2; 3561 pte2 = CPU->cpu_caddr2pte; 3562 3563 ppaddr_mutex = &CPU->cpu_ppaddr_mutex; 3564 mutex_enter(ppaddr_mutex); 3565 3566 hat_mempte_remap(pfn, pp_addr2, pte2, 3567 PROT_READ | PROT_WRITE | HAT_STORECACHING_OK, 3568 HAT_LOAD_NOCONSIST); 3569 } 3570 3571 if (use_sse_pagezero) { 3572 #ifdef __xpv 3573 uint_t rem; 3574 3575 /* 3576 * zero a byte at a time until properly aligned for 3577 * block_zero_no_xmm(). 3578 */ 3579 while (!P2NPHASE(off, ((uint_t)BLOCKZEROALIGN)) && len-- > 0) 3580 pp_addr2[off++] = 0; 3581 3582 /* 3583 * Now use faster block_zero_no_xmm() for any range 3584 * that is properly aligned and sized. 3585 */ 3586 rem = P2PHASE(len, ((uint_t)BLOCKZEROALIGN)); 3587 len -= rem; 3588 if (len != 0) { 3589 block_zero_no_xmm(pp_addr2 + off, len); 3590 off += len; 3591 } 3592 3593 /* 3594 * zero remainder with byte stores. 3595 */ 3596 while (rem-- > 0) 3597 pp_addr2[off++] = 0; 3598 #else 3599 hwblkclr(pp_addr2 + off, len); 3600 #endif 3601 } else { 3602 bzero(pp_addr2 + off, len); 3603 } 3604 3605 if (!kpm_enable || pfn_is_foreign(pfn)) { 3606 #ifdef __xpv 3607 /* 3608 * On the hypervisor this page might get used for a page 3609 * table before any intervening change to this mapping, 3610 * so blow it away. 3611 */ 3612 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0, 3613 UVMF_INVLPG) < 0) 3614 panic("HYPERVISOR_update_va_mapping() failed"); 3615 #endif 3616 mutex_exit(ppaddr_mutex); 3617 } 3618 3619 kpreempt_enable(); 3620 } 3621 3622 /* 3623 * Platform-dependent page scrub call. 3624 */ 3625 void 3626 pagescrub(page_t *pp, uint_t off, uint_t len) 3627 { 3628 /* 3629 * For now, we rely on the fact that pagezero() will 3630 * always clear UEs. 3631 */ 3632 pagezero(pp, off, len); 3633 } 3634 3635 /* 3636 * set up two private addresses for use on a given CPU for use in ppcopy() 3637 */ 3638 void 3639 setup_vaddr_for_ppcopy(struct cpu *cpup) 3640 { 3641 void *addr; 3642 hat_mempte_t pte_pa; 3643 3644 addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP); 3645 pte_pa = hat_mempte_setup(addr); 3646 cpup->cpu_caddr1 = addr; 3647 cpup->cpu_caddr1pte = pte_pa; 3648 3649 addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP); 3650 pte_pa = hat_mempte_setup(addr); 3651 cpup->cpu_caddr2 = addr; 3652 cpup->cpu_caddr2pte = pte_pa; 3653 3654 mutex_init(&cpup->cpu_ppaddr_mutex, NULL, MUTEX_DEFAULT, NULL); 3655 } 3656 3657 /* 3658 * Undo setup_vaddr_for_ppcopy 3659 */ 3660 void 3661 teardown_vaddr_for_ppcopy(struct cpu *cpup) 3662 { 3663 mutex_destroy(&cpup->cpu_ppaddr_mutex); 3664 3665 hat_mempte_release(cpup->cpu_caddr2, cpup->cpu_caddr2pte); 3666 cpup->cpu_caddr2pte = 0; 3667 vmem_free(heap_arena, cpup->cpu_caddr2, mmu_ptob(1)); 3668 cpup->cpu_caddr2 = 0; 3669 3670 hat_mempte_release(cpup->cpu_caddr1, cpup->cpu_caddr1pte); 3671 cpup->cpu_caddr1pte = 0; 3672 vmem_free(heap_arena, cpup->cpu_caddr1, mmu_ptob(1)); 3673 cpup->cpu_caddr1 = 0; 3674 } 3675 3676 /* 3677 * Create the pageout scanner thread. The thread has to 3678 * start at procedure with process pp and priority pri. 3679 */ 3680 void 3681 pageout_init(void (*procedure)(), proc_t *pp, pri_t pri) 3682 { 3683 (void) thread_create(NULL, 0, procedure, NULL, 0, pp, TS_RUN, pri); 3684 } 3685 3686 /* 3687 * Function for flushing D-cache when performing module relocations 3688 * to an alternate mapping. Unnecessary on Intel / AMD platforms. 3689 */ 3690 void 3691 dcache_flushall() 3692 {} 3693 3694 size_t 3695 exec_get_spslew(void) 3696 { 3697 return (0); 3698 } 3699 3700 /* 3701 * Allocate a memory page. The argument 'seed' can be any pseudo-random 3702 * number to vary where the pages come from. This is quite a hacked up 3703 * method -- it works for now, but really needs to be fixed up a bit. 3704 * 3705 * We currently use page_create_va() on the kvp with fake offsets, 3706 * segments and virt address. This is pretty bogus, but was copied from the 3707 * old hat_i86.c code. A better approach would be to specify either mnode 3708 * random or mnode local and takes a page from whatever color has the MOST 3709 * available - this would have a minimal impact on page coloring. 3710 */ 3711 page_t * 3712 page_get_physical(int flags) 3713 { 3714 page_t *pp; 3715 u_offset_t offset = (u_offset_t)1 << 41; /* in VA hole */ 3716 static struct seg tmpseg; 3717 static uintptr_t ctr = 0; 3718 static kmutex_t pgp_mutex; 3719 3720 /* 3721 * This code is gross, we really need a simpler page allocator. 3722 * 3723 * To avoid conflicts with other pages, we get creative with the offset. 3724 * For 32 bits, we need an offset > 4Gig 3725 * For 64 bits, need an offset somewhere in the VA hole. 3726 */ 3727 if (page_resv(1, flags & KM_NOSLEEP) == 0) 3728 return (NULL); 3729 3730 mutex_enter(&pgp_mutex); 3731 #ifdef DEBUG 3732 pp = page_exists(&kvp, offset); 3733 if (pp != NULL) 3734 panic("page already exists %p", (void *)pp); 3735 #endif 3736 3737 pp = page_create_va(&kvp, offset, MMU_PAGESIZE, PG_EXCL, 3738 &tmpseg, (caddr_t)(ctr += MMU_PAGESIZE)); /* changing VA usage */ 3739 if (pp != NULL) { 3740 page_io_unlock(pp); 3741 page_hashout(pp, NULL); 3742 mutex_exit(&pgp_mutex); 3743 page_downgrade(pp); 3744 } else { 3745 mutex_exit(&pgp_mutex); 3746 } 3747 return (pp); 3748 } 3749 3750 void 3751 page_free_physical(page_t *pp) 3752 { 3753 /* 3754 * Get an exclusive lock, might have to wait for a kmem reader. 3755 */ 3756 ASSERT(PAGE_SHARED(pp)); 3757 if (!page_tryupgrade(pp)) { 3758 page_unlock(pp); 3759 /* 3760 * RFE: we could change this to not loop forever 3761 * George Cameron had some idea on how to do that. 3762 * For now looping works - it's just like sfmmu. 3763 */ 3764 while (!page_lock(pp, SE_EXCL, (kmutex_t *)NULL, P_RECLAIM)) 3765 continue; 3766 } 3767 page_free(pp, 1); 3768 page_unresv(1); 3769 } 3770