1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/sysmacros.h> 31 #include <sys/kmem.h> 32 #include <sys/atomic.h> 33 #include <sys/bitmap.h> 34 #include <sys/machparam.h> 35 #include <sys/machsystm.h> 36 #include <sys/mman.h> 37 #include <sys/systm.h> 38 #include <sys/cpuvar.h> 39 #include <sys/thread.h> 40 #include <sys/proc.h> 41 #include <sys/cpu.h> 42 #include <sys/kmem.h> 43 #include <sys/disp.h> 44 #include <sys/vmem.h> 45 #include <sys/vmsystm.h> 46 #include <sys/promif.h> 47 #include <sys/var.h> 48 #include <sys/x86_archext.h> 49 #include <sys/bootconf.h> 50 #include <sys/dumphdr.h> 51 #include <vm/seg_kmem.h> 52 #include <vm/seg_kpm.h> 53 #include <vm/hat.h> 54 #include <vm/hat_i86.h> 55 #include <sys/cmn_err.h> 56 57 kmem_cache_t *htable_cache; 58 extern cpuset_t khat_cpuset; 59 60 /* 61 * The variable htable_reserve_amount, rather than HTABLE_RESERVE_AMOUNT, 62 * is used in order to facilitate testing of the htable_steal() code. 63 * By resetting htable_reserve_amount to a lower value, we can force 64 * stealing to occur. The reserve amount is a guess to get us through boot. 65 */ 66 #define HTABLE_RESERVE_AMOUNT (200) 67 uint_t htable_reserve_amount = HTABLE_RESERVE_AMOUNT; 68 kmutex_t htable_reserve_mutex; 69 uint_t htable_reserve_cnt; 70 htable_t *htable_reserve_pool; 71 72 /* 73 * This variable is so that we can tune this via /etc/system 74 */ 75 uint_t htable_steal_passes = 10; 76 77 /* 78 * mutex stuff for access to htable hash 79 */ 80 #define NUM_HTABLE_MUTEX 128 81 kmutex_t htable_mutex[NUM_HTABLE_MUTEX]; 82 #define HTABLE_MUTEX_HASH(h) ((h) & (NUM_HTABLE_MUTEX - 1)) 83 84 #define HTABLE_ENTER(h) mutex_enter(&htable_mutex[HTABLE_MUTEX_HASH(h)]); 85 #define HTABLE_EXIT(h) mutex_exit(&htable_mutex[HTABLE_MUTEX_HASH(h)]); 86 87 /* 88 * forward declarations 89 */ 90 static void link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr); 91 static void unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr); 92 static void htable_free(htable_t *ht); 93 static x86pte_t *x86pte_access_pagetable(htable_t *ht); 94 static void x86pte_release_pagetable(htable_t *ht); 95 static x86pte_t x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, 96 x86pte_t new); 97 98 /* 99 * Address used for kernel page tables. See ptable_alloc() below. 100 */ 101 uintptr_t ptable_va = 0; 102 size_t ptable_sz = 2 * MMU_PAGESIZE; 103 104 /* 105 * A counter to track if we are stealing or reaping htables. When non-zero 106 * htable_free() will directly free htables (either to the reserve or kmem) 107 * instead of putting them in a hat's htable cache. 108 */ 109 uint32_t htable_dont_cache = 0; 110 111 /* 112 * Track the number of active pagetables, so we can know how many to reap 113 */ 114 static uint32_t active_ptables = 0; 115 116 /* 117 * Allocate a memory page for a hardware page table. 118 * 119 * The pages allocated for page tables are currently gotten in a hacked up 120 * way. It works for now, but really needs to be fixed up a bit. 121 * 122 * During boot: The boot loader controls physical memory allocation via 123 * boot_alloc(). To avoid conflict with vmem, we just do boot_alloc()s with 124 * addresses less than kernelbase. These addresses are ignored when we take 125 * over mappings from the boot loader. 126 * 127 * Post-boot: we currently use page_create_va() on the kvp with fake offsets, 128 * segments and virt address. This is pretty bogus, but was copied from the 129 * old hat_i86.c code. A better approach would be to have a custom 130 * page_get_physical() interface that can specify either mnode random or 131 * mnode local and takes a page from whatever color has the MOST available - 132 * this would have a minimal impact on page coloring. 133 * 134 * For now the htable pointer in ht is only used to compute a unique vnode 135 * offset for the page. 136 */ 137 static void 138 ptable_alloc(htable_t *ht) 139 { 140 pfn_t pfn; 141 page_t *pp; 142 u_offset_t offset; 143 static struct seg tmpseg; 144 static int first_time = 1; 145 146 /* 147 * Allocating the associated hardware page table is very different 148 * before boot has finished. We get a physical page to from boot 149 * w/o eating up any kernel address space. 150 */ 151 ht->ht_pfn = PFN_INVALID; 152 HATSTAT_INC(hs_ptable_allocs); 153 atomic_add_32(&active_ptables, 1); 154 155 if (use_boot_reserve) { 156 ASSERT(ptable_va != 0); 157 158 /* 159 * Allocate, then demap the ptable_va, so that we're 160 * sure there exist page table entries for the addresses 161 */ 162 if (first_time) { 163 first_time = 0; 164 if ((uintptr_t)BOP_ALLOC(bootops, (caddr_t)ptable_va, 165 ptable_sz, BO_NO_ALIGN) != ptable_va) 166 panic("BOP_ALLOC failed"); 167 168 hat_boot_demap(ptable_va); 169 hat_boot_demap(ptable_va + MMU_PAGESIZE); 170 } 171 172 pfn = ((uintptr_t)BOP_EALLOC(bootops, 0, MMU_PAGESIZE, 173 BO_NO_ALIGN, BOPF_X86_ALLOC_PHYS)) >> MMU_PAGESHIFT; 174 if (page_resv(1, KM_NOSLEEP) == 0) 175 panic("page_resv() failed in ptable alloc"); 176 177 pp = page_numtopp_nolock(pfn); 178 ASSERT(pp != NULL); 179 if (pp->p_szc != 0) 180 page_boot_demote(pp); 181 pp = page_numtopp(pfn, SE_EXCL); 182 ASSERT(pp != NULL); 183 184 } else { 185 /* 186 * Post boot get a page for the table. 187 * 188 * The first check is to see if there is memory in 189 * the system. If we drop to throttlefree, then fail 190 * the ptable_alloc() and let the stealing code kick in. 191 * Note that we have to do this test here, since the test in 192 * page_create_throttle() would let the NOSLEEP allocation 193 * go through and deplete the page reserves. 194 */ 195 if (freemem <= throttlefree + 1) 196 return; 197 198 /* 199 * This code is temporary, so don't review too critically. 200 * I'm awaiting a new phys page allocator from Kit -- Joe 201 * 202 * We need assign an offset for the page to call 203 * page_create_va. To avoid conflicts with other pages, 204 * we get creative with the offset. 205 * for 32 bits, we pic an offset > 4Gig 206 * for 64 bits, pic an offset somewhere in the VA hole. 207 */ 208 offset = (uintptr_t)ht - kernelbase; 209 offset <<= MMU_PAGESHIFT; 210 #if defined(__amd64) 211 offset += mmu.hole_start; /* something in VA hole */ 212 #else 213 offset += 1ULL << 40; /* something > 4 Gig */ 214 #endif 215 216 if (page_resv(1, KM_NOSLEEP) == 0) 217 return; 218 219 #ifdef DEBUG 220 pp = page_exists(&kvp, offset); 221 if (pp != NULL) 222 panic("ptable already exists %p", pp); 223 #endif 224 pp = page_create_va(&kvp, offset, MMU_PAGESIZE, 225 PG_EXCL | PG_NORELOC, &tmpseg, 226 (void *)((uintptr_t)ht << MMU_PAGESHIFT)); 227 if (pp == NULL) 228 return; 229 page_io_unlock(pp); 230 page_hashout(pp, NULL); 231 pfn = pp->p_pagenum; 232 } 233 page_downgrade(pp); 234 ASSERT(PAGE_SHARED(pp)); 235 236 if (pfn == PFN_INVALID) 237 panic("ptable_alloc(): Invalid PFN!!"); 238 ht->ht_pfn = pfn; 239 } 240 241 /* 242 * Free an htable's associated page table page. See the comments 243 * for ptable_alloc(). 244 */ 245 static void 246 ptable_free(htable_t *ht) 247 { 248 pfn_t pfn = ht->ht_pfn; 249 page_t *pp; 250 251 /* 252 * need to destroy the page used for the pagetable 253 */ 254 ASSERT(pfn != PFN_INVALID); 255 HATSTAT_INC(hs_ptable_frees); 256 atomic_add_32(&active_ptables, -1); 257 pp = page_numtopp_nolock(pfn); 258 if (pp == NULL) 259 panic("ptable_free(): no page for pfn!"); 260 ASSERT(PAGE_SHARED(pp)); 261 ASSERT(pfn == pp->p_pagenum); 262 263 /* 264 * Get an exclusive lock, might have to wait for a kmem reader. 265 */ 266 if (!page_tryupgrade(pp)) { 267 page_unlock(pp); 268 /* 269 * RFE: we could change this to not loop forever 270 * George Cameron had some idea on how to do that. 271 * For now looping works - it's just like sfmmu. 272 */ 273 while (!page_lock(pp, SE_EXCL, (kmutex_t *)NULL, P_RECLAIM)) 274 continue; 275 } 276 page_free(pp, 1); 277 page_unresv(1); 278 ht->ht_pfn = PFN_INVALID; 279 } 280 281 /* 282 * Put one htable on the reserve list. 283 */ 284 static void 285 htable_put_reserve(htable_t *ht) 286 { 287 ht->ht_hat = NULL; /* no longer tied to a hat */ 288 ASSERT(ht->ht_pfn == PFN_INVALID); 289 HATSTAT_INC(hs_htable_rputs); 290 mutex_enter(&htable_reserve_mutex); 291 ht->ht_next = htable_reserve_pool; 292 htable_reserve_pool = ht; 293 ++htable_reserve_cnt; 294 mutex_exit(&htable_reserve_mutex); 295 } 296 297 /* 298 * Take one htable from the reserve. 299 */ 300 static htable_t * 301 htable_get_reserve(void) 302 { 303 htable_t *ht = NULL; 304 305 mutex_enter(&htable_reserve_mutex); 306 if (htable_reserve_cnt != 0) { 307 ht = htable_reserve_pool; 308 ASSERT(ht != NULL); 309 ASSERT(ht->ht_pfn == PFN_INVALID); 310 htable_reserve_pool = ht->ht_next; 311 --htable_reserve_cnt; 312 HATSTAT_INC(hs_htable_rgets); 313 } 314 mutex_exit(&htable_reserve_mutex); 315 return (ht); 316 } 317 318 /* 319 * Allocate initial htables with page tables and put them on the kernel hat's 320 * cache list. 321 */ 322 void 323 htable_initial_reserve(uint_t count) 324 { 325 htable_t *ht; 326 hat_t *hat = kas.a_hat; 327 328 count += HTABLE_RESERVE_AMOUNT; 329 while (count > 0) { 330 ht = kmem_cache_alloc(htable_cache, KM_NOSLEEP); 331 ASSERT(ht != NULL); 332 333 ASSERT(use_boot_reserve); 334 ht->ht_hat = kas.a_hat; /* so htable_free() works */ 335 ht->ht_flags = 0; /* so x86pte_zero works */ 336 ptable_alloc(ht); 337 if (ht->ht_pfn == PFN_INVALID) 338 panic("ptable_alloc() failed"); 339 340 x86pte_zero(ht, 0, mmu.ptes_per_table); 341 342 ht->ht_next = hat->hat_ht_cached; 343 hat->hat_ht_cached = ht; 344 --count; 345 } 346 } 347 348 /* 349 * Readjust the reserves after a thread finishes using them. 350 * 351 * The first time this is called post boot, we'll also clear out the 352 * extra boot htables that were put in the kernel hat's cache list. 353 */ 354 void 355 htable_adjust_reserve() 356 { 357 static int first_time = 1; 358 htable_t *ht; 359 360 ASSERT(curthread != hat_reserves_thread); 361 362 /* 363 * The first time this is called after we can steal, we free up the 364 * the kernel's cache htable list. It has lots of extra htable/page 365 * tables that were allocated for boot up. 366 */ 367 if (first_time) { 368 first_time = 0; 369 while ((ht = kas.a_hat->hat_ht_cached) != NULL) { 370 kas.a_hat->hat_ht_cached = ht->ht_next; 371 ASSERT(ht->ht_hat == kas.a_hat); 372 ptable_free(ht); 373 htable_put_reserve(ht); 374 } 375 return; 376 } 377 378 /* 379 * Free any excess htables in the reserve list 380 */ 381 while (htable_reserve_cnt > htable_reserve_amount) { 382 ht = htable_get_reserve(); 383 if (ht == NULL) 384 return; 385 ASSERT(ht->ht_pfn == PFN_INVALID); 386 kmem_cache_free(htable_cache, ht); 387 } 388 } 389 390 391 /* 392 * This routine steals htables from user processes for htable_alloc() or 393 * for htable_reap(). 394 */ 395 static htable_t * 396 htable_steal(uint_t cnt) 397 { 398 hat_t *hat = kas.a_hat; /* list starts with khat */ 399 htable_t *list = NULL; 400 htable_t *ht; 401 htable_t *higher; 402 uint_t h; 403 uint_t e; 404 uintptr_t va; 405 x86pte_t pte; 406 uint_t stolen = 0; 407 uint_t pass; 408 uint_t threshhold; 409 410 /* 411 * Limit htable_steal_passes to something reasonable 412 */ 413 if (htable_steal_passes == 0) 414 htable_steal_passes = 1; 415 if (htable_steal_passes > mmu.ptes_per_table) 416 htable_steal_passes = mmu.ptes_per_table; 417 418 /* 419 * Loop through all hats. The 1st pass takes cached htables that 420 * aren't in use. The later passes steal by removing mappings, too. 421 */ 422 atomic_add_32(&htable_dont_cache, 1); 423 for (pass = 1; pass <= htable_steal_passes && stolen < cnt; ++pass) { 424 threshhold = pass / htable_steal_passes; 425 hat = kas.a_hat->hat_next; 426 for (;;) { 427 428 /* 429 * move to next hat 430 */ 431 mutex_enter(&hat_list_lock); 432 hat->hat_flags &= ~HAT_VICTIM; 433 cv_broadcast(&hat_list_cv); 434 do { 435 hat = hat->hat_prev; 436 } while (hat->hat_flags & HAT_VICTIM); 437 if (stolen == cnt || hat == kas.a_hat->hat_next) { 438 mutex_exit(&hat_list_lock); 439 break; 440 } 441 hat->hat_flags |= HAT_VICTIM; 442 mutex_exit(&hat_list_lock); 443 444 /* 445 * Take any htables from the hat's cached "free" list. 446 */ 447 hat_enter(hat); 448 while ((ht = hat->hat_ht_cached) != NULL && 449 stolen < cnt) { 450 hat->hat_ht_cached = ht->ht_next; 451 ht->ht_next = list; 452 list = ht; 453 ++stolen; 454 } 455 hat_exit(hat); 456 457 /* 458 * Don't steal on first pass. 459 */ 460 if (pass == 1 || stolen == cnt) 461 continue; 462 463 /* 464 * search the active htables for one to steal 465 */ 466 for (h = 0; h < hat->hat_num_hash && stolen < cnt; 467 ++h) { 468 higher = NULL; 469 HTABLE_ENTER(h); 470 for (ht = hat->hat_ht_hash[h]; ht; 471 ht = ht->ht_next) { 472 473 /* 474 * Can we rule out reaping? 475 */ 476 if (ht->ht_busy != 0 || 477 (ht->ht_flags & HTABLE_SHARED_PFN)|| 478 ht->ht_level == TOP_LEVEL(hat) || 479 (ht->ht_level >= 480 mmu.max_page_level && 481 ht->ht_valid_cnt > 0) || 482 ht->ht_valid_cnt < threshhold || 483 ht->ht_lock_cnt != 0) 484 continue; 485 486 /* 487 * Increment busy so the htable can't 488 * disappear. We drop the htable mutex 489 * to avoid deadlocks with 490 * hat_pageunload() and the hment mutex 491 * while we call hat_pte_unmap() 492 */ 493 ++ht->ht_busy; 494 HTABLE_EXIT(h); 495 496 /* 497 * Try stealing. 498 * - unload and invalidate all PTEs 499 */ 500 for (e = 0, va = ht->ht_vaddr; 501 e < ht->ht_num_ptes && 502 ht->ht_valid_cnt > 0 && 503 ht->ht_busy == 1 && 504 ht->ht_lock_cnt == 0; 505 ++e, va += MMU_PAGESIZE) { 506 pte = x86pte_get(ht, e); 507 if (!PTE_ISVALID(pte)) 508 continue; 509 hat_pte_unmap(ht, e, 510 HAT_UNLOAD, pte, NULL); 511 } 512 513 /* 514 * Reacquire htable lock. If we didn't 515 * remove all mappings in the table, 516 * or another thread added a new mapping 517 * behind us, give up on this table. 518 */ 519 HTABLE_ENTER(h); 520 if (ht->ht_busy != 1 || 521 ht->ht_valid_cnt != 0 || 522 ht->ht_lock_cnt != 0) { 523 --ht->ht_busy; 524 continue; 525 } 526 527 /* 528 * Steal it and unlink the page table. 529 */ 530 higher = ht->ht_parent; 531 unlink_ptp(higher, ht, ht->ht_vaddr); 532 533 /* 534 * remove from the hash list 535 */ 536 if (ht->ht_next) 537 ht->ht_next->ht_prev = 538 ht->ht_prev; 539 540 if (ht->ht_prev) { 541 ht->ht_prev->ht_next = 542 ht->ht_next; 543 } else { 544 ASSERT(hat->hat_ht_hash[h] == 545 ht); 546 hat->hat_ht_hash[h] = 547 ht->ht_next; 548 } 549 550 /* 551 * Break to outer loop to release the 552 * higher (ht_parent) pagtable. This 553 * spreads out the pain caused by 554 * pagefaults. 555 */ 556 ht->ht_next = list; 557 list = ht; 558 ++stolen; 559 560 /* 561 * If this is the last steal, then move 562 * the hat list head, so that we start 563 * here next time. 564 */ 565 if (stolen == cnt) { 566 mutex_enter(&hat_list_lock); 567 kas.a_hat->hat_next = hat; 568 mutex_exit(&hat_list_lock); 569 } 570 break; 571 } 572 HTABLE_EXIT(h); 573 if (higher != NULL) 574 htable_release(higher); 575 } 576 } 577 } 578 atomic_add_32(&htable_dont_cache, -1); 579 return (list); 580 } 581 582 583 /* 584 * This is invoked from kmem when the system is low on memory. We try 585 * to free hments, htables, and ptables to improve the memory situation. 586 */ 587 /*ARGSUSED*/ 588 static void 589 htable_reap(void *handle) 590 { 591 uint_t reap_cnt; 592 htable_t *list; 593 htable_t *ht; 594 595 HATSTAT_INC(hs_reap_attempts); 596 if (!can_steal_post_boot) 597 return; 598 599 /* 600 * Try to reap 5% of the page tables bounded by a maximum of 601 * 5% of physmem and a minimum of 10. 602 */ 603 reap_cnt = MIN(MAX(physmem / 20, active_ptables / 20), 10); 604 605 /* 606 * Let htable_steal() do the work, we just call htable_free() 607 */ 608 list = htable_steal(reap_cnt); 609 while ((ht = list) != NULL) { 610 list = ht->ht_next; 611 HATSTAT_INC(hs_reaped); 612 htable_free(ht); 613 } 614 615 /* 616 * Free up excess reserves 617 */ 618 htable_adjust_reserve(); 619 hment_adjust_reserve(); 620 } 621 622 /* 623 * allocate an htable, stealing one or using the reserve if necessary 624 */ 625 static htable_t * 626 htable_alloc( 627 hat_t *hat, 628 uintptr_t vaddr, 629 level_t level, 630 htable_t *shared) 631 { 632 htable_t *ht = NULL; 633 uint_t is_vlp; 634 uint_t is_bare = 0; 635 uint_t need_to_zero = 1; 636 int kmflags = (can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP); 637 638 if (level < 0 || level > TOP_LEVEL(hat)) 639 panic("htable_alloc(): level %d out of range\n", level); 640 641 is_vlp = (hat->hat_flags & HAT_VLP) && level == VLP_LEVEL; 642 if (is_vlp || shared != NULL) 643 is_bare = 1; 644 645 /* 646 * First reuse a cached htable from the hat_ht_cached field, this 647 * avoids unnecessary trips through kmem/page allocators. This is also 648 * what happens during use_boot_reserve. 649 */ 650 if (hat->hat_ht_cached != NULL && !is_bare) { 651 hat_enter(hat); 652 ht = hat->hat_ht_cached; 653 if (ht != NULL) { 654 hat->hat_ht_cached = ht->ht_next; 655 need_to_zero = 0; 656 /* XX64 ASSERT() they're all zero somehow */ 657 ASSERT(ht->ht_pfn != PFN_INVALID); 658 } 659 hat_exit(hat); 660 } 661 662 if (ht == NULL) { 663 ASSERT(!use_boot_reserve); 664 /* 665 * When allocating for hat_memload_arena, we use the reserve. 666 * Also use reserves if we are in a panic(). 667 */ 668 if (curthread == hat_reserves_thread || panicstr != NULL) { 669 ASSERT(panicstr != NULL || !is_bare); 670 ASSERT(panicstr != NULL || 671 curthread == hat_reserves_thread); 672 ht = htable_get_reserve(); 673 } else { 674 /* 675 * Donate successful htable allocations to the reserve. 676 */ 677 for (;;) { 678 ASSERT(curthread != hat_reserves_thread); 679 ht = kmem_cache_alloc(htable_cache, kmflags); 680 if (ht == NULL) 681 break; 682 ht->ht_pfn = PFN_INVALID; 683 if (curthread == hat_reserves_thread || 684 panicstr != NULL || 685 htable_reserve_cnt >= htable_reserve_amount) 686 break; 687 htable_put_reserve(ht); 688 } 689 } 690 691 /* 692 * allocate a page for the hardware page table if needed 693 */ 694 if (ht != NULL && !is_bare) { 695 ptable_alloc(ht); 696 if (ht->ht_pfn == PFN_INVALID) { 697 kmem_cache_free(htable_cache, ht); 698 ht = NULL; 699 } 700 } 701 } 702 703 /* 704 * if allocations failed resort to stealing 705 */ 706 if (ht == NULL && can_steal_post_boot) { 707 ht = htable_steal(1); 708 HATSTAT_INC(hs_steals); 709 710 /* 711 * if we had to steal for a bare htable, release the 712 * page for the pagetable 713 */ 714 if (ht != NULL && is_bare) 715 ptable_free(ht); 716 } 717 718 /* 719 * All attempts to allocate or steal failed... 720 */ 721 if (ht == NULL) 722 panic("htable_alloc(): couldn't steal\n"); 723 724 /* 725 * Shared page tables have all entries locked and entries may not 726 * be added or deleted. 727 */ 728 ht->ht_flags = 0; 729 if (shared != NULL) { 730 ASSERT(level == 0); 731 ASSERT(shared->ht_valid_cnt > 0); 732 ht->ht_flags |= HTABLE_SHARED_PFN; 733 ht->ht_pfn = shared->ht_pfn; 734 ht->ht_lock_cnt = 0; 735 ht->ht_valid_cnt = 0; /* updated in hat_share() */ 736 ht->ht_shares = shared; 737 need_to_zero = 0; 738 } else { 739 ht->ht_shares = NULL; 740 ht->ht_lock_cnt = 0; 741 ht->ht_valid_cnt = 0; 742 } 743 744 /* 745 * setup flags, etc. for VLP htables 746 */ 747 if (is_vlp) { 748 ht->ht_flags |= HTABLE_VLP; 749 ht->ht_num_ptes = VLP_NUM_PTES; 750 ASSERT(ht->ht_pfn == PFN_INVALID); 751 need_to_zero = 0; 752 } else if (level == mmu.max_level) { 753 ht->ht_num_ptes = mmu.top_level_count; 754 } else { 755 ht->ht_num_ptes = mmu.ptes_per_table; 756 } 757 758 /* 759 * fill in the htable 760 */ 761 ht->ht_hat = hat; 762 ht->ht_parent = NULL; 763 ht->ht_vaddr = vaddr; 764 ht->ht_level = level; 765 ht->ht_busy = 1; 766 ht->ht_next = NULL; 767 ht->ht_prev = NULL; 768 769 /* 770 * Zero out any freshly allocated page table 771 */ 772 if (need_to_zero) 773 x86pte_zero(ht, 0, mmu.ptes_per_table); 774 return (ht); 775 } 776 777 /* 778 * Free up an htable, either to a hat's cached list, the reserves or 779 * back to kmem. 780 */ 781 static void 782 htable_free(htable_t *ht) 783 { 784 hat_t *hat = ht->ht_hat; 785 786 /* 787 * If the process isn't exiting, cache the free htable in the hat 788 * structure. We always do this for the boot reserve. We don't 789 * do this if the hat is exiting or we are stealing/reaping htables. 790 */ 791 if (hat != NULL && 792 !(ht->ht_flags & HTABLE_SHARED_PFN) && 793 (use_boot_reserve || 794 (!(hat->hat_flags & HAT_FREEING) && !htable_dont_cache))) { 795 ASSERT((ht->ht_flags & HTABLE_VLP) == 0); 796 ASSERT(ht->ht_pfn != PFN_INVALID); 797 hat_enter(hat); 798 ht->ht_next = hat->hat_ht_cached; 799 hat->hat_ht_cached = ht; 800 hat_exit(hat); 801 return; 802 } 803 804 /* 805 * If we have a hardware page table, free it. 806 * We don't free page tables that are accessed by sharing someone else. 807 */ 808 if (ht->ht_flags & HTABLE_SHARED_PFN) { 809 ASSERT(ht->ht_pfn != PFN_INVALID); 810 ht->ht_pfn = PFN_INVALID; 811 } else if (!(ht->ht_flags & HTABLE_VLP)) { 812 ptable_free(ht); 813 } 814 815 /* 816 * If we are the thread using the reserves, put free htables 817 * into reserves. 818 */ 819 if (curthread == hat_reserves_thread || 820 htable_reserve_cnt < htable_reserve_amount) 821 htable_put_reserve(ht); 822 else 823 kmem_cache_free(htable_cache, ht); 824 } 825 826 827 /* 828 * This is called when a hat is being destroyed or swapped out. We reap all 829 * the remaining htables in the hat cache. If destroying all left over 830 * htables are also destroyed. 831 * 832 * We also don't need to invalidate any of the PTPs nor do any demapping. 833 */ 834 void 835 htable_purge_hat(hat_t *hat) 836 { 837 htable_t *ht; 838 int h; 839 840 /* 841 * Purge the htable cache if just reaping. 842 */ 843 if (!(hat->hat_flags & HAT_FREEING)) { 844 atomic_add_32(&htable_dont_cache, 1); 845 for (;;) { 846 hat_enter(hat); 847 ht = hat->hat_ht_cached; 848 if (ht == NULL) { 849 hat_exit(hat); 850 break; 851 } 852 hat->hat_ht_cached = ht->ht_next; 853 hat_exit(hat); 854 htable_free(ht); 855 } 856 atomic_add_32(&htable_dont_cache, -1); 857 return; 858 } 859 860 /* 861 * if freeing, no locking is needed 862 */ 863 while ((ht = hat->hat_ht_cached) != NULL) { 864 hat->hat_ht_cached = ht->ht_next; 865 htable_free(ht); 866 } 867 868 /* 869 * walk thru the htable hash table and free all the htables in it. 870 */ 871 for (h = 0; h < hat->hat_num_hash; ++h) { 872 while ((ht = hat->hat_ht_hash[h]) != NULL) { 873 if (ht->ht_next) 874 ht->ht_next->ht_prev = ht->ht_prev; 875 876 if (ht->ht_prev) { 877 ht->ht_prev->ht_next = ht->ht_next; 878 } else { 879 ASSERT(hat->hat_ht_hash[h] == ht); 880 hat->hat_ht_hash[h] = ht->ht_next; 881 } 882 htable_free(ht); 883 } 884 } 885 } 886 887 /* 888 * Unlink an entry for a table at vaddr and level out of the existing table 889 * one level higher. We are always holding the HASH_ENTER() when doing this. 890 */ 891 static void 892 unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr) 893 { 894 uint_t entry = htable_va2entry(vaddr, higher); 895 x86pte_t expect = MAKEPTP(old->ht_pfn, old->ht_level); 896 x86pte_t found; 897 898 ASSERT(higher->ht_busy > 0); 899 ASSERT(higher->ht_valid_cnt > 0); 900 ASSERT(old->ht_valid_cnt == 0); 901 found = x86pte_cas(higher, entry, expect, 0); 902 if (found != expect) 903 panic("Bad PTP found=" FMT_PTE ", expected=" FMT_PTE, 904 found, expect); 905 HTABLE_DEC(higher->ht_valid_cnt); 906 } 907 908 /* 909 * Link an entry for a new table at vaddr and level into the existing table 910 * one level higher. We are always holding the HASH_ENTER() when doing this. 911 */ 912 static void 913 link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr) 914 { 915 uint_t entry = htable_va2entry(vaddr, higher); 916 x86pte_t newptp = MAKEPTP(new->ht_pfn, new->ht_level); 917 x86pte_t found; 918 919 ASSERT(higher->ht_busy > 0); 920 921 ASSERT(new->ht_level != mmu.max_level); 922 923 HTABLE_INC(higher->ht_valid_cnt); 924 925 found = x86pte_cas(higher, entry, 0, newptp); 926 if (found != 0) 927 panic("HAT: ptp not 0, found=" FMT_PTE, found); 928 } 929 930 /* 931 * Release of an htable. 932 * 933 * During process exit, some empty page tables are not unlinked - hat_free_end() 934 * cleans them up. Upper level pagetable (mmu.max_page_level and higher) are 935 * only released during hat_free_end() or by htable_steal(). We always 936 * release SHARED page tables. 937 */ 938 void 939 htable_release(htable_t *ht) 940 { 941 uint_t hashval; 942 htable_t *shared; 943 htable_t *higher; 944 hat_t *hat; 945 uintptr_t va; 946 level_t level; 947 948 while (ht != NULL) { 949 shared = NULL; 950 for (;;) { 951 hat = ht->ht_hat; 952 va = ht->ht_vaddr; 953 level = ht->ht_level; 954 hashval = HTABLE_HASH(hat, va, level); 955 956 /* 957 * The common case is that this isn't the last use of 958 * an htable so we don't want to free the htable. 959 */ 960 HTABLE_ENTER(hashval); 961 ASSERT(ht->ht_lock_cnt == 0 || ht->ht_valid_cnt > 0); 962 ASSERT(ht->ht_valid_cnt >= 0); 963 ASSERT(ht->ht_busy > 0); 964 if (ht->ht_valid_cnt > 0) 965 break; 966 if (ht->ht_busy > 1) 967 break; 968 969 /* 970 * we always release empty shared htables 971 */ 972 if (!(ht->ht_flags & HTABLE_SHARED_PFN)) { 973 974 /* 975 * don't release if in address space tear down 976 */ 977 if (hat->hat_flags & HAT_FREEING) 978 break; 979 980 /* 981 * At and above max_page_level, free if it's for 982 * a boot-time kernel mapping below kernelbase. 983 */ 984 if (level >= mmu.max_page_level && 985 (hat != kas.a_hat || va >= kernelbase)) 986 break; 987 } 988 989 /* 990 * remember if we destroy an htable that shares its PFN 991 * from elsewhere 992 */ 993 if (ht->ht_flags & HTABLE_SHARED_PFN) { 994 ASSERT(ht->ht_level == 0); 995 ASSERT(shared == NULL); 996 shared = ht->ht_shares; 997 HATSTAT_INC(hs_htable_unshared); 998 } 999 1000 /* 1001 * Handle release of a table and freeing the htable_t. 1002 * Unlink it from the table higher (ie. ht_parent). 1003 */ 1004 ASSERT(ht->ht_lock_cnt == 0); 1005 higher = ht->ht_parent; 1006 ASSERT(higher != NULL); 1007 1008 /* 1009 * Unlink the pagetable. 1010 */ 1011 unlink_ptp(higher, ht, va); 1012 1013 /* 1014 * When any top level VLP page table entry changes, we 1015 * must issue a reload of cr3 on all processors. 1016 */ 1017 if ((hat->hat_flags & HAT_VLP) && 1018 level == VLP_LEVEL - 1) 1019 hat_demap(hat, DEMAP_ALL_ADDR); 1020 1021 /* 1022 * remove this htable from its hash list 1023 */ 1024 if (ht->ht_next) 1025 ht->ht_next->ht_prev = ht->ht_prev; 1026 1027 if (ht->ht_prev) { 1028 ht->ht_prev->ht_next = ht->ht_next; 1029 } else { 1030 ASSERT(hat->hat_ht_hash[hashval] == ht); 1031 hat->hat_ht_hash[hashval] = ht->ht_next; 1032 } 1033 HTABLE_EXIT(hashval); 1034 htable_free(ht); 1035 ht = higher; 1036 } 1037 1038 ASSERT(ht->ht_busy >= 1); 1039 --ht->ht_busy; 1040 HTABLE_EXIT(hashval); 1041 1042 /* 1043 * If we released a shared htable, do a release on the htable 1044 * from which it shared 1045 */ 1046 ht = shared; 1047 } 1048 } 1049 1050 /* 1051 * Find the htable for the pagetable at the given level for the given address. 1052 * If found acquires a hold that eventually needs to be htable_release()d 1053 */ 1054 htable_t * 1055 htable_lookup(hat_t *hat, uintptr_t vaddr, level_t level) 1056 { 1057 uintptr_t base; 1058 uint_t hashval; 1059 htable_t *ht = NULL; 1060 1061 ASSERT(level >= 0); 1062 ASSERT(level <= TOP_LEVEL(hat)); 1063 1064 if (level == TOP_LEVEL(hat)) 1065 base = 0; 1066 else 1067 base = vaddr & LEVEL_MASK(level + 1); 1068 1069 hashval = HTABLE_HASH(hat, base, level); 1070 HTABLE_ENTER(hashval); 1071 for (ht = hat->hat_ht_hash[hashval]; ht; ht = ht->ht_next) { 1072 if (ht->ht_hat == hat && 1073 ht->ht_vaddr == base && 1074 ht->ht_level == level) 1075 break; 1076 } 1077 if (ht) 1078 ++ht->ht_busy; 1079 1080 HTABLE_EXIT(hashval); 1081 return (ht); 1082 } 1083 1084 /* 1085 * Acquires a hold on a known htable (from a locked hment entry). 1086 */ 1087 void 1088 htable_acquire(htable_t *ht) 1089 { 1090 hat_t *hat = ht->ht_hat; 1091 level_t level = ht->ht_level; 1092 uintptr_t base = ht->ht_vaddr; 1093 uint_t hashval = HTABLE_HASH(hat, base, level); 1094 1095 HTABLE_ENTER(hashval); 1096 #ifdef DEBUG 1097 /* 1098 * make sure the htable is there 1099 */ 1100 { 1101 htable_t *h; 1102 1103 for (h = hat->hat_ht_hash[hashval]; 1104 h && h != ht; 1105 h = h->ht_next) 1106 ; 1107 ASSERT(h == ht); 1108 } 1109 #endif /* DEBUG */ 1110 ++ht->ht_busy; 1111 HTABLE_EXIT(hashval); 1112 } 1113 1114 /* 1115 * Find the htable for the pagetable at the given level for the given address. 1116 * If found acquires a hold that eventually needs to be htable_release()d 1117 * If not found the table is created. 1118 * 1119 * Since we can't hold a hash table mutex during allocation, we have to 1120 * drop it and redo the search on a create. Then we may have to free the newly 1121 * allocated htable if another thread raced in and created it ahead of us. 1122 */ 1123 htable_t * 1124 htable_create( 1125 hat_t *hat, 1126 uintptr_t vaddr, 1127 level_t level, 1128 htable_t *shared) 1129 { 1130 uint_t h; 1131 level_t l; 1132 uintptr_t base; 1133 htable_t *ht; 1134 htable_t *higher = NULL; 1135 htable_t *new = NULL; 1136 1137 if (level < 0 || level > TOP_LEVEL(hat)) 1138 panic("htable_create(): level %d out of range\n", level); 1139 1140 /* 1141 * Create the page tables in top down order. 1142 */ 1143 for (l = TOP_LEVEL(hat); l >= level; --l) { 1144 new = NULL; 1145 if (l == TOP_LEVEL(hat)) 1146 base = 0; 1147 else 1148 base = vaddr & LEVEL_MASK(l + 1); 1149 1150 h = HTABLE_HASH(hat, base, l); 1151 try_again: 1152 /* 1153 * look up the htable at this level 1154 */ 1155 HTABLE_ENTER(h); 1156 if (l == TOP_LEVEL(hat)) { 1157 ht = hat->hat_htable; 1158 } else { 1159 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 1160 ASSERT(ht->ht_hat == hat); 1161 if (ht->ht_vaddr == base && 1162 ht->ht_level == l) 1163 break; 1164 } 1165 } 1166 1167 /* 1168 * if we found the htable, increment its busy cnt 1169 * and if we had allocated a new htable, free it. 1170 */ 1171 if (ht != NULL) { 1172 /* 1173 * If we find a pre-existing shared table, it must 1174 * share from the same place. 1175 */ 1176 if (l == level && shared && ht->ht_shares && 1177 ht->ht_shares != shared) { 1178 panic("htable shared from wrong place " 1179 "found htable=%p shared=%p", ht, shared); 1180 } 1181 ++ht->ht_busy; 1182 HTABLE_EXIT(h); 1183 if (new) 1184 htable_free(new); 1185 if (higher != NULL) 1186 htable_release(higher); 1187 higher = ht; 1188 1189 /* 1190 * if we didn't find it on the first search 1191 * allocate a new one and search again 1192 */ 1193 } else if (new == NULL) { 1194 HTABLE_EXIT(h); 1195 new = htable_alloc(hat, base, l, 1196 l == level ? shared : NULL); 1197 goto try_again; 1198 1199 /* 1200 * 2nd search and still not there, use "new" table 1201 * Link new table into higher, when not at top level. 1202 */ 1203 } else { 1204 ht = new; 1205 if (higher != NULL) { 1206 link_ptp(higher, ht, base); 1207 ht->ht_parent = higher; 1208 1209 /* 1210 * When any top level VLP page table changes, 1211 * we must reload cr3 on all processors. 1212 */ 1213 #ifdef __i386 1214 if (mmu.pae_hat && 1215 #else /* !__i386 */ 1216 if ((hat->hat_flags & HAT_VLP) && 1217 #endif /* __i386 */ 1218 l == VLP_LEVEL - 1) 1219 hat_demap(hat, DEMAP_ALL_ADDR); 1220 } 1221 ht->ht_next = hat->hat_ht_hash[h]; 1222 ASSERT(ht->ht_prev == NULL); 1223 if (hat->hat_ht_hash[h]) 1224 hat->hat_ht_hash[h]->ht_prev = ht; 1225 hat->hat_ht_hash[h] = ht; 1226 HTABLE_EXIT(h); 1227 1228 /* 1229 * Note we don't do htable_release(higher). 1230 * That happens recursively when "new" is removed by 1231 * htable_release() or htable_steal(). 1232 */ 1233 higher = ht; 1234 1235 /* 1236 * If we just created a new shared page table we 1237 * increment the shared htable's busy count, so that 1238 * it can't be the victim of a steal even if it's empty. 1239 */ 1240 if (l == level && shared) { 1241 (void) htable_lookup(shared->ht_hat, 1242 shared->ht_vaddr, shared->ht_level); 1243 HATSTAT_INC(hs_htable_shared); 1244 } 1245 } 1246 } 1247 1248 return (ht); 1249 } 1250 1251 /* 1252 * Walk through a given htable looking for the first valid entry. This 1253 * routine takes both a starting and ending address. The starting address 1254 * is required to be within the htable provided by the caller, but there is 1255 * no such restriction on the ending address. 1256 * 1257 * If the routine finds a valid entry in the htable (at or beyond the 1258 * starting address), the PTE (and its address) will be returned. 1259 * This PTE may correspond to either a page or a pagetable - it is the 1260 * caller's responsibility to determine which. If no valid entry is 1261 * found, 0 (and invalid PTE) and the next unexamined address will be 1262 * returned. 1263 * 1264 * The loop has been carefully coded for optimization. 1265 */ 1266 static x86pte_t 1267 htable_scan(htable_t *ht, uintptr_t *vap, uintptr_t eaddr) 1268 { 1269 uint_t e; 1270 x86pte_t found_pte = (x86pte_t)0; 1271 char *pte_ptr; 1272 char *end_pte_ptr; 1273 int l = ht->ht_level; 1274 uintptr_t va = *vap & LEVEL_MASK(l); 1275 size_t pgsize = LEVEL_SIZE(l); 1276 1277 ASSERT(va >= ht->ht_vaddr); 1278 ASSERT(va <= HTABLE_LAST_PAGE(ht)); 1279 1280 /* 1281 * Compute the starting index and ending virtual address 1282 */ 1283 e = htable_va2entry(va, ht); 1284 1285 /* 1286 * The following page table scan code knows that the valid 1287 * bit of a PTE is in the lowest byte AND that x86 is little endian!! 1288 */ 1289 pte_ptr = (char *)x86pte_access_pagetable(ht); 1290 end_pte_ptr = pte_ptr + (ht->ht_num_ptes << mmu.pte_size_shift); 1291 pte_ptr += e << mmu.pte_size_shift; 1292 while (*pte_ptr == 0) { 1293 va += pgsize; 1294 if (va >= eaddr) 1295 break; 1296 pte_ptr += mmu.pte_size; 1297 ASSERT(pte_ptr <= end_pte_ptr); 1298 if (pte_ptr == end_pte_ptr) 1299 break; 1300 } 1301 1302 /* 1303 * if we found a valid PTE, load the entire PTE 1304 */ 1305 if (va < eaddr && pte_ptr != end_pte_ptr) { 1306 if (mmu.pae_hat) { 1307 ATOMIC_LOAD64((x86pte_t *)pte_ptr, found_pte); 1308 } else { 1309 found_pte = *(x86pte32_t *)pte_ptr; 1310 } 1311 } 1312 x86pte_release_pagetable(ht); 1313 1314 #if defined(__amd64) 1315 /* 1316 * deal with VA hole on amd64 1317 */ 1318 if (l == mmu.max_level && va >= mmu.hole_start && va <= mmu.hole_end) 1319 va = mmu.hole_end + va - mmu.hole_start; 1320 #endif /* __amd64 */ 1321 1322 *vap = va; 1323 return (found_pte); 1324 } 1325 1326 /* 1327 * Find the address and htable for the first populated translation at or 1328 * above the given virtual address. The caller may also specify an upper 1329 * limit to the address range to search. Uses level information to quickly 1330 * skip unpopulated sections of virtual address spaces. 1331 * 1332 * If not found returns NULL. When found, returns the htable and virt addr 1333 * and has a hold on the htable. 1334 */ 1335 x86pte_t 1336 htable_walk( 1337 struct hat *hat, 1338 htable_t **htp, 1339 uintptr_t *vaddr, 1340 uintptr_t eaddr) 1341 { 1342 uintptr_t va = *vaddr; 1343 htable_t *ht; 1344 htable_t *prev = *htp; 1345 level_t l; 1346 level_t max_mapped_level; 1347 x86pte_t pte; 1348 1349 ASSERT(eaddr > va); 1350 1351 /* 1352 * If this is a user address, then we know we need not look beyond 1353 * kernelbase. 1354 */ 1355 ASSERT(hat == kas.a_hat || eaddr <= kernelbase || 1356 eaddr == HTABLE_WALK_TO_END); 1357 if (hat != kas.a_hat && eaddr == HTABLE_WALK_TO_END) 1358 eaddr = kernelbase; 1359 1360 /* 1361 * If we're coming in with a previous page table, search it first 1362 * without doing an htable_lookup(), this should be frequent. 1363 */ 1364 if (prev) { 1365 ASSERT(prev->ht_busy > 0); 1366 ASSERT(prev->ht_vaddr <= va); 1367 l = prev->ht_level; 1368 if (va <= HTABLE_LAST_PAGE(prev)) { 1369 pte = htable_scan(prev, &va, eaddr); 1370 1371 if (PTE_ISPAGE(pte, l)) { 1372 *vaddr = va; 1373 *htp = prev; 1374 return (pte); 1375 } 1376 } 1377 1378 /* 1379 * We found nothing in the htable provided by the caller, 1380 * so fall through and do the full search 1381 */ 1382 htable_release(prev); 1383 } 1384 1385 /* 1386 * Find the level of the largest pagesize used by this HAT. 1387 */ 1388 max_mapped_level = 0; 1389 for (l = 1; l <= mmu.max_page_level; ++l) 1390 if (hat->hat_pages_mapped[l] != 0) 1391 max_mapped_level = l; 1392 1393 while (va < eaddr && va >= *vaddr) { 1394 ASSERT(!IN_VA_HOLE(va)); 1395 1396 /* 1397 * Find lowest table with any entry for given address. 1398 */ 1399 for (l = 0; l <= TOP_LEVEL(hat); ++l) { 1400 ht = htable_lookup(hat, va, l); 1401 if (ht != NULL) { 1402 pte = htable_scan(ht, &va, eaddr); 1403 if (PTE_ISPAGE(pte, l)) { 1404 *vaddr = va; 1405 *htp = ht; 1406 return (pte); 1407 } 1408 htable_release(ht); 1409 break; 1410 } 1411 1412 /* 1413 * The ht is never NULL at the top level since 1414 * the top level htable is created in hat_alloc(). 1415 */ 1416 ASSERT(l < TOP_LEVEL(hat)); 1417 1418 /* 1419 * No htable covers the address. If there is no 1420 * larger page size that could cover it, we 1421 * skip to the start of the next page table. 1422 */ 1423 if (l >= max_mapped_level) { 1424 va = NEXT_ENTRY_VA(va, l + 1); 1425 break; 1426 } 1427 } 1428 } 1429 1430 *vaddr = 0; 1431 *htp = NULL; 1432 return (0); 1433 } 1434 1435 /* 1436 * Find the htable and page table entry index of the given virtual address 1437 * with pagesize at or below given level. 1438 * If not found returns NULL. When found, returns the htable, sets 1439 * entry, and has a hold on the htable. 1440 */ 1441 htable_t * 1442 htable_getpte( 1443 struct hat *hat, 1444 uintptr_t vaddr, 1445 uint_t *entry, 1446 x86pte_t *pte, 1447 level_t level) 1448 { 1449 htable_t *ht; 1450 level_t l; 1451 uint_t e; 1452 1453 ASSERT(level <= mmu.max_page_level); 1454 1455 for (l = 0; l <= level; ++l) { 1456 ht = htable_lookup(hat, vaddr, l); 1457 if (ht == NULL) 1458 continue; 1459 e = htable_va2entry(vaddr, ht); 1460 if (entry != NULL) 1461 *entry = e; 1462 if (pte != NULL) 1463 *pte = x86pte_get(ht, e); 1464 return (ht); 1465 } 1466 return (NULL); 1467 } 1468 1469 /* 1470 * Find the htable and page table entry index of the given virtual address. 1471 * There must be a valid page mapped at the given address. 1472 * If not found returns NULL. When found, returns the htable, sets 1473 * entry, and has a hold on the htable. 1474 */ 1475 htable_t * 1476 htable_getpage(struct hat *hat, uintptr_t vaddr, uint_t *entry) 1477 { 1478 htable_t *ht; 1479 uint_t e; 1480 x86pte_t pte; 1481 1482 ht = htable_getpte(hat, vaddr, &e, &pte, mmu.max_page_level); 1483 if (ht == NULL) 1484 return (NULL); 1485 1486 if (entry) 1487 *entry = e; 1488 1489 if (PTE_ISPAGE(pte, ht->ht_level)) 1490 return (ht); 1491 htable_release(ht); 1492 return (NULL); 1493 } 1494 1495 1496 void 1497 htable_init() 1498 { 1499 /* 1500 * To save on kernel VA usage, we avoid debug information in 32 bit 1501 * kernels. 1502 */ 1503 #if defined(__amd64) 1504 int kmem_flags = KMC_NOHASH; 1505 #elif defined(__i386) 1506 int kmem_flags = KMC_NOHASH | KMC_NODEBUG; 1507 #endif 1508 1509 /* 1510 * initialize kmem caches 1511 */ 1512 htable_cache = kmem_cache_create("htable_t", 1513 sizeof (htable_t), 0, NULL, NULL, 1514 htable_reap, NULL, hat_memload_arena, kmem_flags); 1515 } 1516 1517 /* 1518 * get the pte index for the virtual address in the given htable's pagetable 1519 */ 1520 uint_t 1521 htable_va2entry(uintptr_t va, htable_t *ht) 1522 { 1523 level_t l = ht->ht_level; 1524 1525 ASSERT(va >= ht->ht_vaddr); 1526 ASSERT(va <= HTABLE_LAST_PAGE(ht)); 1527 return ((va >> LEVEL_SHIFT(l)) & (ht->ht_num_ptes - 1)); 1528 } 1529 1530 /* 1531 * Given an htable and the index of a pte in it, return the virtual address 1532 * of the page. 1533 */ 1534 uintptr_t 1535 htable_e2va(htable_t *ht, uint_t entry) 1536 { 1537 level_t l = ht->ht_level; 1538 uintptr_t va; 1539 1540 ASSERT(entry < ht->ht_num_ptes); 1541 va = ht->ht_vaddr + ((uintptr_t)entry << LEVEL_SHIFT(l)); 1542 1543 /* 1544 * Need to skip over any VA hole in top level table 1545 */ 1546 #if defined(__amd64) 1547 if (ht->ht_level == mmu.max_level && va >= mmu.hole_start) 1548 va += ((mmu.hole_end - mmu.hole_start) + 1); 1549 #endif 1550 1551 return (va); 1552 } 1553 1554 /* 1555 * The code uses compare and swap instructions to read/write PTE's to 1556 * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems. 1557 * Again this can be optimized on 64 bit systems, since aligned load/store 1558 * will naturally be atomic. 1559 * 1560 * The combination of using kpreempt_disable()/_enable() and the hci_mutex 1561 * are used to ensure that an interrupt won't overwrite a temporary mapping 1562 * while it's in use. If an interrupt thread tries to access a PTE, it will 1563 * yield briefly back to the pinned thread which holds the cpu's hci_mutex. 1564 */ 1565 1566 static struct hat_cpu_info init_hci; /* used for cpu 0 */ 1567 1568 /* 1569 * Initialize a CPU private window for mapping page tables. 1570 * There will be 3 total pages of addressing needed: 1571 * 1572 * 1 for r/w access to pagetables 1573 * 1 for r access when copying pagetables (hat_alloc) 1574 * 1 that will map the PTEs for the 1st 2, so we can access them quickly 1575 * 1576 * We use vmem_xalloc() to get a correct alignment so that only one 1577 * hat_mempte_setup() is needed. 1578 */ 1579 void 1580 x86pte_cpu_init(cpu_t *cpu, void *pages) 1581 { 1582 struct hat_cpu_info *hci; 1583 caddr_t va; 1584 1585 /* 1586 * We can't use kmem_alloc/vmem_alloc for the 1st CPU, as this is 1587 * called before we've activated our own HAT 1588 */ 1589 if (pages != NULL) { 1590 hci = &init_hci; 1591 va = pages; 1592 } else { 1593 hci = kmem_alloc(sizeof (struct hat_cpu_info), KM_SLEEP); 1594 va = vmem_xalloc(heap_arena, 3 * MMU_PAGESIZE, MMU_PAGESIZE, 0, 1595 LEVEL_SIZE(1), NULL, NULL, VM_SLEEP); 1596 } 1597 mutex_init(&hci->hci_mutex, NULL, MUTEX_DEFAULT, NULL); 1598 1599 /* 1600 * If we are using segkpm, then there is no need for any of the 1601 * mempte support. We can access the desired memory through a kpm 1602 * mapping rather than setting up a temporary mempte mapping. 1603 */ 1604 if (kpm_enable == 0) { 1605 hci->hci_mapped_pfn = PFN_INVALID; 1606 1607 hci->hci_kernel_pte = 1608 hat_mempte_kern_setup(va, va + (2 * MMU_PAGESIZE)); 1609 hci->hci_pagetable_va = (void *)va; 1610 } 1611 1612 cpu->cpu_hat_info = hci; 1613 } 1614 1615 /* 1616 * Macro to establish temporary mappings for x86pte_XXX routines. 1617 */ 1618 #define X86PTE_REMAP(addr, pte, index, perm, pfn) { \ 1619 x86pte_t t; \ 1620 \ 1621 t = MAKEPTE((pfn), 0) | (perm) | mmu.pt_global | mmu.pt_nx;\ 1622 if (mmu.pae_hat) \ 1623 pte[index] = t; \ 1624 else \ 1625 ((x86pte32_t *)(pte))[index] = t; \ 1626 mmu_tlbflush_entry((caddr_t)(addr)); \ 1627 } 1628 1629 /* 1630 * Disable preemption and establish a mapping to the pagetable with the 1631 * given pfn. This is optimized for there case where it's the same 1632 * pfn as we last used referenced from this CPU. 1633 */ 1634 static x86pte_t * 1635 x86pte_access_pagetable(htable_t *ht) 1636 { 1637 pfn_t pfn; 1638 struct hat_cpu_info *hci; 1639 1640 /* 1641 * VLP pagetables are contained in the hat_t 1642 */ 1643 if (ht->ht_flags & HTABLE_VLP) 1644 return (ht->ht_hat->hat_vlp_ptes); 1645 1646 /* 1647 * During early boot, use hat_boot_remap() of a page table adddress. 1648 */ 1649 pfn = ht->ht_pfn; 1650 ASSERT(pfn != PFN_INVALID); 1651 if (kpm_enable) 1652 return ((x86pte_t *)hat_kpm_pfn2va(pfn)); 1653 1654 if (!khat_running) { 1655 (void) hat_boot_remap(ptable_va, pfn); 1656 return ((x86pte_t *)ptable_va); 1657 } 1658 1659 /* 1660 * Normally, disable preemption and grab the CPU's hci_mutex 1661 */ 1662 kpreempt_disable(); 1663 hci = CPU->cpu_hat_info; 1664 ASSERT(hci != NULL); 1665 mutex_enter(&hci->hci_mutex); 1666 if (hci->hci_mapped_pfn != pfn) { 1667 /* 1668 * The current mapping doesn't already point to this page. 1669 * Update the CPU specific pagetable mapping to map the pfn. 1670 */ 1671 X86PTE_REMAP(hci->hci_pagetable_va, hci->hci_kernel_pte, 0, 1672 PT_WRITABLE, pfn); 1673 hci->hci_mapped_pfn = pfn; 1674 } 1675 return (hci->hci_pagetable_va); 1676 } 1677 1678 /* 1679 * Release access to a page table. 1680 */ 1681 static void 1682 x86pte_release_pagetable(htable_t *ht) 1683 { 1684 struct hat_cpu_info *hci; 1685 1686 if (kpm_enable) 1687 return; 1688 1689 /* 1690 * nothing to do for VLP htables 1691 */ 1692 if (ht->ht_flags & HTABLE_VLP) 1693 return; 1694 1695 /* 1696 * During boot-up hat_kern_setup(), erase the boot loader remapping. 1697 */ 1698 if (!khat_running) { 1699 hat_boot_demap(ptable_va); 1700 return; 1701 } 1702 1703 /* 1704 * Normal Operation: drop the CPU's hci_mutex and restore preemption 1705 */ 1706 hci = CPU->cpu_hat_info; 1707 ASSERT(hci != NULL); 1708 mutex_exit(&hci->hci_mutex); 1709 kpreempt_enable(); 1710 } 1711 1712 /* 1713 * Atomic retrieval of a pagetable entry 1714 */ 1715 x86pte_t 1716 x86pte_get(htable_t *ht, uint_t entry) 1717 { 1718 x86pte_t pte; 1719 x86pte32_t *pte32p; 1720 x86pte_t *ptep; 1721 1722 /* 1723 * Be careful that loading PAE entries in 32 bit kernel is atomic. 1724 */ 1725 ptep = x86pte_access_pagetable(ht); 1726 if (mmu.pae_hat) { 1727 ATOMIC_LOAD64(ptep + entry, pte); 1728 } else { 1729 pte32p = (x86pte32_t *)ptep; 1730 pte = pte32p[entry]; 1731 } 1732 x86pte_release_pagetable(ht); 1733 return (pte); 1734 } 1735 1736 /* 1737 * Atomic unconditional set of a page table entry, it returns the previous 1738 * value. 1739 */ 1740 x86pte_t 1741 x86pte_set(htable_t *ht, uint_t entry, x86pte_t new, void *ptr) 1742 { 1743 x86pte_t old; 1744 x86pte_t prev, n; 1745 x86pte_t *ptep; 1746 x86pte32_t *pte32p; 1747 x86pte32_t n32, p32; 1748 1749 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 1750 if (ptr == NULL) { 1751 ptep = x86pte_access_pagetable(ht); 1752 ptep = (void *)((caddr_t)ptep + (entry << mmu.pte_size_shift)); 1753 } else { 1754 ptep = ptr; 1755 } 1756 1757 if (mmu.pae_hat) { 1758 for (;;) { 1759 prev = *ptep; 1760 n = new; 1761 /* 1762 * prevent potential data loss by preserving the MOD 1763 * bit if set in the current PTE and the pfns are the 1764 * same. For example, segmap can reissue a read-only 1765 * hat_memload on top of a dirty page. 1766 */ 1767 if (PTE_ISVALID(prev) && PTE2PFN(prev, ht->ht_level) == 1768 PTE2PFN(n, ht->ht_level)) { 1769 n |= prev & (PT_REF | PT_MOD); 1770 } 1771 if (prev == n) { 1772 old = new; 1773 break; 1774 } 1775 old = cas64(ptep, prev, n); 1776 if (old == prev) 1777 break; 1778 } 1779 } else { 1780 pte32p = (x86pte32_t *)ptep; 1781 for (;;) { 1782 p32 = *pte32p; 1783 n32 = new; 1784 if (PTE_ISVALID(p32) && PTE2PFN(p32, ht->ht_level) == 1785 PTE2PFN(n32, ht->ht_level)) { 1786 n32 |= p32 & (PT_REF | PT_MOD); 1787 } 1788 if (p32 == n32) { 1789 old = new; 1790 break; 1791 } 1792 old = cas32(pte32p, p32, n32); 1793 if (old == p32) 1794 break; 1795 } 1796 } 1797 if (ptr == NULL) 1798 x86pte_release_pagetable(ht); 1799 return (old); 1800 } 1801 1802 /* 1803 * Atomic compare and swap of a page table entry. 1804 */ 1805 static x86pte_t 1806 x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new) 1807 { 1808 x86pte_t pte; 1809 x86pte_t *ptep; 1810 x86pte32_t pte32, o32, n32; 1811 x86pte32_t *pte32p; 1812 1813 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 1814 ptep = x86pte_access_pagetable(ht); 1815 if (mmu.pae_hat) { 1816 pte = cas64(&ptep[entry], old, new); 1817 } else { 1818 o32 = old; 1819 n32 = new; 1820 pte32p = (x86pte32_t *)ptep; 1821 pte32 = cas32(&pte32p[entry], o32, n32); 1822 pte = pte32; 1823 } 1824 x86pte_release_pagetable(ht); 1825 1826 return (pte); 1827 } 1828 1829 /* 1830 * data structure for cross call information 1831 */ 1832 typedef struct xcall_info { 1833 x86pte_t xi_pte; 1834 x86pte_t xi_old; 1835 x86pte_t *xi_pteptr; 1836 pfn_t xi_pfn; 1837 processorid_t xi_cpuid; 1838 level_t xi_level; 1839 xc_func_t xi_func; 1840 } xcall_info_t; 1841 1842 /* 1843 * Cross call service function to atomically invalidate a PTE and flush TLBs 1844 */ 1845 /*ARGSUSED*/ 1846 static int 1847 x86pte_inval_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3) 1848 { 1849 xcall_info_t *xi = (xcall_info_t *)a1; 1850 caddr_t addr = (caddr_t)a2; 1851 1852 /* 1853 * Only the initiating cpu invalidates the page table entry. 1854 * It returns the previous PTE value to the caller. 1855 */ 1856 if (CPU->cpu_id == xi->xi_cpuid) { 1857 x86pte_t *ptep = xi->xi_pteptr; 1858 pfn_t pfn = xi->xi_pfn; 1859 level_t level = xi->xi_level; 1860 x86pte_t old; 1861 x86pte_t prev; 1862 x86pte32_t *pte32p; 1863 x86pte32_t p32; 1864 1865 if (mmu.pae_hat) { 1866 for (;;) { 1867 prev = *ptep; 1868 if (PTE2PFN(prev, level) != pfn) 1869 break; 1870 old = cas64(ptep, prev, 0); 1871 if (old == prev) 1872 break; 1873 } 1874 } else { 1875 pte32p = (x86pte32_t *)ptep; 1876 for (;;) { 1877 p32 = *pte32p; 1878 if (PTE2PFN(p32, level) != pfn) 1879 break; 1880 old = cas32(pte32p, p32, 0); 1881 if (old == p32) 1882 break; 1883 } 1884 prev = p32; 1885 } 1886 xi->xi_pte = prev; 1887 } 1888 1889 /* 1890 * For a normal address, we just flush one page mapping 1891 * Otherwise reload cr3 to effect a complete TLB flush. 1892 * 1893 * Note we don't reload VLP pte's -- this assume we never have a 1894 * large page size at VLP_LEVEL for VLP processes. 1895 */ 1896 if ((uintptr_t)addr != DEMAP_ALL_ADDR) { 1897 mmu_tlbflush_entry(addr); 1898 } else { 1899 reload_cr3(); 1900 } 1901 return (0); 1902 } 1903 1904 /* 1905 * Cross call service function to atomically change a PTE and flush TLBs 1906 */ 1907 /*ARGSUSED*/ 1908 static int 1909 x86pte_update_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3) 1910 { 1911 xcall_info_t *xi = (xcall_info_t *)a1; 1912 caddr_t addr = (caddr_t)a2; 1913 1914 /* 1915 * Only the initiating cpu changes the page table entry. 1916 * It returns the previous PTE value to the caller. 1917 */ 1918 if (CPU->cpu_id == xi->xi_cpuid) { 1919 x86pte_t *ptep = xi->xi_pteptr; 1920 x86pte_t new = xi->xi_pte; 1921 x86pte_t old = xi->xi_old; 1922 x86pte_t prev; 1923 1924 if (mmu.pae_hat) { 1925 prev = cas64(ptep, old, new); 1926 } else { 1927 x86pte32_t o32 = old; 1928 x86pte32_t n32 = new; 1929 x86pte32_t *pte32p = (x86pte32_t *)ptep; 1930 prev = cas32(pte32p, o32, n32); 1931 } 1932 1933 xi->xi_pte = prev; 1934 } 1935 1936 /* 1937 * Flush the TLB entry 1938 */ 1939 if ((uintptr_t)addr != DEMAP_ALL_ADDR) 1940 mmu_tlbflush_entry(addr); 1941 else 1942 reload_cr3(); 1943 return (0); 1944 } 1945 1946 /* 1947 * Use cross calls to change a page table entry and invalidate TLBs. 1948 */ 1949 void 1950 x86pte_xcall(hat_t *hat, xcall_info_t *xi, uintptr_t addr) 1951 { 1952 cpuset_t cpus; 1953 1954 /* 1955 * Given the current implementation of hat_share(), doing a 1956 * hat_pageunload() on a shared page table requries invalidating 1957 * all user TLB entries on all CPUs. 1958 */ 1959 if (hat->hat_flags & HAT_SHARED) { 1960 hat = kas.a_hat; 1961 addr = DEMAP_ALL_ADDR; 1962 } 1963 1964 /* 1965 * Use a cross call to do the invalidations. 1966 * Note the current CPU always has to be in the cross call CPU set. 1967 */ 1968 kpreempt_disable(); 1969 xi->xi_cpuid = CPU->cpu_id; 1970 CPUSET_ZERO(cpus); 1971 if (hat == kas.a_hat) { 1972 CPUSET_OR(cpus, khat_cpuset); 1973 } else { 1974 mutex_enter(&hat->hat_switch_mutex); 1975 CPUSET_OR(cpus, hat->hat_cpus); 1976 CPUSET_ADD(cpus, CPU->cpu_id); 1977 } 1978 1979 /* 1980 * Use a cross call to modify the page table entry and invalidate TLBs. 1981 * If we're panic'ing, don't bother with the cross call. 1982 * Note the panicstr check isn't bullet proof and the panic system 1983 * ought to be made tighter. 1984 */ 1985 if (panicstr == NULL) 1986 xc_wait_sync((xc_arg_t)xi, addr, NULL, X_CALL_HIPRI, 1987 cpus, xi->xi_func); 1988 else 1989 (void) xi->xi_func((xc_arg_t)xi, (xc_arg_t)addr, NULL); 1990 if (hat != kas.a_hat) 1991 mutex_exit(&hat->hat_switch_mutex); 1992 kpreempt_enable(); 1993 } 1994 1995 /* 1996 * Invalidate a page table entry if it currently maps the given pfn. 1997 * This returns the previous value of the PTE. 1998 */ 1999 x86pte_t 2000 x86pte_invalidate_pfn(htable_t *ht, uint_t entry, pfn_t pfn, void *pte_ptr) 2001 { 2002 xcall_info_t xi; 2003 x86pte_t *ptep; 2004 hat_t *hat; 2005 uintptr_t addr; 2006 2007 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2008 if (pte_ptr != NULL) { 2009 ptep = pte_ptr; 2010 } else { 2011 ptep = x86pte_access_pagetable(ht); 2012 ptep = (void *)((caddr_t)ptep + (entry << mmu.pte_size_shift)); 2013 } 2014 2015 /* 2016 * Fill in the structure used by the cross call function to do the 2017 * invalidation. 2018 */ 2019 xi.xi_pte = 0; 2020 xi.xi_pteptr = ptep; 2021 xi.xi_pfn = pfn; 2022 xi.xi_level = ht->ht_level; 2023 xi.xi_func = x86pte_inval_func; 2024 ASSERT(xi.xi_level != VLP_LEVEL); 2025 2026 hat = ht->ht_hat; 2027 addr = htable_e2va(ht, entry); 2028 2029 x86pte_xcall(hat, &xi, addr); 2030 2031 if (pte_ptr == NULL) 2032 x86pte_release_pagetable(ht); 2033 return (xi.xi_pte); 2034 } 2035 2036 /* 2037 * update a PTE and invalidate any stale TLB entries. 2038 */ 2039 x86pte_t 2040 x86pte_update(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new) 2041 { 2042 xcall_info_t xi; 2043 x86pte_t *ptep; 2044 hat_t *hat; 2045 uintptr_t addr; 2046 2047 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2048 ptep = x86pte_access_pagetable(ht); 2049 ptep = (void *)((caddr_t)ptep + (entry << mmu.pte_size_shift)); 2050 2051 /* 2052 * Fill in the structure used by the cross call function to do the 2053 * invalidation. 2054 */ 2055 xi.xi_pte = new; 2056 xi.xi_old = expected; 2057 xi.xi_pteptr = ptep; 2058 xi.xi_func = x86pte_update_func; 2059 2060 hat = ht->ht_hat; 2061 addr = htable_e2va(ht, entry); 2062 2063 x86pte_xcall(hat, &xi, addr); 2064 2065 x86pte_release_pagetable(ht); 2066 return (xi.xi_pte); 2067 } 2068 2069 /* 2070 * Copy page tables - this is just a little more complicated than the 2071 * previous routines. Note that it's also not atomic! It also is never 2072 * used for VLP pagetables. 2073 */ 2074 void 2075 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count) 2076 { 2077 struct hat_cpu_info *hci; 2078 caddr_t src_va; 2079 caddr_t dst_va; 2080 size_t size; 2081 2082 ASSERT(khat_running); 2083 ASSERT(!(dest->ht_flags & HTABLE_VLP)); 2084 ASSERT(!(src->ht_flags & HTABLE_VLP)); 2085 ASSERT(!(src->ht_flags & HTABLE_SHARED_PFN)); 2086 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN)); 2087 2088 /* 2089 * Acquire access to the CPU pagetable window for the destination. 2090 */ 2091 dst_va = (caddr_t)x86pte_access_pagetable(dest); 2092 if (kpm_enable) { 2093 src_va = (caddr_t)x86pte_access_pagetable(src); 2094 } else { 2095 hci = CPU->cpu_hat_info; 2096 2097 /* 2098 * Finish defining the src pagetable mapping 2099 */ 2100 src_va = dst_va + MMU_PAGESIZE; 2101 X86PTE_REMAP(src_va, hci->hci_kernel_pte, 1, 0, src->ht_pfn); 2102 } 2103 2104 /* 2105 * now do the copy 2106 */ 2107 2108 dst_va += entry << mmu.pte_size_shift; 2109 src_va += entry << mmu.pte_size_shift; 2110 size = count << mmu.pte_size_shift; 2111 bcopy(src_va, dst_va, size); 2112 2113 x86pte_release_pagetable(dest); 2114 } 2115 2116 /* 2117 * Zero page table entries - Note this doesn't use atomic stores! 2118 */ 2119 void 2120 x86pte_zero(htable_t *dest, uint_t entry, uint_t count) 2121 { 2122 caddr_t dst_va; 2123 x86pte_t *p; 2124 x86pte32_t *p32; 2125 size_t size; 2126 extern void hat_pte_zero(void *, size_t); 2127 2128 /* 2129 * Map in the page table to be zeroed. 2130 */ 2131 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN)); 2132 ASSERT(!(dest->ht_flags & HTABLE_VLP)); 2133 dst_va = (caddr_t)x86pte_access_pagetable(dest); 2134 dst_va += entry << mmu.pte_size_shift; 2135 size = count << mmu.pte_size_shift; 2136 if (x86_feature & X86_SSE2) { 2137 hat_pte_zero(dst_va, size); 2138 } else if (khat_running) { 2139 bzero(dst_va, size); 2140 } else { 2141 /* 2142 * Can't just use bzero during boot because it checks the 2143 * address against kernelbase. Instead just use a zero loop. 2144 */ 2145 if (mmu.pae_hat) { 2146 p = (x86pte_t *)dst_va; 2147 while (count-- > 0) 2148 *p++ = 0; 2149 } else { 2150 p32 = (x86pte32_t *)dst_va; 2151 while (count-- > 0) 2152 *p32++ = 0; 2153 } 2154 } 2155 x86pte_release_pagetable(dest); 2156 } 2157 2158 /* 2159 * Called to ensure that all pagetables are in the system dump 2160 */ 2161 void 2162 hat_dump(void) 2163 { 2164 hat_t *hat; 2165 uint_t h; 2166 htable_t *ht; 2167 int count; 2168 2169 /* 2170 * kas.a_hat is the head of the circular list, but not an element of 2171 * the list. Once we pass kas.a_hat->hat_next a second time, we 2172 * know we've iterated through every hat structure. 2173 */ 2174 for (hat = kas.a_hat, count = 0; hat != kas.a_hat->hat_next || 2175 count++ == 0; hat = hat->hat_next) { 2176 for (h = 0; h < hat->hat_num_hash; ++h) { 2177 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 2178 if ((ht->ht_flags & HTABLE_VLP) == 0) { 2179 dump_page(ht->ht_pfn); 2180 } 2181 } 2182 } 2183 } 2184 } 2185