1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/sysmacros.h> 30 #include <sys/kmem.h> 31 #include <sys/atomic.h> 32 #include <sys/bitmap.h> 33 #include <sys/systm.h> 34 #include <vm/seg_kmem.h> 35 #include <vm/hat.h> 36 #include <vm/vm_dep.h> 37 #include <vm/hat_i86.h> 38 #include <sys/cmn_err.h> 39 #include <sys/avl.h> 40 41 42 /* 43 * When pages are shared by more than one mapping, a list of these 44 * structs hangs off of the page_t connected by the hm_next and hm_prev 45 * fields. Every hment is also indexed by a system-wide hash table, using 46 * hm_hashlink to connect the hments within each hash bucket. 47 */ 48 struct hment { 49 avl_node_t hm_hashlink; /* links for hash table */ 50 struct hment *hm_next; /* next mapping of same page */ 51 struct hment *hm_prev; /* previous mapping of same page */ 52 htable_t *hm_htable; /* corresponding htable_t */ 53 pfn_t hm_pfn; /* mapping page frame number */ 54 uint16_t hm_entry; /* index of pte in htable */ 55 uint16_t hm_pad; /* explicitly expose compiler padding */ 56 #ifdef __amd64 57 uint32_t hm_pad2; /* explicitly expose compiler padding */ 58 #endif 59 }; 60 61 /* 62 * Value returned by hment_walk() when dealing with a single mapping 63 * embedded in the page_t. 64 */ 65 #define HMENT_EMBEDDED ((hment_t *)(uintptr_t)1) 66 67 kmem_cache_t *hment_cache; 68 69 /* 70 * The hment reserve is similar to the htable reserve, with the following 71 * exception. Hment's are never needed for HAT kmem allocs. 72 * 73 * The hment_reserve_amount variable is used, so that you can change it's 74 * value to zero via a kernel debugger to force stealing to get tested. 75 */ 76 #define HMENT_RESERVE_AMOUNT (200) /* currently a guess at right value. */ 77 uint_t hment_reserve_amount = HMENT_RESERVE_AMOUNT; 78 kmutex_t hment_reserve_mutex; 79 uint_t hment_reserve_count; 80 hment_t *hment_reserve_pool; 81 82 /* 83 * All hments are stored in a system wide hash of AVL trees. 84 */ 85 #define HMENT_HASH_SIZE (64 * 1024) 86 static uint_t hment_hash_entries = HMENT_HASH_SIZE; 87 static avl_tree_t *hment_table; 88 89 /* 90 * Lots of highly shared pages will have the same value for "entry" (consider 91 * the starting address of "xterm" or "sh"). So we'll distinguish them by 92 * adding the pfn of the page table into both the high bits. 93 * The shift by 9 corresponds to the range of values for entry (0..511). 94 */ 95 #define HMENT_HASH(pfn, entry) (uint32_t) \ 96 ((((pfn) << 9) + entry + pfn) & (hment_hash_entries - 1)) 97 98 /* 99 * "mlist_lock" is a hashed mutex lock for protecting per-page mapping 100 * lists and "hash_lock" is a similar lock protecting the hment hash 101 * table. The hashed approach is taken to avoid the spatial overhead of 102 * maintaining a separate lock for each page, while still achieving better 103 * scalability than a single lock would allow. 104 */ 105 #define MLIST_NUM_LOCK 2048 /* must be power of two */ 106 static kmutex_t *mlist_lock; 107 108 /* 109 * the shift by 9 is so that all large pages don't use the same hash bucket 110 */ 111 #define MLIST_MUTEX(pp) \ 112 &mlist_lock[((pp)->p_pagenum + ((pp)->p_pagenum >> 9)) & \ 113 (MLIST_NUM_LOCK - 1)] 114 115 #define HASH_NUM_LOCK 2048 /* must be power of two */ 116 static kmutex_t *hash_lock; 117 118 #define HASH_MUTEX(idx) &hash_lock[(idx) & (HASH_NUM_LOCK-1)] 119 120 static avl_node_t null_avl_link; /* always zero */ 121 static hment_t *hment_steal(void); 122 123 /* 124 * Utility to compare hment_t's for use in AVL tree. The ordering 125 * is entirely arbitrary and is just so that the AVL algorithm works. 126 */ 127 static int 128 hment_compare(const void *hm1, const void *hm2) 129 { 130 hment_t *h1 = (hment_t *)hm1; 131 hment_t *h2 = (hment_t *)hm2; 132 long diff; 133 134 diff = (uintptr_t)h1->hm_htable - (uintptr_t)h2->hm_htable; 135 if (diff == 0) { 136 diff = h1->hm_entry - h2->hm_entry; 137 if (diff == 0) 138 diff = h1->hm_pfn - h2->hm_pfn; 139 } 140 if (diff < 0) 141 diff = -1; 142 else if (diff > 0) 143 diff = 1; 144 return (diff); 145 } 146 147 /* 148 * put one hment onto the reserves list 149 */ 150 static void 151 hment_put_reserve(hment_t *hm) 152 { 153 HATSTAT_INC(hs_hm_put_reserve); 154 mutex_enter(&hment_reserve_mutex); 155 hm->hm_next = hment_reserve_pool; 156 hment_reserve_pool = hm; 157 ++hment_reserve_count; 158 mutex_exit(&hment_reserve_mutex); 159 } 160 161 /* 162 * Take one hment from the reserve. 163 */ 164 static hment_t * 165 hment_get_reserve(void) 166 { 167 hment_t *hm = NULL; 168 169 /* 170 * We rely on a "donation system" to refill the hment reserve 171 * list, which only takes place when we are allocating hments for 172 * user mappings. It is theoretically possible that an incredibly 173 * long string of kernel hment_alloc()s with no intervening user 174 * hment_alloc()s could exhaust that pool. 175 */ 176 HATSTAT_INC(hs_hm_get_reserve); 177 mutex_enter(&hment_reserve_mutex); 178 if (hment_reserve_count != 0) { 179 hm = hment_reserve_pool; 180 hment_reserve_pool = hm->hm_next; 181 --hment_reserve_count; 182 } 183 mutex_exit(&hment_reserve_mutex); 184 return (hm); 185 } 186 187 /* 188 * Allocate an hment 189 */ 190 static hment_t * 191 hment_alloc() 192 { 193 int km_flag = can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP; 194 hment_t *hm = NULL; 195 196 /* 197 * If we aren't using the reserves, try using kmem to get an hment. 198 * Donate any successful allocations to reserves if low. 199 * 200 * If we're in panic, resort to using the reserves. 201 */ 202 HATSTAT_INC(hs_hm_alloc); 203 if (!USE_HAT_RESERVES()) { 204 for (;;) { 205 hm = kmem_cache_alloc(hment_cache, km_flag); 206 if (hm == NULL || 207 USE_HAT_RESERVES() || 208 hment_reserve_count >= hment_reserve_amount) 209 break; 210 hment_put_reserve(hm); 211 } 212 } 213 214 /* 215 * If allocation failed, we need to tap the reserves or steal 216 */ 217 if (hm == NULL) { 218 if (USE_HAT_RESERVES()) 219 hm = hment_get_reserve(); 220 221 /* 222 * If we still haven't gotten an hment, attempt to steal one by 223 * victimizing a mapping in a user htable. 224 */ 225 if (hm == NULL && can_steal_post_boot) 226 hm = hment_steal(); 227 228 /* 229 * we're in dire straights, try the reserve 230 */ 231 if (hm == NULL) 232 hm = hment_get_reserve(); 233 234 /* 235 * still no hment is a serious problem. 236 */ 237 if (hm == NULL) 238 panic("hment_alloc(): no reserve, couldn't steal"); 239 } 240 241 242 hm->hm_entry = 0; 243 hm->hm_htable = NULL; 244 hm->hm_hashlink = null_avl_link; 245 hm->hm_next = NULL; 246 hm->hm_prev = NULL; 247 hm->hm_pfn = PFN_INVALID; 248 return (hm); 249 } 250 251 /* 252 * Free an hment, possibly to the reserves list when called from the 253 * thread using the reserves. For example, when freeing an hment during an 254 * htable_steal(), we can't recurse into the kmem allocator, so we just 255 * push the hment onto the reserve list. 256 */ 257 void 258 hment_free(hment_t *hm) 259 { 260 #ifdef DEBUG 261 /* 262 * zero out all fields to try and force any race conditions to segfault 263 */ 264 bzero(hm, sizeof (*hm)); 265 #endif 266 HATSTAT_INC(hs_hm_free); 267 if (USE_HAT_RESERVES() || 268 hment_reserve_count < hment_reserve_amount) { 269 hment_put_reserve(hm); 270 } else { 271 kmem_cache_free(hment_cache, hm); 272 hment_adjust_reserve(); 273 } 274 } 275 276 /* 277 * These must test for mlist_lock not having been allocated yet. 278 * We just ignore locking in that case, as it means were in early 279 * single threaded startup. 280 */ 281 int 282 x86_hm_held(page_t *pp) 283 { 284 ASSERT(pp != NULL); 285 if (mlist_lock == NULL) 286 return (1); 287 return (MUTEX_HELD(MLIST_MUTEX(pp))); 288 } 289 290 void 291 x86_hm_enter(page_t *pp) 292 { 293 ASSERT(pp != NULL); 294 if (mlist_lock != NULL) 295 mutex_enter(MLIST_MUTEX(pp)); 296 } 297 298 void 299 x86_hm_exit(page_t *pp) 300 { 301 ASSERT(pp != NULL); 302 if (mlist_lock != NULL) 303 mutex_exit(MLIST_MUTEX(pp)); 304 } 305 306 /* 307 * Internal routine to add a full hment to a page_t mapping list 308 */ 309 static void 310 hment_insert(hment_t *hm, page_t *pp) 311 { 312 uint_t idx; 313 314 ASSERT(x86_hm_held(pp)); 315 ASSERT(!pp->p_embed); 316 317 /* 318 * Add the hment to the page's mapping list. 319 */ 320 ++pp->p_share; 321 hm->hm_next = pp->p_mapping; 322 if (pp->p_mapping != NULL) 323 ((hment_t *)pp->p_mapping)->hm_prev = hm; 324 pp->p_mapping = hm; 325 326 /* 327 * Add the hment to the system-wide hash table. 328 */ 329 idx = HMENT_HASH(hm->hm_htable->ht_pfn, hm->hm_entry); 330 331 mutex_enter(HASH_MUTEX(idx)); 332 avl_add(&hment_table[idx], hm); 333 mutex_exit(HASH_MUTEX(idx)); 334 } 335 336 /* 337 * Prepare a mapping list entry to the given page. 338 * 339 * There are 4 different situations to deal with: 340 * 341 * - Adding the first mapping to a page_t as an embedded hment 342 * - Refaulting on an existing embedded mapping 343 * - Upgrading an embedded mapping when adding a 2nd mapping 344 * - Adding another mapping to a page_t that already has multiple mappings 345 * note we don't optimized for the refaulting case here. 346 * 347 * Due to competition with other threads that may be mapping/unmapping the 348 * same page and the need to drop all locks while allocating hments, any or 349 * all of the 3 situations can occur (and in almost any order) in any given 350 * call. Isn't this fun! 351 */ 352 hment_t * 353 hment_prepare(htable_t *htable, uint_t entry, page_t *pp) 354 { 355 hment_t *hm = NULL; 356 357 ASSERT(x86_hm_held(pp)); 358 359 for (;;) { 360 361 /* 362 * The most common case is establishing the first mapping to a 363 * page, so check that first. This doesn't need any allocated 364 * hment. 365 */ 366 if (pp->p_mapping == NULL) { 367 ASSERT(!pp->p_embed); 368 ASSERT(pp->p_share == 0); 369 if (hm == NULL) 370 break; 371 372 /* 373 * we had an hment already, so free it and retry 374 */ 375 goto free_and_continue; 376 } 377 378 /* 379 * If there is an embedded mapping, we may need to 380 * convert it to an hment. 381 */ 382 if (pp->p_embed) { 383 384 /* should point to htable */ 385 ASSERT(pp->p_mapping != NULL); 386 387 /* 388 * If we are faulting on a pre-existing mapping 389 * there is no need to promote/allocate a new hment. 390 * This happens a lot due to segmap. 391 */ 392 if (pp->p_mapping == htable && pp->p_mlentry == entry) { 393 if (hm == NULL) 394 break; 395 goto free_and_continue; 396 } 397 398 /* 399 * If we have an hment allocated, use it to promote the 400 * existing embedded mapping. 401 */ 402 if (hm != NULL) { 403 hm->hm_htable = pp->p_mapping; 404 hm->hm_entry = pp->p_mlentry; 405 hm->hm_pfn = pp->p_pagenum; 406 pp->p_mapping = NULL; 407 pp->p_share = 0; 408 pp->p_embed = 0; 409 hment_insert(hm, pp); 410 } 411 412 /* 413 * We either didn't have an hment allocated or we just 414 * used it for the embedded mapping. In either case, 415 * allocate another hment and restart. 416 */ 417 goto allocate_and_continue; 418 } 419 420 /* 421 * Last possibility is that we're adding an hment to a list 422 * of hments. 423 */ 424 if (hm != NULL) 425 break; 426 allocate_and_continue: 427 x86_hm_exit(pp); 428 hm = hment_alloc(); 429 x86_hm_enter(pp); 430 continue; 431 432 free_and_continue: 433 /* 434 * we allocated an hment already, free it and retry 435 */ 436 x86_hm_exit(pp); 437 hment_free(hm); 438 hm = NULL; 439 x86_hm_enter(pp); 440 } 441 ASSERT(x86_hm_held(pp)); 442 return (hm); 443 } 444 445 /* 446 * Record a mapping list entry for the htable/entry to the given page. 447 * 448 * hment_prepare() should have properly set up the situation. 449 */ 450 void 451 hment_assign(htable_t *htable, uint_t entry, page_t *pp, hment_t *hm) 452 { 453 ASSERT(x86_hm_held(pp)); 454 455 /* 456 * The most common case is establishing the first mapping to a 457 * page, so check that first. This doesn't need any allocated 458 * hment. 459 */ 460 if (pp->p_mapping == NULL) { 461 ASSERT(hm == NULL); 462 ASSERT(!pp->p_embed); 463 ASSERT(pp->p_share == 0); 464 pp->p_embed = 1; 465 pp->p_mapping = htable; 466 pp->p_mlentry = entry; 467 return; 468 } 469 470 /* 471 * We should never get here with a pre-existing embedded maping 472 */ 473 ASSERT(!pp->p_embed); 474 475 /* 476 * add the new hment to the mapping list 477 */ 478 ASSERT(hm != NULL); 479 hm->hm_htable = htable; 480 hm->hm_entry = entry; 481 hm->hm_pfn = pp->p_pagenum; 482 hment_insert(hm, pp); 483 } 484 485 /* 486 * Walk through the mappings for a page. 487 * 488 * must already have done an x86_hm_enter() 489 */ 490 hment_t * 491 hment_walk(page_t *pp, htable_t **ht, uint_t *entry, hment_t *prev) 492 { 493 hment_t *hm; 494 495 ASSERT(x86_hm_held(pp)); 496 497 if (pp->p_embed) { 498 if (prev == NULL) { 499 *ht = (htable_t *)pp->p_mapping; 500 *entry = pp->p_mlentry; 501 hm = HMENT_EMBEDDED; 502 } else { 503 ASSERT(prev == HMENT_EMBEDDED); 504 hm = NULL; 505 } 506 } else { 507 if (prev == NULL) { 508 ASSERT(prev != HMENT_EMBEDDED); 509 hm = (hment_t *)pp->p_mapping; 510 } else { 511 hm = prev->hm_next; 512 } 513 514 if (hm != NULL) { 515 *ht = hm->hm_htable; 516 *entry = hm->hm_entry; 517 } 518 } 519 return (hm); 520 } 521 522 /* 523 * Remove a mapping to a page from its mapping list. Must have 524 * the corresponding mapping list locked. 525 * Finds the mapping list entry with the given pte_t and 526 * unlinks it from the mapping list. 527 */ 528 hment_t * 529 hment_remove(page_t *pp, htable_t *ht, uint_t entry) 530 { 531 hment_t dummy; 532 avl_index_t where; 533 hment_t *hm; 534 uint_t idx; 535 536 ASSERT(x86_hm_held(pp)); 537 538 /* 539 * Check if we have only one mapping embedded in the page_t. 540 */ 541 if (pp->p_embed) { 542 ASSERT(ht == (htable_t *)pp->p_mapping); 543 ASSERT(entry == pp->p_mlentry); 544 ASSERT(pp->p_share == 0); 545 pp->p_mapping = NULL; 546 pp->p_mlentry = 0; 547 pp->p_embed = 0; 548 return (NULL); 549 } 550 551 /* 552 * Otherwise it must be in the list of hments. 553 * Find the hment in the system-wide hash table and remove it. 554 */ 555 ASSERT(pp->p_share != 0); 556 dummy.hm_htable = ht; 557 dummy.hm_entry = entry; 558 dummy.hm_pfn = pp->p_pagenum; 559 idx = HMENT_HASH(ht->ht_pfn, entry); 560 mutex_enter(HASH_MUTEX(idx)); 561 hm = avl_find(&hment_table[idx], &dummy, &where); 562 if (hm == NULL) 563 panic("hment_remove() missing in hash table pp=%lx, ht=%lx," 564 "entry=0x%x hash index=0x%x", (uintptr_t)pp, (uintptr_t)ht, 565 entry, idx); 566 avl_remove(&hment_table[idx], hm); 567 mutex_exit(HASH_MUTEX(idx)); 568 569 /* 570 * Remove the hment from the page's mapping list 571 */ 572 if (hm->hm_next) 573 hm->hm_next->hm_prev = hm->hm_prev; 574 if (hm->hm_prev) 575 hm->hm_prev->hm_next = hm->hm_next; 576 else 577 pp->p_mapping = hm->hm_next; 578 579 --pp->p_share; 580 hm->hm_hashlink = null_avl_link; 581 hm->hm_next = NULL; 582 hm->hm_prev = NULL; 583 584 return (hm); 585 } 586 587 /* 588 * Put initial hment's in the reserve pool. 589 */ 590 void 591 hment_reserve(uint_t count) 592 { 593 hment_t *hm; 594 595 count += hment_reserve_amount; 596 597 while (hment_reserve_count < count) { 598 hm = kmem_cache_alloc(hment_cache, KM_NOSLEEP); 599 if (hm == NULL) 600 return; 601 hment_put_reserve(hm); 602 } 603 } 604 605 /* 606 * Readjust the hment reserves after they may have been used. 607 */ 608 void 609 hment_adjust_reserve() 610 { 611 hment_t *hm; 612 613 /* 614 * Free up any excess reserves 615 */ 616 while (hment_reserve_count > hment_reserve_amount && 617 !USE_HAT_RESERVES()) { 618 hm = hment_get_reserve(); 619 if (hm == NULL) 620 return; 621 kmem_cache_free(hment_cache, hm); 622 } 623 } 624 625 /* 626 * initialize hment data structures 627 */ 628 void 629 hment_init(void) 630 { 631 int i; 632 int flags = KMC_NOHASH | KMC_NODEBUG; 633 634 /* 635 * Initialize kmem caches. On 32 bit kernel's we shut off 636 * debug information to save on precious kernel VA usage. 637 */ 638 hment_cache = kmem_cache_create("hment_t", 639 sizeof (hment_t), 0, NULL, NULL, NULL, 640 NULL, hat_memload_arena, flags); 641 642 hment_table = kmem_zalloc(hment_hash_entries * sizeof (*hment_table), 643 KM_SLEEP); 644 645 mlist_lock = kmem_zalloc(MLIST_NUM_LOCK * sizeof (kmutex_t), KM_SLEEP); 646 647 hash_lock = kmem_zalloc(HASH_NUM_LOCK * sizeof (kmutex_t), KM_SLEEP); 648 649 for (i = 0; i < hment_hash_entries; ++i) 650 avl_create(&hment_table[i], hment_compare, sizeof (hment_t), 651 offsetof(hment_t, hm_hashlink)); 652 653 for (i = 0; i < MLIST_NUM_LOCK; i++) 654 mutex_init(&mlist_lock[i], NULL, MUTEX_DEFAULT, NULL); 655 656 for (i = 0; i < HASH_NUM_LOCK; i++) 657 mutex_init(&hash_lock[i], NULL, MUTEX_DEFAULT, NULL); 658 659 660 } 661 662 /* 663 * return the number of mappings to a page 664 * 665 * Note there is no ASSERT() that the MUTEX is held for this. 666 * Hence the return value might be inaccurate if this is called without 667 * doing an x86_hm_enter(). 668 */ 669 uint_t 670 hment_mapcnt(page_t *pp) 671 { 672 uint_t cnt; 673 uint_t szc; 674 page_t *larger; 675 hment_t *hm; 676 677 x86_hm_enter(pp); 678 if (pp->p_mapping == NULL) 679 cnt = 0; 680 else if (pp->p_embed) 681 cnt = 1; 682 else 683 cnt = pp->p_share; 684 x86_hm_exit(pp); 685 686 /* 687 * walk through all larger mapping sizes counting mappings 688 */ 689 for (szc = 1; szc <= pp->p_szc; ++szc) { 690 larger = PP_GROUPLEADER(pp, szc); 691 if (larger == pp) /* don't double count large mappings */ 692 continue; 693 694 x86_hm_enter(larger); 695 if (larger->p_mapping != NULL) { 696 if (larger->p_embed && 697 ((htable_t *)larger->p_mapping)->ht_level == szc) { 698 ++cnt; 699 } else if (!larger->p_embed) { 700 for (hm = larger->p_mapping; hm; 701 hm = hm->hm_next) { 702 if (hm->hm_htable->ht_level == szc) 703 ++cnt; 704 } 705 } 706 } 707 x86_hm_exit(larger); 708 } 709 return (cnt); 710 } 711 712 /* 713 * We need to steal an hment. Walk through all the page_t's until we 714 * find one that has multiple mappings. Unload one of the mappings 715 * and reclaim that hment. Note that we'll save/restart the starting 716 * page to try and spread the pain. 717 */ 718 static page_t *last_page = NULL; 719 720 static hment_t * 721 hment_steal(void) 722 { 723 page_t *last = last_page; 724 page_t *pp = last; 725 hment_t *hm = NULL; 726 hment_t *hm2; 727 htable_t *ht; 728 uint_t found_one = 0; 729 730 HATSTAT_INC(hs_hm_steals); 731 if (pp == NULL) 732 last = pp = page_first(); 733 734 while (!found_one) { 735 HATSTAT_INC(hs_hm_steal_exam); 736 pp = page_next(pp); 737 if (pp == NULL) 738 pp = page_first(); 739 740 /* 741 * The loop and function exit here if nothing found to steal. 742 */ 743 if (pp == last) 744 return (NULL); 745 746 /* 747 * Only lock the page_t if it has hments. 748 */ 749 if (pp->p_mapping == NULL || pp->p_embed) 750 continue; 751 752 /* 753 * Search the mapping list for a usable mapping. 754 */ 755 x86_hm_enter(pp); 756 if (!pp->p_embed) { 757 for (hm = pp->p_mapping; hm; hm = hm->hm_next) { 758 ht = hm->hm_htable; 759 if (ht->ht_hat != kas.a_hat && 760 ht->ht_busy == 0 && 761 ht->ht_lock_cnt == 0) { 762 found_one = 1; 763 break; 764 } 765 } 766 } 767 if (!found_one) 768 x86_hm_exit(pp); 769 } 770 771 /* 772 * Steal the mapping we found. Note that hati_page_unmap() will 773 * do the x86_hm_exit(). 774 */ 775 hm2 = hati_page_unmap(pp, ht, hm->hm_entry); 776 ASSERT(hm2 == hm); 777 last_page = pp; 778 return (hm); 779 } 780