1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/sysmacros.h> 31 #include <sys/kmem.h> 32 #include <sys/atomic.h> 33 #include <sys/bitmap.h> 34 #include <sys/machparam.h> 35 #include <sys/machsystm.h> 36 #include <sys/mman.h> 37 #include <sys/systm.h> 38 #include <sys/cpuvar.h> 39 #include <sys/thread.h> 40 #include <sys/proc.h> 41 #include <sys/cpu.h> 42 #include <sys/kmem.h> 43 #include <sys/disp.h> 44 #include <sys/vmem.h> 45 #include <sys/vmsystm.h> 46 #include <sys/promif.h> 47 #include <sys/var.h> 48 #include <sys/x86_archext.h> 49 #include <sys/archsystm.h> 50 #include <sys/bootconf.h> 51 #include <sys/dumphdr.h> 52 #include <vm/seg_kmem.h> 53 #include <vm/seg_kpm.h> 54 #include <vm/hat.h> 55 #include <vm/hat_i86.h> 56 #include <sys/cmn_err.h> 57 58 #include <sys/bootinfo.h> 59 #include <vm/kboot_mmu.h> 60 61 static void x86pte_zero(htable_t *dest, uint_t entry, uint_t count); 62 63 kmem_cache_t *htable_cache; 64 65 /* 66 * The variable htable_reserve_amount, rather than HTABLE_RESERVE_AMOUNT, 67 * is used in order to facilitate testing of the htable_steal() code. 68 * By resetting htable_reserve_amount to a lower value, we can force 69 * stealing to occur. The reserve amount is a guess to get us through boot. 70 */ 71 #define HTABLE_RESERVE_AMOUNT (200) 72 uint_t htable_reserve_amount = HTABLE_RESERVE_AMOUNT; 73 kmutex_t htable_reserve_mutex; 74 uint_t htable_reserve_cnt; 75 htable_t *htable_reserve_pool; 76 77 /* 78 * Used to hand test htable_steal(). 79 */ 80 #ifdef DEBUG 81 ulong_t force_steal = 0; 82 ulong_t ptable_cnt = 0; 83 #endif 84 85 /* 86 * This variable is so that we can tune this via /etc/system 87 * Any value works, but a power of two <= mmu.ptes_per_table is best. 88 */ 89 uint_t htable_steal_passes = 8; 90 91 /* 92 * mutex stuff for access to htable hash 93 */ 94 #define NUM_HTABLE_MUTEX 128 95 kmutex_t htable_mutex[NUM_HTABLE_MUTEX]; 96 #define HTABLE_MUTEX_HASH(h) ((h) & (NUM_HTABLE_MUTEX - 1)) 97 98 #define HTABLE_ENTER(h) mutex_enter(&htable_mutex[HTABLE_MUTEX_HASH(h)]); 99 #define HTABLE_EXIT(h) mutex_exit(&htable_mutex[HTABLE_MUTEX_HASH(h)]); 100 101 /* 102 * forward declarations 103 */ 104 static void link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr); 105 static void unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr); 106 static void htable_free(htable_t *ht); 107 static x86pte_t *x86pte_access_pagetable(htable_t *ht, uint_t index); 108 static void x86pte_release_pagetable(htable_t *ht); 109 static x86pte_t x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, 110 x86pte_t new); 111 112 /* 113 * A counter to track if we are stealing or reaping htables. When non-zero 114 * htable_free() will directly free htables (either to the reserve or kmem) 115 * instead of putting them in a hat's htable cache. 116 */ 117 uint32_t htable_dont_cache = 0; 118 119 /* 120 * Track the number of active pagetables, so we can know how many to reap 121 */ 122 static uint32_t active_ptables = 0; 123 124 /* 125 * Allocate a memory page for a hardware page table. 126 * 127 * A wrapper around page_get_physical(), with some extra checks. 128 */ 129 static pfn_t 130 ptable_alloc(uintptr_t seed) 131 { 132 pfn_t pfn; 133 page_t *pp; 134 135 pfn = PFN_INVALID; 136 atomic_add_32(&active_ptables, 1); 137 138 /* 139 * The first check is to see if there is memory in the system. If we 140 * drop to throttlefree, then fail the ptable_alloc() and let the 141 * stealing code kick in. Note that we have to do this test here, 142 * since the test in page_create_throttle() would let the NOSLEEP 143 * allocation go through and deplete the page reserves. 144 * 145 * The !NOMEMWAIT() lets pageout, fsflush, etc. skip this check. 146 */ 147 if (!NOMEMWAIT() && freemem <= throttlefree + 1) 148 return (PFN_INVALID); 149 150 #ifdef DEBUG 151 /* 152 * This code makes htable_steal() easier to test. By setting 153 * force_steal we force pagetable allocations to fall 154 * into the stealing code. Roughly 1 in ever "force_steal" 155 * page table allocations will fail. 156 */ 157 if (proc_pageout != NULL && force_steal > 1 && 158 ++ptable_cnt > force_steal) { 159 ptable_cnt = 0; 160 return (PFN_INVALID); 161 } 162 #endif /* DEBUG */ 163 164 pp = page_get_physical(seed); 165 if (pp == NULL) 166 return (PFN_INVALID); 167 pfn = pp->p_pagenum; 168 page_downgrade(pp); 169 ASSERT(PAGE_SHARED(pp)); 170 171 if (pfn == PFN_INVALID) 172 panic("ptable_alloc(): Invalid PFN!!"); 173 HATSTAT_INC(hs_ptable_allocs); 174 return (pfn); 175 } 176 177 /* 178 * Free an htable's associated page table page. See the comments 179 * for ptable_alloc(). 180 */ 181 static void 182 ptable_free(pfn_t pfn) 183 { 184 page_t *pp = page_numtopp_nolock(pfn); 185 186 /* 187 * need to destroy the page used for the pagetable 188 */ 189 ASSERT(pfn != PFN_INVALID); 190 HATSTAT_INC(hs_ptable_frees); 191 atomic_add_32(&active_ptables, -1); 192 if (pp == NULL) 193 panic("ptable_free(): no page for pfn!"); 194 ASSERT(PAGE_SHARED(pp)); 195 ASSERT(pfn == pp->p_pagenum); 196 197 /* 198 * Get an exclusive lock, might have to wait for a kmem reader. 199 */ 200 if (!page_tryupgrade(pp)) { 201 page_unlock(pp); 202 /* 203 * RFE: we could change this to not loop forever 204 * George Cameron had some idea on how to do that. 205 * For now looping works - it's just like sfmmu. 206 */ 207 while (!page_lock(pp, SE_EXCL, (kmutex_t *)NULL, P_RECLAIM)) 208 continue; 209 } 210 page_free(pp, 1); 211 page_unresv(1); 212 } 213 214 /* 215 * Put one htable on the reserve list. 216 */ 217 static void 218 htable_put_reserve(htable_t *ht) 219 { 220 ht->ht_hat = NULL; /* no longer tied to a hat */ 221 ASSERT(ht->ht_pfn == PFN_INVALID); 222 HATSTAT_INC(hs_htable_rputs); 223 mutex_enter(&htable_reserve_mutex); 224 ht->ht_next = htable_reserve_pool; 225 htable_reserve_pool = ht; 226 ++htable_reserve_cnt; 227 mutex_exit(&htable_reserve_mutex); 228 } 229 230 /* 231 * Take one htable from the reserve. 232 */ 233 static htable_t * 234 htable_get_reserve(void) 235 { 236 htable_t *ht = NULL; 237 238 mutex_enter(&htable_reserve_mutex); 239 if (htable_reserve_cnt != 0) { 240 ht = htable_reserve_pool; 241 ASSERT(ht != NULL); 242 ASSERT(ht->ht_pfn == PFN_INVALID); 243 htable_reserve_pool = ht->ht_next; 244 --htable_reserve_cnt; 245 HATSTAT_INC(hs_htable_rgets); 246 } 247 mutex_exit(&htable_reserve_mutex); 248 return (ht); 249 } 250 251 /* 252 * Allocate initial htables and put them on the reserve list 253 */ 254 void 255 htable_initial_reserve(uint_t count) 256 { 257 htable_t *ht; 258 259 count += HTABLE_RESERVE_AMOUNT; 260 while (count > 0) { 261 ht = kmem_cache_alloc(htable_cache, KM_NOSLEEP); 262 ASSERT(ht != NULL); 263 264 ASSERT(use_boot_reserve); 265 ht->ht_pfn = PFN_INVALID; 266 htable_put_reserve(ht); 267 --count; 268 } 269 } 270 271 /* 272 * Readjust the reserves after a thread finishes using them. 273 */ 274 void 275 htable_adjust_reserve() 276 { 277 htable_t *ht; 278 279 /* 280 * Free any excess htables in the reserve list 281 */ 282 while (htable_reserve_cnt > htable_reserve_amount && 283 !USE_HAT_RESERVES()) { 284 ht = htable_get_reserve(); 285 if (ht == NULL) 286 return; 287 ASSERT(ht->ht_pfn == PFN_INVALID); 288 kmem_cache_free(htable_cache, ht); 289 } 290 } 291 292 293 /* 294 * This routine steals htables from user processes for htable_alloc() or 295 * for htable_reap(). 296 */ 297 static htable_t * 298 htable_steal(uint_t cnt) 299 { 300 hat_t *hat = kas.a_hat; /* list starts with khat */ 301 htable_t *list = NULL; 302 htable_t *ht; 303 htable_t *higher; 304 uint_t h; 305 uint_t h_start; 306 static uint_t h_seed = 0; 307 uint_t e; 308 uintptr_t va; 309 x86pte_t pte; 310 uint_t stolen = 0; 311 uint_t pass; 312 uint_t threshold; 313 314 /* 315 * Limit htable_steal_passes to something reasonable 316 */ 317 if (htable_steal_passes == 0) 318 htable_steal_passes = 1; 319 if (htable_steal_passes > mmu.ptes_per_table) 320 htable_steal_passes = mmu.ptes_per_table; 321 322 /* 323 * Loop through all user hats. The 1st pass takes cached htables that 324 * aren't in use. The later passes steal by removing mappings, too. 325 */ 326 atomic_add_32(&htable_dont_cache, 1); 327 for (pass = 0; pass <= htable_steal_passes && stolen < cnt; ++pass) { 328 threshold = pass * mmu.ptes_per_table / htable_steal_passes; 329 hat = kas.a_hat; 330 for (;;) { 331 332 /* 333 * Clear the victim flag and move to next hat 334 */ 335 mutex_enter(&hat_list_lock); 336 if (hat != kas.a_hat) { 337 hat->hat_flags &= ~HAT_VICTIM; 338 cv_broadcast(&hat_list_cv); 339 } 340 hat = hat->hat_next; 341 342 /* 343 * Skip any hat that is already being stolen from. 344 * 345 * We skip SHARED hats, as these are dummy 346 * hats that host ISM shared page tables. 347 * 348 * We also skip if HAT_FREEING because hat_pte_unmap() 349 * won't zero out the PTE's. That would lead to hitting 350 * stale PTEs either here or under hat_unload() when we 351 * steal and unload the same page table in competing 352 * threads. 353 */ 354 while (hat != NULL && 355 (hat->hat_flags & 356 (HAT_VICTIM | HAT_SHARED | HAT_FREEING)) != 0) 357 hat = hat->hat_next; 358 359 if (hat == NULL) { 360 mutex_exit(&hat_list_lock); 361 break; 362 } 363 364 /* 365 * Are we finished? 366 */ 367 if (stolen == cnt) { 368 /* 369 * Try to spread the pain of stealing, 370 * move victim HAT to the end of the HAT list. 371 */ 372 if (pass >= 1 && cnt == 1 && 373 kas.a_hat->hat_prev != hat) { 374 375 /* unlink victim hat */ 376 if (hat->hat_prev) 377 hat->hat_prev->hat_next = 378 hat->hat_next; 379 else 380 kas.a_hat->hat_next = 381 hat->hat_next; 382 if (hat->hat_next) 383 hat->hat_next->hat_prev = 384 hat->hat_prev; 385 else 386 kas.a_hat->hat_prev = 387 hat->hat_prev; 388 389 390 /* relink at end of hat list */ 391 hat->hat_next = NULL; 392 hat->hat_prev = kas.a_hat->hat_prev; 393 if (hat->hat_prev) 394 hat->hat_prev->hat_next = hat; 395 else 396 kas.a_hat->hat_next = hat; 397 kas.a_hat->hat_prev = hat; 398 399 } 400 401 mutex_exit(&hat_list_lock); 402 break; 403 } 404 405 /* 406 * Mark the HAT as a stealing victim. 407 */ 408 hat->hat_flags |= HAT_VICTIM; 409 mutex_exit(&hat_list_lock); 410 411 /* 412 * Take any htables from the hat's cached "free" list. 413 */ 414 hat_enter(hat); 415 while ((ht = hat->hat_ht_cached) != NULL && 416 stolen < cnt) { 417 hat->hat_ht_cached = ht->ht_next; 418 ht->ht_next = list; 419 list = ht; 420 ++stolen; 421 } 422 hat_exit(hat); 423 424 /* 425 * Don't steal on first pass. 426 */ 427 if (pass == 0 || stolen == cnt) 428 continue; 429 430 /* 431 * Search the active htables for one to steal. 432 * Start at a different hash bucket every time to 433 * help spread the pain of stealing. 434 */ 435 h = h_start = h_seed++ % hat->hat_num_hash; 436 do { 437 higher = NULL; 438 HTABLE_ENTER(h); 439 for (ht = hat->hat_ht_hash[h]; ht; 440 ht = ht->ht_next) { 441 442 /* 443 * Can we rule out reaping? 444 */ 445 if (ht->ht_busy != 0 || 446 (ht->ht_flags & HTABLE_SHARED_PFN)|| 447 ht->ht_level > 0 || 448 ht->ht_valid_cnt > threshold || 449 ht->ht_lock_cnt != 0) 450 continue; 451 452 /* 453 * Increment busy so the htable can't 454 * disappear. We drop the htable mutex 455 * to avoid deadlocks with 456 * hat_pageunload() and the hment mutex 457 * while we call hat_pte_unmap() 458 */ 459 ++ht->ht_busy; 460 HTABLE_EXIT(h); 461 462 /* 463 * Try stealing. 464 * - unload and invalidate all PTEs 465 */ 466 for (e = 0, va = ht->ht_vaddr; 467 e < HTABLE_NUM_PTES(ht) && 468 ht->ht_valid_cnt > 0 && 469 ht->ht_busy == 1 && 470 ht->ht_lock_cnt == 0; 471 ++e, va += MMU_PAGESIZE) { 472 pte = x86pte_get(ht, e); 473 if (!PTE_ISVALID(pte)) 474 continue; 475 hat_pte_unmap(ht, e, 476 HAT_UNLOAD, pte, NULL); 477 } 478 479 /* 480 * Reacquire htable lock. If we didn't 481 * remove all mappings in the table, 482 * or another thread added a new mapping 483 * behind us, give up on this table. 484 */ 485 HTABLE_ENTER(h); 486 if (ht->ht_busy != 1 || 487 ht->ht_valid_cnt != 0 || 488 ht->ht_lock_cnt != 0) { 489 --ht->ht_busy; 490 continue; 491 } 492 493 /* 494 * Steal it and unlink the page table. 495 */ 496 higher = ht->ht_parent; 497 unlink_ptp(higher, ht, ht->ht_vaddr); 498 499 /* 500 * remove from the hash list 501 */ 502 if (ht->ht_next) 503 ht->ht_next->ht_prev = 504 ht->ht_prev; 505 506 if (ht->ht_prev) { 507 ht->ht_prev->ht_next = 508 ht->ht_next; 509 } else { 510 ASSERT(hat->hat_ht_hash[h] == 511 ht); 512 hat->hat_ht_hash[h] = 513 ht->ht_next; 514 } 515 516 /* 517 * Break to outer loop to release the 518 * higher (ht_parent) pagetable. This 519 * spreads out the pain caused by 520 * pagefaults. 521 */ 522 ht->ht_next = list; 523 list = ht; 524 ++stolen; 525 break; 526 } 527 HTABLE_EXIT(h); 528 if (higher != NULL) 529 htable_release(higher); 530 if (++h == hat->hat_num_hash) 531 h = 0; 532 } while (stolen < cnt && h != h_start); 533 } 534 } 535 atomic_add_32(&htable_dont_cache, -1); 536 return (list); 537 } 538 539 540 /* 541 * This is invoked from kmem when the system is low on memory. We try 542 * to free hments, htables, and ptables to improve the memory situation. 543 */ 544 /*ARGSUSED*/ 545 static void 546 htable_reap(void *handle) 547 { 548 uint_t reap_cnt; 549 htable_t *list; 550 htable_t *ht; 551 552 HATSTAT_INC(hs_reap_attempts); 553 if (!can_steal_post_boot) 554 return; 555 556 /* 557 * Try to reap 5% of the page tables bounded by a maximum of 558 * 5% of physmem and a minimum of 10. 559 */ 560 reap_cnt = MIN(MAX(physmem / 20, active_ptables / 20), 10); 561 562 /* 563 * Let htable_steal() do the work, we just call htable_free() 564 */ 565 list = htable_steal(reap_cnt); 566 while ((ht = list) != NULL) { 567 list = ht->ht_next; 568 HATSTAT_INC(hs_reaped); 569 htable_free(ht); 570 } 571 572 /* 573 * Free up excess reserves 574 */ 575 htable_adjust_reserve(); 576 hment_adjust_reserve(); 577 } 578 579 /* 580 * Allocate an htable, stealing one or using the reserve if necessary 581 */ 582 static htable_t * 583 htable_alloc( 584 hat_t *hat, 585 uintptr_t vaddr, 586 level_t level, 587 htable_t *shared) 588 { 589 htable_t *ht = NULL; 590 uint_t is_vlp; 591 uint_t is_bare = 0; 592 uint_t need_to_zero = 1; 593 int kmflags = (can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP); 594 595 if (level < 0 || level > TOP_LEVEL(hat)) 596 panic("htable_alloc(): level %d out of range\n", level); 597 598 is_vlp = (hat->hat_flags & HAT_VLP) && level == VLP_LEVEL; 599 if (is_vlp || shared != NULL) 600 is_bare = 1; 601 602 /* 603 * First reuse a cached htable from the hat_ht_cached field, this 604 * avoids unnecessary trips through kmem/page allocators. 605 */ 606 if (hat->hat_ht_cached != NULL && !is_bare) { 607 hat_enter(hat); 608 ht = hat->hat_ht_cached; 609 if (ht != NULL) { 610 hat->hat_ht_cached = ht->ht_next; 611 need_to_zero = 0; 612 /* XX64 ASSERT() they're all zero somehow */ 613 ASSERT(ht->ht_pfn != PFN_INVALID); 614 } 615 hat_exit(hat); 616 } 617 618 if (ht == NULL) { 619 /* 620 * Allocate an htable, possibly refilling the reserves. 621 */ 622 if (USE_HAT_RESERVES()) { 623 ht = htable_get_reserve(); 624 } else { 625 /* 626 * Donate successful htable allocations to the reserve. 627 */ 628 for (;;) { 629 ht = kmem_cache_alloc(htable_cache, kmflags); 630 if (ht == NULL) 631 break; 632 ht->ht_pfn = PFN_INVALID; 633 if (USE_HAT_RESERVES() || 634 htable_reserve_cnt >= htable_reserve_amount) 635 break; 636 htable_put_reserve(ht); 637 } 638 } 639 640 /* 641 * allocate a page for the hardware page table if needed 642 */ 643 if (ht != NULL && !is_bare) { 644 ht->ht_hat = hat; 645 ht->ht_pfn = ptable_alloc((uintptr_t)ht); 646 if (ht->ht_pfn == PFN_INVALID) { 647 if (USE_HAT_RESERVES()) 648 htable_put_reserve(ht); 649 else 650 kmem_cache_free(htable_cache, ht); 651 ht = NULL; 652 } 653 } 654 } 655 656 /* 657 * If allocations failed, kick off a kmem_reap() and resort to 658 * htable steal(). We may spin here if the system is very low on 659 * memory. If the kernel itself has consumed all memory and kmem_reap() 660 * can't free up anything, then we'll really get stuck here. 661 * That should only happen in a system where the administrator has 662 * misconfigured VM parameters via /etc/system. 663 */ 664 while (ht == NULL && can_steal_post_boot) { 665 kmem_reap(); 666 ht = htable_steal(1); 667 HATSTAT_INC(hs_steals); 668 669 /* 670 * If we stole for a bare htable, release the pagetable page. 671 */ 672 if (ht != NULL) { 673 if (is_bare) { 674 ptable_free(ht->ht_pfn); 675 ht->ht_pfn = PFN_INVALID; 676 } 677 } 678 } 679 680 /* 681 * All attempts to allocate or steal failed. This should only happen 682 * if we run out of memory during boot, due perhaps to a huge 683 * boot_archive. At this point there's no way to continue. 684 */ 685 if (ht == NULL) 686 panic("htable_alloc(): couldn't steal\n"); 687 688 /* 689 * Shared page tables have all entries locked and entries may not 690 * be added or deleted. 691 */ 692 ht->ht_flags = 0; 693 if (shared != NULL) { 694 ASSERT(shared->ht_valid_cnt > 0); 695 ht->ht_flags |= HTABLE_SHARED_PFN; 696 ht->ht_pfn = shared->ht_pfn; 697 ht->ht_lock_cnt = 0; 698 ht->ht_valid_cnt = 0; /* updated in hat_share() */ 699 ht->ht_shares = shared; 700 need_to_zero = 0; 701 } else { 702 ht->ht_shares = NULL; 703 ht->ht_lock_cnt = 0; 704 ht->ht_valid_cnt = 0; 705 } 706 707 /* 708 * setup flags, etc. for VLP htables 709 */ 710 if (is_vlp) { 711 ht->ht_flags |= HTABLE_VLP; 712 ASSERT(ht->ht_pfn == PFN_INVALID); 713 need_to_zero = 0; 714 } 715 716 /* 717 * fill in the htable 718 */ 719 ht->ht_hat = hat; 720 ht->ht_parent = NULL; 721 ht->ht_vaddr = vaddr; 722 ht->ht_level = level; 723 ht->ht_busy = 1; 724 ht->ht_next = NULL; 725 ht->ht_prev = NULL; 726 727 /* 728 * Zero out any freshly allocated page table 729 */ 730 if (need_to_zero) 731 x86pte_zero(ht, 0, mmu.ptes_per_table); 732 733 return (ht); 734 } 735 736 /* 737 * Free up an htable, either to a hat's cached list, the reserves or 738 * back to kmem. 739 */ 740 static void 741 htable_free(htable_t *ht) 742 { 743 hat_t *hat = ht->ht_hat; 744 745 /* 746 * If the process isn't exiting, cache the free htable in the hat 747 * structure. We always do this for the boot reserve. We don't 748 * do this if the hat is exiting or we are stealing/reaping htables. 749 */ 750 if (hat != NULL && 751 !(ht->ht_flags & HTABLE_SHARED_PFN) && 752 (use_boot_reserve || 753 (!(hat->hat_flags & HAT_FREEING) && !htable_dont_cache))) { 754 ASSERT((ht->ht_flags & HTABLE_VLP) == 0); 755 ASSERT(ht->ht_pfn != PFN_INVALID); 756 hat_enter(hat); 757 ht->ht_next = hat->hat_ht_cached; 758 hat->hat_ht_cached = ht; 759 hat_exit(hat); 760 return; 761 } 762 763 /* 764 * If we have a hardware page table, free it. 765 * We don't free page tables that are accessed by sharing. 766 */ 767 if (ht->ht_flags & HTABLE_SHARED_PFN) { 768 ASSERT(ht->ht_pfn != PFN_INVALID); 769 } else if (!(ht->ht_flags & HTABLE_VLP)) { 770 ptable_free(ht->ht_pfn); 771 } 772 ht->ht_pfn = PFN_INVALID; 773 774 /* 775 * Free htables or put into reserves. 776 */ 777 if (USE_HAT_RESERVES() || htable_reserve_cnt < htable_reserve_amount) { 778 htable_put_reserve(ht); 779 } else { 780 kmem_cache_free(htable_cache, ht); 781 htable_adjust_reserve(); 782 } 783 } 784 785 786 /* 787 * This is called when a hat is being destroyed or swapped out. We reap all 788 * the remaining htables in the hat cache. If destroying all left over 789 * htables are also destroyed. 790 * 791 * We also don't need to invalidate any of the PTPs nor do any demapping. 792 */ 793 void 794 htable_purge_hat(hat_t *hat) 795 { 796 htable_t *ht; 797 int h; 798 799 /* 800 * Purge the htable cache if just reaping. 801 */ 802 if (!(hat->hat_flags & HAT_FREEING)) { 803 atomic_add_32(&htable_dont_cache, 1); 804 for (;;) { 805 hat_enter(hat); 806 ht = hat->hat_ht_cached; 807 if (ht == NULL) { 808 hat_exit(hat); 809 break; 810 } 811 hat->hat_ht_cached = ht->ht_next; 812 hat_exit(hat); 813 htable_free(ht); 814 } 815 atomic_add_32(&htable_dont_cache, -1); 816 return; 817 } 818 819 /* 820 * if freeing, no locking is needed 821 */ 822 while ((ht = hat->hat_ht_cached) != NULL) { 823 hat->hat_ht_cached = ht->ht_next; 824 htable_free(ht); 825 } 826 827 /* 828 * walk thru the htable hash table and free all the htables in it. 829 */ 830 for (h = 0; h < hat->hat_num_hash; ++h) { 831 while ((ht = hat->hat_ht_hash[h]) != NULL) { 832 if (ht->ht_next) 833 ht->ht_next->ht_prev = ht->ht_prev; 834 835 if (ht->ht_prev) { 836 ht->ht_prev->ht_next = ht->ht_next; 837 } else { 838 ASSERT(hat->hat_ht_hash[h] == ht); 839 hat->hat_ht_hash[h] = ht->ht_next; 840 } 841 htable_free(ht); 842 } 843 } 844 } 845 846 /* 847 * Unlink an entry for a table at vaddr and level out of the existing table 848 * one level higher. We are always holding the HASH_ENTER() when doing this. 849 */ 850 static void 851 unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr) 852 { 853 uint_t entry = htable_va2entry(vaddr, higher); 854 x86pte_t expect = MAKEPTP(old->ht_pfn, old->ht_level); 855 x86pte_t found; 856 hat_t *hat = old->ht_hat; 857 858 ASSERT(higher->ht_busy > 0); 859 ASSERT(higher->ht_valid_cnt > 0); 860 ASSERT(old->ht_valid_cnt == 0); 861 found = x86pte_cas(higher, entry, expect, 0); 862 if (found != expect) 863 panic("Bad PTP found=" FMT_PTE ", expected=" FMT_PTE, 864 found, expect); 865 866 /* 867 * When a top level VLP page table entry changes, we must issue 868 * a reload of cr3 on all processors. 869 * 870 * If we don't need do do that, then we still have to INVLPG against 871 * an address covered by the inner page table, as the latest processors 872 * have TLB-like caches for non-leaf page table entries. 873 */ 874 if (!(hat->hat_flags & HAT_FREEING)) { 875 hat_tlb_inval(hat, (higher->ht_flags & HTABLE_VLP) ? 876 DEMAP_ALL_ADDR : old->ht_vaddr); 877 } 878 879 HTABLE_DEC(higher->ht_valid_cnt); 880 } 881 882 /* 883 * Link an entry for a new table at vaddr and level into the existing table 884 * one level higher. We are always holding the HASH_ENTER() when doing this. 885 */ 886 static void 887 link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr) 888 { 889 uint_t entry = htable_va2entry(vaddr, higher); 890 x86pte_t newptp = MAKEPTP(new->ht_pfn, new->ht_level); 891 x86pte_t found; 892 893 ASSERT(higher->ht_busy > 0); 894 895 ASSERT(new->ht_level != mmu.max_level); 896 897 HTABLE_INC(higher->ht_valid_cnt); 898 899 found = x86pte_cas(higher, entry, 0, newptp); 900 if ((found & ~PT_REF) != 0) 901 panic("HAT: ptp not 0, found=" FMT_PTE, found); 902 903 /* 904 * When any top level VLP page table entry changes, we must issue 905 * a reload of cr3 on all processors using it. 906 * We also need to do this for the kernel hat on PAE 32 bit kernel. 907 */ 908 if ( 909 #ifdef __i386 910 (higher->ht_hat == kas.a_hat && higher->ht_level == VLP_LEVEL) || 911 #endif 912 (higher->ht_flags & HTABLE_VLP)) 913 hat_tlb_inval(higher->ht_hat, DEMAP_ALL_ADDR); 914 } 915 916 /* 917 * Release of hold on an htable. If this is the last use and the pagetable 918 * is empty we may want to free it, then recursively look at the pagetable 919 * above it. The recursion is handled by the outer while() loop. 920 */ 921 void 922 htable_release(htable_t *ht) 923 { 924 uint_t hashval; 925 htable_t *shared; 926 htable_t *higher; 927 hat_t *hat; 928 uintptr_t va; 929 level_t level; 930 931 while (ht != NULL) { 932 shared = NULL; 933 for (;;) { 934 hat = ht->ht_hat; 935 va = ht->ht_vaddr; 936 level = ht->ht_level; 937 hashval = HTABLE_HASH(hat, va, level); 938 939 /* 940 * The common case is that this isn't the last use of 941 * an htable so we don't want to free the htable. 942 */ 943 HTABLE_ENTER(hashval); 944 ASSERT(ht->ht_lock_cnt == 0 || ht->ht_valid_cnt > 0); 945 ASSERT(ht->ht_valid_cnt >= 0); 946 ASSERT(ht->ht_busy > 0); 947 if (ht->ht_valid_cnt > 0) 948 break; 949 if (ht->ht_busy > 1) 950 break; 951 952 /* 953 * we always release empty shared htables 954 */ 955 if (!(ht->ht_flags & HTABLE_SHARED_PFN)) { 956 957 /* 958 * don't release if in address space tear down 959 */ 960 if (hat->hat_flags & HAT_FREEING) 961 break; 962 963 /* 964 * At and above max_page_level, free if it's for 965 * a boot-time kernel mapping below kernelbase. 966 */ 967 if (level >= mmu.max_page_level && 968 (hat != kas.a_hat || va >= kernelbase)) 969 break; 970 } 971 972 /* 973 * Remember if we destroy an htable that shares its PFN 974 * from elsewhere. 975 */ 976 if (ht->ht_flags & HTABLE_SHARED_PFN) { 977 ASSERT(shared == NULL); 978 shared = ht->ht_shares; 979 HATSTAT_INC(hs_htable_unshared); 980 } 981 982 /* 983 * Handle release of a table and freeing the htable_t. 984 * Unlink it from the table higher (ie. ht_parent). 985 */ 986 ASSERT(ht->ht_lock_cnt == 0); 987 higher = ht->ht_parent; 988 ASSERT(higher != NULL); 989 990 /* 991 * Unlink the pagetable. 992 */ 993 unlink_ptp(higher, ht, va); 994 995 /* 996 * remove this htable from its hash list 997 */ 998 if (ht->ht_next) 999 ht->ht_next->ht_prev = ht->ht_prev; 1000 1001 if (ht->ht_prev) { 1002 ht->ht_prev->ht_next = ht->ht_next; 1003 } else { 1004 ASSERT(hat->hat_ht_hash[hashval] == ht); 1005 hat->hat_ht_hash[hashval] = ht->ht_next; 1006 } 1007 HTABLE_EXIT(hashval); 1008 htable_free(ht); 1009 ht = higher; 1010 } 1011 1012 ASSERT(ht->ht_busy >= 1); 1013 --ht->ht_busy; 1014 HTABLE_EXIT(hashval); 1015 1016 /* 1017 * If we released a shared htable, do a release on the htable 1018 * from which it shared 1019 */ 1020 ht = shared; 1021 } 1022 } 1023 1024 /* 1025 * Find the htable for the pagetable at the given level for the given address. 1026 * If found acquires a hold that eventually needs to be htable_release()d 1027 */ 1028 htable_t * 1029 htable_lookup(hat_t *hat, uintptr_t vaddr, level_t level) 1030 { 1031 uintptr_t base; 1032 uint_t hashval; 1033 htable_t *ht = NULL; 1034 1035 ASSERT(level >= 0); 1036 ASSERT(level <= TOP_LEVEL(hat)); 1037 1038 if (level == TOP_LEVEL(hat)) { 1039 #if defined(__amd64) 1040 /* 1041 * 32 bit address spaces on 64 bit kernels need to check 1042 * for overflow of the 32 bit address space 1043 */ 1044 if ((hat->hat_flags & HAT_VLP) && vaddr >= ((uint64_t)1 << 32)) 1045 return (NULL); 1046 #endif 1047 base = 0; 1048 } else { 1049 base = vaddr & LEVEL_MASK(level + 1); 1050 } 1051 1052 hashval = HTABLE_HASH(hat, base, level); 1053 HTABLE_ENTER(hashval); 1054 for (ht = hat->hat_ht_hash[hashval]; ht; ht = ht->ht_next) { 1055 if (ht->ht_hat == hat && 1056 ht->ht_vaddr == base && 1057 ht->ht_level == level) 1058 break; 1059 } 1060 if (ht) 1061 ++ht->ht_busy; 1062 1063 HTABLE_EXIT(hashval); 1064 return (ht); 1065 } 1066 1067 /* 1068 * Acquires a hold on a known htable (from a locked hment entry). 1069 */ 1070 void 1071 htable_acquire(htable_t *ht) 1072 { 1073 hat_t *hat = ht->ht_hat; 1074 level_t level = ht->ht_level; 1075 uintptr_t base = ht->ht_vaddr; 1076 uint_t hashval = HTABLE_HASH(hat, base, level); 1077 1078 HTABLE_ENTER(hashval); 1079 #ifdef DEBUG 1080 /* 1081 * make sure the htable is there 1082 */ 1083 { 1084 htable_t *h; 1085 1086 for (h = hat->hat_ht_hash[hashval]; 1087 h && h != ht; 1088 h = h->ht_next) 1089 ; 1090 ASSERT(h == ht); 1091 } 1092 #endif /* DEBUG */ 1093 ++ht->ht_busy; 1094 HTABLE_EXIT(hashval); 1095 } 1096 1097 /* 1098 * Find the htable for the pagetable at the given level for the given address. 1099 * If found acquires a hold that eventually needs to be htable_release()d 1100 * If not found the table is created. 1101 * 1102 * Since we can't hold a hash table mutex during allocation, we have to 1103 * drop it and redo the search on a create. Then we may have to free the newly 1104 * allocated htable if another thread raced in and created it ahead of us. 1105 */ 1106 htable_t * 1107 htable_create( 1108 hat_t *hat, 1109 uintptr_t vaddr, 1110 level_t level, 1111 htable_t *shared) 1112 { 1113 uint_t h; 1114 level_t l; 1115 uintptr_t base; 1116 htable_t *ht; 1117 htable_t *higher = NULL; 1118 htable_t *new = NULL; 1119 1120 if (level < 0 || level > TOP_LEVEL(hat)) 1121 panic("htable_create(): level %d out of range\n", level); 1122 1123 /* 1124 * Create the page tables in top down order. 1125 */ 1126 for (l = TOP_LEVEL(hat); l >= level; --l) { 1127 new = NULL; 1128 if (l == TOP_LEVEL(hat)) 1129 base = 0; 1130 else 1131 base = vaddr & LEVEL_MASK(l + 1); 1132 1133 h = HTABLE_HASH(hat, base, l); 1134 try_again: 1135 /* 1136 * look up the htable at this level 1137 */ 1138 HTABLE_ENTER(h); 1139 if (l == TOP_LEVEL(hat)) { 1140 ht = hat->hat_htable; 1141 } else { 1142 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 1143 ASSERT(ht->ht_hat == hat); 1144 if (ht->ht_vaddr == base && 1145 ht->ht_level == l) 1146 break; 1147 } 1148 } 1149 1150 /* 1151 * if we found the htable, increment its busy cnt 1152 * and if we had allocated a new htable, free it. 1153 */ 1154 if (ht != NULL) { 1155 /* 1156 * If we find a pre-existing shared table, it must 1157 * share from the same place. 1158 */ 1159 if (l == level && shared && ht->ht_shares && 1160 ht->ht_shares != shared) { 1161 panic("htable shared from wrong place " 1162 "found htable=%p shared=%p", ht, shared); 1163 } 1164 ++ht->ht_busy; 1165 HTABLE_EXIT(h); 1166 if (new) 1167 htable_free(new); 1168 if (higher != NULL) 1169 htable_release(higher); 1170 higher = ht; 1171 1172 /* 1173 * if we didn't find it on the first search 1174 * allocate a new one and search again 1175 */ 1176 } else if (new == NULL) { 1177 HTABLE_EXIT(h); 1178 new = htable_alloc(hat, base, l, 1179 l == level ? shared : NULL); 1180 goto try_again; 1181 1182 /* 1183 * 2nd search and still not there, use "new" table 1184 * Link new table into higher, when not at top level. 1185 */ 1186 } else { 1187 ht = new; 1188 if (higher != NULL) { 1189 link_ptp(higher, ht, base); 1190 ht->ht_parent = higher; 1191 } 1192 ht->ht_next = hat->hat_ht_hash[h]; 1193 ASSERT(ht->ht_prev == NULL); 1194 if (hat->hat_ht_hash[h]) 1195 hat->hat_ht_hash[h]->ht_prev = ht; 1196 hat->hat_ht_hash[h] = ht; 1197 HTABLE_EXIT(h); 1198 1199 /* 1200 * Note we don't do htable_release(higher). 1201 * That happens recursively when "new" is removed by 1202 * htable_release() or htable_steal(). 1203 */ 1204 higher = ht; 1205 1206 /* 1207 * If we just created a new shared page table we 1208 * increment the shared htable's busy count, so that 1209 * it can't be the victim of a steal even if it's empty. 1210 */ 1211 if (l == level && shared) { 1212 (void) htable_lookup(shared->ht_hat, 1213 shared->ht_vaddr, shared->ht_level); 1214 HATSTAT_INC(hs_htable_shared); 1215 } 1216 } 1217 } 1218 1219 return (ht); 1220 } 1221 1222 /* 1223 * Inherit initial pagetables from the boot program. 1224 */ 1225 void 1226 htable_attach( 1227 hat_t *hat, 1228 uintptr_t base, 1229 level_t level, 1230 htable_t *parent, 1231 pfn_t pfn) 1232 { 1233 htable_t *ht; 1234 uint_t h; 1235 uint_t i; 1236 x86pte_t pte; 1237 x86pte_t *ptep; 1238 page_t *pp; 1239 extern page_t *boot_claim_page(pfn_t); 1240 1241 ht = htable_get_reserve(); 1242 if (level == mmu.max_level) 1243 kas.a_hat->hat_htable = ht; 1244 ht->ht_hat = hat; 1245 ht->ht_parent = parent; 1246 ht->ht_vaddr = base; 1247 ht->ht_level = level; 1248 ht->ht_busy = 1; 1249 ht->ht_next = NULL; 1250 ht->ht_prev = NULL; 1251 ht->ht_flags = 0; 1252 ht->ht_pfn = pfn; 1253 ht->ht_lock_cnt = 0; 1254 ht->ht_valid_cnt = 0; 1255 if (parent != NULL) 1256 ++parent->ht_busy; 1257 1258 h = HTABLE_HASH(hat, base, level); 1259 HTABLE_ENTER(h); 1260 ht->ht_next = hat->hat_ht_hash[h]; 1261 ASSERT(ht->ht_prev == NULL); 1262 if (hat->hat_ht_hash[h]) 1263 hat->hat_ht_hash[h]->ht_prev = ht; 1264 hat->hat_ht_hash[h] = ht; 1265 HTABLE_EXIT(h); 1266 1267 /* 1268 * make sure the page table physical page is not FREE 1269 */ 1270 if (page_resv(1, KM_NOSLEEP) == 0) 1271 panic("page_resv() failed in ptable alloc"); 1272 1273 pp = boot_claim_page(pfn); 1274 ASSERT(pp != NULL); 1275 page_downgrade(pp); 1276 /* 1277 * Record in the page_t that is a pagetable for segkpm setup. 1278 */ 1279 if (kpm_vbase) 1280 pp->p_index = 1; 1281 1282 /* 1283 * Count valid mappings and recursively attach lower level pagetables. 1284 */ 1285 ptep = kbm_remap_window(pfn_to_pa(pfn), 0); 1286 for (i = 0; i < HTABLE_NUM_PTES(ht); ++i) { 1287 if (mmu.pae_hat) 1288 pte = ptep[i]; 1289 else 1290 pte = ((x86pte32_t *)ptep)[i]; 1291 if (!IN_HYPERVISOR_VA(base) && PTE_ISVALID(pte)) { 1292 ++ht->ht_valid_cnt; 1293 if (!PTE_ISPAGE(pte, level)) { 1294 htable_attach(hat, base, level - 1, 1295 ht, PTE2PFN(pte, level)); 1296 ptep = kbm_remap_window(pfn_to_pa(pfn), 0); 1297 } 1298 } 1299 base += LEVEL_SIZE(level); 1300 if (base == mmu.hole_start) 1301 base = (mmu.hole_end + MMU_PAGEOFFSET) & MMU_PAGEMASK; 1302 } 1303 1304 /* 1305 * As long as all the mappings we had were below kernel base 1306 * we can release the htable. 1307 */ 1308 if (base < kernelbase) 1309 htable_release(ht); 1310 } 1311 1312 /* 1313 * Walk through a given htable looking for the first valid entry. This 1314 * routine takes both a starting and ending address. The starting address 1315 * is required to be within the htable provided by the caller, but there is 1316 * no such restriction on the ending address. 1317 * 1318 * If the routine finds a valid entry in the htable (at or beyond the 1319 * starting address), the PTE (and its address) will be returned. 1320 * This PTE may correspond to either a page or a pagetable - it is the 1321 * caller's responsibility to determine which. If no valid entry is 1322 * found, 0 (and invalid PTE) and the next unexamined address will be 1323 * returned. 1324 * 1325 * The loop has been carefully coded for optimization. 1326 */ 1327 static x86pte_t 1328 htable_scan(htable_t *ht, uintptr_t *vap, uintptr_t eaddr) 1329 { 1330 uint_t e; 1331 x86pte_t found_pte = (x86pte_t)0; 1332 caddr_t pte_ptr; 1333 caddr_t end_pte_ptr; 1334 int l = ht->ht_level; 1335 uintptr_t va = *vap & LEVEL_MASK(l); 1336 size_t pgsize = LEVEL_SIZE(l); 1337 1338 ASSERT(va >= ht->ht_vaddr); 1339 ASSERT(va <= HTABLE_LAST_PAGE(ht)); 1340 1341 /* 1342 * Compute the starting index and ending virtual address 1343 */ 1344 e = htable_va2entry(va, ht); 1345 1346 /* 1347 * The following page table scan code knows that the valid 1348 * bit of a PTE is in the lowest byte AND that x86 is little endian!! 1349 */ 1350 pte_ptr = (caddr_t)x86pte_access_pagetable(ht, 0); 1351 end_pte_ptr = (caddr_t)PT_INDEX_PTR(pte_ptr, HTABLE_NUM_PTES(ht)); 1352 pte_ptr = (caddr_t)PT_INDEX_PTR((x86pte_t *)pte_ptr, e); 1353 while (!PTE_ISVALID(*pte_ptr)) { 1354 va += pgsize; 1355 if (va >= eaddr) 1356 break; 1357 pte_ptr += mmu.pte_size; 1358 ASSERT(pte_ptr <= end_pte_ptr); 1359 if (pte_ptr == end_pte_ptr) 1360 break; 1361 } 1362 1363 /* 1364 * if we found a valid PTE, load the entire PTE 1365 */ 1366 if (va < eaddr && pte_ptr != end_pte_ptr) 1367 found_pte = GET_PTE((x86pte_t *)pte_ptr); 1368 x86pte_release_pagetable(ht); 1369 1370 #if defined(__amd64) 1371 /* 1372 * deal with VA hole on amd64 1373 */ 1374 if (l == mmu.max_level && va >= mmu.hole_start && va <= mmu.hole_end) 1375 va = mmu.hole_end + va - mmu.hole_start; 1376 #endif /* __amd64 */ 1377 1378 *vap = va; 1379 return (found_pte); 1380 } 1381 1382 /* 1383 * Find the address and htable for the first populated translation at or 1384 * above the given virtual address. The caller may also specify an upper 1385 * limit to the address range to search. Uses level information to quickly 1386 * skip unpopulated sections of virtual address spaces. 1387 * 1388 * If not found returns NULL. When found, returns the htable and virt addr 1389 * and has a hold on the htable. 1390 */ 1391 x86pte_t 1392 htable_walk( 1393 struct hat *hat, 1394 htable_t **htp, 1395 uintptr_t *vaddr, 1396 uintptr_t eaddr) 1397 { 1398 uintptr_t va = *vaddr; 1399 htable_t *ht; 1400 htable_t *prev = *htp; 1401 level_t l; 1402 level_t max_mapped_level; 1403 x86pte_t pte; 1404 1405 ASSERT(eaddr > va); 1406 1407 /* 1408 * If this is a user address, then we know we need not look beyond 1409 * kernelbase. 1410 */ 1411 ASSERT(hat == kas.a_hat || eaddr <= kernelbase || 1412 eaddr == HTABLE_WALK_TO_END); 1413 if (hat != kas.a_hat && eaddr == HTABLE_WALK_TO_END) 1414 eaddr = kernelbase; 1415 1416 /* 1417 * If we're coming in with a previous page table, search it first 1418 * without doing an htable_lookup(), this should be frequent. 1419 */ 1420 if (prev) { 1421 ASSERT(prev->ht_busy > 0); 1422 ASSERT(prev->ht_vaddr <= va); 1423 l = prev->ht_level; 1424 if (va <= HTABLE_LAST_PAGE(prev)) { 1425 pte = htable_scan(prev, &va, eaddr); 1426 1427 if (PTE_ISPAGE(pte, l)) { 1428 *vaddr = va; 1429 *htp = prev; 1430 return (pte); 1431 } 1432 } 1433 1434 /* 1435 * We found nothing in the htable provided by the caller, 1436 * so fall through and do the full search 1437 */ 1438 htable_release(prev); 1439 } 1440 1441 /* 1442 * Find the level of the largest pagesize used by this HAT. 1443 */ 1444 if (hat->hat_ism_pgcnt > 0) { 1445 max_mapped_level = mmu.max_page_level; 1446 } else { 1447 max_mapped_level = 0; 1448 for (l = 1; l <= mmu.max_page_level; ++l) 1449 if (hat->hat_pages_mapped[l] != 0) 1450 max_mapped_level = l; 1451 } 1452 1453 while (va < eaddr && va >= *vaddr) { 1454 ASSERT(!IN_VA_HOLE(va)); 1455 1456 /* 1457 * Find lowest table with any entry for given address. 1458 */ 1459 for (l = 0; l <= TOP_LEVEL(hat); ++l) { 1460 ht = htable_lookup(hat, va, l); 1461 if (ht != NULL) { 1462 pte = htable_scan(ht, &va, eaddr); 1463 if (PTE_ISPAGE(pte, l)) { 1464 *vaddr = va; 1465 *htp = ht; 1466 return (pte); 1467 } 1468 htable_release(ht); 1469 break; 1470 } 1471 1472 /* 1473 * No htable at this level for the address. If there 1474 * is no larger page size that could cover it, we can 1475 * skip right to the start of the next page table. 1476 */ 1477 ASSERT(l < TOP_LEVEL(hat)); 1478 if (l >= max_mapped_level) { 1479 va = NEXT_ENTRY_VA(va, l + 1); 1480 if (va >= eaddr) 1481 break; 1482 } 1483 } 1484 } 1485 1486 *vaddr = 0; 1487 *htp = NULL; 1488 return (0); 1489 } 1490 1491 /* 1492 * Find the htable and page table entry index of the given virtual address 1493 * with pagesize at or below given level. 1494 * If not found returns NULL. When found, returns the htable, sets 1495 * entry, and has a hold on the htable. 1496 */ 1497 htable_t * 1498 htable_getpte( 1499 struct hat *hat, 1500 uintptr_t vaddr, 1501 uint_t *entry, 1502 x86pte_t *pte, 1503 level_t level) 1504 { 1505 htable_t *ht; 1506 level_t l; 1507 uint_t e; 1508 1509 ASSERT(level <= mmu.max_page_level); 1510 1511 for (l = 0; l <= level; ++l) { 1512 ht = htable_lookup(hat, vaddr, l); 1513 if (ht == NULL) 1514 continue; 1515 e = htable_va2entry(vaddr, ht); 1516 if (entry != NULL) 1517 *entry = e; 1518 if (pte != NULL) 1519 *pte = x86pte_get(ht, e); 1520 return (ht); 1521 } 1522 return (NULL); 1523 } 1524 1525 /* 1526 * Find the htable and page table entry index of the given virtual address. 1527 * There must be a valid page mapped at the given address. 1528 * If not found returns NULL. When found, returns the htable, sets 1529 * entry, and has a hold on the htable. 1530 */ 1531 htable_t * 1532 htable_getpage(struct hat *hat, uintptr_t vaddr, uint_t *entry) 1533 { 1534 htable_t *ht; 1535 uint_t e; 1536 x86pte_t pte; 1537 1538 ht = htable_getpte(hat, vaddr, &e, &pte, mmu.max_page_level); 1539 if (ht == NULL) 1540 return (NULL); 1541 1542 if (entry) 1543 *entry = e; 1544 1545 if (PTE_ISPAGE(pte, ht->ht_level)) 1546 return (ht); 1547 htable_release(ht); 1548 return (NULL); 1549 } 1550 1551 1552 void 1553 htable_init() 1554 { 1555 /* 1556 * To save on kernel VA usage, we avoid debug information in 32 bit 1557 * kernels. 1558 */ 1559 #if defined(__amd64) 1560 int kmem_flags = KMC_NOHASH; 1561 #elif defined(__i386) 1562 int kmem_flags = KMC_NOHASH | KMC_NODEBUG; 1563 #endif 1564 1565 /* 1566 * initialize kmem caches 1567 */ 1568 htable_cache = kmem_cache_create("htable_t", 1569 sizeof (htable_t), 0, NULL, NULL, 1570 htable_reap, NULL, hat_memload_arena, kmem_flags); 1571 } 1572 1573 /* 1574 * get the pte index for the virtual address in the given htable's pagetable 1575 */ 1576 uint_t 1577 htable_va2entry(uintptr_t va, htable_t *ht) 1578 { 1579 level_t l = ht->ht_level; 1580 1581 ASSERT(va >= ht->ht_vaddr); 1582 ASSERT(va <= HTABLE_LAST_PAGE(ht)); 1583 return ((va >> LEVEL_SHIFT(l)) & (HTABLE_NUM_PTES(ht) - 1)); 1584 } 1585 1586 /* 1587 * Given an htable and the index of a pte in it, return the virtual address 1588 * of the page. 1589 */ 1590 uintptr_t 1591 htable_e2va(htable_t *ht, uint_t entry) 1592 { 1593 level_t l = ht->ht_level; 1594 uintptr_t va; 1595 1596 ASSERT(entry < HTABLE_NUM_PTES(ht)); 1597 va = ht->ht_vaddr + ((uintptr_t)entry << LEVEL_SHIFT(l)); 1598 1599 /* 1600 * Need to skip over any VA hole in top level table 1601 */ 1602 #if defined(__amd64) 1603 if (ht->ht_level == mmu.max_level && va >= mmu.hole_start) 1604 va += ((mmu.hole_end - mmu.hole_start) + 1); 1605 #endif 1606 1607 return (va); 1608 } 1609 1610 /* 1611 * The code uses compare and swap instructions to read/write PTE's to 1612 * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems. 1613 * will naturally be atomic. 1614 * 1615 * The combination of using kpreempt_disable()/_enable() and the hci_mutex 1616 * are used to ensure that an interrupt won't overwrite a temporary mapping 1617 * while it's in use. If an interrupt thread tries to access a PTE, it will 1618 * yield briefly back to the pinned thread which holds the cpu's hci_mutex. 1619 */ 1620 void 1621 x86pte_cpu_init(cpu_t *cpu) 1622 { 1623 struct hat_cpu_info *hci; 1624 1625 hci = kmem_zalloc(sizeof (*hci), KM_SLEEP); 1626 mutex_init(&hci->hci_mutex, NULL, MUTEX_DEFAULT, NULL); 1627 cpu->cpu_hat_info = hci; 1628 } 1629 1630 void 1631 x86pte_cpu_fini(cpu_t *cpu) 1632 { 1633 struct hat_cpu_info *hci = cpu->cpu_hat_info; 1634 1635 kmem_free(hci, sizeof (*hci)); 1636 cpu->cpu_hat_info = NULL; 1637 } 1638 1639 #ifdef __i386 1640 /* 1641 * On 32 bit kernels, loading a 64 bit PTE is a little tricky 1642 */ 1643 x86pte_t 1644 get_pte64(x86pte_t *ptr) 1645 { 1646 volatile uint32_t *p = (uint32_t *)ptr; 1647 x86pte_t t; 1648 1649 ASSERT(mmu.pae_hat != 0); 1650 for (;;) { 1651 t = p[0]; 1652 t |= (uint64_t)p[1] << 32; 1653 if ((t & 0xffffffff) == p[0]) 1654 return (t); 1655 } 1656 } 1657 #endif /* __i386 */ 1658 1659 /* 1660 * Disable preemption and establish a mapping to the pagetable with the 1661 * given pfn. This is optimized for there case where it's the same 1662 * pfn as we last used referenced from this CPU. 1663 */ 1664 static x86pte_t * 1665 x86pte_access_pagetable(htable_t *ht, uint_t index) 1666 { 1667 /* 1668 * VLP pagetables are contained in the hat_t 1669 */ 1670 if (ht->ht_flags & HTABLE_VLP) 1671 return (PT_INDEX_PTR(ht->ht_hat->hat_vlp_ptes, index)); 1672 return (x86pte_mapin(ht->ht_pfn, index, ht)); 1673 } 1674 1675 /* 1676 * map the given pfn into the page table window. 1677 */ 1678 /*ARGSUSED*/ 1679 x86pte_t * 1680 x86pte_mapin(pfn_t pfn, uint_t index, htable_t *ht) 1681 { 1682 x86pte_t *pteptr; 1683 x86pte_t pte; 1684 x86pte_t newpte; 1685 int x; 1686 1687 ASSERT(pfn != PFN_INVALID); 1688 1689 if (!khat_running) { 1690 caddr_t va = kbm_remap_window(pfn_to_pa(pfn), 1); 1691 return (PT_INDEX_PTR(va, index)); 1692 } 1693 1694 /* 1695 * If kpm is available, use it. 1696 */ 1697 if (kpm_vbase) 1698 return (PT_INDEX_PTR(hat_kpm_pfn2va(pfn), index)); 1699 1700 /* 1701 * Disable preemption and grab the CPU's hci_mutex 1702 */ 1703 kpreempt_disable(); 1704 ASSERT(CPU->cpu_hat_info != NULL); 1705 mutex_enter(&CPU->cpu_hat_info->hci_mutex); 1706 x = PWIN_TABLE(CPU->cpu_id); 1707 pteptr = (x86pte_t *)PWIN_PTE_VA(x); 1708 if (mmu.pae_hat) 1709 pte = *pteptr; 1710 else 1711 pte = *(x86pte32_t *)pteptr; 1712 1713 newpte = MAKEPTE(pfn, 0) | mmu.pt_global | mmu.pt_nx; 1714 newpte |= PT_WRITABLE; 1715 1716 if (!PTE_EQUIV(newpte, pte)) { 1717 if (mmu.pae_hat) 1718 *pteptr = newpte; 1719 else 1720 *(x86pte32_t *)pteptr = newpte; 1721 mmu_tlbflush_entry((caddr_t)(PWIN_VA(x))); 1722 } 1723 return (PT_INDEX_PTR(PWIN_VA(x), index)); 1724 } 1725 1726 /* 1727 * Release access to a page table. 1728 */ 1729 static void 1730 x86pte_release_pagetable(htable_t *ht) 1731 { 1732 /* 1733 * nothing to do for VLP htables 1734 */ 1735 if (ht->ht_flags & HTABLE_VLP) 1736 return; 1737 1738 x86pte_mapout(); 1739 } 1740 1741 void 1742 x86pte_mapout(void) 1743 { 1744 if (mmu.pwin_base == NULL || !khat_running) 1745 return; 1746 1747 /* 1748 * Drop the CPU's hci_mutex and restore preemption. 1749 */ 1750 mutex_exit(&CPU->cpu_hat_info->hci_mutex); 1751 kpreempt_enable(); 1752 } 1753 1754 /* 1755 * Atomic retrieval of a pagetable entry 1756 */ 1757 x86pte_t 1758 x86pte_get(htable_t *ht, uint_t entry) 1759 { 1760 x86pte_t pte; 1761 x86pte_t *ptep; 1762 1763 /* 1764 * Be careful that loading PAE entries in 32 bit kernel is atomic. 1765 */ 1766 ASSERT(entry < mmu.ptes_per_table); 1767 ptep = x86pte_access_pagetable(ht, entry); 1768 pte = GET_PTE(ptep); 1769 x86pte_release_pagetable(ht); 1770 return (pte); 1771 } 1772 1773 /* 1774 * Atomic unconditional set of a page table entry, it returns the previous 1775 * value. For pre-existing mappings if the PFN changes, then we don't care 1776 * about the old pte's REF / MOD bits. If the PFN remains the same, we leave 1777 * the MOD/REF bits unchanged. 1778 * 1779 * If asked to overwrite a link to a lower page table with a large page 1780 * mapping, this routine returns the special value of LPAGE_ERROR. This 1781 * allows the upper HAT layers to retry with a smaller mapping size. 1782 */ 1783 x86pte_t 1784 x86pte_set(htable_t *ht, uint_t entry, x86pte_t new, void *ptr) 1785 { 1786 x86pte_t old; 1787 x86pte_t prev; 1788 x86pte_t *ptep; 1789 level_t l = ht->ht_level; 1790 x86pte_t pfn_mask = (l != 0) ? PT_PADDR_LGPG : PT_PADDR; 1791 x86pte_t n; 1792 uintptr_t addr = htable_e2va(ht, entry); 1793 hat_t *hat = ht->ht_hat; 1794 1795 ASSERT(new != 0); /* don't use to invalidate a PTE, see x86pte_update */ 1796 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 1797 if (ptr == NULL) 1798 ptep = x86pte_access_pagetable(ht, entry); 1799 else 1800 ptep = ptr; 1801 1802 /* 1803 * Install the new PTE. If remapping the same PFN, then 1804 * copy existing REF/MOD bits to new mapping. 1805 */ 1806 do { 1807 prev = GET_PTE(ptep); 1808 n = new; 1809 if (PTE_ISVALID(n) && (prev & pfn_mask) == (new & pfn_mask)) 1810 n |= prev & (PT_REF | PT_MOD); 1811 1812 /* 1813 * Another thread may have installed this mapping already, 1814 * flush the local TLB and be done. 1815 */ 1816 if (prev == n) { 1817 old = new; 1818 mmu_tlbflush_entry((caddr_t)addr); 1819 goto done; 1820 } 1821 1822 /* 1823 * Detect if we have a collision of installing a large 1824 * page mapping where there already is a lower page table. 1825 */ 1826 if (l > 0 && (prev & PT_VALID) && !(prev & PT_PAGESIZE)) { 1827 old = LPAGE_ERROR; 1828 goto done; 1829 } 1830 1831 old = CAS_PTE(ptep, prev, n); 1832 } while (old != prev); 1833 1834 /* 1835 * Do a TLB demap if needed, ie. the old pte was valid. 1836 * 1837 * Note that a stale TLB writeback to the PTE here either can't happen 1838 * or doesn't matter. The PFN can only change for NOSYNC|NOCONSIST 1839 * mappings, but they were created with REF and MOD already set, so 1840 * no stale writeback will happen. 1841 * 1842 * Segmap is the only place where remaps happen on the same pfn and for 1843 * that we want to preserve the stale REF/MOD bits. 1844 */ 1845 if (old & PT_REF) 1846 hat_tlb_inval(hat, addr); 1847 1848 done: 1849 if (ptr == NULL) 1850 x86pte_release_pagetable(ht); 1851 return (old); 1852 } 1853 1854 /* 1855 * Atomic compare and swap of a page table entry. No TLB invalidates are done. 1856 * This is used for links between pagetables of different levels. 1857 * Note we always create these links with dirty/access set, so they should 1858 * never change. 1859 */ 1860 x86pte_t 1861 x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new) 1862 { 1863 x86pte_t pte; 1864 x86pte_t *ptep; 1865 1866 ptep = x86pte_access_pagetable(ht, entry); 1867 pte = CAS_PTE(ptep, old, new); 1868 x86pte_release_pagetable(ht); 1869 return (pte); 1870 } 1871 1872 /* 1873 * Invalidate a page table entry as long as it currently maps something that 1874 * matches the value determined by expect. 1875 * 1876 * Also invalidates any TLB entries and returns the previous value of the PTE. 1877 */ 1878 x86pte_t 1879 x86pte_inval( 1880 htable_t *ht, 1881 uint_t entry, 1882 x86pte_t expect, 1883 x86pte_t *pte_ptr) 1884 { 1885 x86pte_t *ptep; 1886 x86pte_t oldpte; 1887 x86pte_t found; 1888 1889 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 1890 ASSERT(ht->ht_level != VLP_LEVEL); 1891 1892 if (pte_ptr != NULL) 1893 ptep = pte_ptr; 1894 else 1895 ptep = x86pte_access_pagetable(ht, entry); 1896 1897 /* 1898 * Note that the loop is needed to handle changes due to h/w updating 1899 * of PT_MOD/PT_REF. 1900 */ 1901 do { 1902 oldpte = GET_PTE(ptep); 1903 if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR)) 1904 goto done; 1905 found = CAS_PTE(ptep, oldpte, 0); 1906 } while (found != oldpte); 1907 if (oldpte & (PT_REF | PT_MOD)) 1908 hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry)); 1909 1910 done: 1911 if (pte_ptr == NULL) 1912 x86pte_release_pagetable(ht); 1913 return (oldpte); 1914 } 1915 1916 /* 1917 * Change a page table entry af it currently matches the value in expect. 1918 */ 1919 x86pte_t 1920 x86pte_update( 1921 htable_t *ht, 1922 uint_t entry, 1923 x86pte_t expect, 1924 x86pte_t new) 1925 { 1926 x86pte_t *ptep; 1927 x86pte_t found; 1928 1929 ASSERT(new != 0); 1930 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 1931 ASSERT(ht->ht_level != VLP_LEVEL); 1932 1933 ptep = x86pte_access_pagetable(ht, entry); 1934 found = CAS_PTE(ptep, expect, new); 1935 if (found == expect) { 1936 hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry)); 1937 1938 /* 1939 * When removing write permission *and* clearing the 1940 * MOD bit, check if a write happened via a stale 1941 * TLB entry before the TLB shootdown finished. 1942 * 1943 * If it did happen, simply re-enable write permission and 1944 * act like the original CAS failed. 1945 */ 1946 if ((expect & (PT_WRITABLE | PT_MOD)) == PT_WRITABLE && 1947 (new & (PT_WRITABLE | PT_MOD)) == 0 && 1948 (GET_PTE(ptep) & PT_MOD) != 0) { 1949 do { 1950 found = GET_PTE(ptep); 1951 found = 1952 CAS_PTE(ptep, found, found | PT_WRITABLE); 1953 } while ((found & PT_WRITABLE) == 0); 1954 } 1955 } 1956 x86pte_release_pagetable(ht); 1957 return (found); 1958 } 1959 1960 /* 1961 * Copy page tables - this is just a little more complicated than the 1962 * previous routines. Note that it's also not atomic! It also is never 1963 * used for VLP pagetables. 1964 */ 1965 void 1966 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count) 1967 { 1968 caddr_t src_va; 1969 caddr_t dst_va; 1970 size_t size; 1971 x86pte_t *pteptr; 1972 x86pte_t pte; 1973 1974 ASSERT(khat_running); 1975 ASSERT(!(dest->ht_flags & HTABLE_VLP)); 1976 ASSERT(!(src->ht_flags & HTABLE_VLP)); 1977 ASSERT(!(src->ht_flags & HTABLE_SHARED_PFN)); 1978 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN)); 1979 1980 /* 1981 * Acquire access to the CPU pagetable windows for the dest and source. 1982 */ 1983 dst_va = (caddr_t)x86pte_access_pagetable(dest, entry); 1984 if (kpm_vbase) { 1985 src_va = (caddr_t) 1986 PT_INDEX_PTR(hat_kpm_pfn2va(src->ht_pfn), entry); 1987 } else { 1988 uint_t x = PWIN_SRC(CPU->cpu_id); 1989 1990 /* 1991 * Finish defining the src pagetable mapping 1992 */ 1993 src_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry); 1994 pte = MAKEPTE(src->ht_pfn, 0) | mmu.pt_global | mmu.pt_nx; 1995 pteptr = (x86pte_t *)PWIN_PTE_VA(x); 1996 if (mmu.pae_hat) 1997 *pteptr = pte; 1998 else 1999 *(x86pte32_t *)pteptr = pte; 2000 mmu_tlbflush_entry((caddr_t)(PWIN_VA(x))); 2001 } 2002 2003 /* 2004 * now do the copy 2005 */ 2006 size = count << mmu.pte_size_shift; 2007 bcopy(src_va, dst_va, size); 2008 2009 x86pte_release_pagetable(dest); 2010 } 2011 2012 /* 2013 * Zero page table entries - Note this doesn't use atomic stores! 2014 */ 2015 static void 2016 x86pte_zero(htable_t *dest, uint_t entry, uint_t count) 2017 { 2018 caddr_t dst_va; 2019 size_t size; 2020 2021 /* 2022 * Map in the page table to be zeroed. 2023 */ 2024 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN)); 2025 ASSERT(!(dest->ht_flags & HTABLE_VLP)); 2026 2027 dst_va = (caddr_t)x86pte_access_pagetable(dest, entry); 2028 2029 size = count << mmu.pte_size_shift; 2030 ASSERT(size > BLOCKZEROALIGN); 2031 #ifdef __i386 2032 if ((x86_feature & X86_SSE2) == 0) 2033 bzero(dst_va, size); 2034 else 2035 #endif 2036 block_zero_no_xmm(dst_va, size); 2037 2038 x86pte_release_pagetable(dest); 2039 } 2040 2041 /* 2042 * Called to ensure that all pagetables are in the system dump 2043 */ 2044 void 2045 hat_dump(void) 2046 { 2047 hat_t *hat; 2048 uint_t h; 2049 htable_t *ht; 2050 2051 /* 2052 * Dump all page tables 2053 */ 2054 for (hat = kas.a_hat; hat != NULL; hat = hat->hat_next) { 2055 for (h = 0; h < hat->hat_num_hash; ++h) { 2056 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 2057 if ((ht->ht_flags & HTABLE_VLP) == 0) 2058 dump_page(ht->ht_pfn); 2059 } 2060 } 2061 } 2062 } 2063