1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/sysmacros.h> 29 #include <sys/kmem.h> 30 #include <sys/atomic.h> 31 #include <sys/bitmap.h> 32 #include <sys/machparam.h> 33 #include <sys/machsystm.h> 34 #include <sys/mman.h> 35 #include <sys/systm.h> 36 #include <sys/cpuvar.h> 37 #include <sys/thread.h> 38 #include <sys/proc.h> 39 #include <sys/cpu.h> 40 #include <sys/kmem.h> 41 #include <sys/disp.h> 42 #include <sys/vmem.h> 43 #include <sys/vmsystm.h> 44 #include <sys/promif.h> 45 #include <sys/var.h> 46 #include <sys/x86_archext.h> 47 #include <sys/archsystm.h> 48 #include <sys/bootconf.h> 49 #include <sys/dumphdr.h> 50 #include <vm/seg_kmem.h> 51 #include <vm/seg_kpm.h> 52 #include <vm/hat.h> 53 #include <vm/hat_i86.h> 54 #include <sys/cmn_err.h> 55 #include <sys/panic.h> 56 57 #ifdef __xpv 58 #include <sys/hypervisor.h> 59 #include <sys/xpv_panic.h> 60 #endif 61 62 #include <sys/bootinfo.h> 63 #include <vm/kboot_mmu.h> 64 65 static void x86pte_zero(htable_t *dest, uint_t entry, uint_t count); 66 67 kmem_cache_t *htable_cache; 68 69 /* 70 * The variable htable_reserve_amount, rather than HTABLE_RESERVE_AMOUNT, 71 * is used in order to facilitate testing of the htable_steal() code. 72 * By resetting htable_reserve_amount to a lower value, we can force 73 * stealing to occur. The reserve amount is a guess to get us through boot. 74 */ 75 #define HTABLE_RESERVE_AMOUNT (200) 76 uint_t htable_reserve_amount = HTABLE_RESERVE_AMOUNT; 77 kmutex_t htable_reserve_mutex; 78 uint_t htable_reserve_cnt; 79 htable_t *htable_reserve_pool; 80 81 /* 82 * Used to hand test htable_steal(). 83 */ 84 #ifdef DEBUG 85 ulong_t force_steal = 0; 86 ulong_t ptable_cnt = 0; 87 #endif 88 89 /* 90 * This variable is so that we can tune this via /etc/system 91 * Any value works, but a power of two <= mmu.ptes_per_table is best. 92 */ 93 uint_t htable_steal_passes = 8; 94 95 /* 96 * mutex stuff for access to htable hash 97 */ 98 #define NUM_HTABLE_MUTEX 128 99 kmutex_t htable_mutex[NUM_HTABLE_MUTEX]; 100 #define HTABLE_MUTEX_HASH(h) ((h) & (NUM_HTABLE_MUTEX - 1)) 101 102 #define HTABLE_ENTER(h) mutex_enter(&htable_mutex[HTABLE_MUTEX_HASH(h)]); 103 #define HTABLE_EXIT(h) mutex_exit(&htable_mutex[HTABLE_MUTEX_HASH(h)]); 104 105 /* 106 * forward declarations 107 */ 108 static void link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr); 109 static void unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr); 110 static void htable_free(htable_t *ht); 111 static x86pte_t *x86pte_access_pagetable(htable_t *ht, uint_t index); 112 static void x86pte_release_pagetable(htable_t *ht); 113 static x86pte_t x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, 114 x86pte_t new); 115 116 /* 117 * A counter to track if we are stealing or reaping htables. When non-zero 118 * htable_free() will directly free htables (either to the reserve or kmem) 119 * instead of putting them in a hat's htable cache. 120 */ 121 uint32_t htable_dont_cache = 0; 122 123 /* 124 * Track the number of active pagetables, so we can know how many to reap 125 */ 126 static uint32_t active_ptables = 0; 127 128 #ifdef __xpv 129 /* 130 * Deal with hypervisor complications. 131 */ 132 void 133 xen_flush_va(caddr_t va) 134 { 135 struct mmuext_op t; 136 uint_t count; 137 138 if (IN_XPV_PANIC()) { 139 mmu_tlbflush_entry((caddr_t)va); 140 } else { 141 t.cmd = MMUEXT_INVLPG_LOCAL; 142 t.arg1.linear_addr = (uintptr_t)va; 143 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 144 panic("HYPERVISOR_mmuext_op() failed"); 145 ASSERT(count == 1); 146 } 147 } 148 149 void 150 xen_gflush_va(caddr_t va, cpuset_t cpus) 151 { 152 struct mmuext_op t; 153 uint_t count; 154 155 if (IN_XPV_PANIC()) { 156 mmu_tlbflush_entry((caddr_t)va); 157 return; 158 } 159 160 t.cmd = MMUEXT_INVLPG_MULTI; 161 t.arg1.linear_addr = (uintptr_t)va; 162 /*LINTED: constant in conditional context*/ 163 set_xen_guest_handle(t.arg2.vcpumask, &cpus); 164 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 165 panic("HYPERVISOR_mmuext_op() failed"); 166 ASSERT(count == 1); 167 } 168 169 void 170 xen_flush_tlb() 171 { 172 struct mmuext_op t; 173 uint_t count; 174 175 if (IN_XPV_PANIC()) { 176 xpv_panic_reload_cr3(); 177 } else { 178 t.cmd = MMUEXT_TLB_FLUSH_LOCAL; 179 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 180 panic("HYPERVISOR_mmuext_op() failed"); 181 ASSERT(count == 1); 182 } 183 } 184 185 void 186 xen_gflush_tlb(cpuset_t cpus) 187 { 188 struct mmuext_op t; 189 uint_t count; 190 191 ASSERT(!IN_XPV_PANIC()); 192 t.cmd = MMUEXT_TLB_FLUSH_MULTI; 193 /*LINTED: constant in conditional context*/ 194 set_xen_guest_handle(t.arg2.vcpumask, &cpus); 195 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 196 panic("HYPERVISOR_mmuext_op() failed"); 197 ASSERT(count == 1); 198 } 199 200 /* 201 * Install/Adjust a kpm mapping under the hypervisor. 202 * Value of "how" should be: 203 * PT_WRITABLE | PT_VALID - regular kpm mapping 204 * PT_VALID - make mapping read-only 205 * 0 - remove mapping 206 * 207 * returns 0 on success. non-zero for failure. 208 */ 209 int 210 xen_kpm_page(pfn_t pfn, uint_t how) 211 { 212 paddr_t pa = mmu_ptob((paddr_t)pfn); 213 x86pte_t pte = PT_NOCONSIST | PT_REF | PT_MOD; 214 215 if (kpm_vbase == NULL) 216 return (0); 217 218 if (how) 219 pte |= pa_to_ma(pa) | how; 220 else 221 pte = 0; 222 return (HYPERVISOR_update_va_mapping((uintptr_t)kpm_vbase + pa, 223 pte, UVMF_INVLPG | UVMF_ALL)); 224 } 225 226 void 227 xen_pin(pfn_t pfn, level_t lvl) 228 { 229 struct mmuext_op t; 230 uint_t count; 231 232 t.cmd = MMUEXT_PIN_L1_TABLE + lvl; 233 t.arg1.mfn = pfn_to_mfn(pfn); 234 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 235 panic("HYPERVISOR_mmuext_op() failed"); 236 ASSERT(count == 1); 237 } 238 239 void 240 xen_unpin(pfn_t pfn) 241 { 242 struct mmuext_op t; 243 uint_t count; 244 245 t.cmd = MMUEXT_UNPIN_TABLE; 246 t.arg1.mfn = pfn_to_mfn(pfn); 247 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 248 panic("HYPERVISOR_mmuext_op() failed"); 249 ASSERT(count == 1); 250 } 251 252 static void 253 xen_map(uint64_t pte, caddr_t va) 254 { 255 if (HYPERVISOR_update_va_mapping((uintptr_t)va, pte, 256 UVMF_INVLPG | UVMF_LOCAL)) 257 panic("HYPERVISOR_update_va_mapping() failed"); 258 } 259 #endif /* __xpv */ 260 261 /* 262 * Allocate a memory page for a hardware page table. 263 * 264 * A wrapper around page_get_physical(), with some extra checks. 265 */ 266 static pfn_t 267 ptable_alloc(uintptr_t seed) 268 { 269 pfn_t pfn; 270 page_t *pp; 271 272 pfn = PFN_INVALID; 273 274 /* 275 * The first check is to see if there is memory in the system. If we 276 * drop to throttlefree, then fail the ptable_alloc() and let the 277 * stealing code kick in. Note that we have to do this test here, 278 * since the test in page_create_throttle() would let the NOSLEEP 279 * allocation go through and deplete the page reserves. 280 * 281 * The !NOMEMWAIT() lets pageout, fsflush, etc. skip this check. 282 */ 283 if (!NOMEMWAIT() && freemem <= throttlefree + 1) 284 return (PFN_INVALID); 285 286 #ifdef DEBUG 287 /* 288 * This code makes htable_steal() easier to test. By setting 289 * force_steal we force pagetable allocations to fall 290 * into the stealing code. Roughly 1 in ever "force_steal" 291 * page table allocations will fail. 292 */ 293 if (proc_pageout != NULL && force_steal > 1 && 294 ++ptable_cnt > force_steal) { 295 ptable_cnt = 0; 296 return (PFN_INVALID); 297 } 298 #endif /* DEBUG */ 299 300 pp = page_get_physical(seed); 301 if (pp == NULL) 302 return (PFN_INVALID); 303 ASSERT(PAGE_SHARED(pp)); 304 pfn = pp->p_pagenum; 305 if (pfn == PFN_INVALID) 306 panic("ptable_alloc(): Invalid PFN!!"); 307 atomic_add_32(&active_ptables, 1); 308 HATSTAT_INC(hs_ptable_allocs); 309 return (pfn); 310 } 311 312 /* 313 * Free an htable's associated page table page. See the comments 314 * for ptable_alloc(). 315 */ 316 static void 317 ptable_free(pfn_t pfn) 318 { 319 page_t *pp = page_numtopp_nolock(pfn); 320 321 /* 322 * need to destroy the page used for the pagetable 323 */ 324 ASSERT(pfn != PFN_INVALID); 325 HATSTAT_INC(hs_ptable_frees); 326 atomic_add_32(&active_ptables, -1); 327 if (pp == NULL) 328 panic("ptable_free(): no page for pfn!"); 329 ASSERT(PAGE_SHARED(pp)); 330 ASSERT(pfn == pp->p_pagenum); 331 ASSERT(!IN_XPV_PANIC()); 332 333 /* 334 * Get an exclusive lock, might have to wait for a kmem reader. 335 */ 336 if (!page_tryupgrade(pp)) { 337 page_unlock(pp); 338 /* 339 * RFE: we could change this to not loop forever 340 * For now looping works - it's just like sfmmu. 341 */ 342 while (!page_lock(pp, SE_EXCL, (kmutex_t *)NULL, P_RECLAIM)) 343 continue; 344 } 345 #ifdef __xpv 346 if (kpm_vbase && xen_kpm_page(pfn, PT_VALID | PT_WRITABLE) < 0) 347 panic("failure making kpm r/w pfn=0x%lx", pfn); 348 #endif 349 page_free(pp, 1); 350 page_unresv(1); 351 } 352 353 /* 354 * Put one htable on the reserve list. 355 */ 356 static void 357 htable_put_reserve(htable_t *ht) 358 { 359 ht->ht_hat = NULL; /* no longer tied to a hat */ 360 ASSERT(ht->ht_pfn == PFN_INVALID); 361 HATSTAT_INC(hs_htable_rputs); 362 mutex_enter(&htable_reserve_mutex); 363 ht->ht_next = htable_reserve_pool; 364 htable_reserve_pool = ht; 365 ++htable_reserve_cnt; 366 mutex_exit(&htable_reserve_mutex); 367 } 368 369 /* 370 * Take one htable from the reserve. 371 */ 372 static htable_t * 373 htable_get_reserve(void) 374 { 375 htable_t *ht = NULL; 376 377 mutex_enter(&htable_reserve_mutex); 378 if (htable_reserve_cnt != 0) { 379 ht = htable_reserve_pool; 380 ASSERT(ht != NULL); 381 ASSERT(ht->ht_pfn == PFN_INVALID); 382 htable_reserve_pool = ht->ht_next; 383 --htable_reserve_cnt; 384 HATSTAT_INC(hs_htable_rgets); 385 } 386 mutex_exit(&htable_reserve_mutex); 387 return (ht); 388 } 389 390 /* 391 * Allocate initial htables and put them on the reserve list 392 */ 393 void 394 htable_initial_reserve(uint_t count) 395 { 396 htable_t *ht; 397 398 count += HTABLE_RESERVE_AMOUNT; 399 while (count > 0) { 400 ht = kmem_cache_alloc(htable_cache, KM_NOSLEEP); 401 ASSERT(ht != NULL); 402 403 ASSERT(use_boot_reserve); 404 ht->ht_pfn = PFN_INVALID; 405 htable_put_reserve(ht); 406 --count; 407 } 408 } 409 410 /* 411 * Readjust the reserves after a thread finishes using them. 412 */ 413 void 414 htable_adjust_reserve() 415 { 416 htable_t *ht; 417 418 /* 419 * Free any excess htables in the reserve list 420 */ 421 while (htable_reserve_cnt > htable_reserve_amount && 422 !USE_HAT_RESERVES()) { 423 ht = htable_get_reserve(); 424 if (ht == NULL) 425 return; 426 ASSERT(ht->ht_pfn == PFN_INVALID); 427 kmem_cache_free(htable_cache, ht); 428 } 429 } 430 431 432 /* 433 * This routine steals htables from user processes for htable_alloc() or 434 * for htable_reap(). 435 */ 436 static htable_t * 437 htable_steal(uint_t cnt) 438 { 439 hat_t *hat = kas.a_hat; /* list starts with khat */ 440 htable_t *list = NULL; 441 htable_t *ht; 442 htable_t *higher; 443 uint_t h; 444 uint_t h_start; 445 static uint_t h_seed = 0; 446 uint_t e; 447 uintptr_t va; 448 x86pte_t pte; 449 uint_t stolen = 0; 450 uint_t pass; 451 uint_t threshold; 452 453 /* 454 * Limit htable_steal_passes to something reasonable 455 */ 456 if (htable_steal_passes == 0) 457 htable_steal_passes = 1; 458 if (htable_steal_passes > mmu.ptes_per_table) 459 htable_steal_passes = mmu.ptes_per_table; 460 461 /* 462 * Loop through all user hats. The 1st pass takes cached htables that 463 * aren't in use. The later passes steal by removing mappings, too. 464 */ 465 atomic_add_32(&htable_dont_cache, 1); 466 for (pass = 0; pass <= htable_steal_passes && stolen < cnt; ++pass) { 467 threshold = pass * mmu.ptes_per_table / htable_steal_passes; 468 hat = kas.a_hat; 469 for (;;) { 470 471 /* 472 * Clear the victim flag and move to next hat 473 */ 474 mutex_enter(&hat_list_lock); 475 if (hat != kas.a_hat) { 476 hat->hat_flags &= ~HAT_VICTIM; 477 cv_broadcast(&hat_list_cv); 478 } 479 hat = hat->hat_next; 480 481 /* 482 * Skip any hat that is already being stolen from. 483 * 484 * We skip SHARED hats, as these are dummy 485 * hats that host ISM shared page tables. 486 * 487 * We also skip if HAT_FREEING because hat_pte_unmap() 488 * won't zero out the PTE's. That would lead to hitting 489 * stale PTEs either here or under hat_unload() when we 490 * steal and unload the same page table in competing 491 * threads. 492 */ 493 while (hat != NULL && 494 (hat->hat_flags & 495 (HAT_VICTIM | HAT_SHARED | HAT_FREEING)) != 0) 496 hat = hat->hat_next; 497 498 if (hat == NULL) { 499 mutex_exit(&hat_list_lock); 500 break; 501 } 502 503 /* 504 * Are we finished? 505 */ 506 if (stolen == cnt) { 507 /* 508 * Try to spread the pain of stealing, 509 * move victim HAT to the end of the HAT list. 510 */ 511 if (pass >= 1 && cnt == 1 && 512 kas.a_hat->hat_prev != hat) { 513 514 /* unlink victim hat */ 515 if (hat->hat_prev) 516 hat->hat_prev->hat_next = 517 hat->hat_next; 518 else 519 kas.a_hat->hat_next = 520 hat->hat_next; 521 if (hat->hat_next) 522 hat->hat_next->hat_prev = 523 hat->hat_prev; 524 else 525 kas.a_hat->hat_prev = 526 hat->hat_prev; 527 528 529 /* relink at end of hat list */ 530 hat->hat_next = NULL; 531 hat->hat_prev = kas.a_hat->hat_prev; 532 if (hat->hat_prev) 533 hat->hat_prev->hat_next = hat; 534 else 535 kas.a_hat->hat_next = hat; 536 kas.a_hat->hat_prev = hat; 537 538 } 539 540 mutex_exit(&hat_list_lock); 541 break; 542 } 543 544 /* 545 * Mark the HAT as a stealing victim. 546 */ 547 hat->hat_flags |= HAT_VICTIM; 548 mutex_exit(&hat_list_lock); 549 550 /* 551 * Take any htables from the hat's cached "free" list. 552 */ 553 hat_enter(hat); 554 while ((ht = hat->hat_ht_cached) != NULL && 555 stolen < cnt) { 556 hat->hat_ht_cached = ht->ht_next; 557 ht->ht_next = list; 558 list = ht; 559 ++stolen; 560 } 561 hat_exit(hat); 562 563 /* 564 * Don't steal on first pass. 565 */ 566 if (pass == 0 || stolen == cnt) 567 continue; 568 569 /* 570 * Search the active htables for one to steal. 571 * Start at a different hash bucket every time to 572 * help spread the pain of stealing. 573 */ 574 h = h_start = h_seed++ % hat->hat_num_hash; 575 do { 576 higher = NULL; 577 HTABLE_ENTER(h); 578 for (ht = hat->hat_ht_hash[h]; ht; 579 ht = ht->ht_next) { 580 581 /* 582 * Can we rule out reaping? 583 */ 584 if (ht->ht_busy != 0 || 585 (ht->ht_flags & HTABLE_SHARED_PFN)|| 586 ht->ht_level > 0 || 587 ht->ht_valid_cnt > threshold || 588 ht->ht_lock_cnt != 0) 589 continue; 590 591 /* 592 * Increment busy so the htable can't 593 * disappear. We drop the htable mutex 594 * to avoid deadlocks with 595 * hat_pageunload() and the hment mutex 596 * while we call hat_pte_unmap() 597 */ 598 ++ht->ht_busy; 599 HTABLE_EXIT(h); 600 601 /* 602 * Try stealing. 603 * - unload and invalidate all PTEs 604 */ 605 for (e = 0, va = ht->ht_vaddr; 606 e < HTABLE_NUM_PTES(ht) && 607 ht->ht_valid_cnt > 0 && 608 ht->ht_busy == 1 && 609 ht->ht_lock_cnt == 0; 610 ++e, va += MMU_PAGESIZE) { 611 pte = x86pte_get(ht, e); 612 if (!PTE_ISVALID(pte)) 613 continue; 614 hat_pte_unmap(ht, e, 615 HAT_UNLOAD, pte, NULL); 616 } 617 618 /* 619 * Reacquire htable lock. If we didn't 620 * remove all mappings in the table, 621 * or another thread added a new mapping 622 * behind us, give up on this table. 623 */ 624 HTABLE_ENTER(h); 625 if (ht->ht_busy != 1 || 626 ht->ht_valid_cnt != 0 || 627 ht->ht_lock_cnt != 0) { 628 --ht->ht_busy; 629 continue; 630 } 631 632 /* 633 * Steal it and unlink the page table. 634 */ 635 higher = ht->ht_parent; 636 unlink_ptp(higher, ht, ht->ht_vaddr); 637 638 /* 639 * remove from the hash list 640 */ 641 if (ht->ht_next) 642 ht->ht_next->ht_prev = 643 ht->ht_prev; 644 645 if (ht->ht_prev) { 646 ht->ht_prev->ht_next = 647 ht->ht_next; 648 } else { 649 ASSERT(hat->hat_ht_hash[h] == 650 ht); 651 hat->hat_ht_hash[h] = 652 ht->ht_next; 653 } 654 655 /* 656 * Break to outer loop to release the 657 * higher (ht_parent) pagetable. This 658 * spreads out the pain caused by 659 * pagefaults. 660 */ 661 ht->ht_next = list; 662 list = ht; 663 ++stolen; 664 break; 665 } 666 HTABLE_EXIT(h); 667 if (higher != NULL) 668 htable_release(higher); 669 if (++h == hat->hat_num_hash) 670 h = 0; 671 } while (stolen < cnt && h != h_start); 672 } 673 } 674 atomic_add_32(&htable_dont_cache, -1); 675 return (list); 676 } 677 678 /* 679 * This is invoked from kmem when the system is low on memory. We try 680 * to free hments, htables, and ptables to improve the memory situation. 681 */ 682 /*ARGSUSED*/ 683 static void 684 htable_reap(void *handle) 685 { 686 uint_t reap_cnt; 687 htable_t *list; 688 htable_t *ht; 689 690 HATSTAT_INC(hs_reap_attempts); 691 if (!can_steal_post_boot) 692 return; 693 694 /* 695 * Try to reap 5% of the page tables bounded by a maximum of 696 * 5% of physmem and a minimum of 10. 697 */ 698 reap_cnt = MAX(MIN(physmem / 20, active_ptables / 20), 10); 699 700 /* 701 * Let htable_steal() do the work, we just call htable_free() 702 */ 703 XPV_DISALLOW_MIGRATE(); 704 list = htable_steal(reap_cnt); 705 XPV_ALLOW_MIGRATE(); 706 while ((ht = list) != NULL) { 707 list = ht->ht_next; 708 HATSTAT_INC(hs_reaped); 709 htable_free(ht); 710 } 711 712 /* 713 * Free up excess reserves 714 */ 715 htable_adjust_reserve(); 716 hment_adjust_reserve(); 717 } 718 719 /* 720 * Allocate an htable, stealing one or using the reserve if necessary 721 */ 722 static htable_t * 723 htable_alloc( 724 hat_t *hat, 725 uintptr_t vaddr, 726 level_t level, 727 htable_t *shared) 728 { 729 htable_t *ht = NULL; 730 uint_t is_vlp; 731 uint_t is_bare = 0; 732 uint_t need_to_zero = 1; 733 int kmflags = (can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP); 734 735 if (level < 0 || level > TOP_LEVEL(hat)) 736 panic("htable_alloc(): level %d out of range\n", level); 737 738 is_vlp = (hat->hat_flags & HAT_VLP) && level == VLP_LEVEL; 739 if (is_vlp || shared != NULL) 740 is_bare = 1; 741 742 /* 743 * First reuse a cached htable from the hat_ht_cached field, this 744 * avoids unnecessary trips through kmem/page allocators. 745 */ 746 if (hat->hat_ht_cached != NULL && !is_bare) { 747 hat_enter(hat); 748 ht = hat->hat_ht_cached; 749 if (ht != NULL) { 750 hat->hat_ht_cached = ht->ht_next; 751 need_to_zero = 0; 752 /* XX64 ASSERT() they're all zero somehow */ 753 ASSERT(ht->ht_pfn != PFN_INVALID); 754 } 755 hat_exit(hat); 756 } 757 758 if (ht == NULL) { 759 /* 760 * Allocate an htable, possibly refilling the reserves. 761 */ 762 if (USE_HAT_RESERVES()) { 763 ht = htable_get_reserve(); 764 } else { 765 /* 766 * Donate successful htable allocations to the reserve. 767 */ 768 for (;;) { 769 ht = kmem_cache_alloc(htable_cache, kmflags); 770 if (ht == NULL) 771 break; 772 ht->ht_pfn = PFN_INVALID; 773 if (USE_HAT_RESERVES() || 774 htable_reserve_cnt >= htable_reserve_amount) 775 break; 776 htable_put_reserve(ht); 777 } 778 } 779 780 /* 781 * allocate a page for the hardware page table if needed 782 */ 783 if (ht != NULL && !is_bare) { 784 ht->ht_hat = hat; 785 ht->ht_pfn = ptable_alloc((uintptr_t)ht); 786 if (ht->ht_pfn == PFN_INVALID) { 787 if (USE_HAT_RESERVES()) 788 htable_put_reserve(ht); 789 else 790 kmem_cache_free(htable_cache, ht); 791 ht = NULL; 792 } 793 } 794 } 795 796 /* 797 * If allocations failed, kick off a kmem_reap() and resort to 798 * htable steal(). We may spin here if the system is very low on 799 * memory. If the kernel itself has consumed all memory and kmem_reap() 800 * can't free up anything, then we'll really get stuck here. 801 * That should only happen in a system where the administrator has 802 * misconfigured VM parameters via /etc/system. 803 */ 804 while (ht == NULL && can_steal_post_boot) { 805 kmem_reap(); 806 ht = htable_steal(1); 807 HATSTAT_INC(hs_steals); 808 809 /* 810 * If we stole for a bare htable, release the pagetable page. 811 */ 812 if (ht != NULL) { 813 if (is_bare) { 814 ptable_free(ht->ht_pfn); 815 ht->ht_pfn = PFN_INVALID; 816 #if defined(__xpv) && defined(__amd64) 817 /* 818 * make stolen page table writable again in kpm 819 */ 820 } else if (kpm_vbase && xen_kpm_page(ht->ht_pfn, 821 PT_VALID | PT_WRITABLE) < 0) { 822 panic("failure making kpm r/w pfn=0x%lx", 823 ht->ht_pfn); 824 #endif 825 } 826 } 827 } 828 829 /* 830 * All attempts to allocate or steal failed. This should only happen 831 * if we run out of memory during boot, due perhaps to a huge 832 * boot_archive. At this point there's no way to continue. 833 */ 834 if (ht == NULL) 835 panic("htable_alloc(): couldn't steal\n"); 836 837 #if defined(__amd64) && defined(__xpv) 838 /* 839 * Under the 64-bit hypervisor, we have 2 top level page tables. 840 * If this allocation fails, we'll resort to stealing. 841 * We use the stolen page indirectly, by freeing the 842 * stolen htable first. 843 */ 844 if (level == mmu.max_level) { 845 for (;;) { 846 htable_t *stolen; 847 848 hat->hat_user_ptable = ptable_alloc((uintptr_t)ht + 1); 849 if (hat->hat_user_ptable != PFN_INVALID) 850 break; 851 stolen = htable_steal(1); 852 if (stolen == NULL) 853 panic("2nd steal ptable failed\n"); 854 htable_free(stolen); 855 } 856 block_zero_no_xmm(kpm_vbase + pfn_to_pa(hat->hat_user_ptable), 857 MMU_PAGESIZE); 858 } 859 #endif 860 861 /* 862 * Shared page tables have all entries locked and entries may not 863 * be added or deleted. 864 */ 865 ht->ht_flags = 0; 866 if (shared != NULL) { 867 ASSERT(shared->ht_valid_cnt > 0); 868 ht->ht_flags |= HTABLE_SHARED_PFN; 869 ht->ht_pfn = shared->ht_pfn; 870 ht->ht_lock_cnt = 0; 871 ht->ht_valid_cnt = 0; /* updated in hat_share() */ 872 ht->ht_shares = shared; 873 need_to_zero = 0; 874 } else { 875 ht->ht_shares = NULL; 876 ht->ht_lock_cnt = 0; 877 ht->ht_valid_cnt = 0; 878 } 879 880 /* 881 * setup flags, etc. for VLP htables 882 */ 883 if (is_vlp) { 884 ht->ht_flags |= HTABLE_VLP; 885 ASSERT(ht->ht_pfn == PFN_INVALID); 886 need_to_zero = 0; 887 } 888 889 /* 890 * fill in the htable 891 */ 892 ht->ht_hat = hat; 893 ht->ht_parent = NULL; 894 ht->ht_vaddr = vaddr; 895 ht->ht_level = level; 896 ht->ht_busy = 1; 897 ht->ht_next = NULL; 898 ht->ht_prev = NULL; 899 900 /* 901 * Zero out any freshly allocated page table 902 */ 903 if (need_to_zero) 904 x86pte_zero(ht, 0, mmu.ptes_per_table); 905 906 #if defined(__amd64) && defined(__xpv) 907 if (!is_bare && kpm_vbase) { 908 (void) xen_kpm_page(ht->ht_pfn, PT_VALID); 909 if (level == mmu.max_level) 910 (void) xen_kpm_page(hat->hat_user_ptable, PT_VALID); 911 } 912 #endif 913 914 return (ht); 915 } 916 917 /* 918 * Free up an htable, either to a hat's cached list, the reserves or 919 * back to kmem. 920 */ 921 static void 922 htable_free(htable_t *ht) 923 { 924 hat_t *hat = ht->ht_hat; 925 926 /* 927 * If the process isn't exiting, cache the free htable in the hat 928 * structure. We always do this for the boot time reserve. We don't 929 * do this if the hat is exiting or we are stealing/reaping htables. 930 */ 931 if (hat != NULL && 932 !(ht->ht_flags & HTABLE_SHARED_PFN) && 933 (use_boot_reserve || 934 (!(hat->hat_flags & HAT_FREEING) && !htable_dont_cache))) { 935 ASSERT((ht->ht_flags & HTABLE_VLP) == 0); 936 ASSERT(ht->ht_pfn != PFN_INVALID); 937 hat_enter(hat); 938 ht->ht_next = hat->hat_ht_cached; 939 hat->hat_ht_cached = ht; 940 hat_exit(hat); 941 return; 942 } 943 944 /* 945 * If we have a hardware page table, free it. 946 * We don't free page tables that are accessed by sharing. 947 */ 948 if (ht->ht_flags & HTABLE_SHARED_PFN) { 949 ASSERT(ht->ht_pfn != PFN_INVALID); 950 } else if (!(ht->ht_flags & HTABLE_VLP)) { 951 ptable_free(ht->ht_pfn); 952 #if defined(__amd64) && defined(__xpv) 953 if (ht->ht_level == mmu.max_level) { 954 ptable_free(hat->hat_user_ptable); 955 hat->hat_user_ptable = PFN_INVALID; 956 } 957 #endif 958 } 959 ht->ht_pfn = PFN_INVALID; 960 961 /* 962 * Free it or put into reserves. 963 */ 964 if (USE_HAT_RESERVES() || htable_reserve_cnt < htable_reserve_amount) { 965 htable_put_reserve(ht); 966 } else { 967 kmem_cache_free(htable_cache, ht); 968 htable_adjust_reserve(); 969 } 970 } 971 972 973 /* 974 * This is called when a hat is being destroyed or swapped out. We reap all 975 * the remaining htables in the hat cache. If destroying all left over 976 * htables are also destroyed. 977 * 978 * We also don't need to invalidate any of the PTPs nor do any demapping. 979 */ 980 void 981 htable_purge_hat(hat_t *hat) 982 { 983 htable_t *ht; 984 int h; 985 986 /* 987 * Purge the htable cache if just reaping. 988 */ 989 if (!(hat->hat_flags & HAT_FREEING)) { 990 atomic_add_32(&htable_dont_cache, 1); 991 for (;;) { 992 hat_enter(hat); 993 ht = hat->hat_ht_cached; 994 if (ht == NULL) { 995 hat_exit(hat); 996 break; 997 } 998 hat->hat_ht_cached = ht->ht_next; 999 hat_exit(hat); 1000 htable_free(ht); 1001 } 1002 atomic_add_32(&htable_dont_cache, -1); 1003 return; 1004 } 1005 1006 /* 1007 * if freeing, no locking is needed 1008 */ 1009 while ((ht = hat->hat_ht_cached) != NULL) { 1010 hat->hat_ht_cached = ht->ht_next; 1011 htable_free(ht); 1012 } 1013 1014 /* 1015 * walk thru the htable hash table and free all the htables in it. 1016 */ 1017 for (h = 0; h < hat->hat_num_hash; ++h) { 1018 while ((ht = hat->hat_ht_hash[h]) != NULL) { 1019 if (ht->ht_next) 1020 ht->ht_next->ht_prev = ht->ht_prev; 1021 1022 if (ht->ht_prev) { 1023 ht->ht_prev->ht_next = ht->ht_next; 1024 } else { 1025 ASSERT(hat->hat_ht_hash[h] == ht); 1026 hat->hat_ht_hash[h] = ht->ht_next; 1027 } 1028 htable_free(ht); 1029 } 1030 } 1031 } 1032 1033 /* 1034 * Unlink an entry for a table at vaddr and level out of the existing table 1035 * one level higher. We are always holding the HASH_ENTER() when doing this. 1036 */ 1037 static void 1038 unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr) 1039 { 1040 uint_t entry = htable_va2entry(vaddr, higher); 1041 x86pte_t expect = MAKEPTP(old->ht_pfn, old->ht_level); 1042 x86pte_t found; 1043 hat_t *hat = old->ht_hat; 1044 1045 ASSERT(higher->ht_busy > 0); 1046 ASSERT(higher->ht_valid_cnt > 0); 1047 ASSERT(old->ht_valid_cnt == 0); 1048 found = x86pte_cas(higher, entry, expect, 0); 1049 #ifdef __xpv 1050 /* 1051 * This is weird, but Xen apparently automatically unlinks empty 1052 * pagetables from the upper page table. So allow PTP to be 0 already. 1053 */ 1054 if (found != expect && found != 0) 1055 #else 1056 if (found != expect) 1057 #endif 1058 panic("Bad PTP found=" FMT_PTE ", expected=" FMT_PTE, 1059 found, expect); 1060 1061 /* 1062 * When a top level VLP page table entry changes, we must issue 1063 * a reload of cr3 on all processors. 1064 * 1065 * If we don't need do do that, then we still have to INVLPG against 1066 * an address covered by the inner page table, as the latest processors 1067 * have TLB-like caches for non-leaf page table entries. 1068 */ 1069 if (!(hat->hat_flags & HAT_FREEING)) { 1070 hat_tlb_inval(hat, (higher->ht_flags & HTABLE_VLP) ? 1071 DEMAP_ALL_ADDR : old->ht_vaddr); 1072 } 1073 1074 HTABLE_DEC(higher->ht_valid_cnt); 1075 } 1076 1077 /* 1078 * Link an entry for a new table at vaddr and level into the existing table 1079 * one level higher. We are always holding the HASH_ENTER() when doing this. 1080 */ 1081 static void 1082 link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr) 1083 { 1084 uint_t entry = htable_va2entry(vaddr, higher); 1085 x86pte_t newptp = MAKEPTP(new->ht_pfn, new->ht_level); 1086 x86pte_t found; 1087 1088 ASSERT(higher->ht_busy > 0); 1089 1090 ASSERT(new->ht_level != mmu.max_level); 1091 1092 HTABLE_INC(higher->ht_valid_cnt); 1093 1094 found = x86pte_cas(higher, entry, 0, newptp); 1095 if ((found & ~PT_REF) != 0) 1096 panic("HAT: ptp not 0, found=" FMT_PTE, found); 1097 1098 /* 1099 * When any top level VLP page table entry changes, we must issue 1100 * a reload of cr3 on all processors using it. 1101 * We also need to do this for the kernel hat on PAE 32 bit kernel. 1102 */ 1103 if ( 1104 #ifdef __i386 1105 (higher->ht_hat == kas.a_hat && higher->ht_level == VLP_LEVEL) || 1106 #endif 1107 (higher->ht_flags & HTABLE_VLP)) 1108 hat_tlb_inval(higher->ht_hat, DEMAP_ALL_ADDR); 1109 } 1110 1111 /* 1112 * Release of hold on an htable. If this is the last use and the pagetable 1113 * is empty we may want to free it, then recursively look at the pagetable 1114 * above it. The recursion is handled by the outer while() loop. 1115 * 1116 * On the metal, during process exit, we don't bother unlinking the tables from 1117 * upper level pagetables. They are instead handled in bulk by hat_free_end(). 1118 * We can't do this on the hypervisor as we need the page table to be 1119 * implicitly unpinnned before it goes to the free page lists. This can't 1120 * happen unless we fully unlink it from the page table hierarchy. 1121 */ 1122 void 1123 htable_release(htable_t *ht) 1124 { 1125 uint_t hashval; 1126 htable_t *shared; 1127 htable_t *higher; 1128 hat_t *hat; 1129 uintptr_t va; 1130 level_t level; 1131 1132 while (ht != NULL) { 1133 shared = NULL; 1134 for (;;) { 1135 hat = ht->ht_hat; 1136 va = ht->ht_vaddr; 1137 level = ht->ht_level; 1138 hashval = HTABLE_HASH(hat, va, level); 1139 1140 /* 1141 * The common case is that this isn't the last use of 1142 * an htable so we don't want to free the htable. 1143 */ 1144 HTABLE_ENTER(hashval); 1145 ASSERT(ht->ht_valid_cnt >= 0); 1146 ASSERT(ht->ht_busy > 0); 1147 if (ht->ht_valid_cnt > 0) 1148 break; 1149 if (ht->ht_busy > 1) 1150 break; 1151 ASSERT(ht->ht_lock_cnt == 0); 1152 1153 #if !defined(__xpv) 1154 /* 1155 * we always release empty shared htables 1156 */ 1157 if (!(ht->ht_flags & HTABLE_SHARED_PFN)) { 1158 1159 /* 1160 * don't release if in address space tear down 1161 */ 1162 if (hat->hat_flags & HAT_FREEING) 1163 break; 1164 1165 /* 1166 * At and above max_page_level, free if it's for 1167 * a boot-time kernel mapping below kernelbase. 1168 */ 1169 if (level >= mmu.max_page_level && 1170 (hat != kas.a_hat || va >= kernelbase)) 1171 break; 1172 } 1173 #endif /* __xpv */ 1174 1175 /* 1176 * Remember if we destroy an htable that shares its PFN 1177 * from elsewhere. 1178 */ 1179 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1180 ASSERT(shared == NULL); 1181 shared = ht->ht_shares; 1182 HATSTAT_INC(hs_htable_unshared); 1183 } 1184 1185 /* 1186 * Handle release of a table and freeing the htable_t. 1187 * Unlink it from the table higher (ie. ht_parent). 1188 */ 1189 higher = ht->ht_parent; 1190 ASSERT(higher != NULL); 1191 1192 /* 1193 * Unlink the pagetable. 1194 */ 1195 unlink_ptp(higher, ht, va); 1196 1197 /* 1198 * remove this htable from its hash list 1199 */ 1200 if (ht->ht_next) 1201 ht->ht_next->ht_prev = ht->ht_prev; 1202 1203 if (ht->ht_prev) { 1204 ht->ht_prev->ht_next = ht->ht_next; 1205 } else { 1206 ASSERT(hat->hat_ht_hash[hashval] == ht); 1207 hat->hat_ht_hash[hashval] = ht->ht_next; 1208 } 1209 HTABLE_EXIT(hashval); 1210 htable_free(ht); 1211 ht = higher; 1212 } 1213 1214 ASSERT(ht->ht_busy >= 1); 1215 --ht->ht_busy; 1216 HTABLE_EXIT(hashval); 1217 1218 /* 1219 * If we released a shared htable, do a release on the htable 1220 * from which it shared 1221 */ 1222 ht = shared; 1223 } 1224 } 1225 1226 /* 1227 * Find the htable for the pagetable at the given level for the given address. 1228 * If found acquires a hold that eventually needs to be htable_release()d 1229 */ 1230 htable_t * 1231 htable_lookup(hat_t *hat, uintptr_t vaddr, level_t level) 1232 { 1233 uintptr_t base; 1234 uint_t hashval; 1235 htable_t *ht = NULL; 1236 1237 ASSERT(level >= 0); 1238 ASSERT(level <= TOP_LEVEL(hat)); 1239 1240 if (level == TOP_LEVEL(hat)) { 1241 #if defined(__amd64) 1242 /* 1243 * 32 bit address spaces on 64 bit kernels need to check 1244 * for overflow of the 32 bit address space 1245 */ 1246 if ((hat->hat_flags & HAT_VLP) && vaddr >= ((uint64_t)1 << 32)) 1247 return (NULL); 1248 #endif 1249 base = 0; 1250 } else { 1251 base = vaddr & LEVEL_MASK(level + 1); 1252 } 1253 1254 hashval = HTABLE_HASH(hat, base, level); 1255 HTABLE_ENTER(hashval); 1256 for (ht = hat->hat_ht_hash[hashval]; ht; ht = ht->ht_next) { 1257 if (ht->ht_hat == hat && 1258 ht->ht_vaddr == base && 1259 ht->ht_level == level) 1260 break; 1261 } 1262 if (ht) 1263 ++ht->ht_busy; 1264 1265 HTABLE_EXIT(hashval); 1266 return (ht); 1267 } 1268 1269 /* 1270 * Acquires a hold on a known htable (from a locked hment entry). 1271 */ 1272 void 1273 htable_acquire(htable_t *ht) 1274 { 1275 hat_t *hat = ht->ht_hat; 1276 level_t level = ht->ht_level; 1277 uintptr_t base = ht->ht_vaddr; 1278 uint_t hashval = HTABLE_HASH(hat, base, level); 1279 1280 HTABLE_ENTER(hashval); 1281 #ifdef DEBUG 1282 /* 1283 * make sure the htable is there 1284 */ 1285 { 1286 htable_t *h; 1287 1288 for (h = hat->hat_ht_hash[hashval]; 1289 h && h != ht; 1290 h = h->ht_next) 1291 ; 1292 ASSERT(h == ht); 1293 } 1294 #endif /* DEBUG */ 1295 ++ht->ht_busy; 1296 HTABLE_EXIT(hashval); 1297 } 1298 1299 /* 1300 * Find the htable for the pagetable at the given level for the given address. 1301 * If found acquires a hold that eventually needs to be htable_release()d 1302 * If not found the table is created. 1303 * 1304 * Since we can't hold a hash table mutex during allocation, we have to 1305 * drop it and redo the search on a create. Then we may have to free the newly 1306 * allocated htable if another thread raced in and created it ahead of us. 1307 */ 1308 htable_t * 1309 htable_create( 1310 hat_t *hat, 1311 uintptr_t vaddr, 1312 level_t level, 1313 htable_t *shared) 1314 { 1315 uint_t h; 1316 level_t l; 1317 uintptr_t base; 1318 htable_t *ht; 1319 htable_t *higher = NULL; 1320 htable_t *new = NULL; 1321 1322 if (level < 0 || level > TOP_LEVEL(hat)) 1323 panic("htable_create(): level %d out of range\n", level); 1324 1325 /* 1326 * Create the page tables in top down order. 1327 */ 1328 for (l = TOP_LEVEL(hat); l >= level; --l) { 1329 new = NULL; 1330 if (l == TOP_LEVEL(hat)) 1331 base = 0; 1332 else 1333 base = vaddr & LEVEL_MASK(l + 1); 1334 1335 h = HTABLE_HASH(hat, base, l); 1336 try_again: 1337 /* 1338 * look up the htable at this level 1339 */ 1340 HTABLE_ENTER(h); 1341 if (l == TOP_LEVEL(hat)) { 1342 ht = hat->hat_htable; 1343 } else { 1344 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 1345 ASSERT(ht->ht_hat == hat); 1346 if (ht->ht_vaddr == base && 1347 ht->ht_level == l) 1348 break; 1349 } 1350 } 1351 1352 /* 1353 * if we found the htable, increment its busy cnt 1354 * and if we had allocated a new htable, free it. 1355 */ 1356 if (ht != NULL) { 1357 /* 1358 * If we find a pre-existing shared table, it must 1359 * share from the same place. 1360 */ 1361 if (l == level && shared && ht->ht_shares && 1362 ht->ht_shares != shared) { 1363 panic("htable shared from wrong place " 1364 "found htable=%p shared=%p", 1365 (void *)ht, (void *)shared); 1366 } 1367 ++ht->ht_busy; 1368 HTABLE_EXIT(h); 1369 if (new) 1370 htable_free(new); 1371 if (higher != NULL) 1372 htable_release(higher); 1373 higher = ht; 1374 1375 /* 1376 * if we didn't find it on the first search 1377 * allocate a new one and search again 1378 */ 1379 } else if (new == NULL) { 1380 HTABLE_EXIT(h); 1381 new = htable_alloc(hat, base, l, 1382 l == level ? shared : NULL); 1383 goto try_again; 1384 1385 /* 1386 * 2nd search and still not there, use "new" table 1387 * Link new table into higher, when not at top level. 1388 */ 1389 } else { 1390 ht = new; 1391 if (higher != NULL) { 1392 link_ptp(higher, ht, base); 1393 ht->ht_parent = higher; 1394 } 1395 ht->ht_next = hat->hat_ht_hash[h]; 1396 ASSERT(ht->ht_prev == NULL); 1397 if (hat->hat_ht_hash[h]) 1398 hat->hat_ht_hash[h]->ht_prev = ht; 1399 hat->hat_ht_hash[h] = ht; 1400 HTABLE_EXIT(h); 1401 1402 /* 1403 * Note we don't do htable_release(higher). 1404 * That happens recursively when "new" is removed by 1405 * htable_release() or htable_steal(). 1406 */ 1407 higher = ht; 1408 1409 /* 1410 * If we just created a new shared page table we 1411 * increment the shared htable's busy count, so that 1412 * it can't be the victim of a steal even if it's empty. 1413 */ 1414 if (l == level && shared) { 1415 (void) htable_lookup(shared->ht_hat, 1416 shared->ht_vaddr, shared->ht_level); 1417 HATSTAT_INC(hs_htable_shared); 1418 } 1419 } 1420 } 1421 1422 return (ht); 1423 } 1424 1425 /* 1426 * Inherit initial pagetables from the boot program. On the 64-bit 1427 * hypervisor we also temporarily mark the p_index field of page table 1428 * pages, so we know not to try making them writable in seg_kpm. 1429 */ 1430 void 1431 htable_attach( 1432 hat_t *hat, 1433 uintptr_t base, 1434 level_t level, 1435 htable_t *parent, 1436 pfn_t pfn) 1437 { 1438 htable_t *ht; 1439 uint_t h; 1440 uint_t i; 1441 x86pte_t pte; 1442 x86pte_t *ptep; 1443 page_t *pp; 1444 extern page_t *boot_claim_page(pfn_t); 1445 1446 ht = htable_get_reserve(); 1447 if (level == mmu.max_level) 1448 kas.a_hat->hat_htable = ht; 1449 ht->ht_hat = hat; 1450 ht->ht_parent = parent; 1451 ht->ht_vaddr = base; 1452 ht->ht_level = level; 1453 ht->ht_busy = 1; 1454 ht->ht_next = NULL; 1455 ht->ht_prev = NULL; 1456 ht->ht_flags = 0; 1457 ht->ht_pfn = pfn; 1458 ht->ht_lock_cnt = 0; 1459 ht->ht_valid_cnt = 0; 1460 if (parent != NULL) 1461 ++parent->ht_busy; 1462 1463 h = HTABLE_HASH(hat, base, level); 1464 HTABLE_ENTER(h); 1465 ht->ht_next = hat->hat_ht_hash[h]; 1466 ASSERT(ht->ht_prev == NULL); 1467 if (hat->hat_ht_hash[h]) 1468 hat->hat_ht_hash[h]->ht_prev = ht; 1469 hat->hat_ht_hash[h] = ht; 1470 HTABLE_EXIT(h); 1471 1472 /* 1473 * make sure the page table physical page is not FREE 1474 */ 1475 if (page_resv(1, KM_NOSLEEP) == 0) 1476 panic("page_resv() failed in ptable alloc"); 1477 1478 pp = boot_claim_page(pfn); 1479 ASSERT(pp != NULL); 1480 page_downgrade(pp); 1481 #if defined(__xpv) && defined(__amd64) 1482 /* 1483 * Record in the page_t that is a pagetable for segkpm setup. 1484 */ 1485 if (kpm_vbase) 1486 pp->p_index = 1; 1487 #endif 1488 1489 /* 1490 * Count valid mappings and recursively attach lower level pagetables. 1491 */ 1492 ptep = kbm_remap_window(pfn_to_pa(pfn), 0); 1493 for (i = 0; i < HTABLE_NUM_PTES(ht); ++i) { 1494 if (mmu.pae_hat) 1495 pte = ptep[i]; 1496 else 1497 pte = ((x86pte32_t *)ptep)[i]; 1498 if (!IN_HYPERVISOR_VA(base) && PTE_ISVALID(pte)) { 1499 ++ht->ht_valid_cnt; 1500 if (!PTE_ISPAGE(pte, level)) { 1501 htable_attach(hat, base, level - 1, 1502 ht, PTE2PFN(pte, level)); 1503 ptep = kbm_remap_window(pfn_to_pa(pfn), 0); 1504 } 1505 } 1506 base += LEVEL_SIZE(level); 1507 if (base == mmu.hole_start) 1508 base = (mmu.hole_end + MMU_PAGEOFFSET) & MMU_PAGEMASK; 1509 } 1510 1511 /* 1512 * As long as all the mappings we had were below kernel base 1513 * we can release the htable. 1514 */ 1515 if (base < kernelbase) 1516 htable_release(ht); 1517 } 1518 1519 /* 1520 * Walk through a given htable looking for the first valid entry. This 1521 * routine takes both a starting and ending address. The starting address 1522 * is required to be within the htable provided by the caller, but there is 1523 * no such restriction on the ending address. 1524 * 1525 * If the routine finds a valid entry in the htable (at or beyond the 1526 * starting address), the PTE (and its address) will be returned. 1527 * This PTE may correspond to either a page or a pagetable - it is the 1528 * caller's responsibility to determine which. If no valid entry is 1529 * found, 0 (and invalid PTE) and the next unexamined address will be 1530 * returned. 1531 * 1532 * The loop has been carefully coded for optimization. 1533 */ 1534 static x86pte_t 1535 htable_scan(htable_t *ht, uintptr_t *vap, uintptr_t eaddr) 1536 { 1537 uint_t e; 1538 x86pte_t found_pte = (x86pte_t)0; 1539 caddr_t pte_ptr; 1540 caddr_t end_pte_ptr; 1541 int l = ht->ht_level; 1542 uintptr_t va = *vap & LEVEL_MASK(l); 1543 size_t pgsize = LEVEL_SIZE(l); 1544 1545 ASSERT(va >= ht->ht_vaddr); 1546 ASSERT(va <= HTABLE_LAST_PAGE(ht)); 1547 1548 /* 1549 * Compute the starting index and ending virtual address 1550 */ 1551 e = htable_va2entry(va, ht); 1552 1553 /* 1554 * The following page table scan code knows that the valid 1555 * bit of a PTE is in the lowest byte AND that x86 is little endian!! 1556 */ 1557 pte_ptr = (caddr_t)x86pte_access_pagetable(ht, 0); 1558 end_pte_ptr = (caddr_t)PT_INDEX_PTR(pte_ptr, HTABLE_NUM_PTES(ht)); 1559 pte_ptr = (caddr_t)PT_INDEX_PTR((x86pte_t *)pte_ptr, e); 1560 while (!PTE_ISVALID(*pte_ptr)) { 1561 va += pgsize; 1562 if (va >= eaddr) 1563 break; 1564 pte_ptr += mmu.pte_size; 1565 ASSERT(pte_ptr <= end_pte_ptr); 1566 if (pte_ptr == end_pte_ptr) 1567 break; 1568 } 1569 1570 /* 1571 * if we found a valid PTE, load the entire PTE 1572 */ 1573 if (va < eaddr && pte_ptr != end_pte_ptr) 1574 found_pte = GET_PTE((x86pte_t *)pte_ptr); 1575 x86pte_release_pagetable(ht); 1576 1577 #if defined(__amd64) 1578 /* 1579 * deal with VA hole on amd64 1580 */ 1581 if (l == mmu.max_level && va >= mmu.hole_start && va <= mmu.hole_end) 1582 va = mmu.hole_end + va - mmu.hole_start; 1583 #endif /* __amd64 */ 1584 1585 *vap = va; 1586 return (found_pte); 1587 } 1588 1589 /* 1590 * Find the address and htable for the first populated translation at or 1591 * above the given virtual address. The caller may also specify an upper 1592 * limit to the address range to search. Uses level information to quickly 1593 * skip unpopulated sections of virtual address spaces. 1594 * 1595 * If not found returns NULL. When found, returns the htable and virt addr 1596 * and has a hold on the htable. 1597 */ 1598 x86pte_t 1599 htable_walk( 1600 struct hat *hat, 1601 htable_t **htp, 1602 uintptr_t *vaddr, 1603 uintptr_t eaddr) 1604 { 1605 uintptr_t va = *vaddr; 1606 htable_t *ht; 1607 htable_t *prev = *htp; 1608 level_t l; 1609 level_t max_mapped_level; 1610 x86pte_t pte; 1611 1612 ASSERT(eaddr > va); 1613 1614 /* 1615 * If this is a user address, then we know we need not look beyond 1616 * kernelbase. 1617 */ 1618 ASSERT(hat == kas.a_hat || eaddr <= kernelbase || 1619 eaddr == HTABLE_WALK_TO_END); 1620 if (hat != kas.a_hat && eaddr == HTABLE_WALK_TO_END) 1621 eaddr = kernelbase; 1622 1623 /* 1624 * If we're coming in with a previous page table, search it first 1625 * without doing an htable_lookup(), this should be frequent. 1626 */ 1627 if (prev) { 1628 ASSERT(prev->ht_busy > 0); 1629 ASSERT(prev->ht_vaddr <= va); 1630 l = prev->ht_level; 1631 if (va <= HTABLE_LAST_PAGE(prev)) { 1632 pte = htable_scan(prev, &va, eaddr); 1633 1634 if (PTE_ISPAGE(pte, l)) { 1635 *vaddr = va; 1636 *htp = prev; 1637 return (pte); 1638 } 1639 } 1640 1641 /* 1642 * We found nothing in the htable provided by the caller, 1643 * so fall through and do the full search 1644 */ 1645 htable_release(prev); 1646 } 1647 1648 /* 1649 * Find the level of the largest pagesize used by this HAT. 1650 */ 1651 if (hat->hat_ism_pgcnt > 0) { 1652 max_mapped_level = mmu.umax_page_level; 1653 } else { 1654 max_mapped_level = 0; 1655 for (l = 1; l <= mmu.max_page_level; ++l) 1656 if (hat->hat_pages_mapped[l] != 0) 1657 max_mapped_level = l; 1658 } 1659 1660 while (va < eaddr && va >= *vaddr) { 1661 ASSERT(!IN_VA_HOLE(va)); 1662 1663 /* 1664 * Find lowest table with any entry for given address. 1665 */ 1666 for (l = 0; l <= TOP_LEVEL(hat); ++l) { 1667 ht = htable_lookup(hat, va, l); 1668 if (ht != NULL) { 1669 pte = htable_scan(ht, &va, eaddr); 1670 if (PTE_ISPAGE(pte, l)) { 1671 *vaddr = va; 1672 *htp = ht; 1673 return (pte); 1674 } 1675 htable_release(ht); 1676 break; 1677 } 1678 1679 /* 1680 * No htable at this level for the address. If there 1681 * is no larger page size that could cover it, we can 1682 * skip right to the start of the next page table. 1683 */ 1684 ASSERT(l < TOP_LEVEL(hat)); 1685 if (l >= max_mapped_level) { 1686 va = NEXT_ENTRY_VA(va, l + 1); 1687 if (va >= eaddr) 1688 break; 1689 } 1690 } 1691 } 1692 1693 *vaddr = 0; 1694 *htp = NULL; 1695 return (0); 1696 } 1697 1698 /* 1699 * Find the htable and page table entry index of the given virtual address 1700 * with pagesize at or below given level. 1701 * If not found returns NULL. When found, returns the htable, sets 1702 * entry, and has a hold on the htable. 1703 */ 1704 htable_t * 1705 htable_getpte( 1706 struct hat *hat, 1707 uintptr_t vaddr, 1708 uint_t *entry, 1709 x86pte_t *pte, 1710 level_t level) 1711 { 1712 htable_t *ht; 1713 level_t l; 1714 uint_t e; 1715 1716 ASSERT(level <= mmu.max_page_level); 1717 1718 for (l = 0; l <= level; ++l) { 1719 ht = htable_lookup(hat, vaddr, l); 1720 if (ht == NULL) 1721 continue; 1722 e = htable_va2entry(vaddr, ht); 1723 if (entry != NULL) 1724 *entry = e; 1725 if (pte != NULL) 1726 *pte = x86pte_get(ht, e); 1727 return (ht); 1728 } 1729 return (NULL); 1730 } 1731 1732 /* 1733 * Find the htable and page table entry index of the given virtual address. 1734 * There must be a valid page mapped at the given address. 1735 * If not found returns NULL. When found, returns the htable, sets 1736 * entry, and has a hold on the htable. 1737 */ 1738 htable_t * 1739 htable_getpage(struct hat *hat, uintptr_t vaddr, uint_t *entry) 1740 { 1741 htable_t *ht; 1742 uint_t e; 1743 x86pte_t pte; 1744 1745 ht = htable_getpte(hat, vaddr, &e, &pte, mmu.max_page_level); 1746 if (ht == NULL) 1747 return (NULL); 1748 1749 if (entry) 1750 *entry = e; 1751 1752 if (PTE_ISPAGE(pte, ht->ht_level)) 1753 return (ht); 1754 htable_release(ht); 1755 return (NULL); 1756 } 1757 1758 1759 void 1760 htable_init() 1761 { 1762 /* 1763 * To save on kernel VA usage, we avoid debug information in 32 bit 1764 * kernels. 1765 */ 1766 #if defined(__amd64) 1767 int kmem_flags = KMC_NOHASH; 1768 #elif defined(__i386) 1769 int kmem_flags = KMC_NOHASH | KMC_NODEBUG; 1770 #endif 1771 1772 /* 1773 * initialize kmem caches 1774 */ 1775 htable_cache = kmem_cache_create("htable_t", 1776 sizeof (htable_t), 0, NULL, NULL, 1777 htable_reap, NULL, hat_memload_arena, kmem_flags); 1778 } 1779 1780 /* 1781 * get the pte index for the virtual address in the given htable's pagetable 1782 */ 1783 uint_t 1784 htable_va2entry(uintptr_t va, htable_t *ht) 1785 { 1786 level_t l = ht->ht_level; 1787 1788 ASSERT(va >= ht->ht_vaddr); 1789 ASSERT(va <= HTABLE_LAST_PAGE(ht)); 1790 return ((va >> LEVEL_SHIFT(l)) & (HTABLE_NUM_PTES(ht) - 1)); 1791 } 1792 1793 /* 1794 * Given an htable and the index of a pte in it, return the virtual address 1795 * of the page. 1796 */ 1797 uintptr_t 1798 htable_e2va(htable_t *ht, uint_t entry) 1799 { 1800 level_t l = ht->ht_level; 1801 uintptr_t va; 1802 1803 ASSERT(entry < HTABLE_NUM_PTES(ht)); 1804 va = ht->ht_vaddr + ((uintptr_t)entry << LEVEL_SHIFT(l)); 1805 1806 /* 1807 * Need to skip over any VA hole in top level table 1808 */ 1809 #if defined(__amd64) 1810 if (ht->ht_level == mmu.max_level && va >= mmu.hole_start) 1811 va += ((mmu.hole_end - mmu.hole_start) + 1); 1812 #endif 1813 1814 return (va); 1815 } 1816 1817 /* 1818 * The code uses compare and swap instructions to read/write PTE's to 1819 * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems. 1820 * will naturally be atomic. 1821 * 1822 * The combination of using kpreempt_disable()/_enable() and the hci_mutex 1823 * are used to ensure that an interrupt won't overwrite a temporary mapping 1824 * while it's in use. If an interrupt thread tries to access a PTE, it will 1825 * yield briefly back to the pinned thread which holds the cpu's hci_mutex. 1826 */ 1827 void 1828 x86pte_cpu_init(cpu_t *cpu) 1829 { 1830 struct hat_cpu_info *hci; 1831 1832 hci = kmem_zalloc(sizeof (*hci), KM_SLEEP); 1833 mutex_init(&hci->hci_mutex, NULL, MUTEX_DEFAULT, NULL); 1834 cpu->cpu_hat_info = hci; 1835 } 1836 1837 void 1838 x86pte_cpu_fini(cpu_t *cpu) 1839 { 1840 struct hat_cpu_info *hci = cpu->cpu_hat_info; 1841 1842 kmem_free(hci, sizeof (*hci)); 1843 cpu->cpu_hat_info = NULL; 1844 } 1845 1846 #ifdef __i386 1847 /* 1848 * On 32 bit kernels, loading a 64 bit PTE is a little tricky 1849 */ 1850 x86pte_t 1851 get_pte64(x86pte_t *ptr) 1852 { 1853 volatile uint32_t *p = (uint32_t *)ptr; 1854 x86pte_t t; 1855 1856 ASSERT(mmu.pae_hat != 0); 1857 for (;;) { 1858 t = p[0]; 1859 t |= (uint64_t)p[1] << 32; 1860 if ((t & 0xffffffff) == p[0]) 1861 return (t); 1862 } 1863 } 1864 #endif /* __i386 */ 1865 1866 /* 1867 * Disable preemption and establish a mapping to the pagetable with the 1868 * given pfn. This is optimized for there case where it's the same 1869 * pfn as we last used referenced from this CPU. 1870 */ 1871 static x86pte_t * 1872 x86pte_access_pagetable(htable_t *ht, uint_t index) 1873 { 1874 /* 1875 * VLP pagetables are contained in the hat_t 1876 */ 1877 if (ht->ht_flags & HTABLE_VLP) 1878 return (PT_INDEX_PTR(ht->ht_hat->hat_vlp_ptes, index)); 1879 return (x86pte_mapin(ht->ht_pfn, index, ht)); 1880 } 1881 1882 /* 1883 * map the given pfn into the page table window. 1884 */ 1885 /*ARGSUSED*/ 1886 x86pte_t * 1887 x86pte_mapin(pfn_t pfn, uint_t index, htable_t *ht) 1888 { 1889 x86pte_t *pteptr; 1890 x86pte_t pte = 0; 1891 x86pte_t newpte; 1892 int x; 1893 1894 ASSERT(pfn != PFN_INVALID); 1895 1896 if (!khat_running) { 1897 caddr_t va = kbm_remap_window(pfn_to_pa(pfn), 1); 1898 return (PT_INDEX_PTR(va, index)); 1899 } 1900 1901 /* 1902 * If kpm is available, use it. 1903 */ 1904 if (kpm_vbase) 1905 return (PT_INDEX_PTR(hat_kpm_pfn2va(pfn), index)); 1906 1907 /* 1908 * Disable preemption and grab the CPU's hci_mutex 1909 */ 1910 kpreempt_disable(); 1911 ASSERT(CPU->cpu_hat_info != NULL); 1912 mutex_enter(&CPU->cpu_hat_info->hci_mutex); 1913 x = PWIN_TABLE(CPU->cpu_id); 1914 pteptr = (x86pte_t *)PWIN_PTE_VA(x); 1915 #ifndef __xpv 1916 if (mmu.pae_hat) 1917 pte = *pteptr; 1918 else 1919 pte = *(x86pte32_t *)pteptr; 1920 #endif 1921 1922 newpte = MAKEPTE(pfn, 0) | mmu.pt_global | mmu.pt_nx; 1923 1924 /* 1925 * For hardware we can use a writable mapping. 1926 */ 1927 #ifdef __xpv 1928 if (IN_XPV_PANIC()) 1929 #endif 1930 newpte |= PT_WRITABLE; 1931 1932 if (!PTE_EQUIV(newpte, pte)) { 1933 1934 #ifdef __xpv 1935 if (!IN_XPV_PANIC()) { 1936 xen_map(newpte, PWIN_VA(x)); 1937 } else 1938 #endif 1939 { 1940 XPV_ALLOW_PAGETABLE_UPDATES(); 1941 if (mmu.pae_hat) 1942 *pteptr = newpte; 1943 else 1944 *(x86pte32_t *)pteptr = newpte; 1945 XPV_DISALLOW_PAGETABLE_UPDATES(); 1946 mmu_tlbflush_entry((caddr_t)(PWIN_VA(x))); 1947 } 1948 } 1949 return (PT_INDEX_PTR(PWIN_VA(x), index)); 1950 } 1951 1952 /* 1953 * Release access to a page table. 1954 */ 1955 static void 1956 x86pte_release_pagetable(htable_t *ht) 1957 { 1958 /* 1959 * nothing to do for VLP htables 1960 */ 1961 if (ht->ht_flags & HTABLE_VLP) 1962 return; 1963 1964 x86pte_mapout(); 1965 } 1966 1967 void 1968 x86pte_mapout(void) 1969 { 1970 if (kpm_vbase != NULL || !khat_running) 1971 return; 1972 1973 /* 1974 * Drop the CPU's hci_mutex and restore preemption. 1975 */ 1976 #ifdef __xpv 1977 if (!IN_XPV_PANIC()) { 1978 uintptr_t va; 1979 1980 /* 1981 * We need to always clear the mapping in case a page 1982 * that was once a page table page is ballooned out. 1983 */ 1984 va = (uintptr_t)PWIN_VA(PWIN_TABLE(CPU->cpu_id)); 1985 (void) HYPERVISOR_update_va_mapping(va, 0, 1986 UVMF_INVLPG | UVMF_LOCAL); 1987 } 1988 #endif 1989 mutex_exit(&CPU->cpu_hat_info->hci_mutex); 1990 kpreempt_enable(); 1991 } 1992 1993 /* 1994 * Atomic retrieval of a pagetable entry 1995 */ 1996 x86pte_t 1997 x86pte_get(htable_t *ht, uint_t entry) 1998 { 1999 x86pte_t pte; 2000 x86pte_t *ptep; 2001 2002 /* 2003 * Be careful that loading PAE entries in 32 bit kernel is atomic. 2004 */ 2005 ASSERT(entry < mmu.ptes_per_table); 2006 ptep = x86pte_access_pagetable(ht, entry); 2007 pte = GET_PTE(ptep); 2008 x86pte_release_pagetable(ht); 2009 return (pte); 2010 } 2011 2012 /* 2013 * Atomic unconditional set of a page table entry, it returns the previous 2014 * value. For pre-existing mappings if the PFN changes, then we don't care 2015 * about the old pte's REF / MOD bits. If the PFN remains the same, we leave 2016 * the MOD/REF bits unchanged. 2017 * 2018 * If asked to overwrite a link to a lower page table with a large page 2019 * mapping, this routine returns the special value of LPAGE_ERROR. This 2020 * allows the upper HAT layers to retry with a smaller mapping size. 2021 */ 2022 x86pte_t 2023 x86pte_set(htable_t *ht, uint_t entry, x86pte_t new, void *ptr) 2024 { 2025 x86pte_t old; 2026 x86pte_t prev; 2027 x86pte_t *ptep; 2028 level_t l = ht->ht_level; 2029 x86pte_t pfn_mask = (l != 0) ? PT_PADDR_LGPG : PT_PADDR; 2030 x86pte_t n; 2031 uintptr_t addr = htable_e2va(ht, entry); 2032 hat_t *hat = ht->ht_hat; 2033 2034 ASSERT(new != 0); /* don't use to invalidate a PTE, see x86pte_update */ 2035 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2036 if (ptr == NULL) 2037 ptep = x86pte_access_pagetable(ht, entry); 2038 else 2039 ptep = ptr; 2040 2041 /* 2042 * Install the new PTE. If remapping the same PFN, then 2043 * copy existing REF/MOD bits to new mapping. 2044 */ 2045 do { 2046 prev = GET_PTE(ptep); 2047 n = new; 2048 if (PTE_ISVALID(n) && (prev & pfn_mask) == (new & pfn_mask)) 2049 n |= prev & (PT_REF | PT_MOD); 2050 2051 /* 2052 * Another thread may have installed this mapping already, 2053 * flush the local TLB and be done. 2054 */ 2055 if (prev == n) { 2056 old = new; 2057 #ifdef __xpv 2058 if (!IN_XPV_PANIC()) 2059 xen_flush_va((caddr_t)addr); 2060 else 2061 #endif 2062 mmu_tlbflush_entry((caddr_t)addr); 2063 goto done; 2064 } 2065 2066 /* 2067 * Detect if we have a collision of installing a large 2068 * page mapping where there already is a lower page table. 2069 */ 2070 if (l > 0 && (prev & PT_VALID) && !(prev & PT_PAGESIZE)) { 2071 old = LPAGE_ERROR; 2072 goto done; 2073 } 2074 2075 XPV_ALLOW_PAGETABLE_UPDATES(); 2076 old = CAS_PTE(ptep, prev, n); 2077 XPV_DISALLOW_PAGETABLE_UPDATES(); 2078 } while (old != prev); 2079 2080 /* 2081 * Do a TLB demap if needed, ie. the old pte was valid. 2082 * 2083 * Note that a stale TLB writeback to the PTE here either can't happen 2084 * or doesn't matter. The PFN can only change for NOSYNC|NOCONSIST 2085 * mappings, but they were created with REF and MOD already set, so 2086 * no stale writeback will happen. 2087 * 2088 * Segmap is the only place where remaps happen on the same pfn and for 2089 * that we want to preserve the stale REF/MOD bits. 2090 */ 2091 if (old & PT_REF) 2092 hat_tlb_inval(hat, addr); 2093 2094 done: 2095 if (ptr == NULL) 2096 x86pte_release_pagetable(ht); 2097 return (old); 2098 } 2099 2100 /* 2101 * Atomic compare and swap of a page table entry. No TLB invalidates are done. 2102 * This is used for links between pagetables of different levels. 2103 * Note we always create these links with dirty/access set, so they should 2104 * never change. 2105 */ 2106 x86pte_t 2107 x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new) 2108 { 2109 x86pte_t pte; 2110 x86pte_t *ptep; 2111 #ifdef __xpv 2112 /* 2113 * We can't use writable pagetables for upper level tables, so fake it. 2114 */ 2115 mmu_update_t t[2]; 2116 int cnt = 1; 2117 int count; 2118 maddr_t ma; 2119 2120 if (!IN_XPV_PANIC()) { 2121 ASSERT(!(ht->ht_flags & HTABLE_VLP)); /* no VLP yet */ 2122 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry)); 2123 t[0].ptr = ma | MMU_NORMAL_PT_UPDATE; 2124 t[0].val = new; 2125 2126 #if defined(__amd64) 2127 /* 2128 * On the 64-bit hypervisor we need to maintain the user mode 2129 * top page table too. 2130 */ 2131 if (ht->ht_level == mmu.max_level && ht->ht_hat != kas.a_hat) { 2132 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa( 2133 ht->ht_hat->hat_user_ptable), entry)); 2134 t[1].ptr = ma | MMU_NORMAL_PT_UPDATE; 2135 t[1].val = new; 2136 ++cnt; 2137 } 2138 #endif /* __amd64 */ 2139 2140 if (HYPERVISOR_mmu_update(t, cnt, &count, DOMID_SELF)) 2141 panic("HYPERVISOR_mmu_update() failed"); 2142 ASSERT(count == cnt); 2143 return (old); 2144 } 2145 #endif 2146 ptep = x86pte_access_pagetable(ht, entry); 2147 XPV_ALLOW_PAGETABLE_UPDATES(); 2148 pte = CAS_PTE(ptep, old, new); 2149 XPV_DISALLOW_PAGETABLE_UPDATES(); 2150 x86pte_release_pagetable(ht); 2151 return (pte); 2152 } 2153 2154 /* 2155 * Invalidate a page table entry as long as it currently maps something that 2156 * matches the value determined by expect. 2157 * 2158 * Also invalidates any TLB entries and returns the previous value of the PTE. 2159 */ 2160 x86pte_t 2161 x86pte_inval( 2162 htable_t *ht, 2163 uint_t entry, 2164 x86pte_t expect, 2165 x86pte_t *pte_ptr) 2166 { 2167 x86pte_t *ptep; 2168 x86pte_t oldpte; 2169 x86pte_t found; 2170 2171 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2172 ASSERT(ht->ht_level <= mmu.max_page_level); 2173 2174 if (pte_ptr != NULL) 2175 ptep = pte_ptr; 2176 else 2177 ptep = x86pte_access_pagetable(ht, entry); 2178 2179 #if defined(__xpv) 2180 /* 2181 * If exit()ing just use HYPERVISOR_mmu_update(), as we can't be racing 2182 * with anything else. 2183 */ 2184 if ((ht->ht_hat->hat_flags & HAT_FREEING) && !IN_XPV_PANIC()) { 2185 int count; 2186 mmu_update_t t[1]; 2187 maddr_t ma; 2188 2189 oldpte = GET_PTE(ptep); 2190 if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR)) 2191 goto done; 2192 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry)); 2193 t[0].ptr = ma | MMU_NORMAL_PT_UPDATE; 2194 t[0].val = 0; 2195 if (HYPERVISOR_mmu_update(t, 1, &count, DOMID_SELF)) 2196 panic("HYPERVISOR_mmu_update() failed"); 2197 ASSERT(count == 1); 2198 goto done; 2199 } 2200 #endif /* __xpv */ 2201 2202 /* 2203 * Note that the loop is needed to handle changes due to h/w updating 2204 * of PT_MOD/PT_REF. 2205 */ 2206 do { 2207 oldpte = GET_PTE(ptep); 2208 if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR)) 2209 goto done; 2210 XPV_ALLOW_PAGETABLE_UPDATES(); 2211 found = CAS_PTE(ptep, oldpte, 0); 2212 XPV_DISALLOW_PAGETABLE_UPDATES(); 2213 } while (found != oldpte); 2214 if (oldpte & (PT_REF | PT_MOD)) 2215 hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry)); 2216 2217 done: 2218 if (pte_ptr == NULL) 2219 x86pte_release_pagetable(ht); 2220 return (oldpte); 2221 } 2222 2223 /* 2224 * Change a page table entry af it currently matches the value in expect. 2225 */ 2226 x86pte_t 2227 x86pte_update( 2228 htable_t *ht, 2229 uint_t entry, 2230 x86pte_t expect, 2231 x86pte_t new) 2232 { 2233 x86pte_t *ptep; 2234 x86pte_t found; 2235 2236 ASSERT(new != 0); 2237 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2238 ASSERT(ht->ht_level <= mmu.max_page_level); 2239 2240 ptep = x86pte_access_pagetable(ht, entry); 2241 XPV_ALLOW_PAGETABLE_UPDATES(); 2242 found = CAS_PTE(ptep, expect, new); 2243 XPV_DISALLOW_PAGETABLE_UPDATES(); 2244 if (found == expect) { 2245 hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry)); 2246 2247 /* 2248 * When removing write permission *and* clearing the 2249 * MOD bit, check if a write happened via a stale 2250 * TLB entry before the TLB shootdown finished. 2251 * 2252 * If it did happen, simply re-enable write permission and 2253 * act like the original CAS failed. 2254 */ 2255 if ((expect & (PT_WRITABLE | PT_MOD)) == PT_WRITABLE && 2256 (new & (PT_WRITABLE | PT_MOD)) == 0 && 2257 (GET_PTE(ptep) & PT_MOD) != 0) { 2258 do { 2259 found = GET_PTE(ptep); 2260 XPV_ALLOW_PAGETABLE_UPDATES(); 2261 found = 2262 CAS_PTE(ptep, found, found | PT_WRITABLE); 2263 XPV_DISALLOW_PAGETABLE_UPDATES(); 2264 } while ((found & PT_WRITABLE) == 0); 2265 } 2266 } 2267 x86pte_release_pagetable(ht); 2268 return (found); 2269 } 2270 2271 #ifndef __xpv 2272 /* 2273 * Copy page tables - this is just a little more complicated than the 2274 * previous routines. Note that it's also not atomic! It also is never 2275 * used for VLP pagetables. 2276 */ 2277 void 2278 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count) 2279 { 2280 caddr_t src_va; 2281 caddr_t dst_va; 2282 size_t size; 2283 x86pte_t *pteptr; 2284 x86pte_t pte; 2285 2286 ASSERT(khat_running); 2287 ASSERT(!(dest->ht_flags & HTABLE_VLP)); 2288 ASSERT(!(src->ht_flags & HTABLE_VLP)); 2289 ASSERT(!(src->ht_flags & HTABLE_SHARED_PFN)); 2290 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN)); 2291 2292 /* 2293 * Acquire access to the CPU pagetable windows for the dest and source. 2294 */ 2295 dst_va = (caddr_t)x86pte_access_pagetable(dest, entry); 2296 if (kpm_vbase) { 2297 src_va = (caddr_t) 2298 PT_INDEX_PTR(hat_kpm_pfn2va(src->ht_pfn), entry); 2299 } else { 2300 uint_t x = PWIN_SRC(CPU->cpu_id); 2301 2302 /* 2303 * Finish defining the src pagetable mapping 2304 */ 2305 src_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry); 2306 pte = MAKEPTE(src->ht_pfn, 0) | mmu.pt_global | mmu.pt_nx; 2307 pteptr = (x86pte_t *)PWIN_PTE_VA(x); 2308 if (mmu.pae_hat) 2309 *pteptr = pte; 2310 else 2311 *(x86pte32_t *)pteptr = pte; 2312 mmu_tlbflush_entry((caddr_t)(PWIN_VA(x))); 2313 } 2314 2315 /* 2316 * now do the copy 2317 */ 2318 size = count << mmu.pte_size_shift; 2319 bcopy(src_va, dst_va, size); 2320 2321 x86pte_release_pagetable(dest); 2322 } 2323 2324 #else /* __xpv */ 2325 2326 /* 2327 * The hypervisor only supports writable pagetables at level 0, so we have 2328 * to install these 1 by 1 the slow way. 2329 */ 2330 void 2331 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count) 2332 { 2333 caddr_t src_va; 2334 x86pte_t pte; 2335 2336 ASSERT(!IN_XPV_PANIC()); 2337 src_va = (caddr_t)x86pte_access_pagetable(src, entry); 2338 while (count) { 2339 if (mmu.pae_hat) 2340 pte = *(x86pte_t *)src_va; 2341 else 2342 pte = *(x86pte32_t *)src_va; 2343 if (pte != 0) { 2344 set_pteval(pfn_to_pa(dest->ht_pfn), entry, 2345 dest->ht_level, pte); 2346 #ifdef __amd64 2347 if (dest->ht_level == mmu.max_level && 2348 htable_e2va(dest, entry) < HYPERVISOR_VIRT_END) 2349 set_pteval( 2350 pfn_to_pa(dest->ht_hat->hat_user_ptable), 2351 entry, dest->ht_level, pte); 2352 #endif 2353 } 2354 --count; 2355 ++entry; 2356 src_va += mmu.pte_size; 2357 } 2358 x86pte_release_pagetable(src); 2359 } 2360 #endif /* __xpv */ 2361 2362 /* 2363 * Zero page table entries - Note this doesn't use atomic stores! 2364 */ 2365 static void 2366 x86pte_zero(htable_t *dest, uint_t entry, uint_t count) 2367 { 2368 caddr_t dst_va; 2369 size_t size; 2370 #ifdef __xpv 2371 int x; 2372 x86pte_t newpte; 2373 #endif 2374 2375 /* 2376 * Map in the page table to be zeroed. 2377 */ 2378 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN)); 2379 ASSERT(!(dest->ht_flags & HTABLE_VLP)); 2380 2381 /* 2382 * On the hypervisor we don't use x86pte_access_pagetable() since 2383 * in this case the page is not pinned yet. 2384 */ 2385 #ifdef __xpv 2386 if (kpm_vbase == NULL) { 2387 kpreempt_disable(); 2388 ASSERT(CPU->cpu_hat_info != NULL); 2389 mutex_enter(&CPU->cpu_hat_info->hci_mutex); 2390 x = PWIN_TABLE(CPU->cpu_id); 2391 newpte = MAKEPTE(dest->ht_pfn, 0) | PT_WRITABLE; 2392 xen_map(newpte, PWIN_VA(x)); 2393 dst_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry); 2394 } else 2395 #endif 2396 dst_va = (caddr_t)x86pte_access_pagetable(dest, entry); 2397 2398 size = count << mmu.pte_size_shift; 2399 ASSERT(size > BLOCKZEROALIGN); 2400 #ifdef __i386 2401 if ((x86_feature & X86_SSE2) == 0) 2402 bzero(dst_va, size); 2403 else 2404 #endif 2405 block_zero_no_xmm(dst_va, size); 2406 2407 #ifdef __xpv 2408 if (kpm_vbase == NULL) { 2409 xen_map(0, PWIN_VA(x)); 2410 mutex_exit(&CPU->cpu_hat_info->hci_mutex); 2411 kpreempt_enable(); 2412 } else 2413 #endif 2414 x86pte_release_pagetable(dest); 2415 } 2416 2417 /* 2418 * Called to ensure that all pagetables are in the system dump 2419 */ 2420 void 2421 hat_dump(void) 2422 { 2423 hat_t *hat; 2424 uint_t h; 2425 htable_t *ht; 2426 2427 /* 2428 * Dump all page tables 2429 */ 2430 for (hat = kas.a_hat; hat != NULL; hat = hat->hat_next) { 2431 for (h = 0; h < hat->hat_num_hash; ++h) { 2432 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 2433 if ((ht->ht_flags & HTABLE_VLP) == 0) 2434 dump_page(ht->ht_pfn); 2435 } 2436 } 2437 } 2438 } 2439