xref: /titanic_41/usr/src/uts/i86pc/vm/htable.c (revision 40cb5e5daa7b80bb70fcf8dadfb20f9281566331)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/sysmacros.h>
30 #include <sys/kmem.h>
31 #include <sys/atomic.h>
32 #include <sys/bitmap.h>
33 #include <sys/machparam.h>
34 #include <sys/machsystm.h>
35 #include <sys/mman.h>
36 #include <sys/systm.h>
37 #include <sys/cpuvar.h>
38 #include <sys/thread.h>
39 #include <sys/proc.h>
40 #include <sys/cpu.h>
41 #include <sys/kmem.h>
42 #include <sys/disp.h>
43 #include <sys/vmem.h>
44 #include <sys/vmsystm.h>
45 #include <sys/promif.h>
46 #include <sys/var.h>
47 #include <sys/x86_archext.h>
48 #include <sys/bootconf.h>
49 #include <sys/dumphdr.h>
50 #include <vm/seg_kmem.h>
51 #include <vm/seg_kpm.h>
52 #include <vm/hat.h>
53 #include <vm/hat_i86.h>
54 #include <sys/cmn_err.h>
55 
56 kmem_cache_t *htable_cache;
57 extern cpuset_t khat_cpuset;
58 
59 /*
60  * The variable htable_reserve_amount, rather than HTABLE_RESERVE_AMOUNT,
61  * is used in order to facilitate testing of the htable_steal() code.
62  * By resetting htable_reserve_amount to a lower value, we can force
63  * stealing to occur.  The reserve amount is a guess to get us through boot.
64  */
65 #define	HTABLE_RESERVE_AMOUNT	(200)
66 uint_t htable_reserve_amount = HTABLE_RESERVE_AMOUNT;
67 kmutex_t htable_reserve_mutex;
68 uint_t htable_reserve_cnt;
69 htable_t *htable_reserve_pool;
70 
71 /*
72  * Used to hand test htable_steal().
73  */
74 #ifdef DEBUG
75 ulong_t force_steal = 0;
76 ulong_t ptable_cnt = 0;
77 #endif
78 
79 /*
80  * This variable is so that we can tune this via /etc/system
81  * Any value works, but a power of two <= mmu.ptes_per_table is best.
82  */
83 uint_t htable_steal_passes = 8;
84 
85 /*
86  * mutex stuff for access to htable hash
87  */
88 #define	NUM_HTABLE_MUTEX 128
89 kmutex_t htable_mutex[NUM_HTABLE_MUTEX];
90 #define	HTABLE_MUTEX_HASH(h) ((h) & (NUM_HTABLE_MUTEX - 1))
91 
92 #define	HTABLE_ENTER(h)	mutex_enter(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
93 #define	HTABLE_EXIT(h)	mutex_exit(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
94 
95 /*
96  * forward declarations
97  */
98 static void link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr);
99 static void unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr);
100 static void htable_free(htable_t *ht);
101 static x86pte_t *x86pte_access_pagetable(htable_t *ht);
102 static void x86pte_release_pagetable(htable_t *ht);
103 static x86pte_t x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old,
104 	x86pte_t new);
105 
106 /*
107  * Address used for kernel page tables. See ptable_alloc() below.
108  */
109 uintptr_t ptable_va = 0;
110 size_t	ptable_sz = 2 * MMU_PAGESIZE;
111 
112 /*
113  * A counter to track if we are stealing or reaping htables. When non-zero
114  * htable_free() will directly free htables (either to the reserve or kmem)
115  * instead of putting them in a hat's htable cache.
116  */
117 uint32_t htable_dont_cache = 0;
118 
119 /*
120  * Track the number of active pagetables, so we can know how many to reap
121  */
122 static uint32_t active_ptables = 0;
123 
124 /*
125  * Allocate a memory page for a hardware page table.
126  *
127  * The pages allocated for page tables are currently gotten in a hacked up
128  * way. It works for now, but really needs to be fixed up a bit.
129  *
130  * During boot: The boot loader controls physical memory allocation via
131  * boot_alloc(). To avoid conflict with vmem, we just do boot_alloc()s with
132  * addresses less than kernelbase. These addresses are ignored when we take
133  * over mappings from the boot loader.
134  *
135  * Post-boot: we currently use page_create_va() on the kvp with fake offsets,
136  * segments and virt address. This is pretty bogus, but was copied from the
137  * old hat_i86.c code. A better approach would be to have a custom
138  * page_get_physical() interface that can specify either mnode random or
139  * mnode local and takes a page from whatever color has the MOST available -
140  * this would have a minimal impact on page coloring.
141  *
142  * For now the htable pointer in ht is only used to compute a unique vnode
143  * offset for the page.
144  */
145 static void
146 ptable_alloc(htable_t *ht)
147 {
148 	pfn_t pfn;
149 	page_t *pp;
150 	u_offset_t offset;
151 	static struct seg tmpseg;
152 	static int first_time = 1;
153 
154 	/*
155 	 * Allocating the associated hardware page table is very different
156 	 * before boot has finished.  We get a physical page to from boot
157 	 * w/o eating up any kernel address space.
158 	 */
159 	ht->ht_pfn = PFN_INVALID;
160 	atomic_add_32(&active_ptables, 1);
161 
162 	if (use_boot_reserve) {
163 		ASSERT(ptable_va != 0);
164 
165 		/*
166 		 * Allocate, then demap the ptable_va, so that we're
167 		 * sure there exist page table entries for the addresses
168 		 */
169 		if (first_time) {
170 			first_time = 0;
171 			if ((uintptr_t)BOP_ALLOC(bootops, (caddr_t)ptable_va,
172 			    ptable_sz, BO_NO_ALIGN) != ptable_va)
173 				panic("BOP_ALLOC failed");
174 
175 			hat_boot_demap(ptable_va);
176 			hat_boot_demap(ptable_va + MMU_PAGESIZE);
177 		}
178 
179 		pfn = ((uintptr_t)BOP_EALLOC(bootops, 0, MMU_PAGESIZE,
180 		    BO_NO_ALIGN, BOPF_X86_ALLOC_PHYS)) >> MMU_PAGESHIFT;
181 		if (page_resv(1, KM_NOSLEEP) == 0)
182 			panic("page_resv() failed in ptable alloc");
183 
184 		pp = page_numtopp_nolock(pfn);
185 		ASSERT(pp != NULL);
186 		if (pp->p_szc != 0)
187 			page_boot_demote(pp);
188 		pp = page_numtopp(pfn, SE_EXCL);
189 		ASSERT(pp != NULL);
190 
191 	} else {
192 		/*
193 		 * Post boot get a page for the table.
194 		 *
195 		 * The first check is to see if there is memory in
196 		 * the system. If we drop to throttlefree, then fail
197 		 * the ptable_alloc() and let the stealing code kick in.
198 		 * Note that we have to do this test here, since the test in
199 		 * page_create_throttle() would let the NOSLEEP allocation
200 		 * go through and deplete the page reserves.
201 		 *
202 		 * The !NOMEMWAIT() lets pageout, fsflush, etc. skip this check.
203 		 */
204 		if (!NOMEMWAIT() && freemem <= throttlefree + 1)
205 			return;
206 
207 #ifdef DEBUG
208 		/*
209 		 * This code makes htable_ steal() easier to test. By setting
210 		 * force_steal we force pagetable allocations to fall
211 		 * into the stealing code. Roughly 1 in ever "force_steal"
212 		 * page table allocations will fail.
213 		 */
214 		if (ht->ht_hat != kas.a_hat && force_steal > 1 &&
215 		    ++ptable_cnt > force_steal) {
216 			ptable_cnt = 0;
217 			return;
218 		}
219 #endif /* DEBUG */
220 
221 		/*
222 		 * This code is temporary, so don't review too critically.
223 		 * I'm awaiting a new phys page allocator from Kit -- Joe
224 		 *
225 		 * We need assign an offset for the page to call
226 		 * page_create_va. To avoid conflicts with other pages,
227 		 * we get creative with the offset.
228 		 * for 32 bits, we pic an offset > 4Gig
229 		 * for 64 bits, pic an offset somewhere in the VA hole.
230 		 */
231 		offset = (uintptr_t)ht - kernelbase;
232 		offset <<= MMU_PAGESHIFT;
233 #if defined(__amd64)
234 		offset += mmu.hole_start;	/* something in VA hole */
235 #else
236 		offset += 1ULL << 40;		/* something > 4 Gig */
237 #endif
238 
239 		if (page_resv(1, KM_NOSLEEP) == 0)
240 			return;
241 
242 #ifdef DEBUG
243 		pp = page_exists(&kvp, offset);
244 		if (pp != NULL)
245 			panic("ptable already exists %p", pp);
246 #endif
247 		pp = page_create_va(&kvp, offset, MMU_PAGESIZE,
248 		    PG_EXCL | PG_NORELOC, &tmpseg,
249 		    (void *)((uintptr_t)ht << MMU_PAGESHIFT));
250 		if (pp == NULL)
251 			return;
252 		page_io_unlock(pp);
253 		page_hashout(pp, NULL);
254 		pfn = pp->p_pagenum;
255 	}
256 	page_downgrade(pp);
257 	ASSERT(PAGE_SHARED(pp));
258 
259 	if (pfn == PFN_INVALID)
260 		panic("ptable_alloc(): Invalid PFN!!");
261 	ht->ht_pfn = pfn;
262 	HATSTAT_INC(hs_ptable_allocs);
263 }
264 
265 /*
266  * Free an htable's associated page table page.  See the comments
267  * for ptable_alloc().
268  */
269 static void
270 ptable_free(htable_t *ht)
271 {
272 	pfn_t pfn = ht->ht_pfn;
273 	page_t *pp;
274 
275 	/*
276 	 * need to destroy the page used for the pagetable
277 	 */
278 	ASSERT(pfn != PFN_INVALID);
279 	HATSTAT_INC(hs_ptable_frees);
280 	atomic_add_32(&active_ptables, -1);
281 	pp = page_numtopp_nolock(pfn);
282 	if (pp == NULL)
283 		panic("ptable_free(): no page for pfn!");
284 	ASSERT(PAGE_SHARED(pp));
285 	ASSERT(pfn == pp->p_pagenum);
286 
287 	/*
288 	 * Get an exclusive lock, might have to wait for a kmem reader.
289 	 */
290 	if (!page_tryupgrade(pp)) {
291 		page_unlock(pp);
292 		/*
293 		 * RFE: we could change this to not loop forever
294 		 * George Cameron had some idea on how to do that.
295 		 * For now looping works - it's just like sfmmu.
296 		 */
297 		while (!page_lock(pp, SE_EXCL, (kmutex_t *)NULL, P_RECLAIM))
298 			continue;
299 	}
300 	page_free(pp, 1);
301 	page_unresv(1);
302 	ht->ht_pfn = PFN_INVALID;
303 }
304 
305 /*
306  * Put one htable on the reserve list.
307  */
308 static void
309 htable_put_reserve(htable_t *ht)
310 {
311 	ht->ht_hat = NULL;		/* no longer tied to a hat */
312 	ASSERT(ht->ht_pfn == PFN_INVALID);
313 	HATSTAT_INC(hs_htable_rputs);
314 	mutex_enter(&htable_reserve_mutex);
315 	ht->ht_next = htable_reserve_pool;
316 	htable_reserve_pool = ht;
317 	++htable_reserve_cnt;
318 	mutex_exit(&htable_reserve_mutex);
319 }
320 
321 /*
322  * Take one htable from the reserve.
323  */
324 static htable_t *
325 htable_get_reserve(void)
326 {
327 	htable_t *ht = NULL;
328 
329 	mutex_enter(&htable_reserve_mutex);
330 	if (htable_reserve_cnt != 0) {
331 		ht = htable_reserve_pool;
332 		ASSERT(ht != NULL);
333 		ASSERT(ht->ht_pfn == PFN_INVALID);
334 		htable_reserve_pool = ht->ht_next;
335 		--htable_reserve_cnt;
336 		HATSTAT_INC(hs_htable_rgets);
337 	}
338 	mutex_exit(&htable_reserve_mutex);
339 	return (ht);
340 }
341 
342 /*
343  * Allocate initial htables with page tables and put them on the kernel hat's
344  * cache list.
345  */
346 void
347 htable_initial_reserve(uint_t count)
348 {
349 	htable_t *ht;
350 	hat_t *hat = kas.a_hat;
351 
352 	count += HTABLE_RESERVE_AMOUNT;
353 	while (count > 0) {
354 		ht = kmem_cache_alloc(htable_cache, KM_NOSLEEP);
355 		ASSERT(ht != NULL);
356 
357 		ASSERT(use_boot_reserve);
358 		ht->ht_hat = kas.a_hat;	/* so htable_free() works */
359 		ht->ht_flags = 0;	/* so x86pte_zero works */
360 		ptable_alloc(ht);
361 		if (ht->ht_pfn == PFN_INVALID)
362 			panic("ptable_alloc() failed");
363 
364 		x86pte_zero(ht, 0, mmu.ptes_per_table);
365 
366 		ht->ht_next = hat->hat_ht_cached;
367 		hat->hat_ht_cached = ht;
368 		--count;
369 	}
370 }
371 
372 /*
373  * Readjust the reserves after a thread finishes using them.
374  *
375  * The first time this is called post boot, we'll also clear out the
376  * extra boot htables that were put in the kernel hat's cache list.
377  */
378 void
379 htable_adjust_reserve()
380 {
381 	static int first_time = 1;
382 	htable_t *ht;
383 
384 	ASSERT(curthread != hat_reserves_thread);
385 
386 	/*
387 	 * The first time this is called after we can steal, we free up the
388 	 * the kernel's cache htable list. It has lots of extra htable/page
389 	 * tables that were allocated for boot up.
390 	 */
391 	if (first_time) {
392 		first_time = 0;
393 		while ((ht = kas.a_hat->hat_ht_cached) != NULL) {
394 			kas.a_hat->hat_ht_cached = ht->ht_next;
395 			ASSERT(ht->ht_hat == kas.a_hat);
396 			ptable_free(ht);
397 			htable_put_reserve(ht);
398 		}
399 		return;
400 	}
401 
402 	/*
403 	 * Free any excess htables in the reserve list
404 	 */
405 	while (htable_reserve_cnt > htable_reserve_amount) {
406 		ht = htable_get_reserve();
407 		if (ht == NULL)
408 			return;
409 		ASSERT(ht->ht_pfn == PFN_INVALID);
410 		kmem_cache_free(htable_cache, ht);
411 	}
412 }
413 
414 
415 /*
416  * This routine steals htables from user processes for htable_alloc() or
417  * for htable_reap().
418  */
419 static htable_t *
420 htable_steal(uint_t cnt)
421 {
422 	hat_t		*hat = kas.a_hat;	/* list starts with khat */
423 	htable_t	*list = NULL;
424 	htable_t	*ht;
425 	htable_t	*higher;
426 	uint_t		h;
427 	uint_t		h_start;
428 	static uint_t	h_seed = 0;
429 	uint_t		e;
430 	uintptr_t	va;
431 	x86pte_t	pte;
432 	uint_t		stolen = 0;
433 	uint_t		pass;
434 	uint_t		threshold;
435 
436 	/*
437 	 * Limit htable_steal_passes to something reasonable
438 	 */
439 	if (htable_steal_passes == 0)
440 		htable_steal_passes = 1;
441 	if (htable_steal_passes > mmu.ptes_per_table)
442 		htable_steal_passes = mmu.ptes_per_table;
443 
444 	/*
445 	 * Loop through all user hats. The 1st pass takes cached htables that
446 	 * aren't in use. The later passes steal by removing mappings, too.
447 	 */
448 	atomic_add_32(&htable_dont_cache, 1);
449 	for (pass = 0; pass <= htable_steal_passes && stolen < cnt; ++pass) {
450 		threshold = pass * mmu.ptes_per_table / htable_steal_passes;
451 		hat = kas.a_hat;
452 		for (;;) {
453 
454 			/*
455 			 * Clear the victim flag and move to next hat
456 			 */
457 			mutex_enter(&hat_list_lock);
458 			if (hat != kas.a_hat) {
459 				hat->hat_flags &= ~HAT_VICTIM;
460 				cv_broadcast(&hat_list_cv);
461 			}
462 			hat = hat->hat_next;
463 
464 			/*
465 			 * Skip any hat that is already being stolen from.
466 			 *
467 			 * We skip SHARED hats, as these are dummy
468 			 * hats that host ISM shared page tables.
469 			 *
470 			 * We also skip if HAT_FREEING because hat_pte_unmap()
471 			 * won't zero out the PTE's. That would lead to hitting
472 			 * stale PTEs either here or under hat_unload() when we
473 			 * steal and unload the same page table in competing
474 			 * threads.
475 			 */
476 			while (hat != NULL &&
477 			    (hat->hat_flags &
478 			    (HAT_VICTIM | HAT_SHARED | HAT_FREEING)) != 0)
479 				hat = hat->hat_next;
480 
481 			if (hat == NULL) {
482 				mutex_exit(&hat_list_lock);
483 				break;
484 			}
485 
486 			/*
487 			 * Are we finished?
488 			 */
489 			if (stolen == cnt) {
490 				/*
491 				 * Try to spread the pain of stealing,
492 				 * move victim HAT to the end of the HAT list.
493 				 */
494 				if (pass >= 1 && cnt == 1 &&
495 				    kas.a_hat->hat_prev != hat) {
496 
497 					/* unlink victim hat */
498 					if (hat->hat_prev)
499 						hat->hat_prev->hat_next =
500 						    hat->hat_next;
501 					else
502 						kas.a_hat->hat_next =
503 						    hat->hat_next;
504 					if (hat->hat_next)
505 						hat->hat_next->hat_prev =
506 						    hat->hat_prev;
507 					else
508 						kas.a_hat->hat_prev =
509 						    hat->hat_prev;
510 
511 
512 					/* relink at end of hat list */
513 					hat->hat_next = NULL;
514 					hat->hat_prev = kas.a_hat->hat_prev;
515 					if (hat->hat_prev)
516 						hat->hat_prev->hat_next = hat;
517 					else
518 						kas.a_hat->hat_next = hat;
519 					kas.a_hat->hat_prev = hat;
520 
521 				}
522 
523 				mutex_exit(&hat_list_lock);
524 				break;
525 			}
526 
527 			/*
528 			 * Mark the HAT as a stealing victim.
529 			 */
530 			hat->hat_flags |= HAT_VICTIM;
531 			mutex_exit(&hat_list_lock);
532 
533 			/*
534 			 * Take any htables from the hat's cached "free" list.
535 			 */
536 			hat_enter(hat);
537 			while ((ht = hat->hat_ht_cached) != NULL &&
538 			    stolen < cnt) {
539 				hat->hat_ht_cached = ht->ht_next;
540 				ht->ht_next = list;
541 				list = ht;
542 				++stolen;
543 			}
544 			hat_exit(hat);
545 
546 			/*
547 			 * Don't steal on first pass.
548 			 */
549 			if (pass == 0 || stolen == cnt)
550 				continue;
551 
552 			/*
553 			 * Search the active htables for one to steal.
554 			 * Start at a different hash bucket every time to
555 			 * help spread the pain of stealing.
556 			 */
557 			h = h_start = h_seed++ % hat->hat_num_hash;
558 			do {
559 				higher = NULL;
560 				HTABLE_ENTER(h);
561 				for (ht = hat->hat_ht_hash[h]; ht;
562 				    ht = ht->ht_next) {
563 
564 					/*
565 					 * Can we rule out reaping?
566 					 */
567 					if (ht->ht_busy != 0 ||
568 					    (ht->ht_flags & HTABLE_SHARED_PFN)||
569 					    ht->ht_level > 0 ||
570 					    ht->ht_valid_cnt > threshold ||
571 					    ht->ht_lock_cnt != 0)
572 						continue;
573 
574 					/*
575 					 * Increment busy so the htable can't
576 					 * disappear. We drop the htable mutex
577 					 * to avoid deadlocks with
578 					 * hat_pageunload() and the hment mutex
579 					 * while we call hat_pte_unmap()
580 					 */
581 					++ht->ht_busy;
582 					HTABLE_EXIT(h);
583 
584 					/*
585 					 * Try stealing.
586 					 * - unload and invalidate all PTEs
587 					 */
588 					for (e = 0, va = ht->ht_vaddr;
589 					    e < ht->ht_num_ptes &&
590 					    ht->ht_valid_cnt > 0 &&
591 					    ht->ht_busy == 1 &&
592 					    ht->ht_lock_cnt == 0;
593 					    ++e, va += MMU_PAGESIZE) {
594 						pte = x86pte_get(ht, e);
595 						if (!PTE_ISVALID(pte))
596 							continue;
597 						hat_pte_unmap(ht, e,
598 						    HAT_UNLOAD, pte, NULL);
599 					}
600 
601 					/*
602 					 * Reacquire htable lock. If we didn't
603 					 * remove all mappings in the table,
604 					 * or another thread added a new mapping
605 					 * behind us, give up on this table.
606 					 */
607 					HTABLE_ENTER(h);
608 					if (ht->ht_busy != 1 ||
609 					    ht->ht_valid_cnt != 0 ||
610 					    ht->ht_lock_cnt != 0) {
611 						--ht->ht_busy;
612 						continue;
613 					}
614 
615 					/*
616 					 * Steal it and unlink the page table.
617 					 */
618 					higher = ht->ht_parent;
619 					unlink_ptp(higher, ht, ht->ht_vaddr);
620 
621 					/*
622 					 * remove from the hash list
623 					 */
624 					if (ht->ht_next)
625 						ht->ht_next->ht_prev =
626 						    ht->ht_prev;
627 
628 					if (ht->ht_prev) {
629 						ht->ht_prev->ht_next =
630 						    ht->ht_next;
631 					} else {
632 						ASSERT(hat->hat_ht_hash[h] ==
633 						    ht);
634 						hat->hat_ht_hash[h] =
635 						    ht->ht_next;
636 					}
637 
638 					/*
639 					 * Break to outer loop to release the
640 					 * higher (ht_parent) pagtable. This
641 					 * spreads out the pain caused by
642 					 * pagefaults.
643 					 */
644 					ht->ht_next = list;
645 					list = ht;
646 					++stolen;
647 					break;
648 				}
649 				HTABLE_EXIT(h);
650 				if (higher != NULL)
651 					htable_release(higher);
652 				if (++h == hat->hat_num_hash)
653 					h = 0;
654 			} while (stolen < cnt && h != h_start);
655 		}
656 	}
657 	atomic_add_32(&htable_dont_cache, -1);
658 	return (list);
659 }
660 
661 
662 /*
663  * This is invoked from kmem when the system is low on memory.  We try
664  * to free hments, htables, and ptables to improve the memory situation.
665  */
666 /*ARGSUSED*/
667 static void
668 htable_reap(void *handle)
669 {
670 	uint_t		reap_cnt;
671 	htable_t	*list;
672 	htable_t	*ht;
673 
674 	HATSTAT_INC(hs_reap_attempts);
675 	if (!can_steal_post_boot)
676 		return;
677 
678 	/*
679 	 * Try to reap 5% of the page tables bounded by a maximum of
680 	 * 5% of physmem and a minimum of 10.
681 	 */
682 	reap_cnt = MIN(MAX(physmem / 20, active_ptables / 20), 10);
683 
684 	/*
685 	 * Let htable_steal() do the work, we just call htable_free()
686 	 */
687 	list = htable_steal(reap_cnt);
688 	while ((ht = list) != NULL) {
689 		list = ht->ht_next;
690 		HATSTAT_INC(hs_reaped);
691 		htable_free(ht);
692 	}
693 
694 	/*
695 	 * Free up excess reserves
696 	 */
697 	htable_adjust_reserve();
698 	hment_adjust_reserve();
699 }
700 
701 /*
702  * allocate an htable, stealing one or using the reserve if necessary
703  */
704 static htable_t *
705 htable_alloc(
706 	hat_t		*hat,
707 	uintptr_t	vaddr,
708 	level_t		level,
709 	htable_t	*shared)
710 {
711 	htable_t	*ht = NULL;
712 	uint_t		is_vlp;
713 	uint_t		is_bare = 0;
714 	uint_t		need_to_zero = 1;
715 	int		kmflags = (can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP);
716 
717 	if (level < 0 || level > TOP_LEVEL(hat))
718 		panic("htable_alloc(): level %d out of range\n", level);
719 
720 	is_vlp = (hat->hat_flags & HAT_VLP) && level == VLP_LEVEL;
721 	if (is_vlp || shared != NULL)
722 		is_bare = 1;
723 
724 	/*
725 	 * First reuse a cached htable from the hat_ht_cached field, this
726 	 * avoids unnecessary trips through kmem/page allocators. This is also
727 	 * what happens during use_boot_reserve.
728 	 */
729 	if (hat->hat_ht_cached != NULL && !is_bare) {
730 		hat_enter(hat);
731 		ht = hat->hat_ht_cached;
732 		if (ht != NULL) {
733 			hat->hat_ht_cached = ht->ht_next;
734 			need_to_zero = 0;
735 			/* XX64 ASSERT() they're all zero somehow */
736 			ASSERT(ht->ht_pfn != PFN_INVALID);
737 		}
738 		hat_exit(hat);
739 	}
740 
741 	if (ht == NULL) {
742 		ASSERT(!use_boot_reserve);
743 		/*
744 		 * When allocating for hat_memload_arena, we use the reserve.
745 		 * Also use reserves if we are in a panic().
746 		 */
747 		if (curthread == hat_reserves_thread || panicstr != NULL) {
748 			ASSERT(panicstr != NULL || !is_bare);
749 			ASSERT(panicstr != NULL ||
750 			    curthread == hat_reserves_thread);
751 			ht = htable_get_reserve();
752 		} else {
753 			/*
754 			 * Donate successful htable allocations to the reserve.
755 			 */
756 			for (;;) {
757 				ASSERT(curthread != hat_reserves_thread);
758 				ht = kmem_cache_alloc(htable_cache, kmflags);
759 				if (ht == NULL)
760 					break;
761 				ht->ht_pfn = PFN_INVALID;
762 				if (curthread == hat_reserves_thread ||
763 				    panicstr != NULL ||
764 				    htable_reserve_cnt >= htable_reserve_amount)
765 					break;
766 				htable_put_reserve(ht);
767 			}
768 		}
769 
770 		/*
771 		 * allocate a page for the hardware page table if needed
772 		 */
773 		if (ht != NULL && !is_bare) {
774 			ht->ht_hat = hat;
775 			ptable_alloc(ht);
776 			if (ht->ht_pfn == PFN_INVALID) {
777 				kmem_cache_free(htable_cache, ht);
778 				ht = NULL;
779 			}
780 		}
781 	}
782 
783 	/*
784 	 * If allocations failed, kick off a kmem_reap() and resort to
785 	 * htable steal(). We may spin here if the system is very low on
786 	 * memory. If the kernel itself has consumed all memory and kmem_reap()
787 	 * can't free up anything, then we'll really get stuck here.
788 	 * That should only happen in a system where the administrator has
789 	 * misconfigured VM parameters via /etc/system.
790 	 */
791 	while (ht == NULL && can_steal_post_boot) {
792 		kmem_reap();
793 		ht = htable_steal(1);
794 		HATSTAT_INC(hs_steals);
795 
796 		/*
797 		 * If we stole for a bare htable, release the pagetable page.
798 		 */
799 		if (ht != NULL && is_bare)
800 			ptable_free(ht);
801 	}
802 
803 	/*
804 	 * All attempts to allocate or steal failed. This should only happen
805 	 * if we run out of memory during boot, due perhaps to a huge
806 	 * boot_archive. At this point there's no way to continue.
807 	 */
808 	if (ht == NULL)
809 		panic("htable_alloc(): couldn't steal\n");
810 
811 	/*
812 	 * Shared page tables have all entries locked and entries may not
813 	 * be added or deleted.
814 	 */
815 	ht->ht_flags = 0;
816 	if (shared != NULL) {
817 		ASSERT(level == 0);
818 		ASSERT(shared->ht_valid_cnt > 0);
819 		ht->ht_flags |= HTABLE_SHARED_PFN;
820 		ht->ht_pfn = shared->ht_pfn;
821 		ht->ht_lock_cnt = 0;
822 		ht->ht_valid_cnt = 0;		/* updated in hat_share() */
823 		ht->ht_shares = shared;
824 		need_to_zero = 0;
825 	} else {
826 		ht->ht_shares = NULL;
827 		ht->ht_lock_cnt = 0;
828 		ht->ht_valid_cnt = 0;
829 	}
830 
831 	/*
832 	 * setup flags, etc. for VLP htables
833 	 */
834 	if (is_vlp) {
835 		ht->ht_flags |= HTABLE_VLP;
836 		ht->ht_num_ptes = VLP_NUM_PTES;
837 		ASSERT(ht->ht_pfn == PFN_INVALID);
838 		need_to_zero = 0;
839 	} else if (level == mmu.max_level) {
840 		ht->ht_num_ptes = mmu.top_level_count;
841 	} else {
842 		ht->ht_num_ptes = mmu.ptes_per_table;
843 	}
844 
845 	/*
846 	 * fill in the htable
847 	 */
848 	ht->ht_hat = hat;
849 	ht->ht_parent = NULL;
850 	ht->ht_vaddr = vaddr;
851 	ht->ht_level = level;
852 	ht->ht_busy = 1;
853 	ht->ht_next = NULL;
854 	ht->ht_prev = NULL;
855 
856 	/*
857 	 * Zero out any freshly allocated page table
858 	 */
859 	if (need_to_zero)
860 		x86pte_zero(ht, 0, mmu.ptes_per_table);
861 	return (ht);
862 }
863 
864 /*
865  * Free up an htable, either to a hat's cached list, the reserves or
866  * back to kmem.
867  */
868 static void
869 htable_free(htable_t *ht)
870 {
871 	hat_t *hat = ht->ht_hat;
872 
873 	/*
874 	 * If the process isn't exiting, cache the free htable in the hat
875 	 * structure. We always do this for the boot reserve. We don't
876 	 * do this if the hat is exiting or we are stealing/reaping htables.
877 	 */
878 	if (hat != NULL &&
879 	    !(ht->ht_flags & HTABLE_SHARED_PFN) &&
880 	    (use_boot_reserve ||
881 	    (!(hat->hat_flags & HAT_FREEING) && !htable_dont_cache))) {
882 		ASSERT((ht->ht_flags & HTABLE_VLP) == 0);
883 		ASSERT(ht->ht_pfn != PFN_INVALID);
884 		hat_enter(hat);
885 		ht->ht_next = hat->hat_ht_cached;
886 		hat->hat_ht_cached = ht;
887 		hat_exit(hat);
888 		return;
889 	}
890 
891 	/*
892 	 * If we have a hardware page table, free it.
893 	 * We don't free page tables that are accessed by sharing someone else.
894 	 */
895 	if (ht->ht_flags & HTABLE_SHARED_PFN) {
896 		ASSERT(ht->ht_pfn != PFN_INVALID);
897 		ht->ht_pfn = PFN_INVALID;
898 	} else if (!(ht->ht_flags & HTABLE_VLP)) {
899 		ptable_free(ht);
900 	}
901 
902 	/*
903 	 * If we are the thread using the reserves, put free htables
904 	 * into reserves.
905 	 */
906 	if (curthread == hat_reserves_thread ||
907 	    htable_reserve_cnt < htable_reserve_amount)
908 		htable_put_reserve(ht);
909 	else
910 		kmem_cache_free(htable_cache, ht);
911 }
912 
913 
914 /*
915  * This is called when a hat is being destroyed or swapped out. We reap all
916  * the remaining htables in the hat cache. If destroying all left over
917  * htables are also destroyed.
918  *
919  * We also don't need to invalidate any of the PTPs nor do any demapping.
920  */
921 void
922 htable_purge_hat(hat_t *hat)
923 {
924 	htable_t *ht;
925 	int h;
926 
927 	/*
928 	 * Purge the htable cache if just reaping.
929 	 */
930 	if (!(hat->hat_flags & HAT_FREEING)) {
931 		atomic_add_32(&htable_dont_cache, 1);
932 		for (;;) {
933 			hat_enter(hat);
934 			ht = hat->hat_ht_cached;
935 			if (ht == NULL) {
936 				hat_exit(hat);
937 				break;
938 			}
939 			hat->hat_ht_cached = ht->ht_next;
940 			hat_exit(hat);
941 			htable_free(ht);
942 		}
943 		atomic_add_32(&htable_dont_cache, -1);
944 		return;
945 	}
946 
947 	/*
948 	 * if freeing, no locking is needed
949 	 */
950 	while ((ht = hat->hat_ht_cached) != NULL) {
951 		hat->hat_ht_cached = ht->ht_next;
952 		htable_free(ht);
953 	}
954 
955 	/*
956 	 * walk thru the htable hash table and free all the htables in it.
957 	 */
958 	for (h = 0; h < hat->hat_num_hash; ++h) {
959 		while ((ht = hat->hat_ht_hash[h]) != NULL) {
960 			if (ht->ht_next)
961 				ht->ht_next->ht_prev = ht->ht_prev;
962 
963 			if (ht->ht_prev) {
964 				ht->ht_prev->ht_next = ht->ht_next;
965 			} else {
966 				ASSERT(hat->hat_ht_hash[h] == ht);
967 				hat->hat_ht_hash[h] = ht->ht_next;
968 			}
969 			htable_free(ht);
970 		}
971 	}
972 }
973 
974 /*
975  * Unlink an entry for a table at vaddr and level out of the existing table
976  * one level higher. We are always holding the HASH_ENTER() when doing this.
977  */
978 static void
979 unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr)
980 {
981 	uint_t		entry = htable_va2entry(vaddr, higher);
982 	x86pte_t	expect = MAKEPTP(old->ht_pfn, old->ht_level);
983 	x86pte_t	found;
984 
985 	ASSERT(higher->ht_busy > 0);
986 	ASSERT(higher->ht_valid_cnt > 0);
987 	ASSERT(old->ht_valid_cnt == 0);
988 	found = x86pte_cas(higher, entry, expect, 0);
989 	if (found != expect)
990 		panic("Bad PTP found=" FMT_PTE ", expected=" FMT_PTE,
991 		    found, expect);
992 	HTABLE_DEC(higher->ht_valid_cnt);
993 }
994 
995 /*
996  * Link an entry for a new table at vaddr and level into the existing table
997  * one level higher. We are always holding the HASH_ENTER() when doing this.
998  */
999 static void
1000 link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr)
1001 {
1002 	uint_t		entry = htable_va2entry(vaddr, higher);
1003 	x86pte_t	newptp = MAKEPTP(new->ht_pfn, new->ht_level);
1004 	x86pte_t	found;
1005 
1006 	ASSERT(higher->ht_busy > 0);
1007 
1008 	ASSERT(new->ht_level != mmu.max_level);
1009 
1010 	HTABLE_INC(higher->ht_valid_cnt);
1011 
1012 	found = x86pte_cas(higher, entry, 0, newptp);
1013 	if ((found & ~PT_REF) != 0)
1014 		panic("HAT: ptp not 0, found=" FMT_PTE, found);
1015 }
1016 
1017 /*
1018  * Release of an htable.
1019  *
1020  * During process exit, some empty page tables are not unlinked - hat_free_end()
1021  * cleans them up. Upper level pagetable (mmu.max_page_level and higher) are
1022  * only released during hat_free_end() or by htable_steal(). We always
1023  * release SHARED page tables.
1024  */
1025 void
1026 htable_release(htable_t *ht)
1027 {
1028 	uint_t		hashval;
1029 	htable_t	*shared;
1030 	htable_t	*higher;
1031 	hat_t		*hat;
1032 	uintptr_t	va;
1033 	level_t		level;
1034 
1035 	while (ht != NULL) {
1036 		shared = NULL;
1037 		for (;;) {
1038 			hat = ht->ht_hat;
1039 			va = ht->ht_vaddr;
1040 			level = ht->ht_level;
1041 			hashval = HTABLE_HASH(hat, va, level);
1042 
1043 			/*
1044 			 * The common case is that this isn't the last use of
1045 			 * an htable so we don't want to free the htable.
1046 			 */
1047 			HTABLE_ENTER(hashval);
1048 			ASSERT(ht->ht_lock_cnt == 0 || ht->ht_valid_cnt > 0);
1049 			ASSERT(ht->ht_valid_cnt >= 0);
1050 			ASSERT(ht->ht_busy > 0);
1051 			if (ht->ht_valid_cnt > 0)
1052 				break;
1053 			if (ht->ht_busy > 1)
1054 				break;
1055 
1056 			/*
1057 			 * we always release empty shared htables
1058 			 */
1059 			if (!(ht->ht_flags & HTABLE_SHARED_PFN)) {
1060 
1061 				/*
1062 				 * don't release if in address space tear down
1063 				 */
1064 				if (hat->hat_flags & HAT_FREEING)
1065 					break;
1066 
1067 				/*
1068 				 * At and above max_page_level, free if it's for
1069 				 * a boot-time kernel mapping below kernelbase.
1070 				 */
1071 				if (level >= mmu.max_page_level &&
1072 				    (hat != kas.a_hat || va >= kernelbase))
1073 					break;
1074 			}
1075 
1076 			/*
1077 			 * remember if we destroy an htable that shares its PFN
1078 			 * from elsewhere
1079 			 */
1080 			if (ht->ht_flags & HTABLE_SHARED_PFN) {
1081 				ASSERT(ht->ht_level == 0);
1082 				ASSERT(shared == NULL);
1083 				shared = ht->ht_shares;
1084 				HATSTAT_INC(hs_htable_unshared);
1085 			}
1086 
1087 			/*
1088 			 * Handle release of a table and freeing the htable_t.
1089 			 * Unlink it from the table higher (ie. ht_parent).
1090 			 */
1091 			ASSERT(ht->ht_lock_cnt == 0);
1092 			higher = ht->ht_parent;
1093 			ASSERT(higher != NULL);
1094 
1095 			/*
1096 			 * Unlink the pagetable.
1097 			 */
1098 			unlink_ptp(higher, ht, va);
1099 
1100 			/*
1101 			 * When any top level VLP page table entry changes, we
1102 			 * must issue a reload of cr3 on all processors.
1103 			 */
1104 			if ((hat->hat_flags & HAT_VLP) &&
1105 			    level == VLP_LEVEL - 1)
1106 				hat_demap(hat, DEMAP_ALL_ADDR);
1107 
1108 			/*
1109 			 * remove this htable from its hash list
1110 			 */
1111 			if (ht->ht_next)
1112 				ht->ht_next->ht_prev = ht->ht_prev;
1113 
1114 			if (ht->ht_prev) {
1115 				ht->ht_prev->ht_next = ht->ht_next;
1116 			} else {
1117 				ASSERT(hat->hat_ht_hash[hashval] == ht);
1118 				hat->hat_ht_hash[hashval] = ht->ht_next;
1119 			}
1120 			HTABLE_EXIT(hashval);
1121 			htable_free(ht);
1122 			ht = higher;
1123 		}
1124 
1125 		ASSERT(ht->ht_busy >= 1);
1126 		--ht->ht_busy;
1127 		HTABLE_EXIT(hashval);
1128 
1129 		/*
1130 		 * If we released a shared htable, do a release on the htable
1131 		 * from which it shared
1132 		 */
1133 		ht = shared;
1134 	}
1135 }
1136 
1137 /*
1138  * Find the htable for the pagetable at the given level for the given address.
1139  * If found acquires a hold that eventually needs to be htable_release()d
1140  */
1141 htable_t *
1142 htable_lookup(hat_t *hat, uintptr_t vaddr, level_t level)
1143 {
1144 	uintptr_t	base;
1145 	uint_t		hashval;
1146 	htable_t	*ht = NULL;
1147 
1148 	ASSERT(level >= 0);
1149 	ASSERT(level <= TOP_LEVEL(hat));
1150 
1151 	if (level == TOP_LEVEL(hat))
1152 		base = 0;
1153 	else
1154 		base = vaddr & LEVEL_MASK(level + 1);
1155 
1156 	hashval = HTABLE_HASH(hat, base, level);
1157 	HTABLE_ENTER(hashval);
1158 	for (ht = hat->hat_ht_hash[hashval]; ht; ht = ht->ht_next) {
1159 		if (ht->ht_hat == hat &&
1160 		    ht->ht_vaddr == base &&
1161 		    ht->ht_level == level)
1162 			break;
1163 	}
1164 	if (ht)
1165 		++ht->ht_busy;
1166 
1167 	HTABLE_EXIT(hashval);
1168 	return (ht);
1169 }
1170 
1171 /*
1172  * Acquires a hold on a known htable (from a locked hment entry).
1173  */
1174 void
1175 htable_acquire(htable_t *ht)
1176 {
1177 	hat_t		*hat = ht->ht_hat;
1178 	level_t		level = ht->ht_level;
1179 	uintptr_t	base = ht->ht_vaddr;
1180 	uint_t		hashval = HTABLE_HASH(hat, base, level);
1181 
1182 	HTABLE_ENTER(hashval);
1183 #ifdef DEBUG
1184 	/*
1185 	 * make sure the htable is there
1186 	 */
1187 	{
1188 		htable_t	*h;
1189 
1190 		for (h = hat->hat_ht_hash[hashval];
1191 		    h && h != ht;
1192 		    h = h->ht_next)
1193 			;
1194 		ASSERT(h == ht);
1195 	}
1196 #endif /* DEBUG */
1197 	++ht->ht_busy;
1198 	HTABLE_EXIT(hashval);
1199 }
1200 
1201 /*
1202  * Find the htable for the pagetable at the given level for the given address.
1203  * If found acquires a hold that eventually needs to be htable_release()d
1204  * If not found the table is created.
1205  *
1206  * Since we can't hold a hash table mutex during allocation, we have to
1207  * drop it and redo the search on a create. Then we may have to free the newly
1208  * allocated htable if another thread raced in and created it ahead of us.
1209  */
1210 htable_t *
1211 htable_create(
1212 	hat_t		*hat,
1213 	uintptr_t	vaddr,
1214 	level_t		level,
1215 	htable_t	*shared)
1216 {
1217 	uint_t		h;
1218 	level_t		l;
1219 	uintptr_t	base;
1220 	htable_t	*ht;
1221 	htable_t	*higher = NULL;
1222 	htable_t	*new = NULL;
1223 
1224 	if (level < 0 || level > TOP_LEVEL(hat))
1225 		panic("htable_create(): level %d out of range\n", level);
1226 
1227 	/*
1228 	 * Create the page tables in top down order.
1229 	 */
1230 	for (l = TOP_LEVEL(hat); l >= level; --l) {
1231 		new = NULL;
1232 		if (l == TOP_LEVEL(hat))
1233 			base = 0;
1234 		else
1235 			base = vaddr & LEVEL_MASK(l + 1);
1236 
1237 		h = HTABLE_HASH(hat, base, l);
1238 try_again:
1239 		/*
1240 		 * look up the htable at this level
1241 		 */
1242 		HTABLE_ENTER(h);
1243 		if (l == TOP_LEVEL(hat)) {
1244 			ht = hat->hat_htable;
1245 		} else {
1246 			for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
1247 				ASSERT(ht->ht_hat == hat);
1248 				if (ht->ht_vaddr == base &&
1249 				    ht->ht_level == l)
1250 					break;
1251 			}
1252 		}
1253 
1254 		/*
1255 		 * if we found the htable, increment its busy cnt
1256 		 * and if we had allocated a new htable, free it.
1257 		 */
1258 		if (ht != NULL) {
1259 			/*
1260 			 * If we find a pre-existing shared table, it must
1261 			 * share from the same place.
1262 			 */
1263 			if (l == level && shared && ht->ht_shares &&
1264 			    ht->ht_shares != shared) {
1265 				panic("htable shared from wrong place "
1266 				    "found htable=%p shared=%p", ht, shared);
1267 			}
1268 			++ht->ht_busy;
1269 			HTABLE_EXIT(h);
1270 			if (new)
1271 				htable_free(new);
1272 			if (higher != NULL)
1273 				htable_release(higher);
1274 			higher = ht;
1275 
1276 		/*
1277 		 * if we didn't find it on the first search
1278 		 * allocate a new one and search again
1279 		 */
1280 		} else if (new == NULL) {
1281 			HTABLE_EXIT(h);
1282 			new = htable_alloc(hat, base, l,
1283 			    l == level ? shared : NULL);
1284 			goto try_again;
1285 
1286 		/*
1287 		 * 2nd search and still not there, use "new" table
1288 		 * Link new table into higher, when not at top level.
1289 		 */
1290 		} else {
1291 			ht = new;
1292 			if (higher != NULL) {
1293 				link_ptp(higher, ht, base);
1294 				ht->ht_parent = higher;
1295 
1296 				/*
1297 				 * When any top level VLP page table changes,
1298 				 * we must reload cr3 on all processors.
1299 				 */
1300 #ifdef __i386
1301 				if (mmu.pae_hat &&
1302 #else /* !__i386 */
1303 				if ((hat->hat_flags & HAT_VLP) &&
1304 #endif /* __i386 */
1305 				    l == VLP_LEVEL - 1)
1306 					hat_demap(hat, DEMAP_ALL_ADDR);
1307 			}
1308 			ht->ht_next = hat->hat_ht_hash[h];
1309 			ASSERT(ht->ht_prev == NULL);
1310 			if (hat->hat_ht_hash[h])
1311 				hat->hat_ht_hash[h]->ht_prev = ht;
1312 			hat->hat_ht_hash[h] = ht;
1313 			HTABLE_EXIT(h);
1314 
1315 			/*
1316 			 * Note we don't do htable_release(higher).
1317 			 * That happens recursively when "new" is removed by
1318 			 * htable_release() or htable_steal().
1319 			 */
1320 			higher = ht;
1321 
1322 			/*
1323 			 * If we just created a new shared page table we
1324 			 * increment the shared htable's busy count, so that
1325 			 * it can't be the victim of a steal even if it's empty.
1326 			 */
1327 			if (l == level && shared) {
1328 				(void) htable_lookup(shared->ht_hat,
1329 				    shared->ht_vaddr, shared->ht_level);
1330 				HATSTAT_INC(hs_htable_shared);
1331 			}
1332 		}
1333 	}
1334 
1335 	return (ht);
1336 }
1337 
1338 /*
1339  * Walk through a given htable looking for the first valid entry.  This
1340  * routine takes both a starting and ending address.  The starting address
1341  * is required to be within the htable provided by the caller, but there is
1342  * no such restriction on the ending address.
1343  *
1344  * If the routine finds a valid entry in the htable (at or beyond the
1345  * starting address), the PTE (and its address) will be returned.
1346  * This PTE may correspond to either a page or a pagetable - it is the
1347  * caller's responsibility to determine which.  If no valid entry is
1348  * found, 0 (and invalid PTE) and the next unexamined address will be
1349  * returned.
1350  *
1351  * The loop has been carefully coded for optimization.
1352  */
1353 static x86pte_t
1354 htable_scan(htable_t *ht, uintptr_t *vap, uintptr_t eaddr)
1355 {
1356 	uint_t e;
1357 	x86pte_t found_pte = (x86pte_t)0;
1358 	char *pte_ptr;
1359 	char *end_pte_ptr;
1360 	int l = ht->ht_level;
1361 	uintptr_t va = *vap & LEVEL_MASK(l);
1362 	size_t pgsize = LEVEL_SIZE(l);
1363 
1364 	ASSERT(va >= ht->ht_vaddr);
1365 	ASSERT(va <= HTABLE_LAST_PAGE(ht));
1366 
1367 	/*
1368 	 * Compute the starting index and ending virtual address
1369 	 */
1370 	e = htable_va2entry(va, ht);
1371 
1372 	/*
1373 	 * The following page table scan code knows that the valid
1374 	 * bit of a PTE is in the lowest byte AND that x86 is little endian!!
1375 	 */
1376 	pte_ptr = (char *)x86pte_access_pagetable(ht);
1377 	end_pte_ptr = pte_ptr + (ht->ht_num_ptes << mmu.pte_size_shift);
1378 	pte_ptr += e << mmu.pte_size_shift;
1379 	while (!PTE_ISVALID(*pte_ptr)) {
1380 		va += pgsize;
1381 		if (va >= eaddr)
1382 			break;
1383 		pte_ptr += mmu.pte_size;
1384 		ASSERT(pte_ptr <= end_pte_ptr);
1385 		if (pte_ptr == end_pte_ptr)
1386 			break;
1387 	}
1388 
1389 	/*
1390 	 * if we found a valid PTE, load the entire PTE
1391 	 */
1392 	if (va < eaddr && pte_ptr != end_pte_ptr) {
1393 		if (mmu.pae_hat) {
1394 			ATOMIC_LOAD64((x86pte_t *)pte_ptr, found_pte);
1395 		} else {
1396 			found_pte = *(x86pte32_t *)pte_ptr;
1397 		}
1398 	}
1399 	x86pte_release_pagetable(ht);
1400 
1401 #if defined(__amd64)
1402 	/*
1403 	 * deal with VA hole on amd64
1404 	 */
1405 	if (l == mmu.max_level && va >= mmu.hole_start && va <= mmu.hole_end)
1406 		va = mmu.hole_end + va - mmu.hole_start;
1407 #endif /* __amd64 */
1408 
1409 	*vap = va;
1410 	return (found_pte);
1411 }
1412 
1413 /*
1414  * Find the address and htable for the first populated translation at or
1415  * above the given virtual address.  The caller may also specify an upper
1416  * limit to the address range to search.  Uses level information to quickly
1417  * skip unpopulated sections of virtual address spaces.
1418  *
1419  * If not found returns NULL. When found, returns the htable and virt addr
1420  * and has a hold on the htable.
1421  */
1422 x86pte_t
1423 htable_walk(
1424 	struct hat *hat,
1425 	htable_t **htp,
1426 	uintptr_t *vaddr,
1427 	uintptr_t eaddr)
1428 {
1429 	uintptr_t va = *vaddr;
1430 	htable_t *ht;
1431 	htable_t *prev = *htp;
1432 	level_t l;
1433 	level_t max_mapped_level;
1434 	x86pte_t pte;
1435 
1436 	ASSERT(eaddr > va);
1437 
1438 	/*
1439 	 * If this is a user address, then we know we need not look beyond
1440 	 * kernelbase.
1441 	 */
1442 	ASSERT(hat == kas.a_hat || eaddr <= kernelbase ||
1443 	    eaddr == HTABLE_WALK_TO_END);
1444 	if (hat != kas.a_hat && eaddr == HTABLE_WALK_TO_END)
1445 		eaddr = kernelbase;
1446 
1447 	/*
1448 	 * If we're coming in with a previous page table, search it first
1449 	 * without doing an htable_lookup(), this should be frequent.
1450 	 */
1451 	if (prev) {
1452 		ASSERT(prev->ht_busy > 0);
1453 		ASSERT(prev->ht_vaddr <= va);
1454 		l = prev->ht_level;
1455 		if (va <= HTABLE_LAST_PAGE(prev)) {
1456 			pte = htable_scan(prev, &va, eaddr);
1457 
1458 			if (PTE_ISPAGE(pte, l)) {
1459 				*vaddr = va;
1460 				*htp = prev;
1461 				return (pte);
1462 			}
1463 		}
1464 
1465 		/*
1466 		 * We found nothing in the htable provided by the caller,
1467 		 * so fall through and do the full search
1468 		 */
1469 		htable_release(prev);
1470 	}
1471 
1472 	/*
1473 	 * Find the level of the largest pagesize used by this HAT.
1474 	 */
1475 	max_mapped_level = 0;
1476 	for (l = 1; l <= mmu.max_page_level; ++l)
1477 		if (hat->hat_pages_mapped[l] != 0)
1478 			max_mapped_level = l;
1479 
1480 	while (va < eaddr && va >= *vaddr) {
1481 		ASSERT(!IN_VA_HOLE(va));
1482 
1483 		/*
1484 		 *  Find lowest table with any entry for given address.
1485 		 */
1486 		for (l = 0; l <= TOP_LEVEL(hat); ++l) {
1487 			ht = htable_lookup(hat, va, l);
1488 			if (ht != NULL) {
1489 				pte = htable_scan(ht, &va, eaddr);
1490 				if (PTE_ISPAGE(pte, l)) {
1491 					*vaddr = va;
1492 					*htp = ht;
1493 					return (pte);
1494 				}
1495 				htable_release(ht);
1496 				break;
1497 			}
1498 
1499 			/*
1500 			 * The ht is never NULL at the top level since
1501 			 * the top level htable is created in hat_alloc().
1502 			 */
1503 			ASSERT(l < TOP_LEVEL(hat));
1504 
1505 			/*
1506 			 * No htable covers the address. If there is no
1507 			 * larger page size that could cover it, we
1508 			 * skip to the start of the next page table.
1509 			 */
1510 			if (l >= max_mapped_level) {
1511 				va = NEXT_ENTRY_VA(va, l + 1);
1512 				break;
1513 			}
1514 		}
1515 	}
1516 
1517 	*vaddr = 0;
1518 	*htp = NULL;
1519 	return (0);
1520 }
1521 
1522 /*
1523  * Find the htable and page table entry index of the given virtual address
1524  * with pagesize at or below given level.
1525  * If not found returns NULL. When found, returns the htable, sets
1526  * entry, and has a hold on the htable.
1527  */
1528 htable_t *
1529 htable_getpte(
1530 	struct hat *hat,
1531 	uintptr_t vaddr,
1532 	uint_t *entry,
1533 	x86pte_t *pte,
1534 	level_t level)
1535 {
1536 	htable_t	*ht;
1537 	level_t		l;
1538 	uint_t		e;
1539 
1540 	ASSERT(level <= mmu.max_page_level);
1541 
1542 	for (l = 0; l <= level; ++l) {
1543 		ht = htable_lookup(hat, vaddr, l);
1544 		if (ht == NULL)
1545 			continue;
1546 		e = htable_va2entry(vaddr, ht);
1547 		if (entry != NULL)
1548 			*entry = e;
1549 		if (pte != NULL)
1550 			*pte = x86pte_get(ht, e);
1551 		return (ht);
1552 	}
1553 	return (NULL);
1554 }
1555 
1556 /*
1557  * Find the htable and page table entry index of the given virtual address.
1558  * There must be a valid page mapped at the given address.
1559  * If not found returns NULL. When found, returns the htable, sets
1560  * entry, and has a hold on the htable.
1561  */
1562 htable_t *
1563 htable_getpage(struct hat *hat, uintptr_t vaddr, uint_t *entry)
1564 {
1565 	htable_t	*ht;
1566 	uint_t		e;
1567 	x86pte_t	pte;
1568 
1569 	ht = htable_getpte(hat, vaddr, &e, &pte, mmu.max_page_level);
1570 	if (ht == NULL)
1571 		return (NULL);
1572 
1573 	if (entry)
1574 		*entry = e;
1575 
1576 	if (PTE_ISPAGE(pte, ht->ht_level))
1577 		return (ht);
1578 	htable_release(ht);
1579 	return (NULL);
1580 }
1581 
1582 
1583 void
1584 htable_init()
1585 {
1586 	/*
1587 	 * To save on kernel VA usage, we avoid debug information in 32 bit
1588 	 * kernels.
1589 	 */
1590 #if defined(__amd64)
1591 	int	kmem_flags = KMC_NOHASH;
1592 #elif defined(__i386)
1593 	int	kmem_flags = KMC_NOHASH | KMC_NODEBUG;
1594 #endif
1595 
1596 	/*
1597 	 * initialize kmem caches
1598 	 */
1599 	htable_cache = kmem_cache_create("htable_t",
1600 	    sizeof (htable_t), 0, NULL, NULL,
1601 	    htable_reap, NULL, hat_memload_arena, kmem_flags);
1602 }
1603 
1604 /*
1605  * get the pte index for the virtual address in the given htable's pagetable
1606  */
1607 uint_t
1608 htable_va2entry(uintptr_t va, htable_t *ht)
1609 {
1610 	level_t	l = ht->ht_level;
1611 
1612 	ASSERT(va >= ht->ht_vaddr);
1613 	ASSERT(va <= HTABLE_LAST_PAGE(ht));
1614 	return ((va >> LEVEL_SHIFT(l)) & (ht->ht_num_ptes - 1));
1615 }
1616 
1617 /*
1618  * Given an htable and the index of a pte in it, return the virtual address
1619  * of the page.
1620  */
1621 uintptr_t
1622 htable_e2va(htable_t *ht, uint_t entry)
1623 {
1624 	level_t	l = ht->ht_level;
1625 	uintptr_t va;
1626 
1627 	ASSERT(entry < ht->ht_num_ptes);
1628 	va = ht->ht_vaddr + ((uintptr_t)entry << LEVEL_SHIFT(l));
1629 
1630 	/*
1631 	 * Need to skip over any VA hole in top level table
1632 	 */
1633 #if defined(__amd64)
1634 	if (ht->ht_level == mmu.max_level && va >= mmu.hole_start)
1635 		va += ((mmu.hole_end - mmu.hole_start) + 1);
1636 #endif
1637 
1638 	return (va);
1639 }
1640 
1641 /*
1642  * The code uses compare and swap instructions to read/write PTE's to
1643  * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems.
1644  * Again this can be optimized on 64 bit systems, since aligned load/store
1645  * will naturally be atomic.
1646  *
1647  * The combination of using kpreempt_disable()/_enable() and the hci_mutex
1648  * are used to ensure that an interrupt won't overwrite a temporary mapping
1649  * while it's in use. If an interrupt thread tries to access a PTE, it will
1650  * yield briefly back to the pinned thread which holds the cpu's hci_mutex.
1651  */
1652 
1653 static struct hat_cpu_info init_hci;	/* used for cpu 0 */
1654 
1655 /*
1656  * Initialize a CPU private window for mapping page tables.
1657  * There will be 3 total pages of addressing needed:
1658  *
1659  *	1 for r/w access to pagetables
1660  *	1 for r access when copying pagetables (hat_alloc)
1661  *	1 that will map the PTEs for the 1st 2, so we can access them quickly
1662  *
1663  * We use vmem_xalloc() to get a correct alignment so that only one
1664  * hat_mempte_setup() is needed.
1665  */
1666 void
1667 x86pte_cpu_init(cpu_t *cpu, void *pages)
1668 {
1669 	struct hat_cpu_info *hci;
1670 	caddr_t va;
1671 
1672 	/*
1673 	 * We can't use kmem_alloc/vmem_alloc for the 1st CPU, as this is
1674 	 * called before we've activated our own HAT
1675 	 */
1676 	if (pages != NULL) {
1677 		hci = &init_hci;
1678 		va = pages;
1679 	} else {
1680 		hci = kmem_alloc(sizeof (struct hat_cpu_info), KM_SLEEP);
1681 		va = vmem_xalloc(heap_arena, 3 * MMU_PAGESIZE, MMU_PAGESIZE, 0,
1682 		    LEVEL_SIZE(1), NULL, NULL, VM_SLEEP);
1683 	}
1684 	mutex_init(&hci->hci_mutex, NULL, MUTEX_DEFAULT, NULL);
1685 
1686 	/*
1687 	 * If we are using segkpm, then there is no need for any of the
1688 	 * mempte support.  We can access the desired memory through a kpm
1689 	 * mapping rather than setting up a temporary mempte mapping.
1690 	 */
1691 	if (kpm_enable == 0) {
1692 		hci->hci_mapped_pfn = PFN_INVALID;
1693 
1694 		hci->hci_kernel_pte =
1695 		    hat_mempte_kern_setup(va, va + (2 * MMU_PAGESIZE));
1696 		hci->hci_pagetable_va = (void *)va;
1697 	}
1698 
1699 	cpu->cpu_hat_info = hci;
1700 }
1701 
1702 /*
1703  * Macro to establish temporary mappings for x86pte_XXX routines.
1704  */
1705 #define	X86PTE_REMAP(addr, pte, index, perm, pfn)	{		\
1706 		x86pte_t t;						\
1707 									\
1708 		t = MAKEPTE((pfn), 0) | (perm) | mmu.pt_global | mmu.pt_nx;\
1709 		if (mmu.pae_hat)					\
1710 			pte[index] = t;					\
1711 		else							\
1712 			((x86pte32_t *)(pte))[index] = t;		\
1713 		mmu_tlbflush_entry((caddr_t)(addr));			\
1714 }
1715 
1716 /*
1717  * Disable preemption and establish a mapping to the pagetable with the
1718  * given pfn. This is optimized for there case where it's the same
1719  * pfn as we last used referenced from this CPU.
1720  */
1721 static x86pte_t *
1722 x86pte_access_pagetable(htable_t *ht)
1723 {
1724 	pfn_t pfn;
1725 	struct hat_cpu_info *hci;
1726 
1727 	/*
1728 	 * VLP pagetables are contained in the hat_t
1729 	 */
1730 	if (ht->ht_flags & HTABLE_VLP)
1731 		return (ht->ht_hat->hat_vlp_ptes);
1732 
1733 	/*
1734 	 * During early boot, use hat_boot_remap() of a page table adddress.
1735 	 */
1736 	pfn = ht->ht_pfn;
1737 	ASSERT(pfn != PFN_INVALID);
1738 	if (kpm_enable)
1739 		return ((x86pte_t *)hat_kpm_pfn2va(pfn));
1740 
1741 	if (!khat_running) {
1742 		(void) hat_boot_remap(ptable_va, pfn);
1743 		return ((x86pte_t *)ptable_va);
1744 	}
1745 
1746 	/*
1747 	 * Normally, disable preemption and grab the CPU's hci_mutex
1748 	 */
1749 	kpreempt_disable();
1750 	hci = CPU->cpu_hat_info;
1751 	ASSERT(hci != NULL);
1752 	mutex_enter(&hci->hci_mutex);
1753 	if (hci->hci_mapped_pfn != pfn) {
1754 		/*
1755 		 * The current mapping doesn't already point to this page.
1756 		 * Update the CPU specific pagetable mapping to map the pfn.
1757 		 */
1758 		X86PTE_REMAP(hci->hci_pagetable_va, hci->hci_kernel_pte, 0,
1759 		    PT_WRITABLE, pfn);
1760 		hci->hci_mapped_pfn = pfn;
1761 	}
1762 	return (hci->hci_pagetable_va);
1763 }
1764 
1765 /*
1766  * Release access to a page table.
1767  */
1768 static void
1769 x86pte_release_pagetable(htable_t *ht)
1770 {
1771 	struct hat_cpu_info *hci;
1772 
1773 	if (kpm_enable)
1774 		return;
1775 
1776 	/*
1777 	 * nothing to do for VLP htables
1778 	 */
1779 	if (ht->ht_flags & HTABLE_VLP)
1780 		return;
1781 
1782 	/*
1783 	 * During boot-up hat_kern_setup(), erase the boot loader remapping.
1784 	 */
1785 	if (!khat_running) {
1786 		hat_boot_demap(ptable_va);
1787 		return;
1788 	}
1789 
1790 	/*
1791 	 * Normal Operation: drop the CPU's hci_mutex and restore preemption
1792 	 */
1793 	hci = CPU->cpu_hat_info;
1794 	ASSERT(hci != NULL);
1795 	mutex_exit(&hci->hci_mutex);
1796 	kpreempt_enable();
1797 }
1798 
1799 /*
1800  * Atomic retrieval of a pagetable entry
1801  */
1802 x86pte_t
1803 x86pte_get(htable_t *ht, uint_t entry)
1804 {
1805 	x86pte_t	pte;
1806 	x86pte32_t	*pte32p;
1807 	x86pte_t	*ptep;
1808 
1809 	/*
1810 	 * Be careful that loading PAE entries in 32 bit kernel is atomic.
1811 	 */
1812 	ptep = x86pte_access_pagetable(ht);
1813 	if (mmu.pae_hat) {
1814 		ATOMIC_LOAD64(ptep + entry, pte);
1815 	} else {
1816 		pte32p = (x86pte32_t *)ptep;
1817 		pte = pte32p[entry];
1818 	}
1819 	x86pte_release_pagetable(ht);
1820 	return (pte);
1821 }
1822 
1823 /*
1824  * Atomic unconditional set of a page table entry, it returns the previous
1825  * value.
1826  */
1827 x86pte_t
1828 x86pte_set(htable_t *ht, uint_t entry, x86pte_t new, void *ptr)
1829 {
1830 	x86pte_t	old;
1831 	x86pte_t	prev, n;
1832 	x86pte_t	*ptep;
1833 	x86pte32_t	*pte32p;
1834 	x86pte32_t	n32, p32;
1835 
1836 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
1837 	if (ptr == NULL) {
1838 		ptep = x86pte_access_pagetable(ht);
1839 		ptep = (void *)((caddr_t)ptep + (entry << mmu.pte_size_shift));
1840 	} else {
1841 		ptep = ptr;
1842 	}
1843 
1844 	if (mmu.pae_hat) {
1845 		for (;;) {
1846 			prev = *ptep;
1847 			n = new;
1848 			/*
1849 			 * prevent potential data loss by preserving the
1850 			 * MOD/REF bits if set in the current PTE, the pfns are
1851 			 * the same and the 'new' pte is non-zero. For example,
1852 			 * segmap can reissue a read-only hat_memload on top
1853 			 * of a dirty page.
1854 			 *
1855 			 * 'new' is required to be non-zero on a remap as at
1856 			 * least the valid bit should be non-zero. The 'new'
1857 			 * check also avoids incorrectly preserving the REF/MOD
1858 			 * bit when unmapping pfn 0.
1859 			 */
1860 			if (new != 0 && PTE_ISVALID(prev) &&
1861 			    PTE2PFN(prev, ht->ht_level) ==
1862 			    PTE2PFN(n, ht->ht_level)) {
1863 				n |= prev & (PT_REF | PT_MOD);
1864 			}
1865 			if (prev == n) {
1866 				old = new;
1867 				break;
1868 			}
1869 			old = cas64(ptep, prev, n);
1870 			if (old == prev)
1871 				break;
1872 		}
1873 	} else {
1874 		pte32p = (x86pte32_t *)ptep;
1875 		for (;;) {
1876 			p32 = *pte32p;
1877 			n32 = new;
1878 			if (new != 0 && PTE_ISVALID(p32) &&
1879 			    PTE2PFN(p32, ht->ht_level) ==
1880 			    PTE2PFN(n32, ht->ht_level)) {
1881 				n32 |= p32 & (PT_REF | PT_MOD);
1882 			}
1883 			if (p32 == n32) {
1884 				old = new;
1885 				break;
1886 			}
1887 			old = cas32(pte32p, p32, n32);
1888 			if (old == p32)
1889 				break;
1890 		}
1891 	}
1892 	if (ptr == NULL)
1893 		x86pte_release_pagetable(ht);
1894 	return (old);
1895 }
1896 
1897 /*
1898  * Atomic compare and swap of a page table entry.
1899  */
1900 static x86pte_t
1901 x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new)
1902 {
1903 	x86pte_t	pte;
1904 	x86pte_t	*ptep;
1905 	x86pte32_t	pte32, o32, n32;
1906 	x86pte32_t	*pte32p;
1907 
1908 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
1909 	ptep = x86pte_access_pagetable(ht);
1910 	if (mmu.pae_hat) {
1911 		pte = cas64(&ptep[entry], old, new);
1912 	} else {
1913 		o32 = old;
1914 		n32 = new;
1915 		pte32p = (x86pte32_t *)ptep;
1916 		pte32 = cas32(&pte32p[entry], o32, n32);
1917 		pte = pte32;
1918 	}
1919 	x86pte_release_pagetable(ht);
1920 
1921 	return (pte);
1922 }
1923 
1924 /*
1925  * data structure for cross call information
1926  */
1927 typedef struct xcall_info {
1928 	x86pte_t	xi_pte;
1929 	x86pte_t	xi_old;
1930 	x86pte_t	*xi_pteptr;
1931 	pfn_t		xi_pfn;
1932 	processorid_t	xi_cpuid;
1933 	level_t		xi_level;
1934 	xc_func_t	xi_func;
1935 } xcall_info_t;
1936 
1937 /*
1938  * Cross call service function to atomically invalidate a PTE and flush TLBs
1939  */
1940 /*ARGSUSED*/
1941 static int
1942 x86pte_inval_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3)
1943 {
1944 	xcall_info_t	*xi = (xcall_info_t *)a1;
1945 	caddr_t		addr = (caddr_t)a2;
1946 
1947 	/*
1948 	 * Only the initiating cpu invalidates the page table entry.
1949 	 * It returns the previous PTE value to the caller.
1950 	 */
1951 	if (CPU->cpu_id == xi->xi_cpuid) {
1952 		x86pte_t	*ptep = xi->xi_pteptr;
1953 		pfn_t		pfn = xi->xi_pfn;
1954 		level_t		level = xi->xi_level;
1955 		x86pte_t	old;
1956 		x86pte_t	prev;
1957 		x86pte32_t	*pte32p;
1958 		x86pte32_t	p32;
1959 
1960 		if (mmu.pae_hat) {
1961 			for (;;) {
1962 				prev = *ptep;
1963 				if (PTE2PFN(prev, level) != pfn)
1964 					break;
1965 				old = cas64(ptep, prev, 0);
1966 				if (old == prev)
1967 					break;
1968 			}
1969 		} else {
1970 			pte32p = (x86pte32_t *)ptep;
1971 			for (;;) {
1972 				p32 = *pte32p;
1973 				if (PTE2PFN(p32, level) != pfn)
1974 					break;
1975 				old = cas32(pte32p, p32, 0);
1976 				if (old == p32)
1977 					break;
1978 			}
1979 			prev = p32;
1980 		}
1981 		xi->xi_pte = prev;
1982 	}
1983 
1984 	/*
1985 	 * For a normal address, we just flush one page mapping
1986 	 * Otherwise reload cr3 to effect a complete TLB flush.
1987 	 *
1988 	 * Note we don't reload VLP pte's -- this assume we never have a
1989 	 * large page size at VLP_LEVEL for VLP processes.
1990 	 */
1991 	if ((uintptr_t)addr != DEMAP_ALL_ADDR) {
1992 		mmu_tlbflush_entry(addr);
1993 	} else {
1994 		reload_cr3();
1995 	}
1996 	return (0);
1997 }
1998 
1999 /*
2000  * Cross call service function to atomically change a PTE and flush TLBs
2001  */
2002 /*ARGSUSED*/
2003 static int
2004 x86pte_update_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3)
2005 {
2006 	xcall_info_t	*xi = (xcall_info_t *)a1;
2007 	caddr_t		addr = (caddr_t)a2;
2008 
2009 	/*
2010 	 * Only the initiating cpu changes the page table entry.
2011 	 * It returns the previous PTE value to the caller.
2012 	 */
2013 	if (CPU->cpu_id == xi->xi_cpuid) {
2014 		x86pte_t	*ptep = xi->xi_pteptr;
2015 		x86pte_t	new = xi->xi_pte;
2016 		x86pte_t	old = xi->xi_old;
2017 		x86pte_t	prev;
2018 
2019 		if (mmu.pae_hat) {
2020 			prev = cas64(ptep, old, new);
2021 		} else {
2022 			x86pte32_t o32 = old;
2023 			x86pte32_t n32 = new;
2024 			x86pte32_t *pte32p = (x86pte32_t *)ptep;
2025 			prev = cas32(pte32p, o32, n32);
2026 		}
2027 
2028 		xi->xi_pte = prev;
2029 	}
2030 
2031 	/*
2032 	 * Flush the TLB entry
2033 	 */
2034 	if ((uintptr_t)addr != DEMAP_ALL_ADDR)
2035 		mmu_tlbflush_entry(addr);
2036 	else
2037 		reload_cr3();
2038 	return (0);
2039 }
2040 
2041 /*
2042  * Use cross calls to change a page table entry and invalidate TLBs.
2043  */
2044 void
2045 x86pte_xcall(hat_t *hat, xcall_info_t *xi, uintptr_t addr)
2046 {
2047 	cpuset_t	cpus;
2048 
2049 	/*
2050 	 * Given the current implementation of hat_share(), doing a
2051 	 * hat_pageunload() on a shared page table requries invalidating
2052 	 * all user TLB entries on all CPUs.
2053 	 */
2054 	if (hat->hat_flags & HAT_SHARED) {
2055 		hat = kas.a_hat;
2056 		addr = DEMAP_ALL_ADDR;
2057 	}
2058 
2059 	/*
2060 	 * Use a cross call to do the invalidations.
2061 	 * Note the current CPU always has to be in the cross call CPU set.
2062 	 */
2063 	kpreempt_disable();
2064 	xi->xi_cpuid = CPU->cpu_id;
2065 	CPUSET_ZERO(cpus);
2066 	if (hat == kas.a_hat) {
2067 		CPUSET_OR(cpus, khat_cpuset);
2068 	} else {
2069 		mutex_enter(&hat->hat_switch_mutex);
2070 		CPUSET_OR(cpus, hat->hat_cpus);
2071 		CPUSET_ADD(cpus, CPU->cpu_id);
2072 	}
2073 
2074 	/*
2075 	 * Use a cross call to modify the page table entry and invalidate TLBs.
2076 	 * If we're panic'ing, don't bother with the cross call.
2077 	 * Note the panicstr check isn't bullet proof and the panic system
2078 	 * ought to be made tighter.
2079 	 */
2080 	if (panicstr == NULL)
2081 		xc_wait_sync((xc_arg_t)xi, addr, NULL, X_CALL_HIPRI,
2082 			    cpus, xi->xi_func);
2083 	else
2084 		(void) xi->xi_func((xc_arg_t)xi, (xc_arg_t)addr, NULL);
2085 	if (hat != kas.a_hat)
2086 		mutex_exit(&hat->hat_switch_mutex);
2087 	kpreempt_enable();
2088 }
2089 
2090 /*
2091  * Invalidate a page table entry if it currently maps the given pfn.
2092  * This returns the previous value of the PTE.
2093  */
2094 x86pte_t
2095 x86pte_invalidate_pfn(htable_t *ht, uint_t entry, pfn_t pfn, void *pte_ptr)
2096 {
2097 	xcall_info_t	xi;
2098 	x86pte_t	*ptep;
2099 	hat_t		*hat;
2100 	uintptr_t	addr;
2101 
2102 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2103 	if (pte_ptr != NULL) {
2104 		ptep = pte_ptr;
2105 	} else {
2106 		ptep = x86pte_access_pagetable(ht);
2107 		ptep = (void *)((caddr_t)ptep + (entry << mmu.pte_size_shift));
2108 	}
2109 
2110 	/*
2111 	 * Fill in the structure used by the cross call function to do the
2112 	 * invalidation.
2113 	 */
2114 	xi.xi_pte = 0;
2115 	xi.xi_pteptr = ptep;
2116 	xi.xi_pfn = pfn;
2117 	xi.xi_level = ht->ht_level;
2118 	xi.xi_func = x86pte_inval_func;
2119 	ASSERT(xi.xi_level != VLP_LEVEL);
2120 
2121 	hat = ht->ht_hat;
2122 	addr = htable_e2va(ht, entry);
2123 
2124 	x86pte_xcall(hat, &xi, addr);
2125 
2126 	if (pte_ptr == NULL)
2127 		x86pte_release_pagetable(ht);
2128 	return (xi.xi_pte);
2129 }
2130 
2131 /*
2132  * update a PTE and invalidate any stale TLB entries.
2133  */
2134 x86pte_t
2135 x86pte_update(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new)
2136 {
2137 	xcall_info_t	xi;
2138 	x86pte_t	*ptep;
2139 	hat_t		*hat;
2140 	uintptr_t	addr;
2141 
2142 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2143 	ptep = x86pte_access_pagetable(ht);
2144 	ptep = (void *)((caddr_t)ptep + (entry << mmu.pte_size_shift));
2145 
2146 	/*
2147 	 * Fill in the structure used by the cross call function to do the
2148 	 * invalidation.
2149 	 */
2150 	xi.xi_pte = new;
2151 	xi.xi_old = expected;
2152 	xi.xi_pteptr = ptep;
2153 	xi.xi_func = x86pte_update_func;
2154 
2155 	hat = ht->ht_hat;
2156 	addr = htable_e2va(ht, entry);
2157 
2158 	x86pte_xcall(hat, &xi, addr);
2159 
2160 	x86pte_release_pagetable(ht);
2161 	return (xi.xi_pte);
2162 }
2163 
2164 /*
2165  * Copy page tables - this is just a little more complicated than the
2166  * previous routines. Note that it's also not atomic! It also is never
2167  * used for VLP pagetables.
2168  */
2169 void
2170 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count)
2171 {
2172 	struct hat_cpu_info *hci;
2173 	caddr_t	src_va;
2174 	caddr_t dst_va;
2175 	size_t size;
2176 
2177 	ASSERT(khat_running);
2178 	ASSERT(!(dest->ht_flags & HTABLE_VLP));
2179 	ASSERT(!(src->ht_flags & HTABLE_VLP));
2180 	ASSERT(!(src->ht_flags & HTABLE_SHARED_PFN));
2181 	ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2182 
2183 	/*
2184 	 * Acquire access to the CPU pagetable window for the destination.
2185 	 */
2186 	dst_va = (caddr_t)x86pte_access_pagetable(dest);
2187 	if (kpm_enable) {
2188 		src_va = (caddr_t)x86pte_access_pagetable(src);
2189 	} else {
2190 		hci = CPU->cpu_hat_info;
2191 
2192 		/*
2193 		 * Finish defining the src pagetable mapping
2194 		 */
2195 		src_va = dst_va + MMU_PAGESIZE;
2196 		X86PTE_REMAP(src_va, hci->hci_kernel_pte, 1, 0, src->ht_pfn);
2197 	}
2198 
2199 	/*
2200 	 * now do the copy
2201 	 */
2202 
2203 	dst_va += entry << mmu.pte_size_shift;
2204 	src_va += entry << mmu.pte_size_shift;
2205 	size = count << mmu.pte_size_shift;
2206 	bcopy(src_va, dst_va, size);
2207 
2208 	x86pte_release_pagetable(dest);
2209 }
2210 
2211 /*
2212  * Zero page table entries - Note this doesn't use atomic stores!
2213  */
2214 void
2215 x86pte_zero(htable_t *dest, uint_t entry, uint_t count)
2216 {
2217 	caddr_t dst_va;
2218 	x86pte_t *p;
2219 	x86pte32_t *p32;
2220 	size_t size;
2221 	extern void hat_pte_zero(void *, size_t);
2222 
2223 	/*
2224 	 * Map in the page table to be zeroed.
2225 	 */
2226 	ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2227 	ASSERT(!(dest->ht_flags & HTABLE_VLP));
2228 	dst_va = (caddr_t)x86pte_access_pagetable(dest);
2229 	dst_va += entry << mmu.pte_size_shift;
2230 	size = count << mmu.pte_size_shift;
2231 	if (x86_feature & X86_SSE2) {
2232 		hat_pte_zero(dst_va, size);
2233 	} else if (khat_running) {
2234 		bzero(dst_va, size);
2235 	} else {
2236 		/*
2237 		 * Can't just use bzero during boot because it checks the
2238 		 * address against kernelbase. Instead just use a zero loop.
2239 		 */
2240 		if (mmu.pae_hat) {
2241 			p = (x86pte_t *)dst_va;
2242 			while (count-- > 0)
2243 				*p++ = 0;
2244 		} else {
2245 			p32 = (x86pte32_t *)dst_va;
2246 			while (count-- > 0)
2247 				*p32++ = 0;
2248 		}
2249 	}
2250 	x86pte_release_pagetable(dest);
2251 }
2252 
2253 /*
2254  * Called to ensure that all pagetables are in the system dump
2255  */
2256 void
2257 hat_dump(void)
2258 {
2259 	hat_t *hat;
2260 	uint_t h;
2261 	htable_t *ht;
2262 
2263 	/*
2264 	 * Dump all page tables
2265 	 */
2266 	for (hat = kas.a_hat; hat != NULL; hat = hat->hat_next) {
2267 		for (h = 0; h < hat->hat_num_hash; ++h) {
2268 			for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
2269 				if ((ht->ht_flags & HTABLE_VLP) == 0)
2270 					dump_page(ht->ht_pfn);
2271 			}
2272 		}
2273 	}
2274 }
2275