xref: /titanic_41/usr/src/uts/i86pc/vm/htable.c (revision 49b225e1cfa7bbf7738d4df0a03f18e3283426eb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/sysmacros.h>
29 #include <sys/kmem.h>
30 #include <sys/atomic.h>
31 #include <sys/bitmap.h>
32 #include <sys/machparam.h>
33 #include <sys/machsystm.h>
34 #include <sys/mman.h>
35 #include <sys/systm.h>
36 #include <sys/cpuvar.h>
37 #include <sys/thread.h>
38 #include <sys/proc.h>
39 #include <sys/cpu.h>
40 #include <sys/kmem.h>
41 #include <sys/disp.h>
42 #include <sys/vmem.h>
43 #include <sys/vmsystm.h>
44 #include <sys/promif.h>
45 #include <sys/var.h>
46 #include <sys/x86_archext.h>
47 #include <sys/archsystm.h>
48 #include <sys/bootconf.h>
49 #include <sys/dumphdr.h>
50 #include <vm/seg_kmem.h>
51 #include <vm/seg_kpm.h>
52 #include <vm/hat.h>
53 #include <vm/hat_i86.h>
54 #include <sys/cmn_err.h>
55 #include <sys/panic.h>
56 
57 #ifdef __xpv
58 #include <sys/hypervisor.h>
59 #include <sys/xpv_panic.h>
60 #endif
61 
62 #include <sys/bootinfo.h>
63 #include <vm/kboot_mmu.h>
64 
65 static void x86pte_zero(htable_t *dest, uint_t entry, uint_t count);
66 
67 kmem_cache_t *htable_cache;
68 
69 /*
70  * The variable htable_reserve_amount, rather than HTABLE_RESERVE_AMOUNT,
71  * is used in order to facilitate testing of the htable_steal() code.
72  * By resetting htable_reserve_amount to a lower value, we can force
73  * stealing to occur.  The reserve amount is a guess to get us through boot.
74  */
75 #define	HTABLE_RESERVE_AMOUNT	(200)
76 uint_t htable_reserve_amount = HTABLE_RESERVE_AMOUNT;
77 kmutex_t htable_reserve_mutex;
78 uint_t htable_reserve_cnt;
79 htable_t *htable_reserve_pool;
80 
81 /*
82  * Used to hand test htable_steal().
83  */
84 #ifdef DEBUG
85 ulong_t force_steal = 0;
86 ulong_t ptable_cnt = 0;
87 #endif
88 
89 /*
90  * This variable is so that we can tune this via /etc/system
91  * Any value works, but a power of two <= mmu.ptes_per_table is best.
92  */
93 uint_t htable_steal_passes = 8;
94 
95 /*
96  * mutex stuff for access to htable hash
97  */
98 #define	NUM_HTABLE_MUTEX 128
99 kmutex_t htable_mutex[NUM_HTABLE_MUTEX];
100 #define	HTABLE_MUTEX_HASH(h) ((h) & (NUM_HTABLE_MUTEX - 1))
101 
102 #define	HTABLE_ENTER(h)	mutex_enter(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
103 #define	HTABLE_EXIT(h)	mutex_exit(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
104 
105 /*
106  * forward declarations
107  */
108 static void link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr);
109 static void unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr);
110 static void htable_free(htable_t *ht);
111 static x86pte_t *x86pte_access_pagetable(htable_t *ht, uint_t index);
112 static void x86pte_release_pagetable(htable_t *ht);
113 static x86pte_t x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old,
114 	x86pte_t new);
115 
116 /*
117  * A counter to track if we are stealing or reaping htables. When non-zero
118  * htable_free() will directly free htables (either to the reserve or kmem)
119  * instead of putting them in a hat's htable cache.
120  */
121 uint32_t htable_dont_cache = 0;
122 
123 /*
124  * Track the number of active pagetables, so we can know how many to reap
125  */
126 static uint32_t active_ptables = 0;
127 
128 #ifdef __xpv
129 /*
130  * Deal with hypervisor complications.
131  */
132 void
133 xen_flush_va(caddr_t va)
134 {
135 	struct mmuext_op t;
136 	uint_t count;
137 
138 	if (IN_XPV_PANIC()) {
139 		mmu_tlbflush_entry((caddr_t)va);
140 	} else {
141 		t.cmd = MMUEXT_INVLPG_LOCAL;
142 		t.arg1.linear_addr = (uintptr_t)va;
143 		if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
144 			panic("HYPERVISOR_mmuext_op() failed");
145 		ASSERT(count == 1);
146 	}
147 }
148 
149 void
150 xen_gflush_va(caddr_t va, cpuset_t cpus)
151 {
152 	struct mmuext_op t;
153 	uint_t count;
154 
155 	if (IN_XPV_PANIC()) {
156 		mmu_tlbflush_entry((caddr_t)va);
157 		return;
158 	}
159 
160 	t.cmd = MMUEXT_INVLPG_MULTI;
161 	t.arg1.linear_addr = (uintptr_t)va;
162 	/*LINTED: constant in conditional context*/
163 	set_xen_guest_handle(t.arg2.vcpumask, &cpus);
164 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
165 		panic("HYPERVISOR_mmuext_op() failed");
166 	ASSERT(count == 1);
167 }
168 
169 void
170 xen_flush_tlb()
171 {
172 	struct mmuext_op t;
173 	uint_t count;
174 
175 	if (IN_XPV_PANIC()) {
176 		xpv_panic_reload_cr3();
177 	} else {
178 		t.cmd = MMUEXT_TLB_FLUSH_LOCAL;
179 		if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
180 			panic("HYPERVISOR_mmuext_op() failed");
181 		ASSERT(count == 1);
182 	}
183 }
184 
185 void
186 xen_gflush_tlb(cpuset_t cpus)
187 {
188 	struct mmuext_op t;
189 	uint_t count;
190 
191 	ASSERT(!IN_XPV_PANIC());
192 	t.cmd = MMUEXT_TLB_FLUSH_MULTI;
193 	/*LINTED: constant in conditional context*/
194 	set_xen_guest_handle(t.arg2.vcpumask, &cpus);
195 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
196 		panic("HYPERVISOR_mmuext_op() failed");
197 	ASSERT(count == 1);
198 }
199 
200 /*
201  * Install/Adjust a kpm mapping under the hypervisor.
202  * Value of "how" should be:
203  *	PT_WRITABLE | PT_VALID - regular kpm mapping
204  *	PT_VALID - make mapping read-only
205  *	0	- remove mapping
206  *
207  * returns 0 on success. non-zero for failure.
208  */
209 int
210 xen_kpm_page(pfn_t pfn, uint_t how)
211 {
212 	paddr_t pa = mmu_ptob((paddr_t)pfn);
213 	x86pte_t pte = PT_NOCONSIST | PT_REF | PT_MOD;
214 
215 	if (kpm_vbase == NULL)
216 		return (0);
217 
218 	if (how)
219 		pte |= pa_to_ma(pa) | how;
220 	else
221 		pte = 0;
222 	return (HYPERVISOR_update_va_mapping((uintptr_t)kpm_vbase + pa,
223 	    pte, UVMF_INVLPG | UVMF_ALL));
224 }
225 
226 void
227 xen_pin(pfn_t pfn, level_t lvl)
228 {
229 	struct mmuext_op t;
230 	uint_t count;
231 
232 	t.cmd = MMUEXT_PIN_L1_TABLE + lvl;
233 	t.arg1.mfn = pfn_to_mfn(pfn);
234 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
235 		panic("HYPERVISOR_mmuext_op() failed");
236 	ASSERT(count == 1);
237 }
238 
239 void
240 xen_unpin(pfn_t pfn)
241 {
242 	struct mmuext_op t;
243 	uint_t count;
244 
245 	t.cmd = MMUEXT_UNPIN_TABLE;
246 	t.arg1.mfn = pfn_to_mfn(pfn);
247 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
248 		panic("HYPERVISOR_mmuext_op() failed");
249 	ASSERT(count == 1);
250 }
251 
252 static void
253 xen_map(uint64_t pte, caddr_t va)
254 {
255 	if (HYPERVISOR_update_va_mapping((uintptr_t)va, pte,
256 	    UVMF_INVLPG | UVMF_LOCAL))
257 		panic("HYPERVISOR_update_va_mapping() failed");
258 }
259 #endif /* __xpv */
260 
261 /*
262  * Allocate a memory page for a hardware page table.
263  *
264  * A wrapper around page_get_physical(), with some extra checks.
265  */
266 static pfn_t
267 ptable_alloc(uintptr_t seed)
268 {
269 	pfn_t pfn;
270 	page_t *pp;
271 
272 	pfn = PFN_INVALID;
273 
274 	/*
275 	 * The first check is to see if there is memory in the system. If we
276 	 * drop to throttlefree, then fail the ptable_alloc() and let the
277 	 * stealing code kick in. Note that we have to do this test here,
278 	 * since the test in page_create_throttle() would let the NOSLEEP
279 	 * allocation go through and deplete the page reserves.
280 	 *
281 	 * The !NOMEMWAIT() lets pageout, fsflush, etc. skip this check.
282 	 */
283 	if (!NOMEMWAIT() && freemem <= throttlefree + 1)
284 		return (PFN_INVALID);
285 
286 #ifdef DEBUG
287 	/*
288 	 * This code makes htable_steal() easier to test. By setting
289 	 * force_steal we force pagetable allocations to fall
290 	 * into the stealing code. Roughly 1 in ever "force_steal"
291 	 * page table allocations will fail.
292 	 */
293 	if (proc_pageout != NULL && force_steal > 1 &&
294 	    ++ptable_cnt > force_steal) {
295 		ptable_cnt = 0;
296 		return (PFN_INVALID);
297 	}
298 #endif /* DEBUG */
299 
300 	pp = page_get_physical(seed);
301 	if (pp == NULL)
302 		return (PFN_INVALID);
303 	ASSERT(PAGE_SHARED(pp));
304 	pfn = pp->p_pagenum;
305 	if (pfn == PFN_INVALID)
306 		panic("ptable_alloc(): Invalid PFN!!");
307 	atomic_add_32(&active_ptables, 1);
308 	HATSTAT_INC(hs_ptable_allocs);
309 	return (pfn);
310 }
311 
312 /*
313  * Free an htable's associated page table page.  See the comments
314  * for ptable_alloc().
315  */
316 static void
317 ptable_free(pfn_t pfn)
318 {
319 	page_t *pp = page_numtopp_nolock(pfn);
320 
321 	/*
322 	 * need to destroy the page used for the pagetable
323 	 */
324 	ASSERT(pfn != PFN_INVALID);
325 	HATSTAT_INC(hs_ptable_frees);
326 	atomic_add_32(&active_ptables, -1);
327 	if (pp == NULL)
328 		panic("ptable_free(): no page for pfn!");
329 	ASSERT(PAGE_SHARED(pp));
330 	ASSERT(pfn == pp->p_pagenum);
331 	ASSERT(!IN_XPV_PANIC());
332 
333 	/*
334 	 * Get an exclusive lock, might have to wait for a kmem reader.
335 	 */
336 	if (!page_tryupgrade(pp)) {
337 		page_unlock(pp);
338 		/*
339 		 * RFE: we could change this to not loop forever
340 		 * For now looping works - it's just like sfmmu.
341 		 */
342 		while (!page_lock(pp, SE_EXCL, (kmutex_t *)NULL, P_RECLAIM))
343 			continue;
344 	}
345 #ifdef __xpv
346 	if (kpm_vbase && xen_kpm_page(pfn, PT_VALID | PT_WRITABLE) < 0)
347 		panic("failure making kpm r/w pfn=0x%lx", pfn);
348 #endif
349 	page_free(pp, 1);
350 	page_unresv(1);
351 }
352 
353 /*
354  * Put one htable on the reserve list.
355  */
356 static void
357 htable_put_reserve(htable_t *ht)
358 {
359 	ht->ht_hat = NULL;		/* no longer tied to a hat */
360 	ASSERT(ht->ht_pfn == PFN_INVALID);
361 	HATSTAT_INC(hs_htable_rputs);
362 	mutex_enter(&htable_reserve_mutex);
363 	ht->ht_next = htable_reserve_pool;
364 	htable_reserve_pool = ht;
365 	++htable_reserve_cnt;
366 	mutex_exit(&htable_reserve_mutex);
367 }
368 
369 /*
370  * Take one htable from the reserve.
371  */
372 static htable_t *
373 htable_get_reserve(void)
374 {
375 	htable_t *ht = NULL;
376 
377 	mutex_enter(&htable_reserve_mutex);
378 	if (htable_reserve_cnt != 0) {
379 		ht = htable_reserve_pool;
380 		ASSERT(ht != NULL);
381 		ASSERT(ht->ht_pfn == PFN_INVALID);
382 		htable_reserve_pool = ht->ht_next;
383 		--htable_reserve_cnt;
384 		HATSTAT_INC(hs_htable_rgets);
385 	}
386 	mutex_exit(&htable_reserve_mutex);
387 	return (ht);
388 }
389 
390 /*
391  * Allocate initial htables and put them on the reserve list
392  */
393 void
394 htable_initial_reserve(uint_t count)
395 {
396 	htable_t *ht;
397 
398 	count += HTABLE_RESERVE_AMOUNT;
399 	while (count > 0) {
400 		ht = kmem_cache_alloc(htable_cache, KM_NOSLEEP);
401 		ASSERT(ht != NULL);
402 
403 		ASSERT(use_boot_reserve);
404 		ht->ht_pfn = PFN_INVALID;
405 		htable_put_reserve(ht);
406 		--count;
407 	}
408 }
409 
410 /*
411  * Readjust the reserves after a thread finishes using them.
412  */
413 void
414 htable_adjust_reserve()
415 {
416 	htable_t *ht;
417 
418 	/*
419 	 * Free any excess htables in the reserve list
420 	 */
421 	while (htable_reserve_cnt > htable_reserve_amount &&
422 	    !USE_HAT_RESERVES()) {
423 		ht = htable_get_reserve();
424 		if (ht == NULL)
425 			return;
426 		ASSERT(ht->ht_pfn == PFN_INVALID);
427 		kmem_cache_free(htable_cache, ht);
428 	}
429 }
430 
431 
432 /*
433  * This routine steals htables from user processes for htable_alloc() or
434  * for htable_reap().
435  */
436 static htable_t *
437 htable_steal(uint_t cnt)
438 {
439 	hat_t		*hat = kas.a_hat;	/* list starts with khat */
440 	htable_t	*list = NULL;
441 	htable_t	*ht;
442 	htable_t	*higher;
443 	uint_t		h;
444 	uint_t		h_start;
445 	static uint_t	h_seed = 0;
446 	uint_t		e;
447 	uintptr_t	va;
448 	x86pte_t	pte;
449 	uint_t		stolen = 0;
450 	uint_t		pass;
451 	uint_t		threshold;
452 
453 	/*
454 	 * Limit htable_steal_passes to something reasonable
455 	 */
456 	if (htable_steal_passes == 0)
457 		htable_steal_passes = 1;
458 	if (htable_steal_passes > mmu.ptes_per_table)
459 		htable_steal_passes = mmu.ptes_per_table;
460 
461 	/*
462 	 * Loop through all user hats. The 1st pass takes cached htables that
463 	 * aren't in use. The later passes steal by removing mappings, too.
464 	 */
465 	atomic_add_32(&htable_dont_cache, 1);
466 	for (pass = 0; pass <= htable_steal_passes && stolen < cnt; ++pass) {
467 		threshold = pass * mmu.ptes_per_table / htable_steal_passes;
468 		hat = kas.a_hat;
469 		for (;;) {
470 
471 			/*
472 			 * Clear the victim flag and move to next hat
473 			 */
474 			mutex_enter(&hat_list_lock);
475 			if (hat != kas.a_hat) {
476 				hat->hat_flags &= ~HAT_VICTIM;
477 				cv_broadcast(&hat_list_cv);
478 			}
479 			hat = hat->hat_next;
480 
481 			/*
482 			 * Skip any hat that is already being stolen from.
483 			 *
484 			 * We skip SHARED hats, as these are dummy
485 			 * hats that host ISM shared page tables.
486 			 *
487 			 * We also skip if HAT_FREEING because hat_pte_unmap()
488 			 * won't zero out the PTE's. That would lead to hitting
489 			 * stale PTEs either here or under hat_unload() when we
490 			 * steal and unload the same page table in competing
491 			 * threads.
492 			 */
493 			while (hat != NULL &&
494 			    (hat->hat_flags &
495 			    (HAT_VICTIM | HAT_SHARED | HAT_FREEING)) != 0)
496 				hat = hat->hat_next;
497 
498 			if (hat == NULL) {
499 				mutex_exit(&hat_list_lock);
500 				break;
501 			}
502 
503 			/*
504 			 * Are we finished?
505 			 */
506 			if (stolen == cnt) {
507 				/*
508 				 * Try to spread the pain of stealing,
509 				 * move victim HAT to the end of the HAT list.
510 				 */
511 				if (pass >= 1 && cnt == 1 &&
512 				    kas.a_hat->hat_prev != hat) {
513 
514 					/* unlink victim hat */
515 					if (hat->hat_prev)
516 						hat->hat_prev->hat_next =
517 						    hat->hat_next;
518 					else
519 						kas.a_hat->hat_next =
520 						    hat->hat_next;
521 					if (hat->hat_next)
522 						hat->hat_next->hat_prev =
523 						    hat->hat_prev;
524 					else
525 						kas.a_hat->hat_prev =
526 						    hat->hat_prev;
527 
528 
529 					/* relink at end of hat list */
530 					hat->hat_next = NULL;
531 					hat->hat_prev = kas.a_hat->hat_prev;
532 					if (hat->hat_prev)
533 						hat->hat_prev->hat_next = hat;
534 					else
535 						kas.a_hat->hat_next = hat;
536 					kas.a_hat->hat_prev = hat;
537 
538 				}
539 
540 				mutex_exit(&hat_list_lock);
541 				break;
542 			}
543 
544 			/*
545 			 * Mark the HAT as a stealing victim.
546 			 */
547 			hat->hat_flags |= HAT_VICTIM;
548 			mutex_exit(&hat_list_lock);
549 
550 			/*
551 			 * Take any htables from the hat's cached "free" list.
552 			 */
553 			hat_enter(hat);
554 			while ((ht = hat->hat_ht_cached) != NULL &&
555 			    stolen < cnt) {
556 				hat->hat_ht_cached = ht->ht_next;
557 				ht->ht_next = list;
558 				list = ht;
559 				++stolen;
560 			}
561 			hat_exit(hat);
562 
563 			/*
564 			 * Don't steal on first pass.
565 			 */
566 			if (pass == 0 || stolen == cnt)
567 				continue;
568 
569 			/*
570 			 * Search the active htables for one to steal.
571 			 * Start at a different hash bucket every time to
572 			 * help spread the pain of stealing.
573 			 */
574 			h = h_start = h_seed++ % hat->hat_num_hash;
575 			do {
576 				higher = NULL;
577 				HTABLE_ENTER(h);
578 				for (ht = hat->hat_ht_hash[h]; ht;
579 				    ht = ht->ht_next) {
580 
581 					/*
582 					 * Can we rule out reaping?
583 					 */
584 					if (ht->ht_busy != 0 ||
585 					    (ht->ht_flags & HTABLE_SHARED_PFN)||
586 					    ht->ht_level > 0 ||
587 					    ht->ht_valid_cnt > threshold ||
588 					    ht->ht_lock_cnt != 0)
589 						continue;
590 
591 					/*
592 					 * Increment busy so the htable can't
593 					 * disappear. We drop the htable mutex
594 					 * to avoid deadlocks with
595 					 * hat_pageunload() and the hment mutex
596 					 * while we call hat_pte_unmap()
597 					 */
598 					++ht->ht_busy;
599 					HTABLE_EXIT(h);
600 
601 					/*
602 					 * Try stealing.
603 					 * - unload and invalidate all PTEs
604 					 */
605 					for (e = 0, va = ht->ht_vaddr;
606 					    e < HTABLE_NUM_PTES(ht) &&
607 					    ht->ht_valid_cnt > 0 &&
608 					    ht->ht_busy == 1 &&
609 					    ht->ht_lock_cnt == 0;
610 					    ++e, va += MMU_PAGESIZE) {
611 						pte = x86pte_get(ht, e);
612 						if (!PTE_ISVALID(pte))
613 							continue;
614 						hat_pte_unmap(ht, e,
615 						    HAT_UNLOAD, pte, NULL);
616 					}
617 
618 					/*
619 					 * Reacquire htable lock. If we didn't
620 					 * remove all mappings in the table,
621 					 * or another thread added a new mapping
622 					 * behind us, give up on this table.
623 					 */
624 					HTABLE_ENTER(h);
625 					if (ht->ht_busy != 1 ||
626 					    ht->ht_valid_cnt != 0 ||
627 					    ht->ht_lock_cnt != 0) {
628 						--ht->ht_busy;
629 						continue;
630 					}
631 
632 					/*
633 					 * Steal it and unlink the page table.
634 					 */
635 					higher = ht->ht_parent;
636 					unlink_ptp(higher, ht, ht->ht_vaddr);
637 
638 					/*
639 					 * remove from the hash list
640 					 */
641 					if (ht->ht_next)
642 						ht->ht_next->ht_prev =
643 						    ht->ht_prev;
644 
645 					if (ht->ht_prev) {
646 						ht->ht_prev->ht_next =
647 						    ht->ht_next;
648 					} else {
649 						ASSERT(hat->hat_ht_hash[h] ==
650 						    ht);
651 						hat->hat_ht_hash[h] =
652 						    ht->ht_next;
653 					}
654 
655 					/*
656 					 * Break to outer loop to release the
657 					 * higher (ht_parent) pagetable. This
658 					 * spreads out the pain caused by
659 					 * pagefaults.
660 					 */
661 					ht->ht_next = list;
662 					list = ht;
663 					++stolen;
664 					break;
665 				}
666 				HTABLE_EXIT(h);
667 				if (higher != NULL)
668 					htable_release(higher);
669 				if (++h == hat->hat_num_hash)
670 					h = 0;
671 			} while (stolen < cnt && h != h_start);
672 		}
673 	}
674 	atomic_add_32(&htable_dont_cache, -1);
675 	return (list);
676 }
677 
678 /*
679  * This is invoked from kmem when the system is low on memory.  We try
680  * to free hments, htables, and ptables to improve the memory situation.
681  */
682 /*ARGSUSED*/
683 static void
684 htable_reap(void *handle)
685 {
686 	uint_t		reap_cnt;
687 	htable_t	*list;
688 	htable_t	*ht;
689 
690 	HATSTAT_INC(hs_reap_attempts);
691 	if (!can_steal_post_boot)
692 		return;
693 
694 	/*
695 	 * Try to reap 5% of the page tables bounded by a maximum of
696 	 * 5% of physmem and a minimum of 10.
697 	 */
698 	reap_cnt = MAX(MIN(physmem / 20, active_ptables / 20), 10);
699 
700 	/*
701 	 * Let htable_steal() do the work, we just call htable_free()
702 	 */
703 	XPV_DISALLOW_MIGRATE();
704 	list = htable_steal(reap_cnt);
705 	XPV_ALLOW_MIGRATE();
706 	while ((ht = list) != NULL) {
707 		list = ht->ht_next;
708 		HATSTAT_INC(hs_reaped);
709 		htable_free(ht);
710 	}
711 
712 	/*
713 	 * Free up excess reserves
714 	 */
715 	htable_adjust_reserve();
716 	hment_adjust_reserve();
717 }
718 
719 /*
720  * Allocate an htable, stealing one or using the reserve if necessary
721  */
722 static htable_t *
723 htable_alloc(
724 	hat_t		*hat,
725 	uintptr_t	vaddr,
726 	level_t		level,
727 	htable_t	*shared)
728 {
729 	htable_t	*ht = NULL;
730 	uint_t		is_vlp;
731 	uint_t		is_bare = 0;
732 	uint_t		need_to_zero = 1;
733 	int		kmflags = (can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP);
734 
735 	if (level < 0 || level > TOP_LEVEL(hat))
736 		panic("htable_alloc(): level %d out of range\n", level);
737 
738 	is_vlp = (hat->hat_flags & HAT_VLP) && level == VLP_LEVEL;
739 	if (is_vlp || shared != NULL)
740 		is_bare = 1;
741 
742 	/*
743 	 * First reuse a cached htable from the hat_ht_cached field, this
744 	 * avoids unnecessary trips through kmem/page allocators.
745 	 */
746 	if (hat->hat_ht_cached != NULL && !is_bare) {
747 		hat_enter(hat);
748 		ht = hat->hat_ht_cached;
749 		if (ht != NULL) {
750 			hat->hat_ht_cached = ht->ht_next;
751 			need_to_zero = 0;
752 			/* XX64 ASSERT() they're all zero somehow */
753 			ASSERT(ht->ht_pfn != PFN_INVALID);
754 		}
755 		hat_exit(hat);
756 	}
757 
758 	if (ht == NULL) {
759 		/*
760 		 * Allocate an htable, possibly refilling the reserves.
761 		 */
762 		if (USE_HAT_RESERVES()) {
763 			ht = htable_get_reserve();
764 		} else {
765 			/*
766 			 * Donate successful htable allocations to the reserve.
767 			 */
768 			for (;;) {
769 				ht = kmem_cache_alloc(htable_cache, kmflags);
770 				if (ht == NULL)
771 					break;
772 				ht->ht_pfn = PFN_INVALID;
773 				if (USE_HAT_RESERVES() ||
774 				    htable_reserve_cnt >= htable_reserve_amount)
775 					break;
776 				htable_put_reserve(ht);
777 			}
778 		}
779 
780 		/*
781 		 * allocate a page for the hardware page table if needed
782 		 */
783 		if (ht != NULL && !is_bare) {
784 			ht->ht_hat = hat;
785 			ht->ht_pfn = ptable_alloc((uintptr_t)ht);
786 			if (ht->ht_pfn == PFN_INVALID) {
787 				if (USE_HAT_RESERVES())
788 					htable_put_reserve(ht);
789 				else
790 					kmem_cache_free(htable_cache, ht);
791 				ht = NULL;
792 			}
793 		}
794 	}
795 
796 	/*
797 	 * If allocations failed, kick off a kmem_reap() and resort to
798 	 * htable steal(). We may spin here if the system is very low on
799 	 * memory. If the kernel itself has consumed all memory and kmem_reap()
800 	 * can't free up anything, then we'll really get stuck here.
801 	 * That should only happen in a system where the administrator has
802 	 * misconfigured VM parameters via /etc/system.
803 	 */
804 	while (ht == NULL && can_steal_post_boot) {
805 		kmem_reap();
806 		ht = htable_steal(1);
807 		HATSTAT_INC(hs_steals);
808 
809 		/*
810 		 * If we stole for a bare htable, release the pagetable page.
811 		 */
812 		if (ht != NULL) {
813 			if (is_bare) {
814 				ptable_free(ht->ht_pfn);
815 				ht->ht_pfn = PFN_INVALID;
816 #if defined(__xpv) && defined(__amd64)
817 			/*
818 			 * make stolen page table writable again in kpm
819 			 */
820 			} else if (kpm_vbase && xen_kpm_page(ht->ht_pfn,
821 			    PT_VALID | PT_WRITABLE) < 0) {
822 				panic("failure making kpm r/w pfn=0x%lx",
823 				    ht->ht_pfn);
824 #endif
825 			}
826 		}
827 	}
828 
829 	/*
830 	 * All attempts to allocate or steal failed. This should only happen
831 	 * if we run out of memory during boot, due perhaps to a huge
832 	 * boot_archive. At this point there's no way to continue.
833 	 */
834 	if (ht == NULL)
835 		panic("htable_alloc(): couldn't steal\n");
836 
837 #if defined(__amd64) && defined(__xpv)
838 	/*
839 	 * Under the 64-bit hypervisor, we have 2 top level page tables.
840 	 * If this allocation fails, we'll resort to stealing.
841 	 * We use the stolen page indirectly, by freeing the
842 	 * stolen htable first.
843 	 */
844 	if (level == mmu.max_level) {
845 		for (;;) {
846 			htable_t *stolen;
847 
848 			hat->hat_user_ptable = ptable_alloc((uintptr_t)ht + 1);
849 			if (hat->hat_user_ptable != PFN_INVALID)
850 				break;
851 			stolen = htable_steal(1);
852 			if (stolen == NULL)
853 				panic("2nd steal ptable failed\n");
854 			htable_free(stolen);
855 		}
856 		block_zero_no_xmm(kpm_vbase + pfn_to_pa(hat->hat_user_ptable),
857 		    MMU_PAGESIZE);
858 	}
859 #endif
860 
861 	/*
862 	 * Shared page tables have all entries locked and entries may not
863 	 * be added or deleted.
864 	 */
865 	ht->ht_flags = 0;
866 	if (shared != NULL) {
867 		ASSERT(shared->ht_valid_cnt > 0);
868 		ht->ht_flags |= HTABLE_SHARED_PFN;
869 		ht->ht_pfn = shared->ht_pfn;
870 		ht->ht_lock_cnt = 0;
871 		ht->ht_valid_cnt = 0;		/* updated in hat_share() */
872 		ht->ht_shares = shared;
873 		need_to_zero = 0;
874 	} else {
875 		ht->ht_shares = NULL;
876 		ht->ht_lock_cnt = 0;
877 		ht->ht_valid_cnt = 0;
878 	}
879 
880 	/*
881 	 * setup flags, etc. for VLP htables
882 	 */
883 	if (is_vlp) {
884 		ht->ht_flags |= HTABLE_VLP;
885 		ASSERT(ht->ht_pfn == PFN_INVALID);
886 		need_to_zero = 0;
887 	}
888 
889 	/*
890 	 * fill in the htable
891 	 */
892 	ht->ht_hat = hat;
893 	ht->ht_parent = NULL;
894 	ht->ht_vaddr = vaddr;
895 	ht->ht_level = level;
896 	ht->ht_busy = 1;
897 	ht->ht_next = NULL;
898 	ht->ht_prev = NULL;
899 
900 	/*
901 	 * Zero out any freshly allocated page table
902 	 */
903 	if (need_to_zero)
904 		x86pte_zero(ht, 0, mmu.ptes_per_table);
905 
906 #if defined(__amd64) && defined(__xpv)
907 	if (!is_bare && kpm_vbase) {
908 		(void) xen_kpm_page(ht->ht_pfn, PT_VALID);
909 		if (level == mmu.max_level)
910 			(void) xen_kpm_page(hat->hat_user_ptable, PT_VALID);
911 	}
912 #endif
913 
914 	return (ht);
915 }
916 
917 /*
918  * Free up an htable, either to a hat's cached list, the reserves or
919  * back to kmem.
920  */
921 static void
922 htable_free(htable_t *ht)
923 {
924 	hat_t *hat = ht->ht_hat;
925 
926 	/*
927 	 * If the process isn't exiting, cache the free htable in the hat
928 	 * structure. We always do this for the boot time reserve. We don't
929 	 * do this if the hat is exiting or we are stealing/reaping htables.
930 	 */
931 	if (hat != NULL &&
932 	    !(ht->ht_flags & HTABLE_SHARED_PFN) &&
933 	    (use_boot_reserve ||
934 	    (!(hat->hat_flags & HAT_FREEING) && !htable_dont_cache))) {
935 		ASSERT((ht->ht_flags & HTABLE_VLP) == 0);
936 		ASSERT(ht->ht_pfn != PFN_INVALID);
937 		hat_enter(hat);
938 		ht->ht_next = hat->hat_ht_cached;
939 		hat->hat_ht_cached = ht;
940 		hat_exit(hat);
941 		return;
942 	}
943 
944 	/*
945 	 * If we have a hardware page table, free it.
946 	 * We don't free page tables that are accessed by sharing.
947 	 */
948 	if (ht->ht_flags & HTABLE_SHARED_PFN) {
949 		ASSERT(ht->ht_pfn != PFN_INVALID);
950 	} else if (!(ht->ht_flags & HTABLE_VLP)) {
951 		ptable_free(ht->ht_pfn);
952 #if defined(__amd64) && defined(__xpv)
953 		if (ht->ht_level == mmu.max_level) {
954 			ptable_free(hat->hat_user_ptable);
955 			hat->hat_user_ptable = PFN_INVALID;
956 		}
957 #endif
958 	}
959 	ht->ht_pfn = PFN_INVALID;
960 
961 	/*
962 	 * Free it or put into reserves.
963 	 */
964 	if (USE_HAT_RESERVES() || htable_reserve_cnt < htable_reserve_amount) {
965 		htable_put_reserve(ht);
966 	} else {
967 		kmem_cache_free(htable_cache, ht);
968 		htable_adjust_reserve();
969 	}
970 }
971 
972 
973 /*
974  * This is called when a hat is being destroyed or swapped out. We reap all
975  * the remaining htables in the hat cache. If destroying all left over
976  * htables are also destroyed.
977  *
978  * We also don't need to invalidate any of the PTPs nor do any demapping.
979  */
980 void
981 htable_purge_hat(hat_t *hat)
982 {
983 	htable_t *ht;
984 	int h;
985 
986 	/*
987 	 * Purge the htable cache if just reaping.
988 	 */
989 	if (!(hat->hat_flags & HAT_FREEING)) {
990 		atomic_add_32(&htable_dont_cache, 1);
991 		for (;;) {
992 			hat_enter(hat);
993 			ht = hat->hat_ht_cached;
994 			if (ht == NULL) {
995 				hat_exit(hat);
996 				break;
997 			}
998 			hat->hat_ht_cached = ht->ht_next;
999 			hat_exit(hat);
1000 			htable_free(ht);
1001 		}
1002 		atomic_add_32(&htable_dont_cache, -1);
1003 		return;
1004 	}
1005 
1006 	/*
1007 	 * if freeing, no locking is needed
1008 	 */
1009 	while ((ht = hat->hat_ht_cached) != NULL) {
1010 		hat->hat_ht_cached = ht->ht_next;
1011 		htable_free(ht);
1012 	}
1013 
1014 	/*
1015 	 * walk thru the htable hash table and free all the htables in it.
1016 	 */
1017 	for (h = 0; h < hat->hat_num_hash; ++h) {
1018 		while ((ht = hat->hat_ht_hash[h]) != NULL) {
1019 			if (ht->ht_next)
1020 				ht->ht_next->ht_prev = ht->ht_prev;
1021 
1022 			if (ht->ht_prev) {
1023 				ht->ht_prev->ht_next = ht->ht_next;
1024 			} else {
1025 				ASSERT(hat->hat_ht_hash[h] == ht);
1026 				hat->hat_ht_hash[h] = ht->ht_next;
1027 			}
1028 			htable_free(ht);
1029 		}
1030 	}
1031 }
1032 
1033 /*
1034  * Unlink an entry for a table at vaddr and level out of the existing table
1035  * one level higher. We are always holding the HASH_ENTER() when doing this.
1036  */
1037 static void
1038 unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr)
1039 {
1040 	uint_t		entry = htable_va2entry(vaddr, higher);
1041 	x86pte_t	expect = MAKEPTP(old->ht_pfn, old->ht_level);
1042 	x86pte_t	found;
1043 	hat_t		*hat = old->ht_hat;
1044 
1045 	ASSERT(higher->ht_busy > 0);
1046 	ASSERT(higher->ht_valid_cnt > 0);
1047 	ASSERT(old->ht_valid_cnt == 0);
1048 	found = x86pte_cas(higher, entry, expect, 0);
1049 #ifdef __xpv
1050 	/*
1051 	 * This is weird, but Xen apparently automatically unlinks empty
1052 	 * pagetables from the upper page table. So allow PTP to be 0 already.
1053 	 */
1054 	if (found != expect && found != 0)
1055 #else
1056 	if (found != expect)
1057 #endif
1058 		panic("Bad PTP found=" FMT_PTE ", expected=" FMT_PTE,
1059 		    found, expect);
1060 
1061 	/*
1062 	 * When a top level VLP page table entry changes, we must issue
1063 	 * a reload of cr3 on all processors.
1064 	 *
1065 	 * If we don't need do do that, then we still have to INVLPG against
1066 	 * an address covered by the inner page table, as the latest processors
1067 	 * have TLB-like caches for non-leaf page table entries.
1068 	 */
1069 	if (!(hat->hat_flags & HAT_FREEING)) {
1070 		hat_tlb_inval(hat, (higher->ht_flags & HTABLE_VLP) ?
1071 		    DEMAP_ALL_ADDR : old->ht_vaddr);
1072 	}
1073 
1074 	HTABLE_DEC(higher->ht_valid_cnt);
1075 }
1076 
1077 /*
1078  * Link an entry for a new table at vaddr and level into the existing table
1079  * one level higher. We are always holding the HASH_ENTER() when doing this.
1080  */
1081 static void
1082 link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr)
1083 {
1084 	uint_t		entry = htable_va2entry(vaddr, higher);
1085 	x86pte_t	newptp = MAKEPTP(new->ht_pfn, new->ht_level);
1086 	x86pte_t	found;
1087 
1088 	ASSERT(higher->ht_busy > 0);
1089 
1090 	ASSERT(new->ht_level != mmu.max_level);
1091 
1092 	HTABLE_INC(higher->ht_valid_cnt);
1093 
1094 	found = x86pte_cas(higher, entry, 0, newptp);
1095 	if ((found & ~PT_REF) != 0)
1096 		panic("HAT: ptp not 0, found=" FMT_PTE, found);
1097 
1098 	/*
1099 	 * When any top level VLP page table entry changes, we must issue
1100 	 * a reload of cr3 on all processors using it.
1101 	 * We also need to do this for the kernel hat on PAE 32 bit kernel.
1102 	 */
1103 	if (
1104 #ifdef __i386
1105 	    (higher->ht_hat == kas.a_hat && higher->ht_level == VLP_LEVEL) ||
1106 #endif
1107 	    (higher->ht_flags & HTABLE_VLP))
1108 		hat_tlb_inval(higher->ht_hat, DEMAP_ALL_ADDR);
1109 }
1110 
1111 /*
1112  * Release of hold on an htable. If this is the last use and the pagetable
1113  * is empty we may want to free it, then recursively look at the pagetable
1114  * above it. The recursion is handled by the outer while() loop.
1115  *
1116  * On the metal, during process exit, we don't bother unlinking the tables from
1117  * upper level pagetables. They are instead handled in bulk by hat_free_end().
1118  * We can't do this on the hypervisor as we need the page table to be
1119  * implicitly unpinnned before it goes to the free page lists. This can't
1120  * happen unless we fully unlink it from the page table hierarchy.
1121  */
1122 void
1123 htable_release(htable_t *ht)
1124 {
1125 	uint_t		hashval;
1126 	htable_t	*shared;
1127 	htable_t	*higher;
1128 	hat_t		*hat;
1129 	uintptr_t	va;
1130 	level_t		level;
1131 
1132 	while (ht != NULL) {
1133 		shared = NULL;
1134 		for (;;) {
1135 			hat = ht->ht_hat;
1136 			va = ht->ht_vaddr;
1137 			level = ht->ht_level;
1138 			hashval = HTABLE_HASH(hat, va, level);
1139 
1140 			/*
1141 			 * The common case is that this isn't the last use of
1142 			 * an htable so we don't want to free the htable.
1143 			 */
1144 			HTABLE_ENTER(hashval);
1145 			ASSERT(ht->ht_valid_cnt >= 0);
1146 			ASSERT(ht->ht_busy > 0);
1147 			if (ht->ht_valid_cnt > 0)
1148 				break;
1149 			if (ht->ht_busy > 1)
1150 				break;
1151 			ASSERT(ht->ht_lock_cnt == 0);
1152 
1153 #if !defined(__xpv)
1154 			/*
1155 			 * we always release empty shared htables
1156 			 */
1157 			if (!(ht->ht_flags & HTABLE_SHARED_PFN)) {
1158 
1159 				/*
1160 				 * don't release if in address space tear down
1161 				 */
1162 				if (hat->hat_flags & HAT_FREEING)
1163 					break;
1164 
1165 				/*
1166 				 * At and above max_page_level, free if it's for
1167 				 * a boot-time kernel mapping below kernelbase.
1168 				 */
1169 				if (level >= mmu.max_page_level &&
1170 				    (hat != kas.a_hat || va >= kernelbase))
1171 					break;
1172 			}
1173 #endif /* __xpv */
1174 
1175 			/*
1176 			 * Remember if we destroy an htable that shares its PFN
1177 			 * from elsewhere.
1178 			 */
1179 			if (ht->ht_flags & HTABLE_SHARED_PFN) {
1180 				ASSERT(shared == NULL);
1181 				shared = ht->ht_shares;
1182 				HATSTAT_INC(hs_htable_unshared);
1183 			}
1184 
1185 			/*
1186 			 * Handle release of a table and freeing the htable_t.
1187 			 * Unlink it from the table higher (ie. ht_parent).
1188 			 */
1189 			higher = ht->ht_parent;
1190 			ASSERT(higher != NULL);
1191 
1192 			/*
1193 			 * Unlink the pagetable.
1194 			 */
1195 			unlink_ptp(higher, ht, va);
1196 
1197 			/*
1198 			 * remove this htable from its hash list
1199 			 */
1200 			if (ht->ht_next)
1201 				ht->ht_next->ht_prev = ht->ht_prev;
1202 
1203 			if (ht->ht_prev) {
1204 				ht->ht_prev->ht_next = ht->ht_next;
1205 			} else {
1206 				ASSERT(hat->hat_ht_hash[hashval] == ht);
1207 				hat->hat_ht_hash[hashval] = ht->ht_next;
1208 			}
1209 			HTABLE_EXIT(hashval);
1210 			htable_free(ht);
1211 			ht = higher;
1212 		}
1213 
1214 		ASSERT(ht->ht_busy >= 1);
1215 		--ht->ht_busy;
1216 		HTABLE_EXIT(hashval);
1217 
1218 		/*
1219 		 * If we released a shared htable, do a release on the htable
1220 		 * from which it shared
1221 		 */
1222 		ht = shared;
1223 	}
1224 }
1225 
1226 /*
1227  * Find the htable for the pagetable at the given level for the given address.
1228  * If found acquires a hold that eventually needs to be htable_release()d
1229  */
1230 htable_t *
1231 htable_lookup(hat_t *hat, uintptr_t vaddr, level_t level)
1232 {
1233 	uintptr_t	base;
1234 	uint_t		hashval;
1235 	htable_t	*ht = NULL;
1236 
1237 	ASSERT(level >= 0);
1238 	ASSERT(level <= TOP_LEVEL(hat));
1239 
1240 	if (level == TOP_LEVEL(hat)) {
1241 #if defined(__amd64)
1242 		/*
1243 		 * 32 bit address spaces on 64 bit kernels need to check
1244 		 * for overflow of the 32 bit address space
1245 		 */
1246 		if ((hat->hat_flags & HAT_VLP) && vaddr >= ((uint64_t)1 << 32))
1247 			return (NULL);
1248 #endif
1249 		base = 0;
1250 	} else {
1251 		base = vaddr & LEVEL_MASK(level + 1);
1252 	}
1253 
1254 	hashval = HTABLE_HASH(hat, base, level);
1255 	HTABLE_ENTER(hashval);
1256 	for (ht = hat->hat_ht_hash[hashval]; ht; ht = ht->ht_next) {
1257 		if (ht->ht_hat == hat &&
1258 		    ht->ht_vaddr == base &&
1259 		    ht->ht_level == level)
1260 			break;
1261 	}
1262 	if (ht)
1263 		++ht->ht_busy;
1264 
1265 	HTABLE_EXIT(hashval);
1266 	return (ht);
1267 }
1268 
1269 /*
1270  * Acquires a hold on a known htable (from a locked hment entry).
1271  */
1272 void
1273 htable_acquire(htable_t *ht)
1274 {
1275 	hat_t		*hat = ht->ht_hat;
1276 	level_t		level = ht->ht_level;
1277 	uintptr_t	base = ht->ht_vaddr;
1278 	uint_t		hashval = HTABLE_HASH(hat, base, level);
1279 
1280 	HTABLE_ENTER(hashval);
1281 #ifdef DEBUG
1282 	/*
1283 	 * make sure the htable is there
1284 	 */
1285 	{
1286 		htable_t	*h;
1287 
1288 		for (h = hat->hat_ht_hash[hashval];
1289 		    h && h != ht;
1290 		    h = h->ht_next)
1291 			;
1292 		ASSERT(h == ht);
1293 	}
1294 #endif /* DEBUG */
1295 	++ht->ht_busy;
1296 	HTABLE_EXIT(hashval);
1297 }
1298 
1299 /*
1300  * Find the htable for the pagetable at the given level for the given address.
1301  * If found acquires a hold that eventually needs to be htable_release()d
1302  * If not found the table is created.
1303  *
1304  * Since we can't hold a hash table mutex during allocation, we have to
1305  * drop it and redo the search on a create. Then we may have to free the newly
1306  * allocated htable if another thread raced in and created it ahead of us.
1307  */
1308 htable_t *
1309 htable_create(
1310 	hat_t		*hat,
1311 	uintptr_t	vaddr,
1312 	level_t		level,
1313 	htable_t	*shared)
1314 {
1315 	uint_t		h;
1316 	level_t		l;
1317 	uintptr_t	base;
1318 	htable_t	*ht;
1319 	htable_t	*higher = NULL;
1320 	htable_t	*new = NULL;
1321 
1322 	if (level < 0 || level > TOP_LEVEL(hat))
1323 		panic("htable_create(): level %d out of range\n", level);
1324 
1325 	/*
1326 	 * Create the page tables in top down order.
1327 	 */
1328 	for (l = TOP_LEVEL(hat); l >= level; --l) {
1329 		new = NULL;
1330 		if (l == TOP_LEVEL(hat))
1331 			base = 0;
1332 		else
1333 			base = vaddr & LEVEL_MASK(l + 1);
1334 
1335 		h = HTABLE_HASH(hat, base, l);
1336 try_again:
1337 		/*
1338 		 * look up the htable at this level
1339 		 */
1340 		HTABLE_ENTER(h);
1341 		if (l == TOP_LEVEL(hat)) {
1342 			ht = hat->hat_htable;
1343 		} else {
1344 			for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
1345 				ASSERT(ht->ht_hat == hat);
1346 				if (ht->ht_vaddr == base &&
1347 				    ht->ht_level == l)
1348 					break;
1349 			}
1350 		}
1351 
1352 		/*
1353 		 * if we found the htable, increment its busy cnt
1354 		 * and if we had allocated a new htable, free it.
1355 		 */
1356 		if (ht != NULL) {
1357 			/*
1358 			 * If we find a pre-existing shared table, it must
1359 			 * share from the same place.
1360 			 */
1361 			if (l == level && shared && ht->ht_shares &&
1362 			    ht->ht_shares != shared) {
1363 				panic("htable shared from wrong place "
1364 				    "found htable=%p shared=%p",
1365 				    (void *)ht, (void *)shared);
1366 			}
1367 			++ht->ht_busy;
1368 			HTABLE_EXIT(h);
1369 			if (new)
1370 				htable_free(new);
1371 			if (higher != NULL)
1372 				htable_release(higher);
1373 			higher = ht;
1374 
1375 		/*
1376 		 * if we didn't find it on the first search
1377 		 * allocate a new one and search again
1378 		 */
1379 		} else if (new == NULL) {
1380 			HTABLE_EXIT(h);
1381 			new = htable_alloc(hat, base, l,
1382 			    l == level ? shared : NULL);
1383 			goto try_again;
1384 
1385 		/*
1386 		 * 2nd search and still not there, use "new" table
1387 		 * Link new table into higher, when not at top level.
1388 		 */
1389 		} else {
1390 			ht = new;
1391 			if (higher != NULL) {
1392 				link_ptp(higher, ht, base);
1393 				ht->ht_parent = higher;
1394 			}
1395 			ht->ht_next = hat->hat_ht_hash[h];
1396 			ASSERT(ht->ht_prev == NULL);
1397 			if (hat->hat_ht_hash[h])
1398 				hat->hat_ht_hash[h]->ht_prev = ht;
1399 			hat->hat_ht_hash[h] = ht;
1400 			HTABLE_EXIT(h);
1401 
1402 			/*
1403 			 * Note we don't do htable_release(higher).
1404 			 * That happens recursively when "new" is removed by
1405 			 * htable_release() or htable_steal().
1406 			 */
1407 			higher = ht;
1408 
1409 			/*
1410 			 * If we just created a new shared page table we
1411 			 * increment the shared htable's busy count, so that
1412 			 * it can't be the victim of a steal even if it's empty.
1413 			 */
1414 			if (l == level && shared) {
1415 				(void) htable_lookup(shared->ht_hat,
1416 				    shared->ht_vaddr, shared->ht_level);
1417 				HATSTAT_INC(hs_htable_shared);
1418 			}
1419 		}
1420 	}
1421 
1422 	return (ht);
1423 }
1424 
1425 /*
1426  * Inherit initial pagetables from the boot program. On the 64-bit
1427  * hypervisor we also temporarily mark the p_index field of page table
1428  * pages, so we know not to try making them writable in seg_kpm.
1429  */
1430 void
1431 htable_attach(
1432 	hat_t *hat,
1433 	uintptr_t base,
1434 	level_t level,
1435 	htable_t *parent,
1436 	pfn_t pfn)
1437 {
1438 	htable_t	*ht;
1439 	uint_t		h;
1440 	uint_t		i;
1441 	x86pte_t	pte;
1442 	x86pte_t	*ptep;
1443 	page_t		*pp;
1444 	extern page_t	*boot_claim_page(pfn_t);
1445 
1446 	ht = htable_get_reserve();
1447 	if (level == mmu.max_level)
1448 		kas.a_hat->hat_htable = ht;
1449 	ht->ht_hat = hat;
1450 	ht->ht_parent = parent;
1451 	ht->ht_vaddr = base;
1452 	ht->ht_level = level;
1453 	ht->ht_busy = 1;
1454 	ht->ht_next = NULL;
1455 	ht->ht_prev = NULL;
1456 	ht->ht_flags = 0;
1457 	ht->ht_pfn = pfn;
1458 	ht->ht_lock_cnt = 0;
1459 	ht->ht_valid_cnt = 0;
1460 	if (parent != NULL)
1461 		++parent->ht_busy;
1462 
1463 	h = HTABLE_HASH(hat, base, level);
1464 	HTABLE_ENTER(h);
1465 	ht->ht_next = hat->hat_ht_hash[h];
1466 	ASSERT(ht->ht_prev == NULL);
1467 	if (hat->hat_ht_hash[h])
1468 		hat->hat_ht_hash[h]->ht_prev = ht;
1469 	hat->hat_ht_hash[h] = ht;
1470 	HTABLE_EXIT(h);
1471 
1472 	/*
1473 	 * make sure the page table physical page is not FREE
1474 	 */
1475 	if (page_resv(1, KM_NOSLEEP) == 0)
1476 		panic("page_resv() failed in ptable alloc");
1477 
1478 	pp = boot_claim_page(pfn);
1479 	ASSERT(pp != NULL);
1480 	page_downgrade(pp);
1481 #if defined(__xpv) && defined(__amd64)
1482 	/*
1483 	 * Record in the page_t that is a pagetable for segkpm setup.
1484 	 */
1485 	if (kpm_vbase)
1486 		pp->p_index = 1;
1487 #endif
1488 
1489 	/*
1490 	 * Count valid mappings and recursively attach lower level pagetables.
1491 	 */
1492 	ptep = kbm_remap_window(pfn_to_pa(pfn), 0);
1493 	for (i = 0; i < HTABLE_NUM_PTES(ht); ++i) {
1494 		if (mmu.pae_hat)
1495 			pte = ptep[i];
1496 		else
1497 			pte = ((x86pte32_t *)ptep)[i];
1498 		if (!IN_HYPERVISOR_VA(base) && PTE_ISVALID(pte)) {
1499 			++ht->ht_valid_cnt;
1500 			if (!PTE_ISPAGE(pte, level)) {
1501 				htable_attach(hat, base, level - 1,
1502 				    ht, PTE2PFN(pte, level));
1503 				ptep = kbm_remap_window(pfn_to_pa(pfn), 0);
1504 			}
1505 		}
1506 		base += LEVEL_SIZE(level);
1507 		if (base == mmu.hole_start)
1508 			base = (mmu.hole_end + MMU_PAGEOFFSET) & MMU_PAGEMASK;
1509 	}
1510 
1511 	/*
1512 	 * As long as all the mappings we had were below kernel base
1513 	 * we can release the htable.
1514 	 */
1515 	if (base < kernelbase)
1516 		htable_release(ht);
1517 }
1518 
1519 /*
1520  * Walk through a given htable looking for the first valid entry.  This
1521  * routine takes both a starting and ending address.  The starting address
1522  * is required to be within the htable provided by the caller, but there is
1523  * no such restriction on the ending address.
1524  *
1525  * If the routine finds a valid entry in the htable (at or beyond the
1526  * starting address), the PTE (and its address) will be returned.
1527  * This PTE may correspond to either a page or a pagetable - it is the
1528  * caller's responsibility to determine which.  If no valid entry is
1529  * found, 0 (and invalid PTE) and the next unexamined address will be
1530  * returned.
1531  *
1532  * The loop has been carefully coded for optimization.
1533  */
1534 static x86pte_t
1535 htable_scan(htable_t *ht, uintptr_t *vap, uintptr_t eaddr)
1536 {
1537 	uint_t e;
1538 	x86pte_t found_pte = (x86pte_t)0;
1539 	caddr_t pte_ptr;
1540 	caddr_t end_pte_ptr;
1541 	int l = ht->ht_level;
1542 	uintptr_t va = *vap & LEVEL_MASK(l);
1543 	size_t pgsize = LEVEL_SIZE(l);
1544 
1545 	ASSERT(va >= ht->ht_vaddr);
1546 	ASSERT(va <= HTABLE_LAST_PAGE(ht));
1547 
1548 	/*
1549 	 * Compute the starting index and ending virtual address
1550 	 */
1551 	e = htable_va2entry(va, ht);
1552 
1553 	/*
1554 	 * The following page table scan code knows that the valid
1555 	 * bit of a PTE is in the lowest byte AND that x86 is little endian!!
1556 	 */
1557 	pte_ptr = (caddr_t)x86pte_access_pagetable(ht, 0);
1558 	end_pte_ptr = (caddr_t)PT_INDEX_PTR(pte_ptr, HTABLE_NUM_PTES(ht));
1559 	pte_ptr = (caddr_t)PT_INDEX_PTR((x86pte_t *)pte_ptr, e);
1560 	while (!PTE_ISVALID(*pte_ptr)) {
1561 		va += pgsize;
1562 		if (va >= eaddr)
1563 			break;
1564 		pte_ptr += mmu.pte_size;
1565 		ASSERT(pte_ptr <= end_pte_ptr);
1566 		if (pte_ptr == end_pte_ptr)
1567 			break;
1568 	}
1569 
1570 	/*
1571 	 * if we found a valid PTE, load the entire PTE
1572 	 */
1573 	if (va < eaddr && pte_ptr != end_pte_ptr)
1574 		found_pte = GET_PTE((x86pte_t *)pte_ptr);
1575 	x86pte_release_pagetable(ht);
1576 
1577 #if defined(__amd64)
1578 	/*
1579 	 * deal with VA hole on amd64
1580 	 */
1581 	if (l == mmu.max_level && va >= mmu.hole_start && va <= mmu.hole_end)
1582 		va = mmu.hole_end + va - mmu.hole_start;
1583 #endif /* __amd64 */
1584 
1585 	*vap = va;
1586 	return (found_pte);
1587 }
1588 
1589 /*
1590  * Find the address and htable for the first populated translation at or
1591  * above the given virtual address.  The caller may also specify an upper
1592  * limit to the address range to search.  Uses level information to quickly
1593  * skip unpopulated sections of virtual address spaces.
1594  *
1595  * If not found returns NULL. When found, returns the htable and virt addr
1596  * and has a hold on the htable.
1597  */
1598 x86pte_t
1599 htable_walk(
1600 	struct hat *hat,
1601 	htable_t **htp,
1602 	uintptr_t *vaddr,
1603 	uintptr_t eaddr)
1604 {
1605 	uintptr_t va = *vaddr;
1606 	htable_t *ht;
1607 	htable_t *prev = *htp;
1608 	level_t l;
1609 	level_t max_mapped_level;
1610 	x86pte_t pte;
1611 
1612 	ASSERT(eaddr > va);
1613 
1614 	/*
1615 	 * If this is a user address, then we know we need not look beyond
1616 	 * kernelbase.
1617 	 */
1618 	ASSERT(hat == kas.a_hat || eaddr <= kernelbase ||
1619 	    eaddr == HTABLE_WALK_TO_END);
1620 	if (hat != kas.a_hat && eaddr == HTABLE_WALK_TO_END)
1621 		eaddr = kernelbase;
1622 
1623 	/*
1624 	 * If we're coming in with a previous page table, search it first
1625 	 * without doing an htable_lookup(), this should be frequent.
1626 	 */
1627 	if (prev) {
1628 		ASSERT(prev->ht_busy > 0);
1629 		ASSERT(prev->ht_vaddr <= va);
1630 		l = prev->ht_level;
1631 		if (va <= HTABLE_LAST_PAGE(prev)) {
1632 			pte = htable_scan(prev, &va, eaddr);
1633 
1634 			if (PTE_ISPAGE(pte, l)) {
1635 				*vaddr = va;
1636 				*htp = prev;
1637 				return (pte);
1638 			}
1639 		}
1640 
1641 		/*
1642 		 * We found nothing in the htable provided by the caller,
1643 		 * so fall through and do the full search
1644 		 */
1645 		htable_release(prev);
1646 	}
1647 
1648 	/*
1649 	 * Find the level of the largest pagesize used by this HAT.
1650 	 */
1651 	if (hat->hat_ism_pgcnt > 0) {
1652 		max_mapped_level = mmu.umax_page_level;
1653 	} else {
1654 		max_mapped_level = 0;
1655 		for (l = 1; l <= mmu.max_page_level; ++l)
1656 			if (hat->hat_pages_mapped[l] != 0)
1657 				max_mapped_level = l;
1658 	}
1659 
1660 	while (va < eaddr && va >= *vaddr) {
1661 		ASSERT(!IN_VA_HOLE(va));
1662 
1663 		/*
1664 		 *  Find lowest table with any entry for given address.
1665 		 */
1666 		for (l = 0; l <= TOP_LEVEL(hat); ++l) {
1667 			ht = htable_lookup(hat, va, l);
1668 			if (ht != NULL) {
1669 				pte = htable_scan(ht, &va, eaddr);
1670 				if (PTE_ISPAGE(pte, l)) {
1671 					*vaddr = va;
1672 					*htp = ht;
1673 					return (pte);
1674 				}
1675 				htable_release(ht);
1676 				break;
1677 			}
1678 
1679 			/*
1680 			 * No htable at this level for the address. If there
1681 			 * is no larger page size that could cover it, we can
1682 			 * skip right to the start of the next page table.
1683 			 */
1684 			ASSERT(l < TOP_LEVEL(hat));
1685 			if (l >= max_mapped_level) {
1686 				va = NEXT_ENTRY_VA(va, l + 1);
1687 				if (va >= eaddr)
1688 					break;
1689 			}
1690 		}
1691 	}
1692 
1693 	*vaddr = 0;
1694 	*htp = NULL;
1695 	return (0);
1696 }
1697 
1698 /*
1699  * Find the htable and page table entry index of the given virtual address
1700  * with pagesize at or below given level.
1701  * If not found returns NULL. When found, returns the htable, sets
1702  * entry, and has a hold on the htable.
1703  */
1704 htable_t *
1705 htable_getpte(
1706 	struct hat *hat,
1707 	uintptr_t vaddr,
1708 	uint_t *entry,
1709 	x86pte_t *pte,
1710 	level_t level)
1711 {
1712 	htable_t	*ht;
1713 	level_t		l;
1714 	uint_t		e;
1715 
1716 	ASSERT(level <= mmu.max_page_level);
1717 
1718 	for (l = 0; l <= level; ++l) {
1719 		ht = htable_lookup(hat, vaddr, l);
1720 		if (ht == NULL)
1721 			continue;
1722 		e = htable_va2entry(vaddr, ht);
1723 		if (entry != NULL)
1724 			*entry = e;
1725 		if (pte != NULL)
1726 			*pte = x86pte_get(ht, e);
1727 		return (ht);
1728 	}
1729 	return (NULL);
1730 }
1731 
1732 /*
1733  * Find the htable and page table entry index of the given virtual address.
1734  * There must be a valid page mapped at the given address.
1735  * If not found returns NULL. When found, returns the htable, sets
1736  * entry, and has a hold on the htable.
1737  */
1738 htable_t *
1739 htable_getpage(struct hat *hat, uintptr_t vaddr, uint_t *entry)
1740 {
1741 	htable_t	*ht;
1742 	uint_t		e;
1743 	x86pte_t	pte;
1744 
1745 	ht = htable_getpte(hat, vaddr, &e, &pte, mmu.max_page_level);
1746 	if (ht == NULL)
1747 		return (NULL);
1748 
1749 	if (entry)
1750 		*entry = e;
1751 
1752 	if (PTE_ISPAGE(pte, ht->ht_level))
1753 		return (ht);
1754 	htable_release(ht);
1755 	return (NULL);
1756 }
1757 
1758 
1759 void
1760 htable_init()
1761 {
1762 	/*
1763 	 * To save on kernel VA usage, we avoid debug information in 32 bit
1764 	 * kernels.
1765 	 */
1766 #if defined(__amd64)
1767 	int	kmem_flags = KMC_NOHASH;
1768 #elif defined(__i386)
1769 	int	kmem_flags = KMC_NOHASH | KMC_NODEBUG;
1770 #endif
1771 
1772 	/*
1773 	 * initialize kmem caches
1774 	 */
1775 	htable_cache = kmem_cache_create("htable_t",
1776 	    sizeof (htable_t), 0, NULL, NULL,
1777 	    htable_reap, NULL, hat_memload_arena, kmem_flags);
1778 }
1779 
1780 /*
1781  * get the pte index for the virtual address in the given htable's pagetable
1782  */
1783 uint_t
1784 htable_va2entry(uintptr_t va, htable_t *ht)
1785 {
1786 	level_t	l = ht->ht_level;
1787 
1788 	ASSERT(va >= ht->ht_vaddr);
1789 	ASSERT(va <= HTABLE_LAST_PAGE(ht));
1790 	return ((va >> LEVEL_SHIFT(l)) & (HTABLE_NUM_PTES(ht) - 1));
1791 }
1792 
1793 /*
1794  * Given an htable and the index of a pte in it, return the virtual address
1795  * of the page.
1796  */
1797 uintptr_t
1798 htable_e2va(htable_t *ht, uint_t entry)
1799 {
1800 	level_t	l = ht->ht_level;
1801 	uintptr_t va;
1802 
1803 	ASSERT(entry < HTABLE_NUM_PTES(ht));
1804 	va = ht->ht_vaddr + ((uintptr_t)entry << LEVEL_SHIFT(l));
1805 
1806 	/*
1807 	 * Need to skip over any VA hole in top level table
1808 	 */
1809 #if defined(__amd64)
1810 	if (ht->ht_level == mmu.max_level && va >= mmu.hole_start)
1811 		va += ((mmu.hole_end - mmu.hole_start) + 1);
1812 #endif
1813 
1814 	return (va);
1815 }
1816 
1817 /*
1818  * The code uses compare and swap instructions to read/write PTE's to
1819  * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems.
1820  * will naturally be atomic.
1821  *
1822  * The combination of using kpreempt_disable()/_enable() and the hci_mutex
1823  * are used to ensure that an interrupt won't overwrite a temporary mapping
1824  * while it's in use. If an interrupt thread tries to access a PTE, it will
1825  * yield briefly back to the pinned thread which holds the cpu's hci_mutex.
1826  */
1827 void
1828 x86pte_cpu_init(cpu_t *cpu)
1829 {
1830 	struct hat_cpu_info *hci;
1831 
1832 	hci = kmem_zalloc(sizeof (*hci), KM_SLEEP);
1833 	mutex_init(&hci->hci_mutex, NULL, MUTEX_DEFAULT, NULL);
1834 	cpu->cpu_hat_info = hci;
1835 }
1836 
1837 void
1838 x86pte_cpu_fini(cpu_t *cpu)
1839 {
1840 	struct hat_cpu_info *hci = cpu->cpu_hat_info;
1841 
1842 	kmem_free(hci, sizeof (*hci));
1843 	cpu->cpu_hat_info = NULL;
1844 }
1845 
1846 #ifdef __i386
1847 /*
1848  * On 32 bit kernels, loading a 64 bit PTE is a little tricky
1849  */
1850 x86pte_t
1851 get_pte64(x86pte_t *ptr)
1852 {
1853 	volatile uint32_t *p = (uint32_t *)ptr;
1854 	x86pte_t t;
1855 
1856 	ASSERT(mmu.pae_hat != 0);
1857 	for (;;) {
1858 		t = p[0];
1859 		t |= (uint64_t)p[1] << 32;
1860 		if ((t & 0xffffffff) == p[0])
1861 			return (t);
1862 	}
1863 }
1864 #endif /* __i386 */
1865 
1866 /*
1867  * Disable preemption and establish a mapping to the pagetable with the
1868  * given pfn. This is optimized for there case where it's the same
1869  * pfn as we last used referenced from this CPU.
1870  */
1871 static x86pte_t *
1872 x86pte_access_pagetable(htable_t *ht, uint_t index)
1873 {
1874 	/*
1875 	 * VLP pagetables are contained in the hat_t
1876 	 */
1877 	if (ht->ht_flags & HTABLE_VLP)
1878 		return (PT_INDEX_PTR(ht->ht_hat->hat_vlp_ptes, index));
1879 	return (x86pte_mapin(ht->ht_pfn, index, ht));
1880 }
1881 
1882 /*
1883  * map the given pfn into the page table window.
1884  */
1885 /*ARGSUSED*/
1886 x86pte_t *
1887 x86pte_mapin(pfn_t pfn, uint_t index, htable_t *ht)
1888 {
1889 	x86pte_t *pteptr;
1890 	x86pte_t pte = 0;
1891 	x86pte_t newpte;
1892 	int x;
1893 
1894 	ASSERT(pfn != PFN_INVALID);
1895 
1896 	if (!khat_running) {
1897 		caddr_t va = kbm_remap_window(pfn_to_pa(pfn), 1);
1898 		return (PT_INDEX_PTR(va, index));
1899 	}
1900 
1901 	/*
1902 	 * If kpm is available, use it.
1903 	 */
1904 	if (kpm_vbase)
1905 		return (PT_INDEX_PTR(hat_kpm_pfn2va(pfn), index));
1906 
1907 	/*
1908 	 * Disable preemption and grab the CPU's hci_mutex
1909 	 */
1910 	kpreempt_disable();
1911 	ASSERT(CPU->cpu_hat_info != NULL);
1912 	mutex_enter(&CPU->cpu_hat_info->hci_mutex);
1913 	x = PWIN_TABLE(CPU->cpu_id);
1914 	pteptr = (x86pte_t *)PWIN_PTE_VA(x);
1915 #ifndef __xpv
1916 	if (mmu.pae_hat)
1917 		pte = *pteptr;
1918 	else
1919 		pte = *(x86pte32_t *)pteptr;
1920 #endif
1921 
1922 	newpte = MAKEPTE(pfn, 0) | mmu.pt_global | mmu.pt_nx;
1923 
1924 	/*
1925 	 * For hardware we can use a writable mapping.
1926 	 */
1927 #ifdef __xpv
1928 	if (IN_XPV_PANIC())
1929 #endif
1930 		newpte |= PT_WRITABLE;
1931 
1932 	if (!PTE_EQUIV(newpte, pte)) {
1933 
1934 #ifdef __xpv
1935 		if (!IN_XPV_PANIC()) {
1936 			xen_map(newpte, PWIN_VA(x));
1937 		} else
1938 #endif
1939 		{
1940 			XPV_ALLOW_PAGETABLE_UPDATES();
1941 			if (mmu.pae_hat)
1942 				*pteptr = newpte;
1943 			else
1944 				*(x86pte32_t *)pteptr = newpte;
1945 			XPV_DISALLOW_PAGETABLE_UPDATES();
1946 			mmu_tlbflush_entry((caddr_t)(PWIN_VA(x)));
1947 		}
1948 	}
1949 	return (PT_INDEX_PTR(PWIN_VA(x), index));
1950 }
1951 
1952 /*
1953  * Release access to a page table.
1954  */
1955 static void
1956 x86pte_release_pagetable(htable_t *ht)
1957 {
1958 	/*
1959 	 * nothing to do for VLP htables
1960 	 */
1961 	if (ht->ht_flags & HTABLE_VLP)
1962 		return;
1963 
1964 	x86pte_mapout();
1965 }
1966 
1967 void
1968 x86pte_mapout(void)
1969 {
1970 	if (kpm_vbase != NULL || !khat_running)
1971 		return;
1972 
1973 	/*
1974 	 * Drop the CPU's hci_mutex and restore preemption.
1975 	 */
1976 #ifdef __xpv
1977 	if (!IN_XPV_PANIC()) {
1978 		uintptr_t va;
1979 
1980 		/*
1981 		 * We need to always clear the mapping in case a page
1982 		 * that was once a page table page is ballooned out.
1983 		 */
1984 		va = (uintptr_t)PWIN_VA(PWIN_TABLE(CPU->cpu_id));
1985 		(void) HYPERVISOR_update_va_mapping(va, 0,
1986 		    UVMF_INVLPG | UVMF_LOCAL);
1987 	}
1988 #endif
1989 	mutex_exit(&CPU->cpu_hat_info->hci_mutex);
1990 	kpreempt_enable();
1991 }
1992 
1993 /*
1994  * Atomic retrieval of a pagetable entry
1995  */
1996 x86pte_t
1997 x86pte_get(htable_t *ht, uint_t entry)
1998 {
1999 	x86pte_t	pte;
2000 	x86pte_t	*ptep;
2001 
2002 	/*
2003 	 * Be careful that loading PAE entries in 32 bit kernel is atomic.
2004 	 */
2005 	ASSERT(entry < mmu.ptes_per_table);
2006 	ptep = x86pte_access_pagetable(ht, entry);
2007 	pte = GET_PTE(ptep);
2008 	x86pte_release_pagetable(ht);
2009 	return (pte);
2010 }
2011 
2012 /*
2013  * Atomic unconditional set of a page table entry, it returns the previous
2014  * value. For pre-existing mappings if the PFN changes, then we don't care
2015  * about the old pte's REF / MOD bits. If the PFN remains the same, we leave
2016  * the MOD/REF bits unchanged.
2017  *
2018  * If asked to overwrite a link to a lower page table with a large page
2019  * mapping, this routine returns the special value of LPAGE_ERROR. This
2020  * allows the upper HAT layers to retry with a smaller mapping size.
2021  */
2022 x86pte_t
2023 x86pte_set(htable_t *ht, uint_t entry, x86pte_t new, void *ptr)
2024 {
2025 	x86pte_t	old;
2026 	x86pte_t	prev;
2027 	x86pte_t	*ptep;
2028 	level_t		l = ht->ht_level;
2029 	x86pte_t	pfn_mask = (l != 0) ? PT_PADDR_LGPG : PT_PADDR;
2030 	x86pte_t	n;
2031 	uintptr_t	addr = htable_e2va(ht, entry);
2032 	hat_t		*hat = ht->ht_hat;
2033 
2034 	ASSERT(new != 0); /* don't use to invalidate a PTE, see x86pte_update */
2035 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2036 	if (ptr == NULL)
2037 		ptep = x86pte_access_pagetable(ht, entry);
2038 	else
2039 		ptep = ptr;
2040 
2041 	/*
2042 	 * Install the new PTE. If remapping the same PFN, then
2043 	 * copy existing REF/MOD bits to new mapping.
2044 	 */
2045 	do {
2046 		prev = GET_PTE(ptep);
2047 		n = new;
2048 		if (PTE_ISVALID(n) && (prev & pfn_mask) == (new & pfn_mask))
2049 			n |= prev & (PT_REF | PT_MOD);
2050 
2051 		/*
2052 		 * Another thread may have installed this mapping already,
2053 		 * flush the local TLB and be done.
2054 		 */
2055 		if (prev == n) {
2056 			old = new;
2057 #ifdef __xpv
2058 			if (!IN_XPV_PANIC())
2059 				xen_flush_va((caddr_t)addr);
2060 			else
2061 #endif
2062 				mmu_tlbflush_entry((caddr_t)addr);
2063 			goto done;
2064 		}
2065 
2066 		/*
2067 		 * Detect if we have a collision of installing a large
2068 		 * page mapping where there already is a lower page table.
2069 		 */
2070 		if (l > 0 && (prev & PT_VALID) && !(prev & PT_PAGESIZE)) {
2071 			old = LPAGE_ERROR;
2072 			goto done;
2073 		}
2074 
2075 		XPV_ALLOW_PAGETABLE_UPDATES();
2076 		old = CAS_PTE(ptep, prev, n);
2077 		XPV_DISALLOW_PAGETABLE_UPDATES();
2078 	} while (old != prev);
2079 
2080 	/*
2081 	 * Do a TLB demap if needed, ie. the old pte was valid.
2082 	 *
2083 	 * Note that a stale TLB writeback to the PTE here either can't happen
2084 	 * or doesn't matter. The PFN can only change for NOSYNC|NOCONSIST
2085 	 * mappings, but they were created with REF and MOD already set, so
2086 	 * no stale writeback will happen.
2087 	 *
2088 	 * Segmap is the only place where remaps happen on the same pfn and for
2089 	 * that we want to preserve the stale REF/MOD bits.
2090 	 */
2091 	if (old & PT_REF)
2092 		hat_tlb_inval(hat, addr);
2093 
2094 done:
2095 	if (ptr == NULL)
2096 		x86pte_release_pagetable(ht);
2097 	return (old);
2098 }
2099 
2100 /*
2101  * Atomic compare and swap of a page table entry. No TLB invalidates are done.
2102  * This is used for links between pagetables of different levels.
2103  * Note we always create these links with dirty/access set, so they should
2104  * never change.
2105  */
2106 x86pte_t
2107 x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new)
2108 {
2109 	x86pte_t	pte;
2110 	x86pte_t	*ptep;
2111 #ifdef __xpv
2112 	/*
2113 	 * We can't use writable pagetables for upper level tables, so fake it.
2114 	 */
2115 	mmu_update_t t[2];
2116 	int cnt = 1;
2117 	int count;
2118 	maddr_t ma;
2119 
2120 	if (!IN_XPV_PANIC()) {
2121 		ASSERT(!(ht->ht_flags & HTABLE_VLP));	/* no VLP yet */
2122 		ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry));
2123 		t[0].ptr = ma | MMU_NORMAL_PT_UPDATE;
2124 		t[0].val = new;
2125 
2126 #if defined(__amd64)
2127 		/*
2128 		 * On the 64-bit hypervisor we need to maintain the user mode
2129 		 * top page table too.
2130 		 */
2131 		if (ht->ht_level == mmu.max_level && ht->ht_hat != kas.a_hat) {
2132 			ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(
2133 			    ht->ht_hat->hat_user_ptable), entry));
2134 			t[1].ptr = ma | MMU_NORMAL_PT_UPDATE;
2135 			t[1].val = new;
2136 			++cnt;
2137 		}
2138 #endif	/* __amd64 */
2139 
2140 		if (HYPERVISOR_mmu_update(t, cnt, &count, DOMID_SELF))
2141 			panic("HYPERVISOR_mmu_update() failed");
2142 		ASSERT(count == cnt);
2143 		return (old);
2144 	}
2145 #endif
2146 	ptep = x86pte_access_pagetable(ht, entry);
2147 	XPV_ALLOW_PAGETABLE_UPDATES();
2148 	pte = CAS_PTE(ptep, old, new);
2149 	XPV_DISALLOW_PAGETABLE_UPDATES();
2150 	x86pte_release_pagetable(ht);
2151 	return (pte);
2152 }
2153 
2154 /*
2155  * Invalidate a page table entry as long as it currently maps something that
2156  * matches the value determined by expect.
2157  *
2158  * Also invalidates any TLB entries and returns the previous value of the PTE.
2159  */
2160 x86pte_t
2161 x86pte_inval(
2162 	htable_t *ht,
2163 	uint_t entry,
2164 	x86pte_t expect,
2165 	x86pte_t *pte_ptr)
2166 {
2167 	x86pte_t	*ptep;
2168 	x86pte_t	oldpte;
2169 	x86pte_t	found;
2170 
2171 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2172 	ASSERT(ht->ht_level <= mmu.max_page_level);
2173 
2174 	if (pte_ptr != NULL)
2175 		ptep = pte_ptr;
2176 	else
2177 		ptep = x86pte_access_pagetable(ht, entry);
2178 
2179 #if defined(__xpv)
2180 	/*
2181 	 * If exit()ing just use HYPERVISOR_mmu_update(), as we can't be racing
2182 	 * with anything else.
2183 	 */
2184 	if ((ht->ht_hat->hat_flags & HAT_FREEING) && !IN_XPV_PANIC()) {
2185 		int count;
2186 		mmu_update_t t[1];
2187 		maddr_t ma;
2188 
2189 		oldpte = GET_PTE(ptep);
2190 		if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR))
2191 			goto done;
2192 		ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry));
2193 		t[0].ptr = ma | MMU_NORMAL_PT_UPDATE;
2194 		t[0].val = 0;
2195 		if (HYPERVISOR_mmu_update(t, 1, &count, DOMID_SELF))
2196 			panic("HYPERVISOR_mmu_update() failed");
2197 		ASSERT(count == 1);
2198 		goto done;
2199 	}
2200 #endif /* __xpv */
2201 
2202 	/*
2203 	 * Note that the loop is needed to handle changes due to h/w updating
2204 	 * of PT_MOD/PT_REF.
2205 	 */
2206 	do {
2207 		oldpte = GET_PTE(ptep);
2208 		if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR))
2209 			goto done;
2210 		XPV_ALLOW_PAGETABLE_UPDATES();
2211 		found = CAS_PTE(ptep, oldpte, 0);
2212 		XPV_DISALLOW_PAGETABLE_UPDATES();
2213 	} while (found != oldpte);
2214 	if (oldpte & (PT_REF | PT_MOD))
2215 		hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry));
2216 
2217 done:
2218 	if (pte_ptr == NULL)
2219 		x86pte_release_pagetable(ht);
2220 	return (oldpte);
2221 }
2222 
2223 /*
2224  * Change a page table entry af it currently matches the value in expect.
2225  */
2226 x86pte_t
2227 x86pte_update(
2228 	htable_t *ht,
2229 	uint_t entry,
2230 	x86pte_t expect,
2231 	x86pte_t new)
2232 {
2233 	x86pte_t	*ptep;
2234 	x86pte_t	found;
2235 
2236 	ASSERT(new != 0);
2237 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2238 	ASSERT(ht->ht_level <= mmu.max_page_level);
2239 
2240 	ptep = x86pte_access_pagetable(ht, entry);
2241 	XPV_ALLOW_PAGETABLE_UPDATES();
2242 	found = CAS_PTE(ptep, expect, new);
2243 	XPV_DISALLOW_PAGETABLE_UPDATES();
2244 	if (found == expect) {
2245 		hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry));
2246 
2247 		/*
2248 		 * When removing write permission *and* clearing the
2249 		 * MOD bit, check if a write happened via a stale
2250 		 * TLB entry before the TLB shootdown finished.
2251 		 *
2252 		 * If it did happen, simply re-enable write permission and
2253 		 * act like the original CAS failed.
2254 		 */
2255 		if ((expect & (PT_WRITABLE | PT_MOD)) == PT_WRITABLE &&
2256 		    (new & (PT_WRITABLE | PT_MOD)) == 0 &&
2257 		    (GET_PTE(ptep) & PT_MOD) != 0) {
2258 			do {
2259 				found = GET_PTE(ptep);
2260 				XPV_ALLOW_PAGETABLE_UPDATES();
2261 				found =
2262 				    CAS_PTE(ptep, found, found | PT_WRITABLE);
2263 				XPV_DISALLOW_PAGETABLE_UPDATES();
2264 			} while ((found & PT_WRITABLE) == 0);
2265 		}
2266 	}
2267 	x86pte_release_pagetable(ht);
2268 	return (found);
2269 }
2270 
2271 #ifndef __xpv
2272 /*
2273  * Copy page tables - this is just a little more complicated than the
2274  * previous routines. Note that it's also not atomic! It also is never
2275  * used for VLP pagetables.
2276  */
2277 void
2278 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count)
2279 {
2280 	caddr_t	src_va;
2281 	caddr_t dst_va;
2282 	size_t size;
2283 	x86pte_t *pteptr;
2284 	x86pte_t pte;
2285 
2286 	ASSERT(khat_running);
2287 	ASSERT(!(dest->ht_flags & HTABLE_VLP));
2288 	ASSERT(!(src->ht_flags & HTABLE_VLP));
2289 	ASSERT(!(src->ht_flags & HTABLE_SHARED_PFN));
2290 	ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2291 
2292 	/*
2293 	 * Acquire access to the CPU pagetable windows for the dest and source.
2294 	 */
2295 	dst_va = (caddr_t)x86pte_access_pagetable(dest, entry);
2296 	if (kpm_vbase) {
2297 		src_va = (caddr_t)
2298 		    PT_INDEX_PTR(hat_kpm_pfn2va(src->ht_pfn), entry);
2299 	} else {
2300 		uint_t x = PWIN_SRC(CPU->cpu_id);
2301 
2302 		/*
2303 		 * Finish defining the src pagetable mapping
2304 		 */
2305 		src_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry);
2306 		pte = MAKEPTE(src->ht_pfn, 0) | mmu.pt_global | mmu.pt_nx;
2307 		pteptr = (x86pte_t *)PWIN_PTE_VA(x);
2308 		if (mmu.pae_hat)
2309 			*pteptr = pte;
2310 		else
2311 			*(x86pte32_t *)pteptr = pte;
2312 		mmu_tlbflush_entry((caddr_t)(PWIN_VA(x)));
2313 	}
2314 
2315 	/*
2316 	 * now do the copy
2317 	 */
2318 	size = count << mmu.pte_size_shift;
2319 	bcopy(src_va, dst_va, size);
2320 
2321 	x86pte_release_pagetable(dest);
2322 }
2323 
2324 #else /* __xpv */
2325 
2326 /*
2327  * The hypervisor only supports writable pagetables at level 0, so we have
2328  * to install these 1 by 1 the slow way.
2329  */
2330 void
2331 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count)
2332 {
2333 	caddr_t	src_va;
2334 	x86pte_t pte;
2335 
2336 	ASSERT(!IN_XPV_PANIC());
2337 	src_va = (caddr_t)x86pte_access_pagetable(src, entry);
2338 	while (count) {
2339 		if (mmu.pae_hat)
2340 			pte = *(x86pte_t *)src_va;
2341 		else
2342 			pte = *(x86pte32_t *)src_va;
2343 		if (pte != 0) {
2344 			set_pteval(pfn_to_pa(dest->ht_pfn), entry,
2345 			    dest->ht_level, pte);
2346 #ifdef __amd64
2347 			if (dest->ht_level == mmu.max_level &&
2348 			    htable_e2va(dest, entry) < HYPERVISOR_VIRT_END)
2349 				set_pteval(
2350 				    pfn_to_pa(dest->ht_hat->hat_user_ptable),
2351 				    entry, dest->ht_level, pte);
2352 #endif
2353 		}
2354 		--count;
2355 		++entry;
2356 		src_va += mmu.pte_size;
2357 	}
2358 	x86pte_release_pagetable(src);
2359 }
2360 #endif /* __xpv */
2361 
2362 /*
2363  * Zero page table entries - Note this doesn't use atomic stores!
2364  */
2365 static void
2366 x86pte_zero(htable_t *dest, uint_t entry, uint_t count)
2367 {
2368 	caddr_t dst_va;
2369 	size_t size;
2370 #ifdef __xpv
2371 	int x;
2372 	x86pte_t newpte;
2373 #endif
2374 
2375 	/*
2376 	 * Map in the page table to be zeroed.
2377 	 */
2378 	ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2379 	ASSERT(!(dest->ht_flags & HTABLE_VLP));
2380 
2381 	/*
2382 	 * On the hypervisor we don't use x86pte_access_pagetable() since
2383 	 * in this case the page is not pinned yet.
2384 	 */
2385 #ifdef __xpv
2386 	if (kpm_vbase == NULL) {
2387 		kpreempt_disable();
2388 		ASSERT(CPU->cpu_hat_info != NULL);
2389 		mutex_enter(&CPU->cpu_hat_info->hci_mutex);
2390 		x = PWIN_TABLE(CPU->cpu_id);
2391 		newpte = MAKEPTE(dest->ht_pfn, 0) | PT_WRITABLE;
2392 		xen_map(newpte, PWIN_VA(x));
2393 		dst_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry);
2394 	} else
2395 #endif
2396 		dst_va = (caddr_t)x86pte_access_pagetable(dest, entry);
2397 
2398 	size = count << mmu.pte_size_shift;
2399 	ASSERT(size > BLOCKZEROALIGN);
2400 #ifdef __i386
2401 	if ((x86_feature & X86_SSE2) == 0)
2402 		bzero(dst_va, size);
2403 	else
2404 #endif
2405 		block_zero_no_xmm(dst_va, size);
2406 
2407 #ifdef __xpv
2408 	if (kpm_vbase == NULL) {
2409 		xen_map(0, PWIN_VA(x));
2410 		mutex_exit(&CPU->cpu_hat_info->hci_mutex);
2411 		kpreempt_enable();
2412 	} else
2413 #endif
2414 		x86pte_release_pagetable(dest);
2415 }
2416 
2417 /*
2418  * Called to ensure that all pagetables are in the system dump
2419  */
2420 void
2421 hat_dump(void)
2422 {
2423 	hat_t *hat;
2424 	uint_t h;
2425 	htable_t *ht;
2426 
2427 	/*
2428 	 * Dump all page tables
2429 	 */
2430 	for (hat = kas.a_hat; hat != NULL; hat = hat->hat_next) {
2431 		for (h = 0; h < hat->hat_num_hash; ++h) {
2432 			for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
2433 				if ((ht->ht_flags & HTABLE_VLP) == 0)
2434 					dump_page(ht->ht_pfn);
2435 			}
2436 		}
2437 	}
2438 }
2439