xref: /titanic_41/usr/src/uts/i86pc/vm/htable.c (revision aa98ce2c4ecbce8afe8b7b253a911ab24fdded32)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2014 by Delphix. All rights reserved.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/sysmacros.h>
29 #include <sys/kmem.h>
30 #include <sys/atomic.h>
31 #include <sys/bitmap.h>
32 #include <sys/machparam.h>
33 #include <sys/machsystm.h>
34 #include <sys/mman.h>
35 #include <sys/systm.h>
36 #include <sys/cpuvar.h>
37 #include <sys/thread.h>
38 #include <sys/proc.h>
39 #include <sys/cpu.h>
40 #include <sys/kmem.h>
41 #include <sys/disp.h>
42 #include <sys/vmem.h>
43 #include <sys/vmsystm.h>
44 #include <sys/promif.h>
45 #include <sys/var.h>
46 #include <sys/x86_archext.h>
47 #include <sys/archsystm.h>
48 #include <sys/bootconf.h>
49 #include <sys/dumphdr.h>
50 #include <vm/seg_kmem.h>
51 #include <vm/seg_kpm.h>
52 #include <vm/hat.h>
53 #include <vm/hat_i86.h>
54 #include <sys/cmn_err.h>
55 #include <sys/panic.h>
56 
57 #ifdef __xpv
58 #include <sys/hypervisor.h>
59 #include <sys/xpv_panic.h>
60 #endif
61 
62 #include <sys/bootinfo.h>
63 #include <vm/kboot_mmu.h>
64 
65 static void x86pte_zero(htable_t *dest, uint_t entry, uint_t count);
66 
67 kmem_cache_t *htable_cache;
68 
69 /*
70  * The variable htable_reserve_amount, rather than HTABLE_RESERVE_AMOUNT,
71  * is used in order to facilitate testing of the htable_steal() code.
72  * By resetting htable_reserve_amount to a lower value, we can force
73  * stealing to occur.  The reserve amount is a guess to get us through boot.
74  */
75 #define	HTABLE_RESERVE_AMOUNT	(200)
76 uint_t htable_reserve_amount = HTABLE_RESERVE_AMOUNT;
77 kmutex_t htable_reserve_mutex;
78 uint_t htable_reserve_cnt;
79 htable_t *htable_reserve_pool;
80 
81 /*
82  * Used to hand test htable_steal().
83  */
84 #ifdef DEBUG
85 ulong_t force_steal = 0;
86 ulong_t ptable_cnt = 0;
87 #endif
88 
89 /*
90  * This variable is so that we can tune this via /etc/system
91  * Any value works, but a power of two <= mmu.ptes_per_table is best.
92  */
93 uint_t htable_steal_passes = 8;
94 
95 /*
96  * mutex stuff for access to htable hash
97  */
98 #define	NUM_HTABLE_MUTEX 128
99 kmutex_t htable_mutex[NUM_HTABLE_MUTEX];
100 #define	HTABLE_MUTEX_HASH(h) ((h) & (NUM_HTABLE_MUTEX - 1))
101 
102 #define	HTABLE_ENTER(h)	mutex_enter(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
103 #define	HTABLE_EXIT(h)	mutex_exit(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
104 
105 /*
106  * forward declarations
107  */
108 static void link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr);
109 static void unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr);
110 static void htable_free(htable_t *ht);
111 static x86pte_t *x86pte_access_pagetable(htable_t *ht, uint_t index);
112 static void x86pte_release_pagetable(htable_t *ht);
113 static x86pte_t x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old,
114 	x86pte_t new);
115 
116 /*
117  * A counter to track if we are stealing or reaping htables. When non-zero
118  * htable_free() will directly free htables (either to the reserve or kmem)
119  * instead of putting them in a hat's htable cache.
120  */
121 uint32_t htable_dont_cache = 0;
122 
123 /*
124  * Track the number of active pagetables, so we can know how many to reap
125  */
126 static uint32_t active_ptables = 0;
127 
128 #ifdef __xpv
129 /*
130  * Deal with hypervisor complications.
131  */
132 void
133 xen_flush_va(caddr_t va)
134 {
135 	struct mmuext_op t;
136 	uint_t count;
137 
138 	if (IN_XPV_PANIC()) {
139 		mmu_tlbflush_entry((caddr_t)va);
140 	} else {
141 		t.cmd = MMUEXT_INVLPG_LOCAL;
142 		t.arg1.linear_addr = (uintptr_t)va;
143 		if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
144 			panic("HYPERVISOR_mmuext_op() failed");
145 		ASSERT(count == 1);
146 	}
147 }
148 
149 void
150 xen_gflush_va(caddr_t va, cpuset_t cpus)
151 {
152 	struct mmuext_op t;
153 	uint_t count;
154 
155 	if (IN_XPV_PANIC()) {
156 		mmu_tlbflush_entry((caddr_t)va);
157 		return;
158 	}
159 
160 	t.cmd = MMUEXT_INVLPG_MULTI;
161 	t.arg1.linear_addr = (uintptr_t)va;
162 	/*LINTED: constant in conditional context*/
163 	set_xen_guest_handle(t.arg2.vcpumask, &cpus);
164 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
165 		panic("HYPERVISOR_mmuext_op() failed");
166 	ASSERT(count == 1);
167 }
168 
169 void
170 xen_flush_tlb()
171 {
172 	struct mmuext_op t;
173 	uint_t count;
174 
175 	if (IN_XPV_PANIC()) {
176 		xpv_panic_reload_cr3();
177 	} else {
178 		t.cmd = MMUEXT_TLB_FLUSH_LOCAL;
179 		if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
180 			panic("HYPERVISOR_mmuext_op() failed");
181 		ASSERT(count == 1);
182 	}
183 }
184 
185 void
186 xen_gflush_tlb(cpuset_t cpus)
187 {
188 	struct mmuext_op t;
189 	uint_t count;
190 
191 	ASSERT(!IN_XPV_PANIC());
192 	t.cmd = MMUEXT_TLB_FLUSH_MULTI;
193 	/*LINTED: constant in conditional context*/
194 	set_xen_guest_handle(t.arg2.vcpumask, &cpus);
195 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
196 		panic("HYPERVISOR_mmuext_op() failed");
197 	ASSERT(count == 1);
198 }
199 
200 /*
201  * Install/Adjust a kpm mapping under the hypervisor.
202  * Value of "how" should be:
203  *	PT_WRITABLE | PT_VALID - regular kpm mapping
204  *	PT_VALID - make mapping read-only
205  *	0	- remove mapping
206  *
207  * returns 0 on success. non-zero for failure.
208  */
209 int
210 xen_kpm_page(pfn_t pfn, uint_t how)
211 {
212 	paddr_t pa = mmu_ptob((paddr_t)pfn);
213 	x86pte_t pte = PT_NOCONSIST | PT_REF | PT_MOD;
214 
215 	if (kpm_vbase == NULL)
216 		return (0);
217 
218 	if (how)
219 		pte |= pa_to_ma(pa) | how;
220 	else
221 		pte = 0;
222 	return (HYPERVISOR_update_va_mapping((uintptr_t)kpm_vbase + pa,
223 	    pte, UVMF_INVLPG | UVMF_ALL));
224 }
225 
226 void
227 xen_pin(pfn_t pfn, level_t lvl)
228 {
229 	struct mmuext_op t;
230 	uint_t count;
231 
232 	t.cmd = MMUEXT_PIN_L1_TABLE + lvl;
233 	t.arg1.mfn = pfn_to_mfn(pfn);
234 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
235 		panic("HYPERVISOR_mmuext_op() failed");
236 	ASSERT(count == 1);
237 }
238 
239 void
240 xen_unpin(pfn_t pfn)
241 {
242 	struct mmuext_op t;
243 	uint_t count;
244 
245 	t.cmd = MMUEXT_UNPIN_TABLE;
246 	t.arg1.mfn = pfn_to_mfn(pfn);
247 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
248 		panic("HYPERVISOR_mmuext_op() failed");
249 	ASSERT(count == 1);
250 }
251 
252 static void
253 xen_map(uint64_t pte, caddr_t va)
254 {
255 	if (HYPERVISOR_update_va_mapping((uintptr_t)va, pte,
256 	    UVMF_INVLPG | UVMF_LOCAL))
257 		panic("HYPERVISOR_update_va_mapping() failed");
258 }
259 #endif /* __xpv */
260 
261 /*
262  * Allocate a memory page for a hardware page table.
263  *
264  * A wrapper around page_get_physical(), with some extra checks.
265  */
266 static pfn_t
267 ptable_alloc(uintptr_t seed)
268 {
269 	pfn_t pfn;
270 	page_t *pp;
271 
272 	pfn = PFN_INVALID;
273 
274 	/*
275 	 * The first check is to see if there is memory in the system. If we
276 	 * drop to throttlefree, then fail the ptable_alloc() and let the
277 	 * stealing code kick in. Note that we have to do this test here,
278 	 * since the test in page_create_throttle() would let the NOSLEEP
279 	 * allocation go through and deplete the page reserves.
280 	 *
281 	 * The !NOMEMWAIT() lets pageout, fsflush, etc. skip this check.
282 	 */
283 	if (!NOMEMWAIT() && freemem <= throttlefree + 1)
284 		return (PFN_INVALID);
285 
286 #ifdef DEBUG
287 	/*
288 	 * This code makes htable_steal() easier to test. By setting
289 	 * force_steal we force pagetable allocations to fall
290 	 * into the stealing code. Roughly 1 in ever "force_steal"
291 	 * page table allocations will fail.
292 	 */
293 	if (proc_pageout != NULL && force_steal > 1 &&
294 	    ++ptable_cnt > force_steal) {
295 		ptable_cnt = 0;
296 		return (PFN_INVALID);
297 	}
298 #endif /* DEBUG */
299 
300 	pp = page_get_physical(seed);
301 	if (pp == NULL)
302 		return (PFN_INVALID);
303 	ASSERT(PAGE_SHARED(pp));
304 	pfn = pp->p_pagenum;
305 	if (pfn == PFN_INVALID)
306 		panic("ptable_alloc(): Invalid PFN!!");
307 	atomic_inc_32(&active_ptables);
308 	HATSTAT_INC(hs_ptable_allocs);
309 	return (pfn);
310 }
311 
312 /*
313  * Free an htable's associated page table page.  See the comments
314  * for ptable_alloc().
315  */
316 static void
317 ptable_free(pfn_t pfn)
318 {
319 	page_t *pp = page_numtopp_nolock(pfn);
320 
321 	/*
322 	 * need to destroy the page used for the pagetable
323 	 */
324 	ASSERT(pfn != PFN_INVALID);
325 	HATSTAT_INC(hs_ptable_frees);
326 	atomic_dec_32(&active_ptables);
327 	if (pp == NULL)
328 		panic("ptable_free(): no page for pfn!");
329 	ASSERT(PAGE_SHARED(pp));
330 	ASSERT(pfn == pp->p_pagenum);
331 	ASSERT(!IN_XPV_PANIC());
332 
333 	/*
334 	 * Get an exclusive lock, might have to wait for a kmem reader.
335 	 */
336 	if (!page_tryupgrade(pp)) {
337 		u_offset_t off = pp->p_offset;
338 		page_unlock(pp);
339 		pp = page_lookup(&kvp, off, SE_EXCL);
340 		if (pp == NULL)
341 			panic("page not found");
342 	}
343 #ifdef __xpv
344 	if (kpm_vbase && xen_kpm_page(pfn, PT_VALID | PT_WRITABLE) < 0)
345 		panic("failure making kpm r/w pfn=0x%lx", pfn);
346 #endif
347 	page_hashout(pp, NULL);
348 	page_free(pp, 1);
349 	page_unresv(1);
350 }
351 
352 /*
353  * Put one htable on the reserve list.
354  */
355 static void
356 htable_put_reserve(htable_t *ht)
357 {
358 	ht->ht_hat = NULL;		/* no longer tied to a hat */
359 	ASSERT(ht->ht_pfn == PFN_INVALID);
360 	HATSTAT_INC(hs_htable_rputs);
361 	mutex_enter(&htable_reserve_mutex);
362 	ht->ht_next = htable_reserve_pool;
363 	htable_reserve_pool = ht;
364 	++htable_reserve_cnt;
365 	mutex_exit(&htable_reserve_mutex);
366 }
367 
368 /*
369  * Take one htable from the reserve.
370  */
371 static htable_t *
372 htable_get_reserve(void)
373 {
374 	htable_t *ht = NULL;
375 
376 	mutex_enter(&htable_reserve_mutex);
377 	if (htable_reserve_cnt != 0) {
378 		ht = htable_reserve_pool;
379 		ASSERT(ht != NULL);
380 		ASSERT(ht->ht_pfn == PFN_INVALID);
381 		htable_reserve_pool = ht->ht_next;
382 		--htable_reserve_cnt;
383 		HATSTAT_INC(hs_htable_rgets);
384 	}
385 	mutex_exit(&htable_reserve_mutex);
386 	return (ht);
387 }
388 
389 /*
390  * Allocate initial htables and put them on the reserve list
391  */
392 void
393 htable_initial_reserve(uint_t count)
394 {
395 	htable_t *ht;
396 
397 	count += HTABLE_RESERVE_AMOUNT;
398 	while (count > 0) {
399 		ht = kmem_cache_alloc(htable_cache, KM_NOSLEEP);
400 		ASSERT(ht != NULL);
401 
402 		ASSERT(use_boot_reserve);
403 		ht->ht_pfn = PFN_INVALID;
404 		htable_put_reserve(ht);
405 		--count;
406 	}
407 }
408 
409 /*
410  * Readjust the reserves after a thread finishes using them.
411  */
412 void
413 htable_adjust_reserve()
414 {
415 	htable_t *ht;
416 
417 	/*
418 	 * Free any excess htables in the reserve list
419 	 */
420 	while (htable_reserve_cnt > htable_reserve_amount &&
421 	    !USE_HAT_RESERVES()) {
422 		ht = htable_get_reserve();
423 		if (ht == NULL)
424 			return;
425 		ASSERT(ht->ht_pfn == PFN_INVALID);
426 		kmem_cache_free(htable_cache, ht);
427 	}
428 }
429 
430 /*
431  * Search the active htables for one to steal. Start at a different hash
432  * bucket every time to help spread the pain of stealing
433  */
434 static void
435 htable_steal_active(hat_t *hat, uint_t cnt, uint_t threshold,
436     uint_t *stolen, htable_t **list)
437 {
438 	static uint_t	h_seed = 0;
439 	htable_t	*higher, *ht;
440 	uint_t		h, e, h_start;
441 	uintptr_t	va;
442 	x86pte_t	pte;
443 
444 	h = h_start = h_seed++ % hat->hat_num_hash;
445 	do {
446 		higher = NULL;
447 		HTABLE_ENTER(h);
448 		for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
449 
450 			/*
451 			 * Can we rule out reaping?
452 			 */
453 			if (ht->ht_busy != 0 ||
454 			    (ht->ht_flags & HTABLE_SHARED_PFN) ||
455 			    ht->ht_level > 0 || ht->ht_valid_cnt > threshold ||
456 			    ht->ht_lock_cnt != 0)
457 				continue;
458 
459 			/*
460 			 * Increment busy so the htable can't disappear. We
461 			 * drop the htable mutex to avoid deadlocks with
462 			 * hat_pageunload() and the hment mutex while we
463 			 * call hat_pte_unmap()
464 			 */
465 			++ht->ht_busy;
466 			HTABLE_EXIT(h);
467 
468 			/*
469 			 * Try stealing.
470 			 * - unload and invalidate all PTEs
471 			 */
472 			for (e = 0, va = ht->ht_vaddr;
473 			    e < HTABLE_NUM_PTES(ht) && ht->ht_valid_cnt > 0 &&
474 			    ht->ht_busy == 1 && ht->ht_lock_cnt == 0;
475 			    ++e, va += MMU_PAGESIZE) {
476 				pte = x86pte_get(ht, e);
477 				if (!PTE_ISVALID(pte))
478 					continue;
479 				hat_pte_unmap(ht, e, HAT_UNLOAD, pte, NULL,
480 				    B_TRUE);
481 			}
482 
483 			/*
484 			 * Reacquire htable lock. If we didn't remove all
485 			 * mappings in the table, or another thread added a new
486 			 * mapping behind us, give up on this table.
487 			 */
488 			HTABLE_ENTER(h);
489 			if (ht->ht_busy != 1 || ht->ht_valid_cnt != 0 ||
490 			    ht->ht_lock_cnt != 0) {
491 				--ht->ht_busy;
492 				continue;
493 			}
494 
495 			/*
496 			 * Steal it and unlink the page table.
497 			 */
498 			higher = ht->ht_parent;
499 			unlink_ptp(higher, ht, ht->ht_vaddr);
500 
501 			/*
502 			 * remove from the hash list
503 			 */
504 			if (ht->ht_next)
505 				ht->ht_next->ht_prev = ht->ht_prev;
506 
507 			if (ht->ht_prev) {
508 				ht->ht_prev->ht_next = ht->ht_next;
509 			} else {
510 				ASSERT(hat->hat_ht_hash[h] == ht);
511 				hat->hat_ht_hash[h] = ht->ht_next;
512 			}
513 
514 			/*
515 			 * Break to outer loop to release the
516 			 * higher (ht_parent) pagetable. This
517 			 * spreads out the pain caused by
518 			 * pagefaults.
519 			 */
520 			ht->ht_next = *list;
521 			*list = ht;
522 			++*stolen;
523 			break;
524 		}
525 		HTABLE_EXIT(h);
526 		if (higher != NULL)
527 			htable_release(higher);
528 		if (++h == hat->hat_num_hash)
529 			h = 0;
530 	} while (*stolen < cnt && h != h_start);
531 }
532 
533 /*
534  * Move hat to the end of the kas list
535  */
536 static void
537 move_victim(hat_t *hat)
538 {
539 	ASSERT(MUTEX_HELD(&hat_list_lock));
540 
541 	/* unlink victim hat */
542 	if (hat->hat_prev)
543 		hat->hat_prev->hat_next = hat->hat_next;
544 	else
545 		kas.a_hat->hat_next = hat->hat_next;
546 
547 	if (hat->hat_next)
548 		hat->hat_next->hat_prev = hat->hat_prev;
549 	else
550 		kas.a_hat->hat_prev = hat->hat_prev;
551 	/* relink at end of hat list */
552 	hat->hat_next = NULL;
553 	hat->hat_prev = kas.a_hat->hat_prev;
554 	if (hat->hat_prev)
555 		hat->hat_prev->hat_next = hat;
556 	else
557 		kas.a_hat->hat_next = hat;
558 
559 	kas.a_hat->hat_prev = hat;
560 }
561 
562 /*
563  * This routine steals htables from user processes.  Called by htable_reap
564  * (reap=TRUE) or htable_alloc (reap=FALSE).
565  */
566 static htable_t *
567 htable_steal(uint_t cnt, boolean_t reap)
568 {
569 	hat_t		*hat = kas.a_hat;	/* list starts with khat */
570 	htable_t	*list = NULL;
571 	htable_t	*ht;
572 	uint_t		stolen = 0;
573 	uint_t		pass;
574 	uint_t		threshold;
575 
576 	/*
577 	 * Limit htable_steal_passes to something reasonable
578 	 */
579 	if (htable_steal_passes == 0)
580 		htable_steal_passes = 1;
581 	if (htable_steal_passes > mmu.ptes_per_table)
582 		htable_steal_passes = mmu.ptes_per_table;
583 
584 	/*
585 	 * Loop through all user hats. The 1st pass takes cached htables that
586 	 * aren't in use. The later passes steal by removing mappings, too.
587 	 */
588 	atomic_inc_32(&htable_dont_cache);
589 	for (pass = 0; pass <= htable_steal_passes && stolen < cnt; ++pass) {
590 		threshold = pass * mmu.ptes_per_table / htable_steal_passes;
591 
592 		mutex_enter(&hat_list_lock);
593 
594 		/* skip the first hat (kernel) */
595 		hat = kas.a_hat->hat_next;
596 		for (;;) {
597 			/*
598 			 * Skip any hat that is already being stolen from.
599 			 *
600 			 * We skip SHARED hats, as these are dummy
601 			 * hats that host ISM shared page tables.
602 			 *
603 			 * We also skip if HAT_FREEING because hat_pte_unmap()
604 			 * won't zero out the PTE's. That would lead to hitting
605 			 * stale PTEs either here or under hat_unload() when we
606 			 * steal and unload the same page table in competing
607 			 * threads.
608 			 */
609 			while (hat != NULL &&
610 			    (hat->hat_flags &
611 			    (HAT_VICTIM | HAT_SHARED | HAT_FREEING)) != 0)
612 				hat = hat->hat_next;
613 
614 			if (hat == NULL)
615 				break;
616 
617 			/*
618 			 * Mark the HAT as a stealing victim so that it is
619 			 * not freed from under us, e.g. in as_free()
620 			 */
621 			hat->hat_flags |= HAT_VICTIM;
622 			mutex_exit(&hat_list_lock);
623 
624 			/*
625 			 * Take any htables from the hat's cached "free" list.
626 			 */
627 			hat_enter(hat);
628 			while ((ht = hat->hat_ht_cached) != NULL &&
629 			    stolen < cnt) {
630 				hat->hat_ht_cached = ht->ht_next;
631 				ht->ht_next = list;
632 				list = ht;
633 				++stolen;
634 			}
635 			hat_exit(hat);
636 
637 			/*
638 			 * Don't steal active htables on first pass.
639 			 */
640 			if (pass != 0 && (stolen < cnt))
641 				htable_steal_active(hat, cnt, threshold,
642 				    &stolen, &list);
643 
644 			/*
645 			 * do synchronous teardown for the reap case so that
646 			 * we can forget hat; at this time, hat is
647 			 * guaranteed to be around because HAT_VICTIM is set
648 			 * (see htable_free() for similar code)
649 			 */
650 			for (ht = list; (ht) && (reap); ht = ht->ht_next) {
651 				if (ht->ht_hat == NULL)
652 					continue;
653 				ASSERT(ht->ht_hat == hat);
654 #if defined(__xpv) && defined(__amd64)
655 				if (!(ht->ht_flags & HTABLE_VLP) &&
656 				    ht->ht_level == mmu.max_level) {
657 					ptable_free(hat->hat_user_ptable);
658 					hat->hat_user_ptable = PFN_INVALID;
659 				}
660 #endif
661 				/*
662 				 * forget the hat
663 				 */
664 				ht->ht_hat = NULL;
665 			}
666 
667 			mutex_enter(&hat_list_lock);
668 
669 			/*
670 			 * Are we finished?
671 			 */
672 			if (stolen == cnt) {
673 				/*
674 				 * Try to spread the pain of stealing,
675 				 * move victim HAT to the end of the HAT list.
676 				 */
677 				if (pass >= 1 && cnt == 1 &&
678 				    kas.a_hat->hat_prev != hat)
679 					move_victim(hat);
680 				/*
681 				 * We are finished
682 				 */
683 			}
684 
685 			/*
686 			 * Clear the victim flag, hat can go away now (once
687 			 * the lock is dropped)
688 			 */
689 			if (hat->hat_flags & HAT_VICTIM) {
690 				ASSERT(hat != kas.a_hat);
691 				hat->hat_flags &= ~HAT_VICTIM;
692 				cv_broadcast(&hat_list_cv);
693 			}
694 
695 			/* move on to the next hat */
696 			hat = hat->hat_next;
697 		}
698 
699 		mutex_exit(&hat_list_lock);
700 
701 	}
702 	ASSERT(!MUTEX_HELD(&hat_list_lock));
703 
704 	atomic_dec_32(&htable_dont_cache);
705 	return (list);
706 }
707 
708 /*
709  * This is invoked from kmem when the system is low on memory.  We try
710  * to free hments, htables, and ptables to improve the memory situation.
711  */
712 /*ARGSUSED*/
713 static void
714 htable_reap(void *handle)
715 {
716 	uint_t		reap_cnt;
717 	htable_t	*list;
718 	htable_t	*ht;
719 
720 	HATSTAT_INC(hs_reap_attempts);
721 	if (!can_steal_post_boot)
722 		return;
723 
724 	/*
725 	 * Try to reap 5% of the page tables bounded by a maximum of
726 	 * 5% of physmem and a minimum of 10.
727 	 */
728 	reap_cnt = MAX(MIN(physmem / 20, active_ptables / 20), 10);
729 
730 	/*
731 	 * Note: htable_dont_cache should be set at the time of
732 	 * invoking htable_free()
733 	 */
734 	atomic_inc_32(&htable_dont_cache);
735 	/*
736 	 * Let htable_steal() do the work, we just call htable_free()
737 	 */
738 	XPV_DISALLOW_MIGRATE();
739 	list = htable_steal(reap_cnt, B_TRUE);
740 	XPV_ALLOW_MIGRATE();
741 	while ((ht = list) != NULL) {
742 		list = ht->ht_next;
743 		HATSTAT_INC(hs_reaped);
744 		htable_free(ht);
745 	}
746 	atomic_dec_32(&htable_dont_cache);
747 
748 	/*
749 	 * Free up excess reserves
750 	 */
751 	htable_adjust_reserve();
752 	hment_adjust_reserve();
753 }
754 
755 /*
756  * Allocate an htable, stealing one or using the reserve if necessary
757  */
758 static htable_t *
759 htable_alloc(
760 	hat_t		*hat,
761 	uintptr_t	vaddr,
762 	level_t		level,
763 	htable_t	*shared)
764 {
765 	htable_t	*ht = NULL;
766 	uint_t		is_vlp;
767 	uint_t		is_bare = 0;
768 	uint_t		need_to_zero = 1;
769 	int		kmflags = (can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP);
770 
771 	if (level < 0 || level > TOP_LEVEL(hat))
772 		panic("htable_alloc(): level %d out of range\n", level);
773 
774 	is_vlp = (hat->hat_flags & HAT_VLP) && level == VLP_LEVEL;
775 	if (is_vlp || shared != NULL)
776 		is_bare = 1;
777 
778 	/*
779 	 * First reuse a cached htable from the hat_ht_cached field, this
780 	 * avoids unnecessary trips through kmem/page allocators.
781 	 */
782 	if (hat->hat_ht_cached != NULL && !is_bare) {
783 		hat_enter(hat);
784 		ht = hat->hat_ht_cached;
785 		if (ht != NULL) {
786 			hat->hat_ht_cached = ht->ht_next;
787 			need_to_zero = 0;
788 			/* XX64 ASSERT() they're all zero somehow */
789 			ASSERT(ht->ht_pfn != PFN_INVALID);
790 		}
791 		hat_exit(hat);
792 	}
793 
794 	if (ht == NULL) {
795 		/*
796 		 * Allocate an htable, possibly refilling the reserves.
797 		 */
798 		if (USE_HAT_RESERVES()) {
799 			ht = htable_get_reserve();
800 		} else {
801 			/*
802 			 * Donate successful htable allocations to the reserve.
803 			 */
804 			for (;;) {
805 				ht = kmem_cache_alloc(htable_cache, kmflags);
806 				if (ht == NULL)
807 					break;
808 				ht->ht_pfn = PFN_INVALID;
809 				if (USE_HAT_RESERVES() ||
810 				    htable_reserve_cnt >= htable_reserve_amount)
811 					break;
812 				htable_put_reserve(ht);
813 			}
814 		}
815 
816 		/*
817 		 * allocate a page for the hardware page table if needed
818 		 */
819 		if (ht != NULL && !is_bare) {
820 			ht->ht_hat = hat;
821 			ht->ht_pfn = ptable_alloc((uintptr_t)ht);
822 			if (ht->ht_pfn == PFN_INVALID) {
823 				if (USE_HAT_RESERVES())
824 					htable_put_reserve(ht);
825 				else
826 					kmem_cache_free(htable_cache, ht);
827 				ht = NULL;
828 			}
829 		}
830 	}
831 
832 	/*
833 	 * If allocations failed, kick off a kmem_reap() and resort to
834 	 * htable steal(). We may spin here if the system is very low on
835 	 * memory. If the kernel itself has consumed all memory and kmem_reap()
836 	 * can't free up anything, then we'll really get stuck here.
837 	 * That should only happen in a system where the administrator has
838 	 * misconfigured VM parameters via /etc/system.
839 	 */
840 	while (ht == NULL && can_steal_post_boot) {
841 		kmem_reap();
842 		ht = htable_steal(1, B_FALSE);
843 		HATSTAT_INC(hs_steals);
844 
845 		/*
846 		 * If we stole for a bare htable, release the pagetable page.
847 		 */
848 		if (ht != NULL) {
849 			if (is_bare) {
850 				ptable_free(ht->ht_pfn);
851 				ht->ht_pfn = PFN_INVALID;
852 #if defined(__xpv) && defined(__amd64)
853 			/*
854 			 * make stolen page table writable again in kpm
855 			 */
856 			} else if (kpm_vbase && xen_kpm_page(ht->ht_pfn,
857 			    PT_VALID | PT_WRITABLE) < 0) {
858 				panic("failure making kpm r/w pfn=0x%lx",
859 				    ht->ht_pfn);
860 #endif
861 			}
862 		}
863 	}
864 
865 	/*
866 	 * All attempts to allocate or steal failed. This should only happen
867 	 * if we run out of memory during boot, due perhaps to a huge
868 	 * boot_archive. At this point there's no way to continue.
869 	 */
870 	if (ht == NULL)
871 		panic("htable_alloc(): couldn't steal\n");
872 
873 #if defined(__amd64) && defined(__xpv)
874 	/*
875 	 * Under the 64-bit hypervisor, we have 2 top level page tables.
876 	 * If this allocation fails, we'll resort to stealing.
877 	 * We use the stolen page indirectly, by freeing the
878 	 * stolen htable first.
879 	 */
880 	if (level == mmu.max_level) {
881 		for (;;) {
882 			htable_t *stolen;
883 
884 			hat->hat_user_ptable = ptable_alloc((uintptr_t)ht + 1);
885 			if (hat->hat_user_ptable != PFN_INVALID)
886 				break;
887 			stolen = htable_steal(1, B_FALSE);
888 			if (stolen == NULL)
889 				panic("2nd steal ptable failed\n");
890 			htable_free(stolen);
891 		}
892 		block_zero_no_xmm(kpm_vbase + pfn_to_pa(hat->hat_user_ptable),
893 		    MMU_PAGESIZE);
894 	}
895 #endif
896 
897 	/*
898 	 * Shared page tables have all entries locked and entries may not
899 	 * be added or deleted.
900 	 */
901 	ht->ht_flags = 0;
902 	if (shared != NULL) {
903 		ASSERT(shared->ht_valid_cnt > 0);
904 		ht->ht_flags |= HTABLE_SHARED_PFN;
905 		ht->ht_pfn = shared->ht_pfn;
906 		ht->ht_lock_cnt = 0;
907 		ht->ht_valid_cnt = 0;		/* updated in hat_share() */
908 		ht->ht_shares = shared;
909 		need_to_zero = 0;
910 	} else {
911 		ht->ht_shares = NULL;
912 		ht->ht_lock_cnt = 0;
913 		ht->ht_valid_cnt = 0;
914 	}
915 
916 	/*
917 	 * setup flags, etc. for VLP htables
918 	 */
919 	if (is_vlp) {
920 		ht->ht_flags |= HTABLE_VLP;
921 		ASSERT(ht->ht_pfn == PFN_INVALID);
922 		need_to_zero = 0;
923 	}
924 
925 	/*
926 	 * fill in the htable
927 	 */
928 	ht->ht_hat = hat;
929 	ht->ht_parent = NULL;
930 	ht->ht_vaddr = vaddr;
931 	ht->ht_level = level;
932 	ht->ht_busy = 1;
933 	ht->ht_next = NULL;
934 	ht->ht_prev = NULL;
935 
936 	/*
937 	 * Zero out any freshly allocated page table
938 	 */
939 	if (need_to_zero)
940 		x86pte_zero(ht, 0, mmu.ptes_per_table);
941 
942 #if defined(__amd64) && defined(__xpv)
943 	if (!is_bare && kpm_vbase) {
944 		(void) xen_kpm_page(ht->ht_pfn, PT_VALID);
945 		if (level == mmu.max_level)
946 			(void) xen_kpm_page(hat->hat_user_ptable, PT_VALID);
947 	}
948 #endif
949 
950 	return (ht);
951 }
952 
953 /*
954  * Free up an htable, either to a hat's cached list, the reserves or
955  * back to kmem.
956  */
957 static void
958 htable_free(htable_t *ht)
959 {
960 	hat_t *hat = ht->ht_hat;
961 
962 	/*
963 	 * If the process isn't exiting, cache the free htable in the hat
964 	 * structure. We always do this for the boot time reserve. We don't
965 	 * do this if the hat is exiting or we are stealing/reaping htables.
966 	 */
967 	if (hat != NULL &&
968 	    !(ht->ht_flags & HTABLE_SHARED_PFN) &&
969 	    (use_boot_reserve ||
970 	    (!(hat->hat_flags & HAT_FREEING) && !htable_dont_cache))) {
971 		ASSERT((ht->ht_flags & HTABLE_VLP) == 0);
972 		ASSERT(ht->ht_pfn != PFN_INVALID);
973 		hat_enter(hat);
974 		ht->ht_next = hat->hat_ht_cached;
975 		hat->hat_ht_cached = ht;
976 		hat_exit(hat);
977 		return;
978 	}
979 
980 	/*
981 	 * If we have a hardware page table, free it.
982 	 * We don't free page tables that are accessed by sharing.
983 	 */
984 	if (ht->ht_flags & HTABLE_SHARED_PFN) {
985 		ASSERT(ht->ht_pfn != PFN_INVALID);
986 	} else if (!(ht->ht_flags & HTABLE_VLP)) {
987 		ptable_free(ht->ht_pfn);
988 #if defined(__amd64) && defined(__xpv)
989 		if (ht->ht_level == mmu.max_level && hat != NULL) {
990 			ptable_free(hat->hat_user_ptable);
991 			hat->hat_user_ptable = PFN_INVALID;
992 		}
993 #endif
994 	}
995 	ht->ht_pfn = PFN_INVALID;
996 
997 	/*
998 	 * Free it or put into reserves.
999 	 */
1000 	if (USE_HAT_RESERVES() || htable_reserve_cnt < htable_reserve_amount) {
1001 		htable_put_reserve(ht);
1002 	} else {
1003 		kmem_cache_free(htable_cache, ht);
1004 		htable_adjust_reserve();
1005 	}
1006 }
1007 
1008 
1009 /*
1010  * This is called when a hat is being destroyed or swapped out. We reap all
1011  * the remaining htables in the hat cache. If destroying all left over
1012  * htables are also destroyed.
1013  *
1014  * We also don't need to invalidate any of the PTPs nor do any demapping.
1015  */
1016 void
1017 htable_purge_hat(hat_t *hat)
1018 {
1019 	htable_t *ht;
1020 	int h;
1021 
1022 	/*
1023 	 * Purge the htable cache if just reaping.
1024 	 */
1025 	if (!(hat->hat_flags & HAT_FREEING)) {
1026 		atomic_inc_32(&htable_dont_cache);
1027 		for (;;) {
1028 			hat_enter(hat);
1029 			ht = hat->hat_ht_cached;
1030 			if (ht == NULL) {
1031 				hat_exit(hat);
1032 				break;
1033 			}
1034 			hat->hat_ht_cached = ht->ht_next;
1035 			hat_exit(hat);
1036 			htable_free(ht);
1037 		}
1038 		atomic_dec_32(&htable_dont_cache);
1039 		return;
1040 	}
1041 
1042 	/*
1043 	 * if freeing, no locking is needed
1044 	 */
1045 	while ((ht = hat->hat_ht_cached) != NULL) {
1046 		hat->hat_ht_cached = ht->ht_next;
1047 		htable_free(ht);
1048 	}
1049 
1050 	/*
1051 	 * walk thru the htable hash table and free all the htables in it.
1052 	 */
1053 	for (h = 0; h < hat->hat_num_hash; ++h) {
1054 		while ((ht = hat->hat_ht_hash[h]) != NULL) {
1055 			if (ht->ht_next)
1056 				ht->ht_next->ht_prev = ht->ht_prev;
1057 
1058 			if (ht->ht_prev) {
1059 				ht->ht_prev->ht_next = ht->ht_next;
1060 			} else {
1061 				ASSERT(hat->hat_ht_hash[h] == ht);
1062 				hat->hat_ht_hash[h] = ht->ht_next;
1063 			}
1064 			htable_free(ht);
1065 		}
1066 	}
1067 }
1068 
1069 /*
1070  * Unlink an entry for a table at vaddr and level out of the existing table
1071  * one level higher. We are always holding the HASH_ENTER() when doing this.
1072  */
1073 static void
1074 unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr)
1075 {
1076 	uint_t		entry = htable_va2entry(vaddr, higher);
1077 	x86pte_t	expect = MAKEPTP(old->ht_pfn, old->ht_level);
1078 	x86pte_t	found;
1079 	hat_t		*hat = old->ht_hat;
1080 
1081 	ASSERT(higher->ht_busy > 0);
1082 	ASSERT(higher->ht_valid_cnt > 0);
1083 	ASSERT(old->ht_valid_cnt == 0);
1084 	found = x86pte_cas(higher, entry, expect, 0);
1085 #ifdef __xpv
1086 	/*
1087 	 * This is weird, but Xen apparently automatically unlinks empty
1088 	 * pagetables from the upper page table. So allow PTP to be 0 already.
1089 	 */
1090 	if (found != expect && found != 0)
1091 #else
1092 	if (found != expect)
1093 #endif
1094 		panic("Bad PTP found=" FMT_PTE ", expected=" FMT_PTE,
1095 		    found, expect);
1096 
1097 	/*
1098 	 * When a top level VLP page table entry changes, we must issue
1099 	 * a reload of cr3 on all processors.
1100 	 *
1101 	 * If we don't need do do that, then we still have to INVLPG against
1102 	 * an address covered by the inner page table, as the latest processors
1103 	 * have TLB-like caches for non-leaf page table entries.
1104 	 */
1105 	if (!(hat->hat_flags & HAT_FREEING)) {
1106 		hat_tlb_inval(hat, (higher->ht_flags & HTABLE_VLP) ?
1107 		    DEMAP_ALL_ADDR : old->ht_vaddr);
1108 	}
1109 
1110 	HTABLE_DEC(higher->ht_valid_cnt);
1111 }
1112 
1113 /*
1114  * Link an entry for a new table at vaddr and level into the existing table
1115  * one level higher. We are always holding the HASH_ENTER() when doing this.
1116  */
1117 static void
1118 link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr)
1119 {
1120 	uint_t		entry = htable_va2entry(vaddr, higher);
1121 	x86pte_t	newptp = MAKEPTP(new->ht_pfn, new->ht_level);
1122 	x86pte_t	found;
1123 
1124 	ASSERT(higher->ht_busy > 0);
1125 
1126 	ASSERT(new->ht_level != mmu.max_level);
1127 
1128 	HTABLE_INC(higher->ht_valid_cnt);
1129 
1130 	found = x86pte_cas(higher, entry, 0, newptp);
1131 	if ((found & ~PT_REF) != 0)
1132 		panic("HAT: ptp not 0, found=" FMT_PTE, found);
1133 
1134 	/*
1135 	 * When any top level VLP page table entry changes, we must issue
1136 	 * a reload of cr3 on all processors using it.
1137 	 * We also need to do this for the kernel hat on PAE 32 bit kernel.
1138 	 */
1139 	if (
1140 #ifdef __i386
1141 	    (higher->ht_hat == kas.a_hat && higher->ht_level == VLP_LEVEL) ||
1142 #endif
1143 	    (higher->ht_flags & HTABLE_VLP))
1144 		hat_tlb_inval(higher->ht_hat, DEMAP_ALL_ADDR);
1145 }
1146 
1147 /*
1148  * Release of hold on an htable. If this is the last use and the pagetable
1149  * is empty we may want to free it, then recursively look at the pagetable
1150  * above it. The recursion is handled by the outer while() loop.
1151  *
1152  * On the metal, during process exit, we don't bother unlinking the tables from
1153  * upper level pagetables. They are instead handled in bulk by hat_free_end().
1154  * We can't do this on the hypervisor as we need the page table to be
1155  * implicitly unpinnned before it goes to the free page lists. This can't
1156  * happen unless we fully unlink it from the page table hierarchy.
1157  */
1158 void
1159 htable_release(htable_t *ht)
1160 {
1161 	uint_t		hashval;
1162 	htable_t	*shared;
1163 	htable_t	*higher;
1164 	hat_t		*hat;
1165 	uintptr_t	va;
1166 	level_t		level;
1167 
1168 	while (ht != NULL) {
1169 		shared = NULL;
1170 		for (;;) {
1171 			hat = ht->ht_hat;
1172 			va = ht->ht_vaddr;
1173 			level = ht->ht_level;
1174 			hashval = HTABLE_HASH(hat, va, level);
1175 
1176 			/*
1177 			 * The common case is that this isn't the last use of
1178 			 * an htable so we don't want to free the htable.
1179 			 */
1180 			HTABLE_ENTER(hashval);
1181 			ASSERT(ht->ht_valid_cnt >= 0);
1182 			ASSERT(ht->ht_busy > 0);
1183 			if (ht->ht_valid_cnt > 0)
1184 				break;
1185 			if (ht->ht_busy > 1)
1186 				break;
1187 			ASSERT(ht->ht_lock_cnt == 0);
1188 
1189 #if !defined(__xpv)
1190 			/*
1191 			 * we always release empty shared htables
1192 			 */
1193 			if (!(ht->ht_flags & HTABLE_SHARED_PFN)) {
1194 
1195 				/*
1196 				 * don't release if in address space tear down
1197 				 */
1198 				if (hat->hat_flags & HAT_FREEING)
1199 					break;
1200 
1201 				/*
1202 				 * At and above max_page_level, free if it's for
1203 				 * a boot-time kernel mapping below kernelbase.
1204 				 */
1205 				if (level >= mmu.max_page_level &&
1206 				    (hat != kas.a_hat || va >= kernelbase))
1207 					break;
1208 			}
1209 #endif /* __xpv */
1210 
1211 			/*
1212 			 * Remember if we destroy an htable that shares its PFN
1213 			 * from elsewhere.
1214 			 */
1215 			if (ht->ht_flags & HTABLE_SHARED_PFN) {
1216 				ASSERT(shared == NULL);
1217 				shared = ht->ht_shares;
1218 				HATSTAT_INC(hs_htable_unshared);
1219 			}
1220 
1221 			/*
1222 			 * Handle release of a table and freeing the htable_t.
1223 			 * Unlink it from the table higher (ie. ht_parent).
1224 			 */
1225 			higher = ht->ht_parent;
1226 			ASSERT(higher != NULL);
1227 
1228 			/*
1229 			 * Unlink the pagetable.
1230 			 */
1231 			unlink_ptp(higher, ht, va);
1232 
1233 			/*
1234 			 * remove this htable from its hash list
1235 			 */
1236 			if (ht->ht_next)
1237 				ht->ht_next->ht_prev = ht->ht_prev;
1238 
1239 			if (ht->ht_prev) {
1240 				ht->ht_prev->ht_next = ht->ht_next;
1241 			} else {
1242 				ASSERT(hat->hat_ht_hash[hashval] == ht);
1243 				hat->hat_ht_hash[hashval] = ht->ht_next;
1244 			}
1245 			HTABLE_EXIT(hashval);
1246 			htable_free(ht);
1247 			ht = higher;
1248 		}
1249 
1250 		ASSERT(ht->ht_busy >= 1);
1251 		--ht->ht_busy;
1252 		HTABLE_EXIT(hashval);
1253 
1254 		/*
1255 		 * If we released a shared htable, do a release on the htable
1256 		 * from which it shared
1257 		 */
1258 		ht = shared;
1259 	}
1260 }
1261 
1262 /*
1263  * Find the htable for the pagetable at the given level for the given address.
1264  * If found acquires a hold that eventually needs to be htable_release()d
1265  */
1266 htable_t *
1267 htable_lookup(hat_t *hat, uintptr_t vaddr, level_t level)
1268 {
1269 	uintptr_t	base;
1270 	uint_t		hashval;
1271 	htable_t	*ht = NULL;
1272 
1273 	ASSERT(level >= 0);
1274 	ASSERT(level <= TOP_LEVEL(hat));
1275 
1276 	if (level == TOP_LEVEL(hat)) {
1277 #if defined(__amd64)
1278 		/*
1279 		 * 32 bit address spaces on 64 bit kernels need to check
1280 		 * for overflow of the 32 bit address space
1281 		 */
1282 		if ((hat->hat_flags & HAT_VLP) && vaddr >= ((uint64_t)1 << 32))
1283 			return (NULL);
1284 #endif
1285 		base = 0;
1286 	} else {
1287 		base = vaddr & LEVEL_MASK(level + 1);
1288 	}
1289 
1290 	hashval = HTABLE_HASH(hat, base, level);
1291 	HTABLE_ENTER(hashval);
1292 	for (ht = hat->hat_ht_hash[hashval]; ht; ht = ht->ht_next) {
1293 		if (ht->ht_hat == hat &&
1294 		    ht->ht_vaddr == base &&
1295 		    ht->ht_level == level)
1296 			break;
1297 	}
1298 	if (ht)
1299 		++ht->ht_busy;
1300 
1301 	HTABLE_EXIT(hashval);
1302 	return (ht);
1303 }
1304 
1305 /*
1306  * Acquires a hold on a known htable (from a locked hment entry).
1307  */
1308 void
1309 htable_acquire(htable_t *ht)
1310 {
1311 	hat_t		*hat = ht->ht_hat;
1312 	level_t		level = ht->ht_level;
1313 	uintptr_t	base = ht->ht_vaddr;
1314 	uint_t		hashval = HTABLE_HASH(hat, base, level);
1315 
1316 	HTABLE_ENTER(hashval);
1317 #ifdef DEBUG
1318 	/*
1319 	 * make sure the htable is there
1320 	 */
1321 	{
1322 		htable_t	*h;
1323 
1324 		for (h = hat->hat_ht_hash[hashval];
1325 		    h && h != ht;
1326 		    h = h->ht_next)
1327 			;
1328 		ASSERT(h == ht);
1329 	}
1330 #endif /* DEBUG */
1331 	++ht->ht_busy;
1332 	HTABLE_EXIT(hashval);
1333 }
1334 
1335 /*
1336  * Find the htable for the pagetable at the given level for the given address.
1337  * If found acquires a hold that eventually needs to be htable_release()d
1338  * If not found the table is created.
1339  *
1340  * Since we can't hold a hash table mutex during allocation, we have to
1341  * drop it and redo the search on a create. Then we may have to free the newly
1342  * allocated htable if another thread raced in and created it ahead of us.
1343  */
1344 htable_t *
1345 htable_create(
1346 	hat_t		*hat,
1347 	uintptr_t	vaddr,
1348 	level_t		level,
1349 	htable_t	*shared)
1350 {
1351 	uint_t		h;
1352 	level_t		l;
1353 	uintptr_t	base;
1354 	htable_t	*ht;
1355 	htable_t	*higher = NULL;
1356 	htable_t	*new = NULL;
1357 
1358 	if (level < 0 || level > TOP_LEVEL(hat))
1359 		panic("htable_create(): level %d out of range\n", level);
1360 
1361 	/*
1362 	 * Create the page tables in top down order.
1363 	 */
1364 	for (l = TOP_LEVEL(hat); l >= level; --l) {
1365 		new = NULL;
1366 		if (l == TOP_LEVEL(hat))
1367 			base = 0;
1368 		else
1369 			base = vaddr & LEVEL_MASK(l + 1);
1370 
1371 		h = HTABLE_HASH(hat, base, l);
1372 try_again:
1373 		/*
1374 		 * look up the htable at this level
1375 		 */
1376 		HTABLE_ENTER(h);
1377 		if (l == TOP_LEVEL(hat)) {
1378 			ht = hat->hat_htable;
1379 		} else {
1380 			for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
1381 				ASSERT(ht->ht_hat == hat);
1382 				if (ht->ht_vaddr == base &&
1383 				    ht->ht_level == l)
1384 					break;
1385 			}
1386 		}
1387 
1388 		/*
1389 		 * if we found the htable, increment its busy cnt
1390 		 * and if we had allocated a new htable, free it.
1391 		 */
1392 		if (ht != NULL) {
1393 			/*
1394 			 * If we find a pre-existing shared table, it must
1395 			 * share from the same place.
1396 			 */
1397 			if (l == level && shared && ht->ht_shares &&
1398 			    ht->ht_shares != shared) {
1399 				panic("htable shared from wrong place "
1400 				    "found htable=%p shared=%p",
1401 				    (void *)ht, (void *)shared);
1402 			}
1403 			++ht->ht_busy;
1404 			HTABLE_EXIT(h);
1405 			if (new)
1406 				htable_free(new);
1407 			if (higher != NULL)
1408 				htable_release(higher);
1409 			higher = ht;
1410 
1411 		/*
1412 		 * if we didn't find it on the first search
1413 		 * allocate a new one and search again
1414 		 */
1415 		} else if (new == NULL) {
1416 			HTABLE_EXIT(h);
1417 			new = htable_alloc(hat, base, l,
1418 			    l == level ? shared : NULL);
1419 			goto try_again;
1420 
1421 		/*
1422 		 * 2nd search and still not there, use "new" table
1423 		 * Link new table into higher, when not at top level.
1424 		 */
1425 		} else {
1426 			ht = new;
1427 			if (higher != NULL) {
1428 				link_ptp(higher, ht, base);
1429 				ht->ht_parent = higher;
1430 			}
1431 			ht->ht_next = hat->hat_ht_hash[h];
1432 			ASSERT(ht->ht_prev == NULL);
1433 			if (hat->hat_ht_hash[h])
1434 				hat->hat_ht_hash[h]->ht_prev = ht;
1435 			hat->hat_ht_hash[h] = ht;
1436 			HTABLE_EXIT(h);
1437 
1438 			/*
1439 			 * Note we don't do htable_release(higher).
1440 			 * That happens recursively when "new" is removed by
1441 			 * htable_release() or htable_steal().
1442 			 */
1443 			higher = ht;
1444 
1445 			/*
1446 			 * If we just created a new shared page table we
1447 			 * increment the shared htable's busy count, so that
1448 			 * it can't be the victim of a steal even if it's empty.
1449 			 */
1450 			if (l == level && shared) {
1451 				(void) htable_lookup(shared->ht_hat,
1452 				    shared->ht_vaddr, shared->ht_level);
1453 				HATSTAT_INC(hs_htable_shared);
1454 			}
1455 		}
1456 	}
1457 
1458 	return (ht);
1459 }
1460 
1461 /*
1462  * Inherit initial pagetables from the boot program. On the 64-bit
1463  * hypervisor we also temporarily mark the p_index field of page table
1464  * pages, so we know not to try making them writable in seg_kpm.
1465  */
1466 void
1467 htable_attach(
1468 	hat_t *hat,
1469 	uintptr_t base,
1470 	level_t level,
1471 	htable_t *parent,
1472 	pfn_t pfn)
1473 {
1474 	htable_t	*ht;
1475 	uint_t		h;
1476 	uint_t		i;
1477 	x86pte_t	pte;
1478 	x86pte_t	*ptep;
1479 	page_t		*pp;
1480 	extern page_t	*boot_claim_page(pfn_t);
1481 
1482 	ht = htable_get_reserve();
1483 	if (level == mmu.max_level)
1484 		kas.a_hat->hat_htable = ht;
1485 	ht->ht_hat = hat;
1486 	ht->ht_parent = parent;
1487 	ht->ht_vaddr = base;
1488 	ht->ht_level = level;
1489 	ht->ht_busy = 1;
1490 	ht->ht_next = NULL;
1491 	ht->ht_prev = NULL;
1492 	ht->ht_flags = 0;
1493 	ht->ht_pfn = pfn;
1494 	ht->ht_lock_cnt = 0;
1495 	ht->ht_valid_cnt = 0;
1496 	if (parent != NULL)
1497 		++parent->ht_busy;
1498 
1499 	h = HTABLE_HASH(hat, base, level);
1500 	HTABLE_ENTER(h);
1501 	ht->ht_next = hat->hat_ht_hash[h];
1502 	ASSERT(ht->ht_prev == NULL);
1503 	if (hat->hat_ht_hash[h])
1504 		hat->hat_ht_hash[h]->ht_prev = ht;
1505 	hat->hat_ht_hash[h] = ht;
1506 	HTABLE_EXIT(h);
1507 
1508 	/*
1509 	 * make sure the page table physical page is not FREE
1510 	 */
1511 	if (page_resv(1, KM_NOSLEEP) == 0)
1512 		panic("page_resv() failed in ptable alloc");
1513 
1514 	pp = boot_claim_page(pfn);
1515 	ASSERT(pp != NULL);
1516 
1517 	/*
1518 	 * Page table pages that were allocated by dboot or
1519 	 * in very early startup didn't go through boot_mapin()
1520 	 * and so won't have vnode/offsets. Fix that here.
1521 	 */
1522 	if (pp->p_vnode == NULL) {
1523 		/* match offset calculation in page_get_physical() */
1524 		u_offset_t offset = (uintptr_t)ht;
1525 		if (offset > kernelbase)
1526 			offset -= kernelbase;
1527 		offset <<= MMU_PAGESHIFT;
1528 #if defined(__amd64)
1529 		offset += mmu.hole_start;	/* something in VA hole */
1530 #else
1531 		offset += 1ULL << 40;		/* something > 4 Gig */
1532 #endif
1533 		ASSERT(page_exists(&kvp, offset) == NULL);
1534 		(void) page_hashin(pp, &kvp, offset, NULL);
1535 	}
1536 	page_downgrade(pp);
1537 #if defined(__xpv) && defined(__amd64)
1538 	/*
1539 	 * Record in the page_t that is a pagetable for segkpm setup.
1540 	 */
1541 	if (kpm_vbase)
1542 		pp->p_index = 1;
1543 #endif
1544 
1545 	/*
1546 	 * Count valid mappings and recursively attach lower level pagetables.
1547 	 */
1548 	ptep = kbm_remap_window(pfn_to_pa(pfn), 0);
1549 	for (i = 0; i < HTABLE_NUM_PTES(ht); ++i) {
1550 		if (mmu.pae_hat)
1551 			pte = ptep[i];
1552 		else
1553 			pte = ((x86pte32_t *)ptep)[i];
1554 		if (!IN_HYPERVISOR_VA(base) && PTE_ISVALID(pte)) {
1555 			++ht->ht_valid_cnt;
1556 			if (!PTE_ISPAGE(pte, level)) {
1557 				htable_attach(hat, base, level - 1,
1558 				    ht, PTE2PFN(pte, level));
1559 				ptep = kbm_remap_window(pfn_to_pa(pfn), 0);
1560 			}
1561 		}
1562 		base += LEVEL_SIZE(level);
1563 		if (base == mmu.hole_start)
1564 			base = (mmu.hole_end + MMU_PAGEOFFSET) & MMU_PAGEMASK;
1565 	}
1566 
1567 	/*
1568 	 * As long as all the mappings we had were below kernel base
1569 	 * we can release the htable.
1570 	 */
1571 	if (base < kernelbase)
1572 		htable_release(ht);
1573 }
1574 
1575 /*
1576  * Walk through a given htable looking for the first valid entry.  This
1577  * routine takes both a starting and ending address.  The starting address
1578  * is required to be within the htable provided by the caller, but there is
1579  * no such restriction on the ending address.
1580  *
1581  * If the routine finds a valid entry in the htable (at or beyond the
1582  * starting address), the PTE (and its address) will be returned.
1583  * This PTE may correspond to either a page or a pagetable - it is the
1584  * caller's responsibility to determine which.  If no valid entry is
1585  * found, 0 (and invalid PTE) and the next unexamined address will be
1586  * returned.
1587  *
1588  * The loop has been carefully coded for optimization.
1589  */
1590 static x86pte_t
1591 htable_scan(htable_t *ht, uintptr_t *vap, uintptr_t eaddr)
1592 {
1593 	uint_t e;
1594 	x86pte_t found_pte = (x86pte_t)0;
1595 	caddr_t pte_ptr;
1596 	caddr_t end_pte_ptr;
1597 	int l = ht->ht_level;
1598 	uintptr_t va = *vap & LEVEL_MASK(l);
1599 	size_t pgsize = LEVEL_SIZE(l);
1600 
1601 	ASSERT(va >= ht->ht_vaddr);
1602 	ASSERT(va <= HTABLE_LAST_PAGE(ht));
1603 
1604 	/*
1605 	 * Compute the starting index and ending virtual address
1606 	 */
1607 	e = htable_va2entry(va, ht);
1608 
1609 	/*
1610 	 * The following page table scan code knows that the valid
1611 	 * bit of a PTE is in the lowest byte AND that x86 is little endian!!
1612 	 */
1613 	pte_ptr = (caddr_t)x86pte_access_pagetable(ht, 0);
1614 	end_pte_ptr = (caddr_t)PT_INDEX_PTR(pte_ptr, HTABLE_NUM_PTES(ht));
1615 	pte_ptr = (caddr_t)PT_INDEX_PTR((x86pte_t *)pte_ptr, e);
1616 	while (!PTE_ISVALID(*pte_ptr)) {
1617 		va += pgsize;
1618 		if (va >= eaddr)
1619 			break;
1620 		pte_ptr += mmu.pte_size;
1621 		ASSERT(pte_ptr <= end_pte_ptr);
1622 		if (pte_ptr == end_pte_ptr)
1623 			break;
1624 	}
1625 
1626 	/*
1627 	 * if we found a valid PTE, load the entire PTE
1628 	 */
1629 	if (va < eaddr && pte_ptr != end_pte_ptr)
1630 		found_pte = GET_PTE((x86pte_t *)pte_ptr);
1631 	x86pte_release_pagetable(ht);
1632 
1633 #if defined(__amd64)
1634 	/*
1635 	 * deal with VA hole on amd64
1636 	 */
1637 	if (l == mmu.max_level && va >= mmu.hole_start && va <= mmu.hole_end)
1638 		va = mmu.hole_end + va - mmu.hole_start;
1639 #endif /* __amd64 */
1640 
1641 	*vap = va;
1642 	return (found_pte);
1643 }
1644 
1645 /*
1646  * Find the address and htable for the first populated translation at or
1647  * above the given virtual address.  The caller may also specify an upper
1648  * limit to the address range to search.  Uses level information to quickly
1649  * skip unpopulated sections of virtual address spaces.
1650  *
1651  * If not found returns NULL. When found, returns the htable and virt addr
1652  * and has a hold on the htable.
1653  */
1654 x86pte_t
1655 htable_walk(
1656 	struct hat *hat,
1657 	htable_t **htp,
1658 	uintptr_t *vaddr,
1659 	uintptr_t eaddr)
1660 {
1661 	uintptr_t va = *vaddr;
1662 	htable_t *ht;
1663 	htable_t *prev = *htp;
1664 	level_t l;
1665 	level_t max_mapped_level;
1666 	x86pte_t pte;
1667 
1668 	ASSERT(eaddr > va);
1669 
1670 	/*
1671 	 * If this is a user address, then we know we need not look beyond
1672 	 * kernelbase.
1673 	 */
1674 	ASSERT(hat == kas.a_hat || eaddr <= kernelbase ||
1675 	    eaddr == HTABLE_WALK_TO_END);
1676 	if (hat != kas.a_hat && eaddr == HTABLE_WALK_TO_END)
1677 		eaddr = kernelbase;
1678 
1679 	/*
1680 	 * If we're coming in with a previous page table, search it first
1681 	 * without doing an htable_lookup(), this should be frequent.
1682 	 */
1683 	if (prev) {
1684 		ASSERT(prev->ht_busy > 0);
1685 		ASSERT(prev->ht_vaddr <= va);
1686 		l = prev->ht_level;
1687 		if (va <= HTABLE_LAST_PAGE(prev)) {
1688 			pte = htable_scan(prev, &va, eaddr);
1689 
1690 			if (PTE_ISPAGE(pte, l)) {
1691 				*vaddr = va;
1692 				*htp = prev;
1693 				return (pte);
1694 			}
1695 		}
1696 
1697 		/*
1698 		 * We found nothing in the htable provided by the caller,
1699 		 * so fall through and do the full search
1700 		 */
1701 		htable_release(prev);
1702 	}
1703 
1704 	/*
1705 	 * Find the level of the largest pagesize used by this HAT.
1706 	 */
1707 	if (hat->hat_ism_pgcnt > 0) {
1708 		max_mapped_level = mmu.umax_page_level;
1709 	} else {
1710 		max_mapped_level = 0;
1711 		for (l = 1; l <= mmu.max_page_level; ++l)
1712 			if (hat->hat_pages_mapped[l] != 0)
1713 				max_mapped_level = l;
1714 	}
1715 
1716 	while (va < eaddr && va >= *vaddr) {
1717 		ASSERT(!IN_VA_HOLE(va));
1718 
1719 		/*
1720 		 *  Find lowest table with any entry for given address.
1721 		 */
1722 		for (l = 0; l <= TOP_LEVEL(hat); ++l) {
1723 			ht = htable_lookup(hat, va, l);
1724 			if (ht != NULL) {
1725 				pte = htable_scan(ht, &va, eaddr);
1726 				if (PTE_ISPAGE(pte, l)) {
1727 					*vaddr = va;
1728 					*htp = ht;
1729 					return (pte);
1730 				}
1731 				htable_release(ht);
1732 				break;
1733 			}
1734 
1735 			/*
1736 			 * No htable at this level for the address. If there
1737 			 * is no larger page size that could cover it, we can
1738 			 * skip right to the start of the next page table.
1739 			 */
1740 			ASSERT(l < TOP_LEVEL(hat));
1741 			if (l >= max_mapped_level) {
1742 				va = NEXT_ENTRY_VA(va, l + 1);
1743 				if (va >= eaddr)
1744 					break;
1745 			}
1746 		}
1747 	}
1748 
1749 	*vaddr = 0;
1750 	*htp = NULL;
1751 	return (0);
1752 }
1753 
1754 /*
1755  * Find the htable and page table entry index of the given virtual address
1756  * with pagesize at or below given level.
1757  * If not found returns NULL. When found, returns the htable, sets
1758  * entry, and has a hold on the htable.
1759  */
1760 htable_t *
1761 htable_getpte(
1762 	struct hat *hat,
1763 	uintptr_t vaddr,
1764 	uint_t *entry,
1765 	x86pte_t *pte,
1766 	level_t level)
1767 {
1768 	htable_t	*ht;
1769 	level_t		l;
1770 	uint_t		e;
1771 
1772 	ASSERT(level <= mmu.max_page_level);
1773 
1774 	for (l = 0; l <= level; ++l) {
1775 		ht = htable_lookup(hat, vaddr, l);
1776 		if (ht == NULL)
1777 			continue;
1778 		e = htable_va2entry(vaddr, ht);
1779 		if (entry != NULL)
1780 			*entry = e;
1781 		if (pte != NULL)
1782 			*pte = x86pte_get(ht, e);
1783 		return (ht);
1784 	}
1785 	return (NULL);
1786 }
1787 
1788 /*
1789  * Find the htable and page table entry index of the given virtual address.
1790  * There must be a valid page mapped at the given address.
1791  * If not found returns NULL. When found, returns the htable, sets
1792  * entry, and has a hold on the htable.
1793  */
1794 htable_t *
1795 htable_getpage(struct hat *hat, uintptr_t vaddr, uint_t *entry)
1796 {
1797 	htable_t	*ht;
1798 	uint_t		e;
1799 	x86pte_t	pte;
1800 
1801 	ht = htable_getpte(hat, vaddr, &e, &pte, mmu.max_page_level);
1802 	if (ht == NULL)
1803 		return (NULL);
1804 
1805 	if (entry)
1806 		*entry = e;
1807 
1808 	if (PTE_ISPAGE(pte, ht->ht_level))
1809 		return (ht);
1810 	htable_release(ht);
1811 	return (NULL);
1812 }
1813 
1814 
1815 void
1816 htable_init()
1817 {
1818 	/*
1819 	 * To save on kernel VA usage, we avoid debug information in 32 bit
1820 	 * kernels.
1821 	 */
1822 #if defined(__amd64)
1823 	int	kmem_flags = KMC_NOHASH;
1824 #elif defined(__i386)
1825 	int	kmem_flags = KMC_NOHASH | KMC_NODEBUG;
1826 #endif
1827 
1828 	/*
1829 	 * initialize kmem caches
1830 	 */
1831 	htable_cache = kmem_cache_create("htable_t",
1832 	    sizeof (htable_t), 0, NULL, NULL,
1833 	    htable_reap, NULL, hat_memload_arena, kmem_flags);
1834 }
1835 
1836 /*
1837  * get the pte index for the virtual address in the given htable's pagetable
1838  */
1839 uint_t
1840 htable_va2entry(uintptr_t va, htable_t *ht)
1841 {
1842 	level_t	l = ht->ht_level;
1843 
1844 	ASSERT(va >= ht->ht_vaddr);
1845 	ASSERT(va <= HTABLE_LAST_PAGE(ht));
1846 	return ((va >> LEVEL_SHIFT(l)) & (HTABLE_NUM_PTES(ht) - 1));
1847 }
1848 
1849 /*
1850  * Given an htable and the index of a pte in it, return the virtual address
1851  * of the page.
1852  */
1853 uintptr_t
1854 htable_e2va(htable_t *ht, uint_t entry)
1855 {
1856 	level_t	l = ht->ht_level;
1857 	uintptr_t va;
1858 
1859 	ASSERT(entry < HTABLE_NUM_PTES(ht));
1860 	va = ht->ht_vaddr + ((uintptr_t)entry << LEVEL_SHIFT(l));
1861 
1862 	/*
1863 	 * Need to skip over any VA hole in top level table
1864 	 */
1865 #if defined(__amd64)
1866 	if (ht->ht_level == mmu.max_level && va >= mmu.hole_start)
1867 		va += ((mmu.hole_end - mmu.hole_start) + 1);
1868 #endif
1869 
1870 	return (va);
1871 }
1872 
1873 /*
1874  * The code uses compare and swap instructions to read/write PTE's to
1875  * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems.
1876  * will naturally be atomic.
1877  *
1878  * The combination of using kpreempt_disable()/_enable() and the hci_mutex
1879  * are used to ensure that an interrupt won't overwrite a temporary mapping
1880  * while it's in use. If an interrupt thread tries to access a PTE, it will
1881  * yield briefly back to the pinned thread which holds the cpu's hci_mutex.
1882  */
1883 void
1884 x86pte_cpu_init(cpu_t *cpu)
1885 {
1886 	struct hat_cpu_info *hci;
1887 
1888 	hci = kmem_zalloc(sizeof (*hci), KM_SLEEP);
1889 	mutex_init(&hci->hci_mutex, NULL, MUTEX_DEFAULT, NULL);
1890 	cpu->cpu_hat_info = hci;
1891 }
1892 
1893 void
1894 x86pte_cpu_fini(cpu_t *cpu)
1895 {
1896 	struct hat_cpu_info *hci = cpu->cpu_hat_info;
1897 
1898 	kmem_free(hci, sizeof (*hci));
1899 	cpu->cpu_hat_info = NULL;
1900 }
1901 
1902 #ifdef __i386
1903 /*
1904  * On 32 bit kernels, loading a 64 bit PTE is a little tricky
1905  */
1906 x86pte_t
1907 get_pte64(x86pte_t *ptr)
1908 {
1909 	volatile uint32_t *p = (uint32_t *)ptr;
1910 	x86pte_t t;
1911 
1912 	ASSERT(mmu.pae_hat != 0);
1913 	for (;;) {
1914 		t = p[0];
1915 		t |= (uint64_t)p[1] << 32;
1916 		if ((t & 0xffffffff) == p[0])
1917 			return (t);
1918 	}
1919 }
1920 #endif /* __i386 */
1921 
1922 /*
1923  * Disable preemption and establish a mapping to the pagetable with the
1924  * given pfn. This is optimized for there case where it's the same
1925  * pfn as we last used referenced from this CPU.
1926  */
1927 static x86pte_t *
1928 x86pte_access_pagetable(htable_t *ht, uint_t index)
1929 {
1930 	/*
1931 	 * VLP pagetables are contained in the hat_t
1932 	 */
1933 	if (ht->ht_flags & HTABLE_VLP)
1934 		return (PT_INDEX_PTR(ht->ht_hat->hat_vlp_ptes, index));
1935 	return (x86pte_mapin(ht->ht_pfn, index, ht));
1936 }
1937 
1938 /*
1939  * map the given pfn into the page table window.
1940  */
1941 /*ARGSUSED*/
1942 x86pte_t *
1943 x86pte_mapin(pfn_t pfn, uint_t index, htable_t *ht)
1944 {
1945 	x86pte_t *pteptr;
1946 	x86pte_t pte = 0;
1947 	x86pte_t newpte;
1948 	int x;
1949 
1950 	ASSERT(pfn != PFN_INVALID);
1951 
1952 	if (!khat_running) {
1953 		caddr_t va = kbm_remap_window(pfn_to_pa(pfn), 1);
1954 		return (PT_INDEX_PTR(va, index));
1955 	}
1956 
1957 	/*
1958 	 * If kpm is available, use it.
1959 	 */
1960 	if (kpm_vbase)
1961 		return (PT_INDEX_PTR(hat_kpm_pfn2va(pfn), index));
1962 
1963 	/*
1964 	 * Disable preemption and grab the CPU's hci_mutex
1965 	 */
1966 	kpreempt_disable();
1967 	ASSERT(CPU->cpu_hat_info != NULL);
1968 	mutex_enter(&CPU->cpu_hat_info->hci_mutex);
1969 	x = PWIN_TABLE(CPU->cpu_id);
1970 	pteptr = (x86pte_t *)PWIN_PTE_VA(x);
1971 #ifndef __xpv
1972 	if (mmu.pae_hat)
1973 		pte = *pteptr;
1974 	else
1975 		pte = *(x86pte32_t *)pteptr;
1976 #endif
1977 
1978 	newpte = MAKEPTE(pfn, 0) | mmu.pt_global | mmu.pt_nx;
1979 
1980 	/*
1981 	 * For hardware we can use a writable mapping.
1982 	 */
1983 #ifdef __xpv
1984 	if (IN_XPV_PANIC())
1985 #endif
1986 		newpte |= PT_WRITABLE;
1987 
1988 	if (!PTE_EQUIV(newpte, pte)) {
1989 
1990 #ifdef __xpv
1991 		if (!IN_XPV_PANIC()) {
1992 			xen_map(newpte, PWIN_VA(x));
1993 		} else
1994 #endif
1995 		{
1996 			XPV_ALLOW_PAGETABLE_UPDATES();
1997 			if (mmu.pae_hat)
1998 				*pteptr = newpte;
1999 			else
2000 				*(x86pte32_t *)pteptr = newpte;
2001 			XPV_DISALLOW_PAGETABLE_UPDATES();
2002 			mmu_tlbflush_entry((caddr_t)(PWIN_VA(x)));
2003 		}
2004 	}
2005 	return (PT_INDEX_PTR(PWIN_VA(x), index));
2006 }
2007 
2008 /*
2009  * Release access to a page table.
2010  */
2011 static void
2012 x86pte_release_pagetable(htable_t *ht)
2013 {
2014 	/*
2015 	 * nothing to do for VLP htables
2016 	 */
2017 	if (ht->ht_flags & HTABLE_VLP)
2018 		return;
2019 
2020 	x86pte_mapout();
2021 }
2022 
2023 void
2024 x86pte_mapout(void)
2025 {
2026 	if (kpm_vbase != NULL || !khat_running)
2027 		return;
2028 
2029 	/*
2030 	 * Drop the CPU's hci_mutex and restore preemption.
2031 	 */
2032 #ifdef __xpv
2033 	if (!IN_XPV_PANIC()) {
2034 		uintptr_t va;
2035 
2036 		/*
2037 		 * We need to always clear the mapping in case a page
2038 		 * that was once a page table page is ballooned out.
2039 		 */
2040 		va = (uintptr_t)PWIN_VA(PWIN_TABLE(CPU->cpu_id));
2041 		(void) HYPERVISOR_update_va_mapping(va, 0,
2042 		    UVMF_INVLPG | UVMF_LOCAL);
2043 	}
2044 #endif
2045 	mutex_exit(&CPU->cpu_hat_info->hci_mutex);
2046 	kpreempt_enable();
2047 }
2048 
2049 /*
2050  * Atomic retrieval of a pagetable entry
2051  */
2052 x86pte_t
2053 x86pte_get(htable_t *ht, uint_t entry)
2054 {
2055 	x86pte_t	pte;
2056 	x86pte_t	*ptep;
2057 
2058 	/*
2059 	 * Be careful that loading PAE entries in 32 bit kernel is atomic.
2060 	 */
2061 	ASSERT(entry < mmu.ptes_per_table);
2062 	ptep = x86pte_access_pagetable(ht, entry);
2063 	pte = GET_PTE(ptep);
2064 	x86pte_release_pagetable(ht);
2065 	return (pte);
2066 }
2067 
2068 /*
2069  * Atomic unconditional set of a page table entry, it returns the previous
2070  * value. For pre-existing mappings if the PFN changes, then we don't care
2071  * about the old pte's REF / MOD bits. If the PFN remains the same, we leave
2072  * the MOD/REF bits unchanged.
2073  *
2074  * If asked to overwrite a link to a lower page table with a large page
2075  * mapping, this routine returns the special value of LPAGE_ERROR. This
2076  * allows the upper HAT layers to retry with a smaller mapping size.
2077  */
2078 x86pte_t
2079 x86pte_set(htable_t *ht, uint_t entry, x86pte_t new, void *ptr)
2080 {
2081 	x86pte_t	old;
2082 	x86pte_t	prev;
2083 	x86pte_t	*ptep;
2084 	level_t		l = ht->ht_level;
2085 	x86pte_t	pfn_mask = (l != 0) ? PT_PADDR_LGPG : PT_PADDR;
2086 	x86pte_t	n;
2087 	uintptr_t	addr = htable_e2va(ht, entry);
2088 	hat_t		*hat = ht->ht_hat;
2089 
2090 	ASSERT(new != 0); /* don't use to invalidate a PTE, see x86pte_update */
2091 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2092 	if (ptr == NULL)
2093 		ptep = x86pte_access_pagetable(ht, entry);
2094 	else
2095 		ptep = ptr;
2096 
2097 	/*
2098 	 * Install the new PTE. If remapping the same PFN, then
2099 	 * copy existing REF/MOD bits to new mapping.
2100 	 */
2101 	do {
2102 		prev = GET_PTE(ptep);
2103 		n = new;
2104 		if (PTE_ISVALID(n) && (prev & pfn_mask) == (new & pfn_mask))
2105 			n |= prev & (PT_REF | PT_MOD);
2106 
2107 		/*
2108 		 * Another thread may have installed this mapping already,
2109 		 * flush the local TLB and be done.
2110 		 */
2111 		if (prev == n) {
2112 			old = new;
2113 #ifdef __xpv
2114 			if (!IN_XPV_PANIC())
2115 				xen_flush_va((caddr_t)addr);
2116 			else
2117 #endif
2118 				mmu_tlbflush_entry((caddr_t)addr);
2119 			goto done;
2120 		}
2121 
2122 		/*
2123 		 * Detect if we have a collision of installing a large
2124 		 * page mapping where there already is a lower page table.
2125 		 */
2126 		if (l > 0 && (prev & PT_VALID) && !(prev & PT_PAGESIZE)) {
2127 			old = LPAGE_ERROR;
2128 			goto done;
2129 		}
2130 
2131 		XPV_ALLOW_PAGETABLE_UPDATES();
2132 		old = CAS_PTE(ptep, prev, n);
2133 		XPV_DISALLOW_PAGETABLE_UPDATES();
2134 	} while (old != prev);
2135 
2136 	/*
2137 	 * Do a TLB demap if needed, ie. the old pte was valid.
2138 	 *
2139 	 * Note that a stale TLB writeback to the PTE here either can't happen
2140 	 * or doesn't matter. The PFN can only change for NOSYNC|NOCONSIST
2141 	 * mappings, but they were created with REF and MOD already set, so
2142 	 * no stale writeback will happen.
2143 	 *
2144 	 * Segmap is the only place where remaps happen on the same pfn and for
2145 	 * that we want to preserve the stale REF/MOD bits.
2146 	 */
2147 	if (old & PT_REF)
2148 		hat_tlb_inval(hat, addr);
2149 
2150 done:
2151 	if (ptr == NULL)
2152 		x86pte_release_pagetable(ht);
2153 	return (old);
2154 }
2155 
2156 /*
2157  * Atomic compare and swap of a page table entry. No TLB invalidates are done.
2158  * This is used for links between pagetables of different levels.
2159  * Note we always create these links with dirty/access set, so they should
2160  * never change.
2161  */
2162 x86pte_t
2163 x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new)
2164 {
2165 	x86pte_t	pte;
2166 	x86pte_t	*ptep;
2167 #ifdef __xpv
2168 	/*
2169 	 * We can't use writable pagetables for upper level tables, so fake it.
2170 	 */
2171 	mmu_update_t t[2];
2172 	int cnt = 1;
2173 	int count;
2174 	maddr_t ma;
2175 
2176 	if (!IN_XPV_PANIC()) {
2177 		ASSERT(!(ht->ht_flags & HTABLE_VLP));	/* no VLP yet */
2178 		ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry));
2179 		t[0].ptr = ma | MMU_NORMAL_PT_UPDATE;
2180 		t[0].val = new;
2181 
2182 #if defined(__amd64)
2183 		/*
2184 		 * On the 64-bit hypervisor we need to maintain the user mode
2185 		 * top page table too.
2186 		 */
2187 		if (ht->ht_level == mmu.max_level && ht->ht_hat != kas.a_hat) {
2188 			ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(
2189 			    ht->ht_hat->hat_user_ptable), entry));
2190 			t[1].ptr = ma | MMU_NORMAL_PT_UPDATE;
2191 			t[1].val = new;
2192 			++cnt;
2193 		}
2194 #endif	/* __amd64 */
2195 
2196 		if (HYPERVISOR_mmu_update(t, cnt, &count, DOMID_SELF))
2197 			panic("HYPERVISOR_mmu_update() failed");
2198 		ASSERT(count == cnt);
2199 		return (old);
2200 	}
2201 #endif
2202 	ptep = x86pte_access_pagetable(ht, entry);
2203 	XPV_ALLOW_PAGETABLE_UPDATES();
2204 	pte = CAS_PTE(ptep, old, new);
2205 	XPV_DISALLOW_PAGETABLE_UPDATES();
2206 	x86pte_release_pagetable(ht);
2207 	return (pte);
2208 }
2209 
2210 /*
2211  * Invalidate a page table entry as long as it currently maps something that
2212  * matches the value determined by expect.
2213  *
2214  * If tlb is set, also invalidates any TLB entries.
2215  *
2216  * Returns the previous value of the PTE.
2217  */
2218 x86pte_t
2219 x86pte_inval(
2220 	htable_t *ht,
2221 	uint_t entry,
2222 	x86pte_t expect,
2223 	x86pte_t *pte_ptr,
2224 	boolean_t tlb)
2225 {
2226 	x86pte_t	*ptep;
2227 	x86pte_t	oldpte;
2228 	x86pte_t	found;
2229 
2230 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2231 	ASSERT(ht->ht_level <= mmu.max_page_level);
2232 
2233 	if (pte_ptr != NULL)
2234 		ptep = pte_ptr;
2235 	else
2236 		ptep = x86pte_access_pagetable(ht, entry);
2237 
2238 #if defined(__xpv)
2239 	/*
2240 	 * If exit()ing just use HYPERVISOR_mmu_update(), as we can't be racing
2241 	 * with anything else.
2242 	 */
2243 	if ((ht->ht_hat->hat_flags & HAT_FREEING) && !IN_XPV_PANIC()) {
2244 		int count;
2245 		mmu_update_t t[1];
2246 		maddr_t ma;
2247 
2248 		oldpte = GET_PTE(ptep);
2249 		if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR))
2250 			goto done;
2251 		ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry));
2252 		t[0].ptr = ma | MMU_NORMAL_PT_UPDATE;
2253 		t[0].val = 0;
2254 		if (HYPERVISOR_mmu_update(t, 1, &count, DOMID_SELF))
2255 			panic("HYPERVISOR_mmu_update() failed");
2256 		ASSERT(count == 1);
2257 		goto done;
2258 	}
2259 #endif /* __xpv */
2260 
2261 	/*
2262 	 * Note that the loop is needed to handle changes due to h/w updating
2263 	 * of PT_MOD/PT_REF.
2264 	 */
2265 	do {
2266 		oldpte = GET_PTE(ptep);
2267 		if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR))
2268 			goto done;
2269 		XPV_ALLOW_PAGETABLE_UPDATES();
2270 		found = CAS_PTE(ptep, oldpte, 0);
2271 		XPV_DISALLOW_PAGETABLE_UPDATES();
2272 	} while (found != oldpte);
2273 	if (tlb && (oldpte & (PT_REF | PT_MOD)))
2274 		hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry));
2275 
2276 done:
2277 	if (pte_ptr == NULL)
2278 		x86pte_release_pagetable(ht);
2279 	return (oldpte);
2280 }
2281 
2282 /*
2283  * Change a page table entry af it currently matches the value in expect.
2284  */
2285 x86pte_t
2286 x86pte_update(
2287 	htable_t *ht,
2288 	uint_t entry,
2289 	x86pte_t expect,
2290 	x86pte_t new)
2291 {
2292 	x86pte_t	*ptep;
2293 	x86pte_t	found;
2294 
2295 	ASSERT(new != 0);
2296 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2297 	ASSERT(ht->ht_level <= mmu.max_page_level);
2298 
2299 	ptep = x86pte_access_pagetable(ht, entry);
2300 	XPV_ALLOW_PAGETABLE_UPDATES();
2301 	found = CAS_PTE(ptep, expect, new);
2302 	XPV_DISALLOW_PAGETABLE_UPDATES();
2303 	if (found == expect) {
2304 		hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry));
2305 
2306 		/*
2307 		 * When removing write permission *and* clearing the
2308 		 * MOD bit, check if a write happened via a stale
2309 		 * TLB entry before the TLB shootdown finished.
2310 		 *
2311 		 * If it did happen, simply re-enable write permission and
2312 		 * act like the original CAS failed.
2313 		 */
2314 		if ((expect & (PT_WRITABLE | PT_MOD)) == PT_WRITABLE &&
2315 		    (new & (PT_WRITABLE | PT_MOD)) == 0 &&
2316 		    (GET_PTE(ptep) & PT_MOD) != 0) {
2317 			do {
2318 				found = GET_PTE(ptep);
2319 				XPV_ALLOW_PAGETABLE_UPDATES();
2320 				found =
2321 				    CAS_PTE(ptep, found, found | PT_WRITABLE);
2322 				XPV_DISALLOW_PAGETABLE_UPDATES();
2323 			} while ((found & PT_WRITABLE) == 0);
2324 		}
2325 	}
2326 	x86pte_release_pagetable(ht);
2327 	return (found);
2328 }
2329 
2330 #ifndef __xpv
2331 /*
2332  * Copy page tables - this is just a little more complicated than the
2333  * previous routines. Note that it's also not atomic! It also is never
2334  * used for VLP pagetables.
2335  */
2336 void
2337 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count)
2338 {
2339 	caddr_t	src_va;
2340 	caddr_t dst_va;
2341 	size_t size;
2342 	x86pte_t *pteptr;
2343 	x86pte_t pte;
2344 
2345 	ASSERT(khat_running);
2346 	ASSERT(!(dest->ht_flags & HTABLE_VLP));
2347 	ASSERT(!(src->ht_flags & HTABLE_VLP));
2348 	ASSERT(!(src->ht_flags & HTABLE_SHARED_PFN));
2349 	ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2350 
2351 	/*
2352 	 * Acquire access to the CPU pagetable windows for the dest and source.
2353 	 */
2354 	dst_va = (caddr_t)x86pte_access_pagetable(dest, entry);
2355 	if (kpm_vbase) {
2356 		src_va = (caddr_t)
2357 		    PT_INDEX_PTR(hat_kpm_pfn2va(src->ht_pfn), entry);
2358 	} else {
2359 		uint_t x = PWIN_SRC(CPU->cpu_id);
2360 
2361 		/*
2362 		 * Finish defining the src pagetable mapping
2363 		 */
2364 		src_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry);
2365 		pte = MAKEPTE(src->ht_pfn, 0) | mmu.pt_global | mmu.pt_nx;
2366 		pteptr = (x86pte_t *)PWIN_PTE_VA(x);
2367 		if (mmu.pae_hat)
2368 			*pteptr = pte;
2369 		else
2370 			*(x86pte32_t *)pteptr = pte;
2371 		mmu_tlbflush_entry((caddr_t)(PWIN_VA(x)));
2372 	}
2373 
2374 	/*
2375 	 * now do the copy
2376 	 */
2377 	size = count << mmu.pte_size_shift;
2378 	bcopy(src_va, dst_va, size);
2379 
2380 	x86pte_release_pagetable(dest);
2381 }
2382 
2383 #else /* __xpv */
2384 
2385 /*
2386  * The hypervisor only supports writable pagetables at level 0, so we have
2387  * to install these 1 by 1 the slow way.
2388  */
2389 void
2390 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count)
2391 {
2392 	caddr_t	src_va;
2393 	x86pte_t pte;
2394 
2395 	ASSERT(!IN_XPV_PANIC());
2396 	src_va = (caddr_t)x86pte_access_pagetable(src, entry);
2397 	while (count) {
2398 		if (mmu.pae_hat)
2399 			pte = *(x86pte_t *)src_va;
2400 		else
2401 			pte = *(x86pte32_t *)src_va;
2402 		if (pte != 0) {
2403 			set_pteval(pfn_to_pa(dest->ht_pfn), entry,
2404 			    dest->ht_level, pte);
2405 #ifdef __amd64
2406 			if (dest->ht_level == mmu.max_level &&
2407 			    htable_e2va(dest, entry) < HYPERVISOR_VIRT_END)
2408 				set_pteval(
2409 				    pfn_to_pa(dest->ht_hat->hat_user_ptable),
2410 				    entry, dest->ht_level, pte);
2411 #endif
2412 		}
2413 		--count;
2414 		++entry;
2415 		src_va += mmu.pte_size;
2416 	}
2417 	x86pte_release_pagetable(src);
2418 }
2419 #endif /* __xpv */
2420 
2421 /*
2422  * Zero page table entries - Note this doesn't use atomic stores!
2423  */
2424 static void
2425 x86pte_zero(htable_t *dest, uint_t entry, uint_t count)
2426 {
2427 	caddr_t dst_va;
2428 	size_t size;
2429 #ifdef __xpv
2430 	int x;
2431 	x86pte_t newpte;
2432 #endif
2433 
2434 	/*
2435 	 * Map in the page table to be zeroed.
2436 	 */
2437 	ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2438 	ASSERT(!(dest->ht_flags & HTABLE_VLP));
2439 
2440 	/*
2441 	 * On the hypervisor we don't use x86pte_access_pagetable() since
2442 	 * in this case the page is not pinned yet.
2443 	 */
2444 #ifdef __xpv
2445 	if (kpm_vbase == NULL) {
2446 		kpreempt_disable();
2447 		ASSERT(CPU->cpu_hat_info != NULL);
2448 		mutex_enter(&CPU->cpu_hat_info->hci_mutex);
2449 		x = PWIN_TABLE(CPU->cpu_id);
2450 		newpte = MAKEPTE(dest->ht_pfn, 0) | PT_WRITABLE;
2451 		xen_map(newpte, PWIN_VA(x));
2452 		dst_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry);
2453 	} else
2454 #endif
2455 		dst_va = (caddr_t)x86pte_access_pagetable(dest, entry);
2456 
2457 	size = count << mmu.pte_size_shift;
2458 	ASSERT(size > BLOCKZEROALIGN);
2459 #ifdef __i386
2460 	if (!is_x86_feature(x86_featureset, X86FSET_SSE2))
2461 		bzero(dst_va, size);
2462 	else
2463 #endif
2464 		block_zero_no_xmm(dst_va, size);
2465 
2466 #ifdef __xpv
2467 	if (kpm_vbase == NULL) {
2468 		xen_map(0, PWIN_VA(x));
2469 		mutex_exit(&CPU->cpu_hat_info->hci_mutex);
2470 		kpreempt_enable();
2471 	} else
2472 #endif
2473 		x86pte_release_pagetable(dest);
2474 }
2475 
2476 /*
2477  * Called to ensure that all pagetables are in the system dump
2478  */
2479 void
2480 hat_dump(void)
2481 {
2482 	hat_t *hat;
2483 	uint_t h;
2484 	htable_t *ht;
2485 
2486 	/*
2487 	 * Dump all page tables
2488 	 */
2489 	for (hat = kas.a_hat; hat != NULL; hat = hat->hat_next) {
2490 		for (h = 0; h < hat->hat_num_hash; ++h) {
2491 			for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
2492 				if ((ht->ht_flags & HTABLE_VLP) == 0)
2493 					dump_page(ht->ht_pfn);
2494 			}
2495 		}
2496 	}
2497 }
2498