1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 */ 29 30 /* 31 * UNIX machine dependent virtual memory support. 32 */ 33 34 #ifndef _VM_DEP_H 35 #define _VM_DEP_H 36 37 38 #ifdef __cplusplus 39 extern "C" { 40 #endif 41 42 #include <sys/clock.h> 43 #include <vm/hat_pte.h> 44 #include <sys/param.h> 45 #include <sys/memnode.h> 46 47 /* 48 * WARNING: vm_dep.h is included by files in common. 49 */ 50 51 #define GETTICK() tsc_read() 52 /* 53 * Do not use this function for obtaining clock tick. This 54 * is called by callers who do not need to have a guarenteed 55 * correct tick value. The proper routine to use is tsc_read(). 56 */ 57 58 extern hrtime_t randtick(); 59 extern uint_t page_create_update_flags_x86(uint_t); 60 61 extern size_t plcnt_sz(size_t); 62 #define PLCNT_SZ(ctrs_sz) (ctrs_sz = plcnt_sz(ctrs_sz)) 63 64 extern caddr_t plcnt_init(caddr_t); 65 #define PLCNT_INIT(addr) (addr = plcnt_init(addr)) 66 67 extern void plcnt_inc_dec(page_t *, int, int, long, int); 68 #define PLCNT_INCR(pp, mnode, mtype, szc, flags) \ 69 plcnt_inc_dec(pp, mtype, szc, 1l << PAGE_BSZS_SHIFT(szc), flags) 70 #define PLCNT_DECR(pp, mnode, mtype, szc, flags) \ 71 plcnt_inc_dec(pp, mtype, szc, -1l << PAGE_BSZS_SHIFT(szc), flags) 72 73 /* 74 * macro to update page list max counts. no-op on x86. 75 */ 76 #define PLCNT_XFER_NORELOC(pp) 77 78 /* 79 * macro to modify the page list max counts when memory is added to 80 * the page lists during startup (add_physmem) or during a DR operation 81 * when memory is added (kphysm_add_memory_dynamic) or deleted 82 * (kphysm_del_cleanup). 83 */ 84 #define PLCNT_MODIFY_MAX(pfn, cnt) mtype_modify_max(pfn, cnt) 85 86 extern int memrange_num(pfn_t); 87 extern int pfn_2_mtype(pfn_t); 88 extern int mtype_func(int, int, uint_t); 89 extern void mtype_modify_max(pfn_t, long); 90 extern int mnode_pgcnt(int); 91 extern int mnode_range_cnt(int); 92 93 /* 94 * candidate counters in vm_pagelist.c are indexed by color and range 95 */ 96 #define NUM_MEM_RANGES 4 /* memory range types */ 97 #define MAX_MNODE_MRANGES NUM_MEM_RANGES 98 #define MNODE_RANGE_CNT(mnode) mnode_range_cnt(mnode) 99 #define MNODE_MAX_MRANGE(mnode) memrange_num(mem_node_config[mnode].physbase) 100 101 /* 102 * This was really badly defined, it implicitly uses mnode_maxmrange[] 103 * which is a static in vm_pagelist.c 104 */ 105 extern int mtype_2_mrange(int); 106 #define MTYPE_2_MRANGE(mnode, mtype) \ 107 (mnode_maxmrange[mnode] - mtype_2_mrange(mtype)) 108 109 /* 110 * Per page size free lists. Allocated dynamically. 111 * dimensions [mtype][mmu_page_sizes][colors] 112 * 113 * mtype specifies a physical memory range with a unique mnode. 114 */ 115 116 extern page_t ****page_freelists; 117 118 #define PAGE_FREELISTS(mnode, szc, color, mtype) \ 119 (*(page_freelists[mtype][szc] + (color))) 120 121 /* 122 * For now there is only a single size cache list. Allocated dynamically. 123 * dimensions [mtype][colors] 124 * 125 * mtype specifies a physical memory range with a unique mnode. 126 */ 127 extern page_t ***page_cachelists; 128 129 #define PAGE_CACHELISTS(mnode, color, mtype) \ 130 (*(page_cachelists[mtype] + (color))) 131 132 /* 133 * There are mutexes for both the page freelist 134 * and the page cachelist. We want enough locks to make contention 135 * reasonable, but not too many -- otherwise page_freelist_lock() gets 136 * so expensive that it becomes the bottleneck! 137 */ 138 139 #define NPC_MUTEX 16 140 141 extern kmutex_t *fpc_mutex[NPC_MUTEX]; 142 extern kmutex_t *cpc_mutex[NPC_MUTEX]; 143 144 extern page_t *page_get_mnode_freelist(int, uint_t, int, uchar_t, uint_t); 145 extern page_t *page_get_mnode_cachelist(uint_t, uint_t, int, int); 146 147 /* mem node iterator is not used on x86 */ 148 #define MEM_NODE_ITERATOR_DECL(it) 149 #define MEM_NODE_ITERATOR_INIT(pfn, mnode, szc, it) 150 151 /* 152 * interleaved_mnodes mode is never set on x86, therefore, 153 * simply return the limits of the given mnode, which then 154 * determines the length of hpm_counters array for the mnode. 155 */ 156 #define HPM_COUNTERS_LIMITS(mnode, physbase, physmax, first) \ 157 { \ 158 (physbase) = mem_node_config[(mnode)].physbase; \ 159 (physmax) = mem_node_config[(mnode)].physmax; \ 160 (first) = (mnode); \ 161 } 162 163 #define PAGE_CTRS_WRITE_LOCK(mnode) \ 164 { \ 165 rw_enter(&page_ctrs_rwlock[(mnode)], RW_WRITER);\ 166 page_freelist_lock(mnode); \ 167 } 168 169 #define PAGE_CTRS_WRITE_UNLOCK(mnode) \ 170 { \ 171 page_freelist_unlock(mnode); \ 172 rw_exit(&page_ctrs_rwlock[(mnode)]); \ 173 } 174 175 /* 176 * macro to call page_ctrs_adjust() when memory is added 177 * during a DR operation. 178 */ 179 #define PAGE_CTRS_ADJUST(pfn, cnt, rv) { \ 180 spgcnt_t _cnt = (spgcnt_t)(cnt); \ 181 int _mn; \ 182 pgcnt_t _np; \ 183 pfn_t _pfn = (pfn); \ 184 pfn_t _endpfn = _pfn + _cnt; \ 185 while (_pfn < _endpfn) { \ 186 _mn = PFN_2_MEM_NODE(_pfn); \ 187 _np = MIN(_endpfn, mem_node_config[_mn].physmax + 1) - _pfn; \ 188 _pfn += _np; \ 189 if ((rv = page_ctrs_adjust(_mn)) != 0) \ 190 break; \ 191 } \ 192 } 193 194 #define PAGE_GET_COLOR_SHIFT(szc, nszc) \ 195 (hw_page_array[(nszc)].hp_shift - hw_page_array[(szc)].hp_shift) 196 197 #define PAGE_CONVERT_COLOR(ncolor, szc, nszc) \ 198 ((ncolor) << PAGE_GET_COLOR_SHIFT((szc), (nszc))) 199 200 #define PFN_2_COLOR(pfn, szc, it) \ 201 (((pfn) & page_colors_mask) >> \ 202 (hw_page_array[szc].hp_shift - hw_page_array[0].hp_shift)) 203 204 #define PNUM_SIZE(szc) \ 205 (hw_page_array[(szc)].hp_pgcnt) 206 #define PNUM_SHIFT(szc) \ 207 (hw_page_array[(szc)].hp_shift - hw_page_array[0].hp_shift) 208 #define PAGE_GET_SHIFT(szc) \ 209 (hw_page_array[(szc)].hp_shift) 210 #define PAGE_GET_PAGECOLORS(szc) \ 211 (hw_page_array[(szc)].hp_colors) 212 213 /* 214 * This macro calculates the next sequential pfn with the specified 215 * color using color equivalency mask 216 */ 217 #define PAGE_NEXT_PFN_FOR_COLOR(pfn, szc, color, ceq_mask, color_mask, it) \ 218 { \ 219 uint_t pfn_shift = PAGE_BSZS_SHIFT(szc); \ 220 pfn_t spfn = pfn >> pfn_shift; \ 221 pfn_t stride = (ceq_mask) + 1; \ 222 ASSERT(((color) & ~(ceq_mask)) == 0); \ 223 ASSERT((((ceq_mask) + 1) & (ceq_mask)) == 0); \ 224 if (((spfn ^ (color)) & (ceq_mask)) == 0) { \ 225 pfn += stride << pfn_shift; \ 226 } else { \ 227 pfn = (spfn & ~(pfn_t)(ceq_mask)) | (color); \ 228 pfn = (pfn > spfn ? pfn : pfn + stride) << pfn_shift; \ 229 } \ 230 } 231 232 /* get the color equivalency mask for the next szc */ 233 #define PAGE_GET_NSZ_MASK(szc, mask) \ 234 ((mask) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc))) 235 236 /* get the color of the next szc */ 237 #define PAGE_GET_NSZ_COLOR(szc, color) \ 238 ((color) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc))) 239 240 /* Find the bin for the given page if it was of size szc */ 241 #define PP_2_BIN_SZC(pp, szc) (PFN_2_COLOR(pp->p_pagenum, szc, NULL)) 242 243 #define PP_2_BIN(pp) (PP_2_BIN_SZC(pp, pp->p_szc)) 244 245 #define PP_2_MEM_NODE(pp) (PFN_2_MEM_NODE(pp->p_pagenum)) 246 #define PP_2_MTYPE(pp) (pfn_2_mtype(pp->p_pagenum)) 247 #define PP_2_SZC(pp) (pp->p_szc) 248 249 #define SZCPAGES(szc) (1 << PAGE_BSZS_SHIFT(szc)) 250 #define PFN_BASE(pfnum, szc) (pfnum & ~(SZCPAGES(szc) - 1)) 251 252 /* 253 * this structure is used for walking free page lists 254 * controls when to split large pages into smaller pages, 255 * and when to coalesce smaller pages into larger pages 256 */ 257 typedef struct page_list_walker { 258 uint_t plw_colors; /* num of colors for szc */ 259 uint_t plw_color_mask; /* colors-1 */ 260 uint_t plw_bin_step; /* next bin: 1 or 2 */ 261 uint_t plw_count; /* loop count */ 262 uint_t plw_bin0; /* starting bin */ 263 uint_t plw_bin_marker; /* bin after initial jump */ 264 uint_t plw_bin_split_prev; /* last bin we tried to split */ 265 uint_t plw_do_split; /* set if OK to split */ 266 uint_t plw_split_next; /* next bin to split */ 267 uint_t plw_ceq_dif; /* number of different color groups */ 268 /* to check */ 269 uint_t plw_ceq_mask[MMU_PAGE_SIZES + 1]; /* color equiv mask */ 270 uint_t plw_bins[MMU_PAGE_SIZES + 1]; /* num of bins */ 271 } page_list_walker_t; 272 273 void page_list_walk_init(uchar_t szc, uint_t flags, uint_t bin, 274 int can_split, int use_ceq, page_list_walker_t *plw); 275 276 uint_t page_list_walk_next_bin(uchar_t szc, uint_t bin, 277 page_list_walker_t *plw); 278 279 extern struct cpu cpus[]; 280 #define CPU0 cpus 281 282 extern int mtype_init(vnode_t *, caddr_t, uint_t *, size_t); 283 #define MTYPE_INIT(mtype, vp, vaddr, flags, pgsz) \ 284 (mtype = mtype_init(vp, vaddr, &(flags), pgsz)) 285 286 /* 287 * macros to loop through the mtype range (page_get_mnode_{free,cache,any}list, 288 * and page_get_contig_pages) 289 * 290 * MTYPE_START sets the initial mtype. -1 if the mtype range specified does 291 * not contain mnode. 292 * 293 * MTYPE_NEXT sets the next mtype. -1 if there are no more valid 294 * mtype in the range. 295 */ 296 297 #define MTYPE_START(mnode, mtype, flags) \ 298 (mtype = mtype_func(mnode, mtype, flags)) 299 300 #define MTYPE_NEXT(mnode, mtype, flags) { \ 301 if (flags & PGI_MT_RANGE) { \ 302 mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT); \ 303 } else { \ 304 mtype = -1; \ 305 } \ 306 } 307 308 extern int mtype_pgr_init(int *, page_t *, int, pgcnt_t); 309 #define MTYPE_PGR_INIT(mtype, flags, pp, mnode, pgcnt) \ 310 (mtype = mtype_pgr_init(&flags, pp, mnode, pgcnt)) 311 312 #define MNODE_PGCNT(mnode) mnode_pgcnt(mnode) 313 314 extern void mnodetype_2_pfn(int, int, pfn_t *, pfn_t *); 315 #define MNODETYPE_2_PFN(mnode, mtype, pfnlo, pfnhi) \ 316 mnodetype_2_pfn(mnode, mtype, &pfnlo, &pfnhi) 317 318 #define PC_BIN_MUTEX(mnode, bin, flags) ((flags & PG_FREE_LIST) ? \ 319 &fpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode] : \ 320 &cpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode]) 321 322 #define FPC_MUTEX(mnode, i) (&fpc_mutex[i][mnode]) 323 #define CPC_MUTEX(mnode, i) (&cpc_mutex[i][mnode]) 324 325 #ifdef DEBUG 326 #define CHK_LPG(pp, szc) chk_lpg(pp, szc) 327 extern void chk_lpg(page_t *, uchar_t); 328 #else 329 #define CHK_LPG(pp, szc) 330 #endif 331 332 #define FULL_REGION_CNT(rg_szc) \ 333 (LEVEL_SIZE(rg_szc) >> LEVEL_SHIFT(rg_szc - 1)) 334 335 /* Return the leader for this mapping size */ 336 #define PP_GROUPLEADER(pp, szc) \ 337 (&(pp)[-(int)((pp)->p_pagenum & (SZCPAGES(szc)-1))]) 338 339 /* Return the root page for this page based on p_szc */ 340 #define PP_PAGEROOT(pp) ((pp)->p_szc == 0 ? (pp) : \ 341 PP_GROUPLEADER((pp), (pp)->p_szc)) 342 343 /* 344 * The counter base must be per page_counter element to prevent 345 * races when re-indexing, and the base page size element should 346 * be aligned on a boundary of the given region size. 347 * 348 * We also round up the number of pages spanned by the counters 349 * for a given region to PC_BASE_ALIGN in certain situations to simplify 350 * the coding for some non-performance critical routines. 351 */ 352 353 #define PC_BASE_ALIGN ((pfn_t)1 << PAGE_BSZS_SHIFT(MMU_PAGE_SIZES-1)) 354 #define PC_BASE_ALIGN_MASK (PC_BASE_ALIGN - 1) 355 356 /* 357 * cpu/mmu-dependent vm variables 358 */ 359 extern uint_t mmu_page_sizes; 360 extern uint_t mmu_exported_page_sizes; 361 /* 362 * page sizes that legacy applications can see via getpagesizes(3c). 363 * Used to prevent legacy applications from inadvertantly using the 364 * 'new' large pagesizes (1g and above). 365 */ 366 extern uint_t mmu_legacy_page_sizes; 367 368 /* For x86, userszc is the same as the kernel's szc */ 369 #define USERSZC_2_SZC(userszc) (userszc) 370 #define SZC_2_USERSZC(szc) (szc) 371 372 /* 373 * for hw_page_map_t, sized to hold the ratio of large page to base 374 * pagesize (1024 max) 375 */ 376 typedef short hpmctr_t; 377 378 /* 379 * get the setsize of the current cpu - assume homogenous for x86 380 */ 381 extern int l2cache_sz, l2cache_linesz, l2cache_assoc; 382 383 #define L2CACHE_ALIGN l2cache_linesz 384 #define L2CACHE_ALIGN_MAX 64 385 #define CPUSETSIZE() \ 386 (l2cache_assoc ? (l2cache_sz / l2cache_assoc) : MMU_PAGESIZE) 387 388 /* 389 * Return the log2(pagesize(szc) / MMU_PAGESIZE) --- or the shift count 390 * for the number of base pages in this pagesize 391 */ 392 #define PAGE_BSZS_SHIFT(szc) (LEVEL_SHIFT(szc) - MMU_PAGESHIFT) 393 394 /* 395 * Internal PG_ flags. 396 */ 397 #define PGI_RELOCONLY 0x010000 /* opposite of PG_NORELOC */ 398 #define PGI_NOCAGE 0x020000 /* cage is disabled */ 399 #define PGI_PGCPHIPRI 0x040000 /* page_get_contig_page pri alloc */ 400 #define PGI_PGCPSZC0 0x080000 /* relocate base pagesize page */ 401 402 /* 403 * PGI range flags - should not overlap PGI flags 404 */ 405 #define PGI_MT_RANGE0 0x1000000 /* mtype range to 0 */ 406 #define PGI_MT_RANGE16M 0x2000000 /* mtype range to 16m */ 407 #define PGI_MT_RANGE4G 0x4000000 /* mtype range to 4g */ 408 #define PGI_MT_NEXT 0x8000000 /* get next mtype */ 409 #define PGI_MT_RANGE (PGI_MT_RANGE0 | PGI_MT_RANGE16M | PGI_MT_RANGE4G) 410 411 412 /* 413 * Maximum and default values for user heap, stack, private and shared 414 * anonymous memory, and user text and initialized data. 415 * Used by map_pgsz*() routines. 416 */ 417 extern size_t max_uheap_lpsize; 418 extern size_t default_uheap_lpsize; 419 extern size_t max_ustack_lpsize; 420 extern size_t default_ustack_lpsize; 421 extern size_t max_privmap_lpsize; 422 extern size_t max_uidata_lpsize; 423 extern size_t max_utext_lpsize; 424 extern size_t max_shm_lpsize; 425 extern size_t mcntl0_lpsize; 426 427 /* 428 * Sanity control. Don't use large pages regardless of user 429 * settings if there's less than priv or shm_lpg_min_physmem memory installed. 430 * The units for this variable are 8K pages. 431 */ 432 extern pgcnt_t privm_lpg_min_physmem; 433 extern pgcnt_t shm_lpg_min_physmem; 434 435 /* 436 * hash as and addr to get a bin. 437 */ 438 439 #define AS_2_BIN(as, seg, vp, addr, bin, szc) \ 440 bin = (((((uintptr_t)(addr) >> PAGESHIFT) + ((uintptr_t)(as) >> 4)) \ 441 & page_colors_mask) >> \ 442 (hw_page_array[szc].hp_shift - hw_page_array[0].hp_shift)) 443 444 /* 445 * cpu private vm data - accessed thru CPU->cpu_vm_data 446 * vc_pnum_memseg: tracks last memseg visited in page_numtopp_nolock() 447 * vc_pnext_memseg: tracks last memseg visited in page_nextn() 448 * vc_kmptr: orignal unaligned kmem pointer for this vm_cpu_data_t 449 * vc_kmsize: orignal kmem size for this vm_cpu_data_t 450 */ 451 452 typedef struct { 453 struct memseg *vc_pnum_memseg; 454 struct memseg *vc_pnext_memseg; 455 void *vc_kmptr; 456 size_t vc_kmsize; 457 } vm_cpu_data_t; 458 459 /* allocation size to ensure vm_cpu_data_t resides in its own cache line */ 460 #define VM_CPU_DATA_PADSIZE \ 461 (P2ROUNDUP(sizeof (vm_cpu_data_t), L2CACHE_ALIGN_MAX)) 462 463 /* for boot cpu before kmem is initialized */ 464 extern char vm_cpu_data0[]; 465 466 /* 467 * When a bin is empty, and we can't satisfy a color request correctly, 468 * we scan. If we assume that the programs have reasonable spatial 469 * behavior, then it will not be a good idea to use the adjacent color. 470 * Using the adjacent color would result in virtually adjacent addresses 471 * mapping into the same spot in the cache. So, if we stumble across 472 * an empty bin, skip a bunch before looking. After the first skip, 473 * then just look one bin at a time so we don't miss our cache on 474 * every look. Be sure to check every bin. Page_create() will panic 475 * if we miss a page. 476 * 477 * This also explains the `<=' in the for loops in both page_get_freelist() 478 * and page_get_cachelist(). Since we checked the target bin, skipped 479 * a bunch, then continued one a time, we wind up checking the target bin 480 * twice to make sure we get all of them bins. 481 */ 482 #define BIN_STEP 19 483 484 #ifdef VM_STATS 485 struct vmm_vmstats_str { 486 ulong_t pgf_alloc[MMU_PAGE_SIZES]; /* page_get_freelist */ 487 ulong_t pgf_allocok[MMU_PAGE_SIZES]; 488 ulong_t pgf_allocokrem[MMU_PAGE_SIZES]; 489 ulong_t pgf_allocfailed[MMU_PAGE_SIZES]; 490 ulong_t pgf_allocdeferred; 491 ulong_t pgf_allocretry[MMU_PAGE_SIZES]; 492 ulong_t pgc_alloc; /* page_get_cachelist */ 493 ulong_t pgc_allocok; 494 ulong_t pgc_allocokrem; 495 ulong_t pgc_allocokdeferred; 496 ulong_t pgc_allocfailed; 497 ulong_t pgcp_alloc[MMU_PAGE_SIZES]; /* page_get_contig_pages */ 498 ulong_t pgcp_allocfailed[MMU_PAGE_SIZES]; 499 ulong_t pgcp_allocempty[MMU_PAGE_SIZES]; 500 ulong_t pgcp_allocok[MMU_PAGE_SIZES]; 501 ulong_t ptcp[MMU_PAGE_SIZES]; /* page_trylock_contig_pages */ 502 ulong_t ptcpfreethresh[MMU_PAGE_SIZES]; 503 ulong_t ptcpfailexcl[MMU_PAGE_SIZES]; 504 ulong_t ptcpfailszc[MMU_PAGE_SIZES]; 505 ulong_t ptcpfailcage[MMU_PAGE_SIZES]; 506 ulong_t ptcpok[MMU_PAGE_SIZES]; 507 ulong_t pgmf_alloc[MMU_PAGE_SIZES]; /* page_get_mnode_freelist */ 508 ulong_t pgmf_allocfailed[MMU_PAGE_SIZES]; 509 ulong_t pgmf_allocempty[MMU_PAGE_SIZES]; 510 ulong_t pgmf_allocok[MMU_PAGE_SIZES]; 511 ulong_t pgmc_alloc; /* page_get_mnode_cachelist */ 512 ulong_t pgmc_allocfailed; 513 ulong_t pgmc_allocempty; 514 ulong_t pgmc_allocok; 515 ulong_t pladd_free[MMU_PAGE_SIZES]; /* page_list_add/sub */ 516 ulong_t plsub_free[MMU_PAGE_SIZES]; 517 ulong_t pladd_cache; 518 ulong_t plsub_cache; 519 ulong_t plsubpages_szcbig; 520 ulong_t plsubpages_szc0; 521 ulong_t pfs_req[MMU_PAGE_SIZES]; /* page_freelist_split */ 522 ulong_t pfs_demote[MMU_PAGE_SIZES]; 523 ulong_t pfc_coalok[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 524 ulong_t ppr_reloc[MMU_PAGE_SIZES]; /* page_relocate */ 525 ulong_t ppr_relocnoroot[MMU_PAGE_SIZES]; 526 ulong_t ppr_reloc_replnoroot[MMU_PAGE_SIZES]; 527 ulong_t ppr_relocnolock[MMU_PAGE_SIZES]; 528 ulong_t ppr_relocnomem[MMU_PAGE_SIZES]; 529 ulong_t ppr_relocok[MMU_PAGE_SIZES]; 530 ulong_t ppr_copyfail; 531 /* page coalesce counter */ 532 ulong_t page_ctrs_coalesce[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 533 /* candidates useful */ 534 ulong_t page_ctrs_cands_skip[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 535 /* ctrs changed after locking */ 536 ulong_t page_ctrs_changed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 537 /* page_freelist_coalesce failed */ 538 ulong_t page_ctrs_failed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 539 ulong_t page_ctrs_coalesce_all; /* page coalesce all counter */ 540 ulong_t page_ctrs_cands_skip_all; /* candidates useful for all func */ 541 ulong_t restrict4gcnt; 542 ulong_t unrestrict16mcnt; /* non-DMA 16m allocs allowed */ 543 ulong_t pgpanicalloc; /* PG_PANIC allocation */ 544 ulong_t pcf_deny[MMU_PAGE_SIZES]; /* page_chk_freelist */ 545 ulong_t pcf_allow[MMU_PAGE_SIZES]; 546 }; 547 extern struct vmm_vmstats_str vmm_vmstats; 548 #endif /* VM_STATS */ 549 550 extern size_t page_ctrs_sz(void); 551 extern caddr_t page_ctrs_alloc(caddr_t); 552 extern void page_ctr_sub(int, int, page_t *, int); 553 extern page_t *page_freelist_split(uchar_t, 554 uint_t, int, int, pfn_t, pfn_t, page_list_walker_t *); 555 extern page_t *page_freelist_coalesce(int, uchar_t, uint_t, uint_t, int, 556 pfn_t); 557 extern void page_freelist_coalesce_all(int); 558 extern uint_t page_get_pagecolors(uint_t); 559 extern void pfnzero(pfn_t, uint_t, uint_t); 560 561 #ifdef __cplusplus 562 } 563 #endif 564 565 #endif /* _VM_DEP_H */ 566