1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/sysmacros.h> 28 #include <sys/kmem.h> 29 #include <sys/atomic.h> 30 #include <sys/bitmap.h> 31 #include <sys/machparam.h> 32 #include <sys/machsystm.h> 33 #include <sys/mman.h> 34 #include <sys/systm.h> 35 #include <sys/cpuvar.h> 36 #include <sys/thread.h> 37 #include <sys/proc.h> 38 #include <sys/cpu.h> 39 #include <sys/kmem.h> 40 #include <sys/disp.h> 41 #include <sys/vmem.h> 42 #include <sys/vmsystm.h> 43 #include <sys/promif.h> 44 #include <sys/var.h> 45 #include <sys/x86_archext.h> 46 #include <sys/archsystm.h> 47 #include <sys/bootconf.h> 48 #include <sys/dumphdr.h> 49 #include <vm/seg_kmem.h> 50 #include <vm/seg_kpm.h> 51 #include <vm/hat.h> 52 #include <vm/hat_i86.h> 53 #include <sys/cmn_err.h> 54 #include <sys/panic.h> 55 56 #ifdef __xpv 57 #include <sys/hypervisor.h> 58 #include <sys/xpv_panic.h> 59 #endif 60 61 #include <sys/bootinfo.h> 62 #include <vm/kboot_mmu.h> 63 64 static void x86pte_zero(htable_t *dest, uint_t entry, uint_t count); 65 66 kmem_cache_t *htable_cache; 67 68 /* 69 * The variable htable_reserve_amount, rather than HTABLE_RESERVE_AMOUNT, 70 * is used in order to facilitate testing of the htable_steal() code. 71 * By resetting htable_reserve_amount to a lower value, we can force 72 * stealing to occur. The reserve amount is a guess to get us through boot. 73 */ 74 #define HTABLE_RESERVE_AMOUNT (200) 75 uint_t htable_reserve_amount = HTABLE_RESERVE_AMOUNT; 76 kmutex_t htable_reserve_mutex; 77 uint_t htable_reserve_cnt; 78 htable_t *htable_reserve_pool; 79 80 /* 81 * Used to hand test htable_steal(). 82 */ 83 #ifdef DEBUG 84 ulong_t force_steal = 0; 85 ulong_t ptable_cnt = 0; 86 #endif 87 88 /* 89 * This variable is so that we can tune this via /etc/system 90 * Any value works, but a power of two <= mmu.ptes_per_table is best. 91 */ 92 uint_t htable_steal_passes = 8; 93 94 /* 95 * mutex stuff for access to htable hash 96 */ 97 #define NUM_HTABLE_MUTEX 128 98 kmutex_t htable_mutex[NUM_HTABLE_MUTEX]; 99 #define HTABLE_MUTEX_HASH(h) ((h) & (NUM_HTABLE_MUTEX - 1)) 100 101 #define HTABLE_ENTER(h) mutex_enter(&htable_mutex[HTABLE_MUTEX_HASH(h)]); 102 #define HTABLE_EXIT(h) mutex_exit(&htable_mutex[HTABLE_MUTEX_HASH(h)]); 103 104 /* 105 * forward declarations 106 */ 107 static void link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr); 108 static void unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr); 109 static void htable_free(htable_t *ht); 110 static x86pte_t *x86pte_access_pagetable(htable_t *ht, uint_t index); 111 static void x86pte_release_pagetable(htable_t *ht); 112 static x86pte_t x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, 113 x86pte_t new); 114 115 /* 116 * A counter to track if we are stealing or reaping htables. When non-zero 117 * htable_free() will directly free htables (either to the reserve or kmem) 118 * instead of putting them in a hat's htable cache. 119 */ 120 uint32_t htable_dont_cache = 0; 121 122 /* 123 * Track the number of active pagetables, so we can know how many to reap 124 */ 125 static uint32_t active_ptables = 0; 126 127 #ifdef __xpv 128 /* 129 * Deal with hypervisor complications. 130 */ 131 void 132 xen_flush_va(caddr_t va) 133 { 134 struct mmuext_op t; 135 uint_t count; 136 137 if (IN_XPV_PANIC()) { 138 mmu_tlbflush_entry((caddr_t)va); 139 } else { 140 t.cmd = MMUEXT_INVLPG_LOCAL; 141 t.arg1.linear_addr = (uintptr_t)va; 142 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 143 panic("HYPERVISOR_mmuext_op() failed"); 144 ASSERT(count == 1); 145 } 146 } 147 148 void 149 xen_gflush_va(caddr_t va, cpuset_t cpus) 150 { 151 struct mmuext_op t; 152 uint_t count; 153 154 if (IN_XPV_PANIC()) { 155 mmu_tlbflush_entry((caddr_t)va); 156 return; 157 } 158 159 t.cmd = MMUEXT_INVLPG_MULTI; 160 t.arg1.linear_addr = (uintptr_t)va; 161 /*LINTED: constant in conditional context*/ 162 set_xen_guest_handle(t.arg2.vcpumask, &cpus); 163 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 164 panic("HYPERVISOR_mmuext_op() failed"); 165 ASSERT(count == 1); 166 } 167 168 void 169 xen_flush_tlb() 170 { 171 struct mmuext_op t; 172 uint_t count; 173 174 if (IN_XPV_PANIC()) { 175 xpv_panic_reload_cr3(); 176 } else { 177 t.cmd = MMUEXT_TLB_FLUSH_LOCAL; 178 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 179 panic("HYPERVISOR_mmuext_op() failed"); 180 ASSERT(count == 1); 181 } 182 } 183 184 void 185 xen_gflush_tlb(cpuset_t cpus) 186 { 187 struct mmuext_op t; 188 uint_t count; 189 190 ASSERT(!IN_XPV_PANIC()); 191 t.cmd = MMUEXT_TLB_FLUSH_MULTI; 192 /*LINTED: constant in conditional context*/ 193 set_xen_guest_handle(t.arg2.vcpumask, &cpus); 194 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 195 panic("HYPERVISOR_mmuext_op() failed"); 196 ASSERT(count == 1); 197 } 198 199 /* 200 * Install/Adjust a kpm mapping under the hypervisor. 201 * Value of "how" should be: 202 * PT_WRITABLE | PT_VALID - regular kpm mapping 203 * PT_VALID - make mapping read-only 204 * 0 - remove mapping 205 * 206 * returns 0 on success. non-zero for failure. 207 */ 208 int 209 xen_kpm_page(pfn_t pfn, uint_t how) 210 { 211 paddr_t pa = mmu_ptob((paddr_t)pfn); 212 x86pte_t pte = PT_NOCONSIST | PT_REF | PT_MOD; 213 214 if (kpm_vbase == NULL) 215 return (0); 216 217 if (how) 218 pte |= pa_to_ma(pa) | how; 219 else 220 pte = 0; 221 return (HYPERVISOR_update_va_mapping((uintptr_t)kpm_vbase + pa, 222 pte, UVMF_INVLPG | UVMF_ALL)); 223 } 224 225 void 226 xen_pin(pfn_t pfn, level_t lvl) 227 { 228 struct mmuext_op t; 229 uint_t count; 230 231 t.cmd = MMUEXT_PIN_L1_TABLE + lvl; 232 t.arg1.mfn = pfn_to_mfn(pfn); 233 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 234 panic("HYPERVISOR_mmuext_op() failed"); 235 ASSERT(count == 1); 236 } 237 238 void 239 xen_unpin(pfn_t pfn) 240 { 241 struct mmuext_op t; 242 uint_t count; 243 244 t.cmd = MMUEXT_UNPIN_TABLE; 245 t.arg1.mfn = pfn_to_mfn(pfn); 246 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 247 panic("HYPERVISOR_mmuext_op() failed"); 248 ASSERT(count == 1); 249 } 250 251 static void 252 xen_map(uint64_t pte, caddr_t va) 253 { 254 if (HYPERVISOR_update_va_mapping((uintptr_t)va, pte, 255 UVMF_INVLPG | UVMF_LOCAL)) 256 panic("HYPERVISOR_update_va_mapping() failed"); 257 } 258 #endif /* __xpv */ 259 260 /* 261 * Allocate a memory page for a hardware page table. 262 * 263 * A wrapper around page_get_physical(), with some extra checks. 264 */ 265 static pfn_t 266 ptable_alloc(uintptr_t seed) 267 { 268 pfn_t pfn; 269 page_t *pp; 270 271 pfn = PFN_INVALID; 272 273 /* 274 * The first check is to see if there is memory in the system. If we 275 * drop to throttlefree, then fail the ptable_alloc() and let the 276 * stealing code kick in. Note that we have to do this test here, 277 * since the test in page_create_throttle() would let the NOSLEEP 278 * allocation go through and deplete the page reserves. 279 * 280 * The !NOMEMWAIT() lets pageout, fsflush, etc. skip this check. 281 */ 282 if (!NOMEMWAIT() && freemem <= throttlefree + 1) 283 return (PFN_INVALID); 284 285 #ifdef DEBUG 286 /* 287 * This code makes htable_steal() easier to test. By setting 288 * force_steal we force pagetable allocations to fall 289 * into the stealing code. Roughly 1 in ever "force_steal" 290 * page table allocations will fail. 291 */ 292 if (proc_pageout != NULL && force_steal > 1 && 293 ++ptable_cnt > force_steal) { 294 ptable_cnt = 0; 295 return (PFN_INVALID); 296 } 297 #endif /* DEBUG */ 298 299 pp = page_get_physical(seed); 300 if (pp == NULL) 301 return (PFN_INVALID); 302 ASSERT(PAGE_SHARED(pp)); 303 pfn = pp->p_pagenum; 304 if (pfn == PFN_INVALID) 305 panic("ptable_alloc(): Invalid PFN!!"); 306 atomic_add_32(&active_ptables, 1); 307 HATSTAT_INC(hs_ptable_allocs); 308 return (pfn); 309 } 310 311 /* 312 * Free an htable's associated page table page. See the comments 313 * for ptable_alloc(). 314 */ 315 static void 316 ptable_free(pfn_t pfn) 317 { 318 page_t *pp = page_numtopp_nolock(pfn); 319 320 /* 321 * need to destroy the page used for the pagetable 322 */ 323 ASSERT(pfn != PFN_INVALID); 324 HATSTAT_INC(hs_ptable_frees); 325 atomic_add_32(&active_ptables, -1); 326 if (pp == NULL) 327 panic("ptable_free(): no page for pfn!"); 328 ASSERT(PAGE_SHARED(pp)); 329 ASSERT(pfn == pp->p_pagenum); 330 ASSERT(!IN_XPV_PANIC()); 331 332 /* 333 * Get an exclusive lock, might have to wait for a kmem reader. 334 */ 335 if (!page_tryupgrade(pp)) { 336 u_offset_t off = pp->p_offset; 337 page_unlock(pp); 338 pp = page_lookup(&kvp, off, SE_EXCL); 339 if (pp == NULL) 340 panic("page not found"); 341 } 342 #ifdef __xpv 343 if (kpm_vbase && xen_kpm_page(pfn, PT_VALID | PT_WRITABLE) < 0) 344 panic("failure making kpm r/w pfn=0x%lx", pfn); 345 #endif 346 page_hashout(pp, NULL); 347 page_free(pp, 1); 348 page_unresv(1); 349 } 350 351 /* 352 * Put one htable on the reserve list. 353 */ 354 static void 355 htable_put_reserve(htable_t *ht) 356 { 357 ht->ht_hat = NULL; /* no longer tied to a hat */ 358 ASSERT(ht->ht_pfn == PFN_INVALID); 359 HATSTAT_INC(hs_htable_rputs); 360 mutex_enter(&htable_reserve_mutex); 361 ht->ht_next = htable_reserve_pool; 362 htable_reserve_pool = ht; 363 ++htable_reserve_cnt; 364 mutex_exit(&htable_reserve_mutex); 365 } 366 367 /* 368 * Take one htable from the reserve. 369 */ 370 static htable_t * 371 htable_get_reserve(void) 372 { 373 htable_t *ht = NULL; 374 375 mutex_enter(&htable_reserve_mutex); 376 if (htable_reserve_cnt != 0) { 377 ht = htable_reserve_pool; 378 ASSERT(ht != NULL); 379 ASSERT(ht->ht_pfn == PFN_INVALID); 380 htable_reserve_pool = ht->ht_next; 381 --htable_reserve_cnt; 382 HATSTAT_INC(hs_htable_rgets); 383 } 384 mutex_exit(&htable_reserve_mutex); 385 return (ht); 386 } 387 388 /* 389 * Allocate initial htables and put them on the reserve list 390 */ 391 void 392 htable_initial_reserve(uint_t count) 393 { 394 htable_t *ht; 395 396 count += HTABLE_RESERVE_AMOUNT; 397 while (count > 0) { 398 ht = kmem_cache_alloc(htable_cache, KM_NOSLEEP); 399 ASSERT(ht != NULL); 400 401 ASSERT(use_boot_reserve); 402 ht->ht_pfn = PFN_INVALID; 403 htable_put_reserve(ht); 404 --count; 405 } 406 } 407 408 /* 409 * Readjust the reserves after a thread finishes using them. 410 */ 411 void 412 htable_adjust_reserve() 413 { 414 htable_t *ht; 415 416 /* 417 * Free any excess htables in the reserve list 418 */ 419 while (htable_reserve_cnt > htable_reserve_amount && 420 !USE_HAT_RESERVES()) { 421 ht = htable_get_reserve(); 422 if (ht == NULL) 423 return; 424 ASSERT(ht->ht_pfn == PFN_INVALID); 425 kmem_cache_free(htable_cache, ht); 426 } 427 } 428 429 430 /* 431 * This routine steals htables from user processes for htable_alloc() or 432 * for htable_reap(). 433 */ 434 static htable_t * 435 htable_steal(uint_t cnt) 436 { 437 hat_t *hat = kas.a_hat; /* list starts with khat */ 438 htable_t *list = NULL; 439 htable_t *ht; 440 htable_t *higher; 441 uint_t h; 442 uint_t h_start; 443 static uint_t h_seed = 0; 444 uint_t e; 445 uintptr_t va; 446 x86pte_t pte; 447 uint_t stolen = 0; 448 uint_t pass; 449 uint_t threshold; 450 451 /* 452 * Limit htable_steal_passes to something reasonable 453 */ 454 if (htable_steal_passes == 0) 455 htable_steal_passes = 1; 456 if (htable_steal_passes > mmu.ptes_per_table) 457 htable_steal_passes = mmu.ptes_per_table; 458 459 /* 460 * Loop through all user hats. The 1st pass takes cached htables that 461 * aren't in use. The later passes steal by removing mappings, too. 462 */ 463 atomic_add_32(&htable_dont_cache, 1); 464 for (pass = 0; pass <= htable_steal_passes && stolen < cnt; ++pass) { 465 threshold = pass * mmu.ptes_per_table / htable_steal_passes; 466 hat = kas.a_hat; 467 for (;;) { 468 469 /* 470 * Clear the victim flag and move to next hat 471 */ 472 mutex_enter(&hat_list_lock); 473 if (hat != kas.a_hat) { 474 hat->hat_flags &= ~HAT_VICTIM; 475 cv_broadcast(&hat_list_cv); 476 } 477 hat = hat->hat_next; 478 479 /* 480 * Skip any hat that is already being stolen from. 481 * 482 * We skip SHARED hats, as these are dummy 483 * hats that host ISM shared page tables. 484 * 485 * We also skip if HAT_FREEING because hat_pte_unmap() 486 * won't zero out the PTE's. That would lead to hitting 487 * stale PTEs either here or under hat_unload() when we 488 * steal and unload the same page table in competing 489 * threads. 490 */ 491 while (hat != NULL && 492 (hat->hat_flags & 493 (HAT_VICTIM | HAT_SHARED | HAT_FREEING)) != 0) 494 hat = hat->hat_next; 495 496 if (hat == NULL) { 497 mutex_exit(&hat_list_lock); 498 break; 499 } 500 501 /* 502 * Are we finished? 503 */ 504 if (stolen == cnt) { 505 /* 506 * Try to spread the pain of stealing, 507 * move victim HAT to the end of the HAT list. 508 */ 509 if (pass >= 1 && cnt == 1 && 510 kas.a_hat->hat_prev != hat) { 511 512 /* unlink victim hat */ 513 if (hat->hat_prev) 514 hat->hat_prev->hat_next = 515 hat->hat_next; 516 else 517 kas.a_hat->hat_next = 518 hat->hat_next; 519 if (hat->hat_next) 520 hat->hat_next->hat_prev = 521 hat->hat_prev; 522 else 523 kas.a_hat->hat_prev = 524 hat->hat_prev; 525 526 527 /* relink at end of hat list */ 528 hat->hat_next = NULL; 529 hat->hat_prev = kas.a_hat->hat_prev; 530 if (hat->hat_prev) 531 hat->hat_prev->hat_next = hat; 532 else 533 kas.a_hat->hat_next = hat; 534 kas.a_hat->hat_prev = hat; 535 536 } 537 538 mutex_exit(&hat_list_lock); 539 break; 540 } 541 542 /* 543 * Mark the HAT as a stealing victim. 544 */ 545 hat->hat_flags |= HAT_VICTIM; 546 mutex_exit(&hat_list_lock); 547 548 /* 549 * Take any htables from the hat's cached "free" list. 550 */ 551 hat_enter(hat); 552 while ((ht = hat->hat_ht_cached) != NULL && 553 stolen < cnt) { 554 hat->hat_ht_cached = ht->ht_next; 555 ht->ht_next = list; 556 list = ht; 557 ++stolen; 558 } 559 hat_exit(hat); 560 561 /* 562 * Don't steal on first pass. 563 */ 564 if (pass == 0 || stolen == cnt) 565 continue; 566 567 /* 568 * Search the active htables for one to steal. 569 * Start at a different hash bucket every time to 570 * help spread the pain of stealing. 571 */ 572 h = h_start = h_seed++ % hat->hat_num_hash; 573 do { 574 higher = NULL; 575 HTABLE_ENTER(h); 576 for (ht = hat->hat_ht_hash[h]; ht; 577 ht = ht->ht_next) { 578 579 /* 580 * Can we rule out reaping? 581 */ 582 if (ht->ht_busy != 0 || 583 (ht->ht_flags & HTABLE_SHARED_PFN)|| 584 ht->ht_level > 0 || 585 ht->ht_valid_cnt > threshold || 586 ht->ht_lock_cnt != 0) 587 continue; 588 589 /* 590 * Increment busy so the htable can't 591 * disappear. We drop the htable mutex 592 * to avoid deadlocks with 593 * hat_pageunload() and the hment mutex 594 * while we call hat_pte_unmap() 595 */ 596 ++ht->ht_busy; 597 HTABLE_EXIT(h); 598 599 /* 600 * Try stealing. 601 * - unload and invalidate all PTEs 602 */ 603 for (e = 0, va = ht->ht_vaddr; 604 e < HTABLE_NUM_PTES(ht) && 605 ht->ht_valid_cnt > 0 && 606 ht->ht_busy == 1 && 607 ht->ht_lock_cnt == 0; 608 ++e, va += MMU_PAGESIZE) { 609 pte = x86pte_get(ht, e); 610 if (!PTE_ISVALID(pte)) 611 continue; 612 hat_pte_unmap(ht, e, 613 HAT_UNLOAD, pte, NULL); 614 } 615 616 /* 617 * Reacquire htable lock. If we didn't 618 * remove all mappings in the table, 619 * or another thread added a new mapping 620 * behind us, give up on this table. 621 */ 622 HTABLE_ENTER(h); 623 if (ht->ht_busy != 1 || 624 ht->ht_valid_cnt != 0 || 625 ht->ht_lock_cnt != 0) { 626 --ht->ht_busy; 627 continue; 628 } 629 630 /* 631 * Steal it and unlink the page table. 632 */ 633 higher = ht->ht_parent; 634 unlink_ptp(higher, ht, ht->ht_vaddr); 635 636 /* 637 * remove from the hash list 638 */ 639 if (ht->ht_next) 640 ht->ht_next->ht_prev = 641 ht->ht_prev; 642 643 if (ht->ht_prev) { 644 ht->ht_prev->ht_next = 645 ht->ht_next; 646 } else { 647 ASSERT(hat->hat_ht_hash[h] == 648 ht); 649 hat->hat_ht_hash[h] = 650 ht->ht_next; 651 } 652 653 /* 654 * Break to outer loop to release the 655 * higher (ht_parent) pagetable. This 656 * spreads out the pain caused by 657 * pagefaults. 658 */ 659 ht->ht_next = list; 660 list = ht; 661 ++stolen; 662 break; 663 } 664 HTABLE_EXIT(h); 665 if (higher != NULL) 666 htable_release(higher); 667 if (++h == hat->hat_num_hash) 668 h = 0; 669 } while (stolen < cnt && h != h_start); 670 } 671 } 672 atomic_add_32(&htable_dont_cache, -1); 673 return (list); 674 } 675 676 /* 677 * This is invoked from kmem when the system is low on memory. We try 678 * to free hments, htables, and ptables to improve the memory situation. 679 */ 680 /*ARGSUSED*/ 681 static void 682 htable_reap(void *handle) 683 { 684 uint_t reap_cnt; 685 htable_t *list; 686 htable_t *ht; 687 688 HATSTAT_INC(hs_reap_attempts); 689 if (!can_steal_post_boot) 690 return; 691 692 /* 693 * Try to reap 5% of the page tables bounded by a maximum of 694 * 5% of physmem and a minimum of 10. 695 */ 696 reap_cnt = MAX(MIN(physmem / 20, active_ptables / 20), 10); 697 698 /* 699 * Let htable_steal() do the work, we just call htable_free() 700 */ 701 XPV_DISALLOW_MIGRATE(); 702 list = htable_steal(reap_cnt); 703 XPV_ALLOW_MIGRATE(); 704 while ((ht = list) != NULL) { 705 list = ht->ht_next; 706 HATSTAT_INC(hs_reaped); 707 htable_free(ht); 708 } 709 710 /* 711 * Free up excess reserves 712 */ 713 htable_adjust_reserve(); 714 hment_adjust_reserve(); 715 } 716 717 /* 718 * Allocate an htable, stealing one or using the reserve if necessary 719 */ 720 static htable_t * 721 htable_alloc( 722 hat_t *hat, 723 uintptr_t vaddr, 724 level_t level, 725 htable_t *shared) 726 { 727 htable_t *ht = NULL; 728 uint_t is_vlp; 729 uint_t is_bare = 0; 730 uint_t need_to_zero = 1; 731 int kmflags = (can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP); 732 733 if (level < 0 || level > TOP_LEVEL(hat)) 734 panic("htable_alloc(): level %d out of range\n", level); 735 736 is_vlp = (hat->hat_flags & HAT_VLP) && level == VLP_LEVEL; 737 if (is_vlp || shared != NULL) 738 is_bare = 1; 739 740 /* 741 * First reuse a cached htable from the hat_ht_cached field, this 742 * avoids unnecessary trips through kmem/page allocators. 743 */ 744 if (hat->hat_ht_cached != NULL && !is_bare) { 745 hat_enter(hat); 746 ht = hat->hat_ht_cached; 747 if (ht != NULL) { 748 hat->hat_ht_cached = ht->ht_next; 749 need_to_zero = 0; 750 /* XX64 ASSERT() they're all zero somehow */ 751 ASSERT(ht->ht_pfn != PFN_INVALID); 752 } 753 hat_exit(hat); 754 } 755 756 if (ht == NULL) { 757 /* 758 * Allocate an htable, possibly refilling the reserves. 759 */ 760 if (USE_HAT_RESERVES()) { 761 ht = htable_get_reserve(); 762 } else { 763 /* 764 * Donate successful htable allocations to the reserve. 765 */ 766 for (;;) { 767 ht = kmem_cache_alloc(htable_cache, kmflags); 768 if (ht == NULL) 769 break; 770 ht->ht_pfn = PFN_INVALID; 771 if (USE_HAT_RESERVES() || 772 htable_reserve_cnt >= htable_reserve_amount) 773 break; 774 htable_put_reserve(ht); 775 } 776 } 777 778 /* 779 * allocate a page for the hardware page table if needed 780 */ 781 if (ht != NULL && !is_bare) { 782 ht->ht_hat = hat; 783 ht->ht_pfn = ptable_alloc((uintptr_t)ht); 784 if (ht->ht_pfn == PFN_INVALID) { 785 if (USE_HAT_RESERVES()) 786 htable_put_reserve(ht); 787 else 788 kmem_cache_free(htable_cache, ht); 789 ht = NULL; 790 } 791 } 792 } 793 794 /* 795 * If allocations failed, kick off a kmem_reap() and resort to 796 * htable steal(). We may spin here if the system is very low on 797 * memory. If the kernel itself has consumed all memory and kmem_reap() 798 * can't free up anything, then we'll really get stuck here. 799 * That should only happen in a system where the administrator has 800 * misconfigured VM parameters via /etc/system. 801 */ 802 while (ht == NULL && can_steal_post_boot) { 803 kmem_reap(); 804 ht = htable_steal(1); 805 HATSTAT_INC(hs_steals); 806 807 /* 808 * If we stole for a bare htable, release the pagetable page. 809 */ 810 if (ht != NULL) { 811 if (is_bare) { 812 ptable_free(ht->ht_pfn); 813 ht->ht_pfn = PFN_INVALID; 814 #if defined(__xpv) && defined(__amd64) 815 /* 816 * make stolen page table writable again in kpm 817 */ 818 } else if (kpm_vbase && xen_kpm_page(ht->ht_pfn, 819 PT_VALID | PT_WRITABLE) < 0) { 820 panic("failure making kpm r/w pfn=0x%lx", 821 ht->ht_pfn); 822 #endif 823 } 824 } 825 } 826 827 /* 828 * All attempts to allocate or steal failed. This should only happen 829 * if we run out of memory during boot, due perhaps to a huge 830 * boot_archive. At this point there's no way to continue. 831 */ 832 if (ht == NULL) 833 panic("htable_alloc(): couldn't steal\n"); 834 835 #if defined(__amd64) && defined(__xpv) 836 /* 837 * Under the 64-bit hypervisor, we have 2 top level page tables. 838 * If this allocation fails, we'll resort to stealing. 839 * We use the stolen page indirectly, by freeing the 840 * stolen htable first. 841 */ 842 if (level == mmu.max_level) { 843 for (;;) { 844 htable_t *stolen; 845 846 hat->hat_user_ptable = ptable_alloc((uintptr_t)ht + 1); 847 if (hat->hat_user_ptable != PFN_INVALID) 848 break; 849 stolen = htable_steal(1); 850 if (stolen == NULL) 851 panic("2nd steal ptable failed\n"); 852 htable_free(stolen); 853 } 854 block_zero_no_xmm(kpm_vbase + pfn_to_pa(hat->hat_user_ptable), 855 MMU_PAGESIZE); 856 } 857 #endif 858 859 /* 860 * Shared page tables have all entries locked and entries may not 861 * be added or deleted. 862 */ 863 ht->ht_flags = 0; 864 if (shared != NULL) { 865 ASSERT(shared->ht_valid_cnt > 0); 866 ht->ht_flags |= HTABLE_SHARED_PFN; 867 ht->ht_pfn = shared->ht_pfn; 868 ht->ht_lock_cnt = 0; 869 ht->ht_valid_cnt = 0; /* updated in hat_share() */ 870 ht->ht_shares = shared; 871 need_to_zero = 0; 872 } else { 873 ht->ht_shares = NULL; 874 ht->ht_lock_cnt = 0; 875 ht->ht_valid_cnt = 0; 876 } 877 878 /* 879 * setup flags, etc. for VLP htables 880 */ 881 if (is_vlp) { 882 ht->ht_flags |= HTABLE_VLP; 883 ASSERT(ht->ht_pfn == PFN_INVALID); 884 need_to_zero = 0; 885 } 886 887 /* 888 * fill in the htable 889 */ 890 ht->ht_hat = hat; 891 ht->ht_parent = NULL; 892 ht->ht_vaddr = vaddr; 893 ht->ht_level = level; 894 ht->ht_busy = 1; 895 ht->ht_next = NULL; 896 ht->ht_prev = NULL; 897 898 /* 899 * Zero out any freshly allocated page table 900 */ 901 if (need_to_zero) 902 x86pte_zero(ht, 0, mmu.ptes_per_table); 903 904 #if defined(__amd64) && defined(__xpv) 905 if (!is_bare && kpm_vbase) { 906 (void) xen_kpm_page(ht->ht_pfn, PT_VALID); 907 if (level == mmu.max_level) 908 (void) xen_kpm_page(hat->hat_user_ptable, PT_VALID); 909 } 910 #endif 911 912 return (ht); 913 } 914 915 /* 916 * Free up an htable, either to a hat's cached list, the reserves or 917 * back to kmem. 918 */ 919 static void 920 htable_free(htable_t *ht) 921 { 922 hat_t *hat = ht->ht_hat; 923 924 /* 925 * If the process isn't exiting, cache the free htable in the hat 926 * structure. We always do this for the boot time reserve. We don't 927 * do this if the hat is exiting or we are stealing/reaping htables. 928 */ 929 if (hat != NULL && 930 !(ht->ht_flags & HTABLE_SHARED_PFN) && 931 (use_boot_reserve || 932 (!(hat->hat_flags & HAT_FREEING) && !htable_dont_cache))) { 933 ASSERT((ht->ht_flags & HTABLE_VLP) == 0); 934 ASSERT(ht->ht_pfn != PFN_INVALID); 935 hat_enter(hat); 936 ht->ht_next = hat->hat_ht_cached; 937 hat->hat_ht_cached = ht; 938 hat_exit(hat); 939 return; 940 } 941 942 /* 943 * If we have a hardware page table, free it. 944 * We don't free page tables that are accessed by sharing. 945 */ 946 if (ht->ht_flags & HTABLE_SHARED_PFN) { 947 ASSERT(ht->ht_pfn != PFN_INVALID); 948 } else if (!(ht->ht_flags & HTABLE_VLP)) { 949 ptable_free(ht->ht_pfn); 950 #if defined(__amd64) && defined(__xpv) 951 if (ht->ht_level == mmu.max_level) { 952 ptable_free(hat->hat_user_ptable); 953 hat->hat_user_ptable = PFN_INVALID; 954 } 955 #endif 956 } 957 ht->ht_pfn = PFN_INVALID; 958 959 /* 960 * Free it or put into reserves. 961 */ 962 if (USE_HAT_RESERVES() || htable_reserve_cnt < htable_reserve_amount) { 963 htable_put_reserve(ht); 964 } else { 965 kmem_cache_free(htable_cache, ht); 966 htable_adjust_reserve(); 967 } 968 } 969 970 971 /* 972 * This is called when a hat is being destroyed or swapped out. We reap all 973 * the remaining htables in the hat cache. If destroying all left over 974 * htables are also destroyed. 975 * 976 * We also don't need to invalidate any of the PTPs nor do any demapping. 977 */ 978 void 979 htable_purge_hat(hat_t *hat) 980 { 981 htable_t *ht; 982 int h; 983 984 /* 985 * Purge the htable cache if just reaping. 986 */ 987 if (!(hat->hat_flags & HAT_FREEING)) { 988 atomic_add_32(&htable_dont_cache, 1); 989 for (;;) { 990 hat_enter(hat); 991 ht = hat->hat_ht_cached; 992 if (ht == NULL) { 993 hat_exit(hat); 994 break; 995 } 996 hat->hat_ht_cached = ht->ht_next; 997 hat_exit(hat); 998 htable_free(ht); 999 } 1000 atomic_add_32(&htable_dont_cache, -1); 1001 return; 1002 } 1003 1004 /* 1005 * if freeing, no locking is needed 1006 */ 1007 while ((ht = hat->hat_ht_cached) != NULL) { 1008 hat->hat_ht_cached = ht->ht_next; 1009 htable_free(ht); 1010 } 1011 1012 /* 1013 * walk thru the htable hash table and free all the htables in it. 1014 */ 1015 for (h = 0; h < hat->hat_num_hash; ++h) { 1016 while ((ht = hat->hat_ht_hash[h]) != NULL) { 1017 if (ht->ht_next) 1018 ht->ht_next->ht_prev = ht->ht_prev; 1019 1020 if (ht->ht_prev) { 1021 ht->ht_prev->ht_next = ht->ht_next; 1022 } else { 1023 ASSERT(hat->hat_ht_hash[h] == ht); 1024 hat->hat_ht_hash[h] = ht->ht_next; 1025 } 1026 htable_free(ht); 1027 } 1028 } 1029 } 1030 1031 /* 1032 * Unlink an entry for a table at vaddr and level out of the existing table 1033 * one level higher. We are always holding the HASH_ENTER() when doing this. 1034 */ 1035 static void 1036 unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr) 1037 { 1038 uint_t entry = htable_va2entry(vaddr, higher); 1039 x86pte_t expect = MAKEPTP(old->ht_pfn, old->ht_level); 1040 x86pte_t found; 1041 hat_t *hat = old->ht_hat; 1042 1043 ASSERT(higher->ht_busy > 0); 1044 ASSERT(higher->ht_valid_cnt > 0); 1045 ASSERT(old->ht_valid_cnt == 0); 1046 found = x86pte_cas(higher, entry, expect, 0); 1047 #ifdef __xpv 1048 /* 1049 * This is weird, but Xen apparently automatically unlinks empty 1050 * pagetables from the upper page table. So allow PTP to be 0 already. 1051 */ 1052 if (found != expect && found != 0) 1053 #else 1054 if (found != expect) 1055 #endif 1056 panic("Bad PTP found=" FMT_PTE ", expected=" FMT_PTE, 1057 found, expect); 1058 1059 /* 1060 * When a top level VLP page table entry changes, we must issue 1061 * a reload of cr3 on all processors. 1062 * 1063 * If we don't need do do that, then we still have to INVLPG against 1064 * an address covered by the inner page table, as the latest processors 1065 * have TLB-like caches for non-leaf page table entries. 1066 */ 1067 if (!(hat->hat_flags & HAT_FREEING)) { 1068 hat_tlb_inval(hat, (higher->ht_flags & HTABLE_VLP) ? 1069 DEMAP_ALL_ADDR : old->ht_vaddr); 1070 } 1071 1072 HTABLE_DEC(higher->ht_valid_cnt); 1073 } 1074 1075 /* 1076 * Link an entry for a new table at vaddr and level into the existing table 1077 * one level higher. We are always holding the HASH_ENTER() when doing this. 1078 */ 1079 static void 1080 link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr) 1081 { 1082 uint_t entry = htable_va2entry(vaddr, higher); 1083 x86pte_t newptp = MAKEPTP(new->ht_pfn, new->ht_level); 1084 x86pte_t found; 1085 1086 ASSERT(higher->ht_busy > 0); 1087 1088 ASSERT(new->ht_level != mmu.max_level); 1089 1090 HTABLE_INC(higher->ht_valid_cnt); 1091 1092 found = x86pte_cas(higher, entry, 0, newptp); 1093 if ((found & ~PT_REF) != 0) 1094 panic("HAT: ptp not 0, found=" FMT_PTE, found); 1095 1096 /* 1097 * When any top level VLP page table entry changes, we must issue 1098 * a reload of cr3 on all processors using it. 1099 * We also need to do this for the kernel hat on PAE 32 bit kernel. 1100 */ 1101 if ( 1102 #ifdef __i386 1103 (higher->ht_hat == kas.a_hat && higher->ht_level == VLP_LEVEL) || 1104 #endif 1105 (higher->ht_flags & HTABLE_VLP)) 1106 hat_tlb_inval(higher->ht_hat, DEMAP_ALL_ADDR); 1107 } 1108 1109 /* 1110 * Release of hold on an htable. If this is the last use and the pagetable 1111 * is empty we may want to free it, then recursively look at the pagetable 1112 * above it. The recursion is handled by the outer while() loop. 1113 * 1114 * On the metal, during process exit, we don't bother unlinking the tables from 1115 * upper level pagetables. They are instead handled in bulk by hat_free_end(). 1116 * We can't do this on the hypervisor as we need the page table to be 1117 * implicitly unpinnned before it goes to the free page lists. This can't 1118 * happen unless we fully unlink it from the page table hierarchy. 1119 */ 1120 void 1121 htable_release(htable_t *ht) 1122 { 1123 uint_t hashval; 1124 htable_t *shared; 1125 htable_t *higher; 1126 hat_t *hat; 1127 uintptr_t va; 1128 level_t level; 1129 1130 while (ht != NULL) { 1131 shared = NULL; 1132 for (;;) { 1133 hat = ht->ht_hat; 1134 va = ht->ht_vaddr; 1135 level = ht->ht_level; 1136 hashval = HTABLE_HASH(hat, va, level); 1137 1138 /* 1139 * The common case is that this isn't the last use of 1140 * an htable so we don't want to free the htable. 1141 */ 1142 HTABLE_ENTER(hashval); 1143 ASSERT(ht->ht_valid_cnt >= 0); 1144 ASSERT(ht->ht_busy > 0); 1145 if (ht->ht_valid_cnt > 0) 1146 break; 1147 if (ht->ht_busy > 1) 1148 break; 1149 ASSERT(ht->ht_lock_cnt == 0); 1150 1151 #if !defined(__xpv) 1152 /* 1153 * we always release empty shared htables 1154 */ 1155 if (!(ht->ht_flags & HTABLE_SHARED_PFN)) { 1156 1157 /* 1158 * don't release if in address space tear down 1159 */ 1160 if (hat->hat_flags & HAT_FREEING) 1161 break; 1162 1163 /* 1164 * At and above max_page_level, free if it's for 1165 * a boot-time kernel mapping below kernelbase. 1166 */ 1167 if (level >= mmu.max_page_level && 1168 (hat != kas.a_hat || va >= kernelbase)) 1169 break; 1170 } 1171 #endif /* __xpv */ 1172 1173 /* 1174 * Remember if we destroy an htable that shares its PFN 1175 * from elsewhere. 1176 */ 1177 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1178 ASSERT(shared == NULL); 1179 shared = ht->ht_shares; 1180 HATSTAT_INC(hs_htable_unshared); 1181 } 1182 1183 /* 1184 * Handle release of a table and freeing the htable_t. 1185 * Unlink it from the table higher (ie. ht_parent). 1186 */ 1187 higher = ht->ht_parent; 1188 ASSERT(higher != NULL); 1189 1190 /* 1191 * Unlink the pagetable. 1192 */ 1193 unlink_ptp(higher, ht, va); 1194 1195 /* 1196 * remove this htable from its hash list 1197 */ 1198 if (ht->ht_next) 1199 ht->ht_next->ht_prev = ht->ht_prev; 1200 1201 if (ht->ht_prev) { 1202 ht->ht_prev->ht_next = ht->ht_next; 1203 } else { 1204 ASSERT(hat->hat_ht_hash[hashval] == ht); 1205 hat->hat_ht_hash[hashval] = ht->ht_next; 1206 } 1207 HTABLE_EXIT(hashval); 1208 htable_free(ht); 1209 ht = higher; 1210 } 1211 1212 ASSERT(ht->ht_busy >= 1); 1213 --ht->ht_busy; 1214 HTABLE_EXIT(hashval); 1215 1216 /* 1217 * If we released a shared htable, do a release on the htable 1218 * from which it shared 1219 */ 1220 ht = shared; 1221 } 1222 } 1223 1224 /* 1225 * Find the htable for the pagetable at the given level for the given address. 1226 * If found acquires a hold that eventually needs to be htable_release()d 1227 */ 1228 htable_t * 1229 htable_lookup(hat_t *hat, uintptr_t vaddr, level_t level) 1230 { 1231 uintptr_t base; 1232 uint_t hashval; 1233 htable_t *ht = NULL; 1234 1235 ASSERT(level >= 0); 1236 ASSERT(level <= TOP_LEVEL(hat)); 1237 1238 if (level == TOP_LEVEL(hat)) { 1239 #if defined(__amd64) 1240 /* 1241 * 32 bit address spaces on 64 bit kernels need to check 1242 * for overflow of the 32 bit address space 1243 */ 1244 if ((hat->hat_flags & HAT_VLP) && vaddr >= ((uint64_t)1 << 32)) 1245 return (NULL); 1246 #endif 1247 base = 0; 1248 } else { 1249 base = vaddr & LEVEL_MASK(level + 1); 1250 } 1251 1252 hashval = HTABLE_HASH(hat, base, level); 1253 HTABLE_ENTER(hashval); 1254 for (ht = hat->hat_ht_hash[hashval]; ht; ht = ht->ht_next) { 1255 if (ht->ht_hat == hat && 1256 ht->ht_vaddr == base && 1257 ht->ht_level == level) 1258 break; 1259 } 1260 if (ht) 1261 ++ht->ht_busy; 1262 1263 HTABLE_EXIT(hashval); 1264 return (ht); 1265 } 1266 1267 /* 1268 * Acquires a hold on a known htable (from a locked hment entry). 1269 */ 1270 void 1271 htable_acquire(htable_t *ht) 1272 { 1273 hat_t *hat = ht->ht_hat; 1274 level_t level = ht->ht_level; 1275 uintptr_t base = ht->ht_vaddr; 1276 uint_t hashval = HTABLE_HASH(hat, base, level); 1277 1278 HTABLE_ENTER(hashval); 1279 #ifdef DEBUG 1280 /* 1281 * make sure the htable is there 1282 */ 1283 { 1284 htable_t *h; 1285 1286 for (h = hat->hat_ht_hash[hashval]; 1287 h && h != ht; 1288 h = h->ht_next) 1289 ; 1290 ASSERT(h == ht); 1291 } 1292 #endif /* DEBUG */ 1293 ++ht->ht_busy; 1294 HTABLE_EXIT(hashval); 1295 } 1296 1297 /* 1298 * Find the htable for the pagetable at the given level for the given address. 1299 * If found acquires a hold that eventually needs to be htable_release()d 1300 * If not found the table is created. 1301 * 1302 * Since we can't hold a hash table mutex during allocation, we have to 1303 * drop it and redo the search on a create. Then we may have to free the newly 1304 * allocated htable if another thread raced in and created it ahead of us. 1305 */ 1306 htable_t * 1307 htable_create( 1308 hat_t *hat, 1309 uintptr_t vaddr, 1310 level_t level, 1311 htable_t *shared) 1312 { 1313 uint_t h; 1314 level_t l; 1315 uintptr_t base; 1316 htable_t *ht; 1317 htable_t *higher = NULL; 1318 htable_t *new = NULL; 1319 1320 if (level < 0 || level > TOP_LEVEL(hat)) 1321 panic("htable_create(): level %d out of range\n", level); 1322 1323 /* 1324 * Create the page tables in top down order. 1325 */ 1326 for (l = TOP_LEVEL(hat); l >= level; --l) { 1327 new = NULL; 1328 if (l == TOP_LEVEL(hat)) 1329 base = 0; 1330 else 1331 base = vaddr & LEVEL_MASK(l + 1); 1332 1333 h = HTABLE_HASH(hat, base, l); 1334 try_again: 1335 /* 1336 * look up the htable at this level 1337 */ 1338 HTABLE_ENTER(h); 1339 if (l == TOP_LEVEL(hat)) { 1340 ht = hat->hat_htable; 1341 } else { 1342 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 1343 ASSERT(ht->ht_hat == hat); 1344 if (ht->ht_vaddr == base && 1345 ht->ht_level == l) 1346 break; 1347 } 1348 } 1349 1350 /* 1351 * if we found the htable, increment its busy cnt 1352 * and if we had allocated a new htable, free it. 1353 */ 1354 if (ht != NULL) { 1355 /* 1356 * If we find a pre-existing shared table, it must 1357 * share from the same place. 1358 */ 1359 if (l == level && shared && ht->ht_shares && 1360 ht->ht_shares != shared) { 1361 panic("htable shared from wrong place " 1362 "found htable=%p shared=%p", 1363 (void *)ht, (void *)shared); 1364 } 1365 ++ht->ht_busy; 1366 HTABLE_EXIT(h); 1367 if (new) 1368 htable_free(new); 1369 if (higher != NULL) 1370 htable_release(higher); 1371 higher = ht; 1372 1373 /* 1374 * if we didn't find it on the first search 1375 * allocate a new one and search again 1376 */ 1377 } else if (new == NULL) { 1378 HTABLE_EXIT(h); 1379 new = htable_alloc(hat, base, l, 1380 l == level ? shared : NULL); 1381 goto try_again; 1382 1383 /* 1384 * 2nd search and still not there, use "new" table 1385 * Link new table into higher, when not at top level. 1386 */ 1387 } else { 1388 ht = new; 1389 if (higher != NULL) { 1390 link_ptp(higher, ht, base); 1391 ht->ht_parent = higher; 1392 } 1393 ht->ht_next = hat->hat_ht_hash[h]; 1394 ASSERT(ht->ht_prev == NULL); 1395 if (hat->hat_ht_hash[h]) 1396 hat->hat_ht_hash[h]->ht_prev = ht; 1397 hat->hat_ht_hash[h] = ht; 1398 HTABLE_EXIT(h); 1399 1400 /* 1401 * Note we don't do htable_release(higher). 1402 * That happens recursively when "new" is removed by 1403 * htable_release() or htable_steal(). 1404 */ 1405 higher = ht; 1406 1407 /* 1408 * If we just created a new shared page table we 1409 * increment the shared htable's busy count, so that 1410 * it can't be the victim of a steal even if it's empty. 1411 */ 1412 if (l == level && shared) { 1413 (void) htable_lookup(shared->ht_hat, 1414 shared->ht_vaddr, shared->ht_level); 1415 HATSTAT_INC(hs_htable_shared); 1416 } 1417 } 1418 } 1419 1420 return (ht); 1421 } 1422 1423 /* 1424 * Inherit initial pagetables from the boot program. On the 64-bit 1425 * hypervisor we also temporarily mark the p_index field of page table 1426 * pages, so we know not to try making them writable in seg_kpm. 1427 */ 1428 void 1429 htable_attach( 1430 hat_t *hat, 1431 uintptr_t base, 1432 level_t level, 1433 htable_t *parent, 1434 pfn_t pfn) 1435 { 1436 htable_t *ht; 1437 uint_t h; 1438 uint_t i; 1439 x86pte_t pte; 1440 x86pte_t *ptep; 1441 page_t *pp; 1442 extern page_t *boot_claim_page(pfn_t); 1443 1444 ht = htable_get_reserve(); 1445 if (level == mmu.max_level) 1446 kas.a_hat->hat_htable = ht; 1447 ht->ht_hat = hat; 1448 ht->ht_parent = parent; 1449 ht->ht_vaddr = base; 1450 ht->ht_level = level; 1451 ht->ht_busy = 1; 1452 ht->ht_next = NULL; 1453 ht->ht_prev = NULL; 1454 ht->ht_flags = 0; 1455 ht->ht_pfn = pfn; 1456 ht->ht_lock_cnt = 0; 1457 ht->ht_valid_cnt = 0; 1458 if (parent != NULL) 1459 ++parent->ht_busy; 1460 1461 h = HTABLE_HASH(hat, base, level); 1462 HTABLE_ENTER(h); 1463 ht->ht_next = hat->hat_ht_hash[h]; 1464 ASSERT(ht->ht_prev == NULL); 1465 if (hat->hat_ht_hash[h]) 1466 hat->hat_ht_hash[h]->ht_prev = ht; 1467 hat->hat_ht_hash[h] = ht; 1468 HTABLE_EXIT(h); 1469 1470 /* 1471 * make sure the page table physical page is not FREE 1472 */ 1473 if (page_resv(1, KM_NOSLEEP) == 0) 1474 panic("page_resv() failed in ptable alloc"); 1475 1476 pp = boot_claim_page(pfn); 1477 ASSERT(pp != NULL); 1478 page_downgrade(pp); 1479 #if defined(__xpv) && defined(__amd64) 1480 /* 1481 * Record in the page_t that is a pagetable for segkpm setup. 1482 */ 1483 if (kpm_vbase) 1484 pp->p_index = 1; 1485 #endif 1486 1487 /* 1488 * Count valid mappings and recursively attach lower level pagetables. 1489 */ 1490 ptep = kbm_remap_window(pfn_to_pa(pfn), 0); 1491 for (i = 0; i < HTABLE_NUM_PTES(ht); ++i) { 1492 if (mmu.pae_hat) 1493 pte = ptep[i]; 1494 else 1495 pte = ((x86pte32_t *)ptep)[i]; 1496 if (!IN_HYPERVISOR_VA(base) && PTE_ISVALID(pte)) { 1497 ++ht->ht_valid_cnt; 1498 if (!PTE_ISPAGE(pte, level)) { 1499 htable_attach(hat, base, level - 1, 1500 ht, PTE2PFN(pte, level)); 1501 ptep = kbm_remap_window(pfn_to_pa(pfn), 0); 1502 } 1503 } 1504 base += LEVEL_SIZE(level); 1505 if (base == mmu.hole_start) 1506 base = (mmu.hole_end + MMU_PAGEOFFSET) & MMU_PAGEMASK; 1507 } 1508 1509 /* 1510 * As long as all the mappings we had were below kernel base 1511 * we can release the htable. 1512 */ 1513 if (base < kernelbase) 1514 htable_release(ht); 1515 } 1516 1517 /* 1518 * Walk through a given htable looking for the first valid entry. This 1519 * routine takes both a starting and ending address. The starting address 1520 * is required to be within the htable provided by the caller, but there is 1521 * no such restriction on the ending address. 1522 * 1523 * If the routine finds a valid entry in the htable (at or beyond the 1524 * starting address), the PTE (and its address) will be returned. 1525 * This PTE may correspond to either a page or a pagetable - it is the 1526 * caller's responsibility to determine which. If no valid entry is 1527 * found, 0 (and invalid PTE) and the next unexamined address will be 1528 * returned. 1529 * 1530 * The loop has been carefully coded for optimization. 1531 */ 1532 static x86pte_t 1533 htable_scan(htable_t *ht, uintptr_t *vap, uintptr_t eaddr) 1534 { 1535 uint_t e; 1536 x86pte_t found_pte = (x86pte_t)0; 1537 caddr_t pte_ptr; 1538 caddr_t end_pte_ptr; 1539 int l = ht->ht_level; 1540 uintptr_t va = *vap & LEVEL_MASK(l); 1541 size_t pgsize = LEVEL_SIZE(l); 1542 1543 ASSERT(va >= ht->ht_vaddr); 1544 ASSERT(va <= HTABLE_LAST_PAGE(ht)); 1545 1546 /* 1547 * Compute the starting index and ending virtual address 1548 */ 1549 e = htable_va2entry(va, ht); 1550 1551 /* 1552 * The following page table scan code knows that the valid 1553 * bit of a PTE is in the lowest byte AND that x86 is little endian!! 1554 */ 1555 pte_ptr = (caddr_t)x86pte_access_pagetable(ht, 0); 1556 end_pte_ptr = (caddr_t)PT_INDEX_PTR(pte_ptr, HTABLE_NUM_PTES(ht)); 1557 pte_ptr = (caddr_t)PT_INDEX_PTR((x86pte_t *)pte_ptr, e); 1558 while (!PTE_ISVALID(*pte_ptr)) { 1559 va += pgsize; 1560 if (va >= eaddr) 1561 break; 1562 pte_ptr += mmu.pte_size; 1563 ASSERT(pte_ptr <= end_pte_ptr); 1564 if (pte_ptr == end_pte_ptr) 1565 break; 1566 } 1567 1568 /* 1569 * if we found a valid PTE, load the entire PTE 1570 */ 1571 if (va < eaddr && pte_ptr != end_pte_ptr) 1572 found_pte = GET_PTE((x86pte_t *)pte_ptr); 1573 x86pte_release_pagetable(ht); 1574 1575 #if defined(__amd64) 1576 /* 1577 * deal with VA hole on amd64 1578 */ 1579 if (l == mmu.max_level && va >= mmu.hole_start && va <= mmu.hole_end) 1580 va = mmu.hole_end + va - mmu.hole_start; 1581 #endif /* __amd64 */ 1582 1583 *vap = va; 1584 return (found_pte); 1585 } 1586 1587 /* 1588 * Find the address and htable for the first populated translation at or 1589 * above the given virtual address. The caller may also specify an upper 1590 * limit to the address range to search. Uses level information to quickly 1591 * skip unpopulated sections of virtual address spaces. 1592 * 1593 * If not found returns NULL. When found, returns the htable and virt addr 1594 * and has a hold on the htable. 1595 */ 1596 x86pte_t 1597 htable_walk( 1598 struct hat *hat, 1599 htable_t **htp, 1600 uintptr_t *vaddr, 1601 uintptr_t eaddr) 1602 { 1603 uintptr_t va = *vaddr; 1604 htable_t *ht; 1605 htable_t *prev = *htp; 1606 level_t l; 1607 level_t max_mapped_level; 1608 x86pte_t pte; 1609 1610 ASSERT(eaddr > va); 1611 1612 /* 1613 * If this is a user address, then we know we need not look beyond 1614 * kernelbase. 1615 */ 1616 ASSERT(hat == kas.a_hat || eaddr <= kernelbase || 1617 eaddr == HTABLE_WALK_TO_END); 1618 if (hat != kas.a_hat && eaddr == HTABLE_WALK_TO_END) 1619 eaddr = kernelbase; 1620 1621 /* 1622 * If we're coming in with a previous page table, search it first 1623 * without doing an htable_lookup(), this should be frequent. 1624 */ 1625 if (prev) { 1626 ASSERT(prev->ht_busy > 0); 1627 ASSERT(prev->ht_vaddr <= va); 1628 l = prev->ht_level; 1629 if (va <= HTABLE_LAST_PAGE(prev)) { 1630 pte = htable_scan(prev, &va, eaddr); 1631 1632 if (PTE_ISPAGE(pte, l)) { 1633 *vaddr = va; 1634 *htp = prev; 1635 return (pte); 1636 } 1637 } 1638 1639 /* 1640 * We found nothing in the htable provided by the caller, 1641 * so fall through and do the full search 1642 */ 1643 htable_release(prev); 1644 } 1645 1646 /* 1647 * Find the level of the largest pagesize used by this HAT. 1648 */ 1649 if (hat->hat_ism_pgcnt > 0) { 1650 max_mapped_level = mmu.umax_page_level; 1651 } else { 1652 max_mapped_level = 0; 1653 for (l = 1; l <= mmu.max_page_level; ++l) 1654 if (hat->hat_pages_mapped[l] != 0) 1655 max_mapped_level = l; 1656 } 1657 1658 while (va < eaddr && va >= *vaddr) { 1659 ASSERT(!IN_VA_HOLE(va)); 1660 1661 /* 1662 * Find lowest table with any entry for given address. 1663 */ 1664 for (l = 0; l <= TOP_LEVEL(hat); ++l) { 1665 ht = htable_lookup(hat, va, l); 1666 if (ht != NULL) { 1667 pte = htable_scan(ht, &va, eaddr); 1668 if (PTE_ISPAGE(pte, l)) { 1669 *vaddr = va; 1670 *htp = ht; 1671 return (pte); 1672 } 1673 htable_release(ht); 1674 break; 1675 } 1676 1677 /* 1678 * No htable at this level for the address. If there 1679 * is no larger page size that could cover it, we can 1680 * skip right to the start of the next page table. 1681 */ 1682 ASSERT(l < TOP_LEVEL(hat)); 1683 if (l >= max_mapped_level) { 1684 va = NEXT_ENTRY_VA(va, l + 1); 1685 if (va >= eaddr) 1686 break; 1687 } 1688 } 1689 } 1690 1691 *vaddr = 0; 1692 *htp = NULL; 1693 return (0); 1694 } 1695 1696 /* 1697 * Find the htable and page table entry index of the given virtual address 1698 * with pagesize at or below given level. 1699 * If not found returns NULL. When found, returns the htable, sets 1700 * entry, and has a hold on the htable. 1701 */ 1702 htable_t * 1703 htable_getpte( 1704 struct hat *hat, 1705 uintptr_t vaddr, 1706 uint_t *entry, 1707 x86pte_t *pte, 1708 level_t level) 1709 { 1710 htable_t *ht; 1711 level_t l; 1712 uint_t e; 1713 1714 ASSERT(level <= mmu.max_page_level); 1715 1716 for (l = 0; l <= level; ++l) { 1717 ht = htable_lookup(hat, vaddr, l); 1718 if (ht == NULL) 1719 continue; 1720 e = htable_va2entry(vaddr, ht); 1721 if (entry != NULL) 1722 *entry = e; 1723 if (pte != NULL) 1724 *pte = x86pte_get(ht, e); 1725 return (ht); 1726 } 1727 return (NULL); 1728 } 1729 1730 /* 1731 * Find the htable and page table entry index of the given virtual address. 1732 * There must be a valid page mapped at the given address. 1733 * If not found returns NULL. When found, returns the htable, sets 1734 * entry, and has a hold on the htable. 1735 */ 1736 htable_t * 1737 htable_getpage(struct hat *hat, uintptr_t vaddr, uint_t *entry) 1738 { 1739 htable_t *ht; 1740 uint_t e; 1741 x86pte_t pte; 1742 1743 ht = htable_getpte(hat, vaddr, &e, &pte, mmu.max_page_level); 1744 if (ht == NULL) 1745 return (NULL); 1746 1747 if (entry) 1748 *entry = e; 1749 1750 if (PTE_ISPAGE(pte, ht->ht_level)) 1751 return (ht); 1752 htable_release(ht); 1753 return (NULL); 1754 } 1755 1756 1757 void 1758 htable_init() 1759 { 1760 /* 1761 * To save on kernel VA usage, we avoid debug information in 32 bit 1762 * kernels. 1763 */ 1764 #if defined(__amd64) 1765 int kmem_flags = KMC_NOHASH; 1766 #elif defined(__i386) 1767 int kmem_flags = KMC_NOHASH | KMC_NODEBUG; 1768 #endif 1769 1770 /* 1771 * initialize kmem caches 1772 */ 1773 htable_cache = kmem_cache_create("htable_t", 1774 sizeof (htable_t), 0, NULL, NULL, 1775 htable_reap, NULL, hat_memload_arena, kmem_flags); 1776 } 1777 1778 /* 1779 * get the pte index for the virtual address in the given htable's pagetable 1780 */ 1781 uint_t 1782 htable_va2entry(uintptr_t va, htable_t *ht) 1783 { 1784 level_t l = ht->ht_level; 1785 1786 ASSERT(va >= ht->ht_vaddr); 1787 ASSERT(va <= HTABLE_LAST_PAGE(ht)); 1788 return ((va >> LEVEL_SHIFT(l)) & (HTABLE_NUM_PTES(ht) - 1)); 1789 } 1790 1791 /* 1792 * Given an htable and the index of a pte in it, return the virtual address 1793 * of the page. 1794 */ 1795 uintptr_t 1796 htable_e2va(htable_t *ht, uint_t entry) 1797 { 1798 level_t l = ht->ht_level; 1799 uintptr_t va; 1800 1801 ASSERT(entry < HTABLE_NUM_PTES(ht)); 1802 va = ht->ht_vaddr + ((uintptr_t)entry << LEVEL_SHIFT(l)); 1803 1804 /* 1805 * Need to skip over any VA hole in top level table 1806 */ 1807 #if defined(__amd64) 1808 if (ht->ht_level == mmu.max_level && va >= mmu.hole_start) 1809 va += ((mmu.hole_end - mmu.hole_start) + 1); 1810 #endif 1811 1812 return (va); 1813 } 1814 1815 /* 1816 * The code uses compare and swap instructions to read/write PTE's to 1817 * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems. 1818 * will naturally be atomic. 1819 * 1820 * The combination of using kpreempt_disable()/_enable() and the hci_mutex 1821 * are used to ensure that an interrupt won't overwrite a temporary mapping 1822 * while it's in use. If an interrupt thread tries to access a PTE, it will 1823 * yield briefly back to the pinned thread which holds the cpu's hci_mutex. 1824 */ 1825 void 1826 x86pte_cpu_init(cpu_t *cpu) 1827 { 1828 struct hat_cpu_info *hci; 1829 1830 hci = kmem_zalloc(sizeof (*hci), KM_SLEEP); 1831 mutex_init(&hci->hci_mutex, NULL, MUTEX_DEFAULT, NULL); 1832 cpu->cpu_hat_info = hci; 1833 } 1834 1835 void 1836 x86pte_cpu_fini(cpu_t *cpu) 1837 { 1838 struct hat_cpu_info *hci = cpu->cpu_hat_info; 1839 1840 kmem_free(hci, sizeof (*hci)); 1841 cpu->cpu_hat_info = NULL; 1842 } 1843 1844 #ifdef __i386 1845 /* 1846 * On 32 bit kernels, loading a 64 bit PTE is a little tricky 1847 */ 1848 x86pte_t 1849 get_pte64(x86pte_t *ptr) 1850 { 1851 volatile uint32_t *p = (uint32_t *)ptr; 1852 x86pte_t t; 1853 1854 ASSERT(mmu.pae_hat != 0); 1855 for (;;) { 1856 t = p[0]; 1857 t |= (uint64_t)p[1] << 32; 1858 if ((t & 0xffffffff) == p[0]) 1859 return (t); 1860 } 1861 } 1862 #endif /* __i386 */ 1863 1864 /* 1865 * Disable preemption and establish a mapping to the pagetable with the 1866 * given pfn. This is optimized for there case where it's the same 1867 * pfn as we last used referenced from this CPU. 1868 */ 1869 static x86pte_t * 1870 x86pte_access_pagetable(htable_t *ht, uint_t index) 1871 { 1872 /* 1873 * VLP pagetables are contained in the hat_t 1874 */ 1875 if (ht->ht_flags & HTABLE_VLP) 1876 return (PT_INDEX_PTR(ht->ht_hat->hat_vlp_ptes, index)); 1877 return (x86pte_mapin(ht->ht_pfn, index, ht)); 1878 } 1879 1880 /* 1881 * map the given pfn into the page table window. 1882 */ 1883 /*ARGSUSED*/ 1884 x86pte_t * 1885 x86pte_mapin(pfn_t pfn, uint_t index, htable_t *ht) 1886 { 1887 x86pte_t *pteptr; 1888 x86pte_t pte = 0; 1889 x86pte_t newpte; 1890 int x; 1891 1892 ASSERT(pfn != PFN_INVALID); 1893 1894 if (!khat_running) { 1895 caddr_t va = kbm_remap_window(pfn_to_pa(pfn), 1); 1896 return (PT_INDEX_PTR(va, index)); 1897 } 1898 1899 /* 1900 * If kpm is available, use it. 1901 */ 1902 if (kpm_vbase) 1903 return (PT_INDEX_PTR(hat_kpm_pfn2va(pfn), index)); 1904 1905 /* 1906 * Disable preemption and grab the CPU's hci_mutex 1907 */ 1908 kpreempt_disable(); 1909 ASSERT(CPU->cpu_hat_info != NULL); 1910 mutex_enter(&CPU->cpu_hat_info->hci_mutex); 1911 x = PWIN_TABLE(CPU->cpu_id); 1912 pteptr = (x86pte_t *)PWIN_PTE_VA(x); 1913 #ifndef __xpv 1914 if (mmu.pae_hat) 1915 pte = *pteptr; 1916 else 1917 pte = *(x86pte32_t *)pteptr; 1918 #endif 1919 1920 newpte = MAKEPTE(pfn, 0) | mmu.pt_global | mmu.pt_nx; 1921 1922 /* 1923 * For hardware we can use a writable mapping. 1924 */ 1925 #ifdef __xpv 1926 if (IN_XPV_PANIC()) 1927 #endif 1928 newpte |= PT_WRITABLE; 1929 1930 if (!PTE_EQUIV(newpte, pte)) { 1931 1932 #ifdef __xpv 1933 if (!IN_XPV_PANIC()) { 1934 xen_map(newpte, PWIN_VA(x)); 1935 } else 1936 #endif 1937 { 1938 XPV_ALLOW_PAGETABLE_UPDATES(); 1939 if (mmu.pae_hat) 1940 *pteptr = newpte; 1941 else 1942 *(x86pte32_t *)pteptr = newpte; 1943 XPV_DISALLOW_PAGETABLE_UPDATES(); 1944 mmu_tlbflush_entry((caddr_t)(PWIN_VA(x))); 1945 } 1946 } 1947 return (PT_INDEX_PTR(PWIN_VA(x), index)); 1948 } 1949 1950 /* 1951 * Release access to a page table. 1952 */ 1953 static void 1954 x86pte_release_pagetable(htable_t *ht) 1955 { 1956 /* 1957 * nothing to do for VLP htables 1958 */ 1959 if (ht->ht_flags & HTABLE_VLP) 1960 return; 1961 1962 x86pte_mapout(); 1963 } 1964 1965 void 1966 x86pte_mapout(void) 1967 { 1968 if (kpm_vbase != NULL || !khat_running) 1969 return; 1970 1971 /* 1972 * Drop the CPU's hci_mutex and restore preemption. 1973 */ 1974 #ifdef __xpv 1975 if (!IN_XPV_PANIC()) { 1976 uintptr_t va; 1977 1978 /* 1979 * We need to always clear the mapping in case a page 1980 * that was once a page table page is ballooned out. 1981 */ 1982 va = (uintptr_t)PWIN_VA(PWIN_TABLE(CPU->cpu_id)); 1983 (void) HYPERVISOR_update_va_mapping(va, 0, 1984 UVMF_INVLPG | UVMF_LOCAL); 1985 } 1986 #endif 1987 mutex_exit(&CPU->cpu_hat_info->hci_mutex); 1988 kpreempt_enable(); 1989 } 1990 1991 /* 1992 * Atomic retrieval of a pagetable entry 1993 */ 1994 x86pte_t 1995 x86pte_get(htable_t *ht, uint_t entry) 1996 { 1997 x86pte_t pte; 1998 x86pte_t *ptep; 1999 2000 /* 2001 * Be careful that loading PAE entries in 32 bit kernel is atomic. 2002 */ 2003 ASSERT(entry < mmu.ptes_per_table); 2004 ptep = x86pte_access_pagetable(ht, entry); 2005 pte = GET_PTE(ptep); 2006 x86pte_release_pagetable(ht); 2007 return (pte); 2008 } 2009 2010 /* 2011 * Atomic unconditional set of a page table entry, it returns the previous 2012 * value. For pre-existing mappings if the PFN changes, then we don't care 2013 * about the old pte's REF / MOD bits. If the PFN remains the same, we leave 2014 * the MOD/REF bits unchanged. 2015 * 2016 * If asked to overwrite a link to a lower page table with a large page 2017 * mapping, this routine returns the special value of LPAGE_ERROR. This 2018 * allows the upper HAT layers to retry with a smaller mapping size. 2019 */ 2020 x86pte_t 2021 x86pte_set(htable_t *ht, uint_t entry, x86pte_t new, void *ptr) 2022 { 2023 x86pte_t old; 2024 x86pte_t prev; 2025 x86pte_t *ptep; 2026 level_t l = ht->ht_level; 2027 x86pte_t pfn_mask = (l != 0) ? PT_PADDR_LGPG : PT_PADDR; 2028 x86pte_t n; 2029 uintptr_t addr = htable_e2va(ht, entry); 2030 hat_t *hat = ht->ht_hat; 2031 2032 ASSERT(new != 0); /* don't use to invalidate a PTE, see x86pte_update */ 2033 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2034 if (ptr == NULL) 2035 ptep = x86pte_access_pagetable(ht, entry); 2036 else 2037 ptep = ptr; 2038 2039 /* 2040 * Install the new PTE. If remapping the same PFN, then 2041 * copy existing REF/MOD bits to new mapping. 2042 */ 2043 do { 2044 prev = GET_PTE(ptep); 2045 n = new; 2046 if (PTE_ISVALID(n) && (prev & pfn_mask) == (new & pfn_mask)) 2047 n |= prev & (PT_REF | PT_MOD); 2048 2049 /* 2050 * Another thread may have installed this mapping already, 2051 * flush the local TLB and be done. 2052 */ 2053 if (prev == n) { 2054 old = new; 2055 #ifdef __xpv 2056 if (!IN_XPV_PANIC()) 2057 xen_flush_va((caddr_t)addr); 2058 else 2059 #endif 2060 mmu_tlbflush_entry((caddr_t)addr); 2061 goto done; 2062 } 2063 2064 /* 2065 * Detect if we have a collision of installing a large 2066 * page mapping where there already is a lower page table. 2067 */ 2068 if (l > 0 && (prev & PT_VALID) && !(prev & PT_PAGESIZE)) { 2069 old = LPAGE_ERROR; 2070 goto done; 2071 } 2072 2073 XPV_ALLOW_PAGETABLE_UPDATES(); 2074 old = CAS_PTE(ptep, prev, n); 2075 XPV_DISALLOW_PAGETABLE_UPDATES(); 2076 } while (old != prev); 2077 2078 /* 2079 * Do a TLB demap if needed, ie. the old pte was valid. 2080 * 2081 * Note that a stale TLB writeback to the PTE here either can't happen 2082 * or doesn't matter. The PFN can only change for NOSYNC|NOCONSIST 2083 * mappings, but they were created with REF and MOD already set, so 2084 * no stale writeback will happen. 2085 * 2086 * Segmap is the only place where remaps happen on the same pfn and for 2087 * that we want to preserve the stale REF/MOD bits. 2088 */ 2089 if (old & PT_REF) 2090 hat_tlb_inval(hat, addr); 2091 2092 done: 2093 if (ptr == NULL) 2094 x86pte_release_pagetable(ht); 2095 return (old); 2096 } 2097 2098 /* 2099 * Atomic compare and swap of a page table entry. No TLB invalidates are done. 2100 * This is used for links between pagetables of different levels. 2101 * Note we always create these links with dirty/access set, so they should 2102 * never change. 2103 */ 2104 x86pte_t 2105 x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new) 2106 { 2107 x86pte_t pte; 2108 x86pte_t *ptep; 2109 #ifdef __xpv 2110 /* 2111 * We can't use writable pagetables for upper level tables, so fake it. 2112 */ 2113 mmu_update_t t[2]; 2114 int cnt = 1; 2115 int count; 2116 maddr_t ma; 2117 2118 if (!IN_XPV_PANIC()) { 2119 ASSERT(!(ht->ht_flags & HTABLE_VLP)); /* no VLP yet */ 2120 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry)); 2121 t[0].ptr = ma | MMU_NORMAL_PT_UPDATE; 2122 t[0].val = new; 2123 2124 #if defined(__amd64) 2125 /* 2126 * On the 64-bit hypervisor we need to maintain the user mode 2127 * top page table too. 2128 */ 2129 if (ht->ht_level == mmu.max_level && ht->ht_hat != kas.a_hat) { 2130 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa( 2131 ht->ht_hat->hat_user_ptable), entry)); 2132 t[1].ptr = ma | MMU_NORMAL_PT_UPDATE; 2133 t[1].val = new; 2134 ++cnt; 2135 } 2136 #endif /* __amd64 */ 2137 2138 if (HYPERVISOR_mmu_update(t, cnt, &count, DOMID_SELF)) 2139 panic("HYPERVISOR_mmu_update() failed"); 2140 ASSERT(count == cnt); 2141 return (old); 2142 } 2143 #endif 2144 ptep = x86pte_access_pagetable(ht, entry); 2145 XPV_ALLOW_PAGETABLE_UPDATES(); 2146 pte = CAS_PTE(ptep, old, new); 2147 XPV_DISALLOW_PAGETABLE_UPDATES(); 2148 x86pte_release_pagetable(ht); 2149 return (pte); 2150 } 2151 2152 /* 2153 * Invalidate a page table entry as long as it currently maps something that 2154 * matches the value determined by expect. 2155 * 2156 * Also invalidates any TLB entries and returns the previous value of the PTE. 2157 */ 2158 x86pte_t 2159 x86pte_inval( 2160 htable_t *ht, 2161 uint_t entry, 2162 x86pte_t expect, 2163 x86pte_t *pte_ptr) 2164 { 2165 x86pte_t *ptep; 2166 x86pte_t oldpte; 2167 x86pte_t found; 2168 2169 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2170 ASSERT(ht->ht_level <= mmu.max_page_level); 2171 2172 if (pte_ptr != NULL) 2173 ptep = pte_ptr; 2174 else 2175 ptep = x86pte_access_pagetable(ht, entry); 2176 2177 #if defined(__xpv) 2178 /* 2179 * If exit()ing just use HYPERVISOR_mmu_update(), as we can't be racing 2180 * with anything else. 2181 */ 2182 if ((ht->ht_hat->hat_flags & HAT_FREEING) && !IN_XPV_PANIC()) { 2183 int count; 2184 mmu_update_t t[1]; 2185 maddr_t ma; 2186 2187 oldpte = GET_PTE(ptep); 2188 if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR)) 2189 goto done; 2190 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry)); 2191 t[0].ptr = ma | MMU_NORMAL_PT_UPDATE; 2192 t[0].val = 0; 2193 if (HYPERVISOR_mmu_update(t, 1, &count, DOMID_SELF)) 2194 panic("HYPERVISOR_mmu_update() failed"); 2195 ASSERT(count == 1); 2196 goto done; 2197 } 2198 #endif /* __xpv */ 2199 2200 /* 2201 * Note that the loop is needed to handle changes due to h/w updating 2202 * of PT_MOD/PT_REF. 2203 */ 2204 do { 2205 oldpte = GET_PTE(ptep); 2206 if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR)) 2207 goto done; 2208 XPV_ALLOW_PAGETABLE_UPDATES(); 2209 found = CAS_PTE(ptep, oldpte, 0); 2210 XPV_DISALLOW_PAGETABLE_UPDATES(); 2211 } while (found != oldpte); 2212 if (oldpte & (PT_REF | PT_MOD)) 2213 hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry)); 2214 2215 done: 2216 if (pte_ptr == NULL) 2217 x86pte_release_pagetable(ht); 2218 return (oldpte); 2219 } 2220 2221 /* 2222 * Change a page table entry af it currently matches the value in expect. 2223 */ 2224 x86pte_t 2225 x86pte_update( 2226 htable_t *ht, 2227 uint_t entry, 2228 x86pte_t expect, 2229 x86pte_t new) 2230 { 2231 x86pte_t *ptep; 2232 x86pte_t found; 2233 2234 ASSERT(new != 0); 2235 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2236 ASSERT(ht->ht_level <= mmu.max_page_level); 2237 2238 ptep = x86pte_access_pagetable(ht, entry); 2239 XPV_ALLOW_PAGETABLE_UPDATES(); 2240 found = CAS_PTE(ptep, expect, new); 2241 XPV_DISALLOW_PAGETABLE_UPDATES(); 2242 if (found == expect) { 2243 hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry)); 2244 2245 /* 2246 * When removing write permission *and* clearing the 2247 * MOD bit, check if a write happened via a stale 2248 * TLB entry before the TLB shootdown finished. 2249 * 2250 * If it did happen, simply re-enable write permission and 2251 * act like the original CAS failed. 2252 */ 2253 if ((expect & (PT_WRITABLE | PT_MOD)) == PT_WRITABLE && 2254 (new & (PT_WRITABLE | PT_MOD)) == 0 && 2255 (GET_PTE(ptep) & PT_MOD) != 0) { 2256 do { 2257 found = GET_PTE(ptep); 2258 XPV_ALLOW_PAGETABLE_UPDATES(); 2259 found = 2260 CAS_PTE(ptep, found, found | PT_WRITABLE); 2261 XPV_DISALLOW_PAGETABLE_UPDATES(); 2262 } while ((found & PT_WRITABLE) == 0); 2263 } 2264 } 2265 x86pte_release_pagetable(ht); 2266 return (found); 2267 } 2268 2269 #ifndef __xpv 2270 /* 2271 * Copy page tables - this is just a little more complicated than the 2272 * previous routines. Note that it's also not atomic! It also is never 2273 * used for VLP pagetables. 2274 */ 2275 void 2276 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count) 2277 { 2278 caddr_t src_va; 2279 caddr_t dst_va; 2280 size_t size; 2281 x86pte_t *pteptr; 2282 x86pte_t pte; 2283 2284 ASSERT(khat_running); 2285 ASSERT(!(dest->ht_flags & HTABLE_VLP)); 2286 ASSERT(!(src->ht_flags & HTABLE_VLP)); 2287 ASSERT(!(src->ht_flags & HTABLE_SHARED_PFN)); 2288 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN)); 2289 2290 /* 2291 * Acquire access to the CPU pagetable windows for the dest and source. 2292 */ 2293 dst_va = (caddr_t)x86pte_access_pagetable(dest, entry); 2294 if (kpm_vbase) { 2295 src_va = (caddr_t) 2296 PT_INDEX_PTR(hat_kpm_pfn2va(src->ht_pfn), entry); 2297 } else { 2298 uint_t x = PWIN_SRC(CPU->cpu_id); 2299 2300 /* 2301 * Finish defining the src pagetable mapping 2302 */ 2303 src_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry); 2304 pte = MAKEPTE(src->ht_pfn, 0) | mmu.pt_global | mmu.pt_nx; 2305 pteptr = (x86pte_t *)PWIN_PTE_VA(x); 2306 if (mmu.pae_hat) 2307 *pteptr = pte; 2308 else 2309 *(x86pte32_t *)pteptr = pte; 2310 mmu_tlbflush_entry((caddr_t)(PWIN_VA(x))); 2311 } 2312 2313 /* 2314 * now do the copy 2315 */ 2316 size = count << mmu.pte_size_shift; 2317 bcopy(src_va, dst_va, size); 2318 2319 x86pte_release_pagetable(dest); 2320 } 2321 2322 #else /* __xpv */ 2323 2324 /* 2325 * The hypervisor only supports writable pagetables at level 0, so we have 2326 * to install these 1 by 1 the slow way. 2327 */ 2328 void 2329 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count) 2330 { 2331 caddr_t src_va; 2332 x86pte_t pte; 2333 2334 ASSERT(!IN_XPV_PANIC()); 2335 src_va = (caddr_t)x86pte_access_pagetable(src, entry); 2336 while (count) { 2337 if (mmu.pae_hat) 2338 pte = *(x86pte_t *)src_va; 2339 else 2340 pte = *(x86pte32_t *)src_va; 2341 if (pte != 0) { 2342 set_pteval(pfn_to_pa(dest->ht_pfn), entry, 2343 dest->ht_level, pte); 2344 #ifdef __amd64 2345 if (dest->ht_level == mmu.max_level && 2346 htable_e2va(dest, entry) < HYPERVISOR_VIRT_END) 2347 set_pteval( 2348 pfn_to_pa(dest->ht_hat->hat_user_ptable), 2349 entry, dest->ht_level, pte); 2350 #endif 2351 } 2352 --count; 2353 ++entry; 2354 src_va += mmu.pte_size; 2355 } 2356 x86pte_release_pagetable(src); 2357 } 2358 #endif /* __xpv */ 2359 2360 /* 2361 * Zero page table entries - Note this doesn't use atomic stores! 2362 */ 2363 static void 2364 x86pte_zero(htable_t *dest, uint_t entry, uint_t count) 2365 { 2366 caddr_t dst_va; 2367 size_t size; 2368 #ifdef __xpv 2369 int x; 2370 x86pte_t newpte; 2371 #endif 2372 2373 /* 2374 * Map in the page table to be zeroed. 2375 */ 2376 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN)); 2377 ASSERT(!(dest->ht_flags & HTABLE_VLP)); 2378 2379 /* 2380 * On the hypervisor we don't use x86pte_access_pagetable() since 2381 * in this case the page is not pinned yet. 2382 */ 2383 #ifdef __xpv 2384 if (kpm_vbase == NULL) { 2385 kpreempt_disable(); 2386 ASSERT(CPU->cpu_hat_info != NULL); 2387 mutex_enter(&CPU->cpu_hat_info->hci_mutex); 2388 x = PWIN_TABLE(CPU->cpu_id); 2389 newpte = MAKEPTE(dest->ht_pfn, 0) | PT_WRITABLE; 2390 xen_map(newpte, PWIN_VA(x)); 2391 dst_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry); 2392 } else 2393 #endif 2394 dst_va = (caddr_t)x86pte_access_pagetable(dest, entry); 2395 2396 size = count << mmu.pte_size_shift; 2397 ASSERT(size > BLOCKZEROALIGN); 2398 #ifdef __i386 2399 if ((x86_feature & X86_SSE2) == 0) 2400 bzero(dst_va, size); 2401 else 2402 #endif 2403 block_zero_no_xmm(dst_va, size); 2404 2405 #ifdef __xpv 2406 if (kpm_vbase == NULL) { 2407 xen_map(0, PWIN_VA(x)); 2408 mutex_exit(&CPU->cpu_hat_info->hci_mutex); 2409 kpreempt_enable(); 2410 } else 2411 #endif 2412 x86pte_release_pagetable(dest); 2413 } 2414 2415 /* 2416 * Called to ensure that all pagetables are in the system dump 2417 */ 2418 void 2419 hat_dump(void) 2420 { 2421 hat_t *hat; 2422 uint_t h; 2423 htable_t *ht; 2424 2425 /* 2426 * Dump all page tables 2427 */ 2428 for (hat = kas.a_hat; hat != NULL; hat = hat->hat_next) { 2429 for (h = 0; h < hat->hat_num_hash; ++h) { 2430 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 2431 if ((ht->ht_flags & HTABLE_VLP) == 0) 2432 dump_page(ht->ht_pfn); 2433 } 2434 } 2435 } 2436 } 2437