1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/sysmacros.h> 31 #include <sys/kmem.h> 32 #include <sys/atomic.h> 33 #include <sys/bitmap.h> 34 #include <sys/systm.h> 35 #include <vm/seg_kmem.h> 36 #include <vm/hat.h> 37 #include <vm/vm_dep.h> 38 #include <vm/hat_i86.h> 39 #include <sys/cmn_err.h> 40 41 42 /* 43 * When pages are shared by more than one mapping, a list of these 44 * structs hangs off of the page_t connected by the hm_next and hm_prev 45 * fields. Every hment is also indexed by a system-wide hash table, using 46 * hm_hashnext to connect it to the chain of hments in a single hash 47 * bucket. 48 */ 49 struct hment { 50 struct hment *hm_hashnext; /* next mapping on hash chain */ 51 struct hment *hm_next; /* next mapping of same page */ 52 struct hment *hm_prev; /* previous mapping of same page */ 53 htable_t *hm_htable; /* corresponding htable_t */ 54 uint16_t hm_entry; /* index of pte in htable */ 55 uint16_t hm_pad; /* explicitly expose compiler padding */ 56 #ifdef __amd64 57 uint32_t hm_pad2; /* explicitly expose compiler padding */ 58 #endif 59 }; 60 61 /* 62 * Value returned by hment_walk() when dealing with a single mapping 63 * embedded in the page_t. 64 */ 65 #define HMENT_EMBEDDED ((hment_t *)(uintptr_t)1) 66 67 kmem_cache_t *hment_cache; 68 69 /* 70 * The hment reserve is similar to the htable reserve, with the following 71 * exception. Hment's are never needed for HAT kmem allocs. 72 * 73 * The hment_reserve_amount variable is used, so that you can change it's 74 * value to zero via a kernel debugger to force stealing to get tested. 75 */ 76 #define HMENT_RESERVE_AMOUNT (200) /* currently a guess at right value. */ 77 uint_t hment_reserve_amount = HMENT_RESERVE_AMOUNT; 78 kmutex_t hment_reserve_mutex; 79 uint_t hment_reserve_count; 80 hment_t *hment_reserve_pool; 81 extern kthread_t *hat_reserves_thread; 82 83 /* 84 * Possible performance RFE: we might need to make this dynamic, perhaps 85 * based on the number of pages in the system. 86 */ 87 #define HMENT_HASH_SIZE (64 * 1024) 88 static uint_t hment_hash_entries = HMENT_HASH_SIZE; 89 static hment_t **hment_hash; 90 91 /* 92 * Lots of highly shared pages will have the same value for "entry" (consider 93 * the starting address of "xterm" or "sh"). So we'll distinguish them by 94 * adding the pfn of the page table into both the high bits. 95 * The shift by 9 corresponds to the range of values for entry (0..511). 96 */ 97 #define HMENT_HASH(pfn, entry) (uint32_t) \ 98 ((((pfn) << 9) + entry + pfn) & (hment_hash_entries - 1)) 99 100 /* 101 * "mlist_lock" is a hashed mutex lock for protecting per-page mapping 102 * lists and "hash_lock" is a similar lock protecting the hment hash 103 * table. The hashed approach is taken to avoid the spatial overhead of 104 * maintaining a separate lock for each page, while still achieving better 105 * scalability than a single lock would allow. 106 */ 107 #define MLIST_NUM_LOCK 256 /* must be power of two */ 108 static kmutex_t mlist_lock[MLIST_NUM_LOCK]; 109 110 /* 111 * the shift by 9 is so that all large pages don't use the same hash bucket 112 */ 113 #define MLIST_MUTEX(pp) \ 114 &mlist_lock[((pp)->p_pagenum + ((pp)->p_pagenum >> 9)) & \ 115 (MLIST_NUM_LOCK - 1)] 116 117 #define HASH_NUM_LOCK 256 /* must be power of two */ 118 static kmutex_t hash_lock[HASH_NUM_LOCK]; 119 120 #define HASH_MUTEX(idx) &hash_lock[(idx) & (HASH_NUM_LOCK-1)] 121 122 static hment_t *hment_steal(void); 123 124 /* 125 * put one hment onto the reserves list 126 */ 127 static void 128 hment_put_reserve(hment_t *hm) 129 { 130 HATSTAT_INC(hs_hm_put_reserve); 131 mutex_enter(&hment_reserve_mutex); 132 hm->hm_next = hment_reserve_pool; 133 hment_reserve_pool = hm; 134 ++hment_reserve_count; 135 mutex_exit(&hment_reserve_mutex); 136 } 137 138 /* 139 * Take one hment from the reserve. 140 */ 141 static hment_t * 142 hment_get_reserve(void) 143 { 144 hment_t *hm = NULL; 145 146 /* 147 * We rely on a "donation system" to refill the hment reserve 148 * list, which only takes place when we are allocating hments for 149 * user mappings. It is theoretically possible that an incredibly 150 * long string of kernel hment_alloc()s with no intervening user 151 * hment_alloc()s could exhaust that pool. 152 */ 153 HATSTAT_INC(hs_hm_get_reserve); 154 mutex_enter(&hment_reserve_mutex); 155 if (hment_reserve_count != 0) { 156 hm = hment_reserve_pool; 157 hment_reserve_pool = hm->hm_next; 158 --hment_reserve_count; 159 } 160 mutex_exit(&hment_reserve_mutex); 161 return (hm); 162 } 163 164 /* 165 * Allocate an hment 166 */ 167 static hment_t * 168 hment_alloc() 169 { 170 int km_flag = can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP; 171 hment_t *hm = NULL; 172 int use_reserves = (use_boot_reserve || 173 curthread == hat_reserves_thread || panicstr != NULL); 174 175 /* 176 * If we aren't using the reserves, try using kmem to get an hment. 177 * Donate any successful allocations to reserves if low. 178 * 179 * If we're in panic, resort to using the reserves. 180 */ 181 HATSTAT_INC(hs_hm_alloc); 182 if (!use_reserves) { 183 for (;;) { 184 hm = kmem_cache_alloc(hment_cache, km_flag); 185 if (hment_reserve_count >= hment_reserve_amount || 186 hm == NULL || panicstr != NULL || 187 curthread == hat_reserves_thread) 188 break; 189 hment_put_reserve(hm); 190 } 191 } 192 193 /* 194 * If allocation failed, we need to tap the reserves or steal 195 */ 196 if (hm == NULL) { 197 if (use_reserves) 198 hm = hment_get_reserve(); 199 200 /* 201 * If we still haven't gotten an hment, attempt to steal one by 202 * victimizing a mapping in a user htable. 203 */ 204 if (hm == NULL && can_steal_post_boot) 205 hm = hment_steal(); 206 207 /* 208 * we're in dire straights, try the reserve 209 */ 210 if (hm == NULL) 211 hm = hment_get_reserve(); 212 213 /* 214 * still no hment is a serious problem. 215 */ 216 if (hm == NULL) 217 panic("hment_alloc(): no reserve, couldn't steal"); 218 } 219 220 221 hm->hm_entry = 0; 222 hm->hm_htable = NULL; 223 hm->hm_hashnext = NULL; 224 hm->hm_next = NULL; 225 hm->hm_prev = NULL; 226 return (hm); 227 } 228 229 /* 230 * Free an hment, possibly to the reserves list when called from the 231 * thread using the reserves. For example, when freeing an hment during an 232 * htable_steal(), we can't recurse into the kmem allocator, so we just 233 * push the hment onto the reserve list. 234 */ 235 void 236 hment_free(hment_t *hm) 237 { 238 #ifdef DEBUG 239 /* 240 * zero out all fields to try and force any race conditions to segfault 241 */ 242 bzero(hm, sizeof (*hm)); 243 #endif 244 HATSTAT_INC(hs_hm_free); 245 if (curthread == hat_reserves_thread || 246 hment_reserve_count < hment_reserve_amount) 247 hment_put_reserve(hm); 248 else 249 kmem_cache_free(hment_cache, hm); 250 } 251 252 int 253 x86_hm_held(page_t *pp) 254 { 255 ASSERT(pp != NULL); 256 return (MUTEX_HELD(MLIST_MUTEX(pp))); 257 } 258 259 void 260 x86_hm_enter(page_t *pp) 261 { 262 ASSERT(pp != NULL); 263 mutex_enter(MLIST_MUTEX(pp)); 264 } 265 266 void 267 x86_hm_exit(page_t *pp) 268 { 269 ASSERT(pp != NULL); 270 mutex_exit(MLIST_MUTEX(pp)); 271 } 272 273 /* 274 * Internal routine to add a full hment to a page_t mapping list 275 */ 276 static void 277 hment_insert(hment_t *hm, page_t *pp) 278 { 279 uint_t idx; 280 281 ASSERT(x86_hm_held(pp)); 282 ASSERT(!pp->p_embed); 283 284 /* 285 * Add the hment to the page's mapping list. 286 */ 287 ++pp->p_share; 288 hm->hm_next = pp->p_mapping; 289 if (pp->p_mapping != NULL) 290 ((hment_t *)pp->p_mapping)->hm_prev = hm; 291 pp->p_mapping = hm; 292 293 /* 294 * Add the hment to the system-wide hash table. 295 */ 296 idx = HMENT_HASH(hm->hm_htable->ht_pfn, hm->hm_entry); 297 298 mutex_enter(HASH_MUTEX(idx)); 299 hm->hm_hashnext = hment_hash[idx]; 300 hment_hash[idx] = hm; 301 mutex_exit(HASH_MUTEX(idx)); 302 } 303 304 /* 305 * Prepare a mapping list entry to the given page. 306 * 307 * There are 4 different situations to deal with: 308 * 309 * - Adding the first mapping to a page_t as an embedded hment 310 * - Refaulting on an existing embedded mapping 311 * - Upgrading an embedded mapping when adding a 2nd mapping 312 * - Adding another mapping to a page_t that already has multiple mappings 313 * note we don't optimized for the refaulting case here. 314 * 315 * Due to competition with other threads that may be mapping/unmapping the 316 * same page and the need to drop all locks while allocating hments, any or 317 * all of the 3 situations can occur (and in almost any order) in any given 318 * call. Isn't this fun! 319 */ 320 hment_t * 321 hment_prepare(htable_t *htable, uint_t entry, page_t *pp) 322 { 323 hment_t *hm = NULL; 324 325 ASSERT(x86_hm_held(pp)); 326 327 for (;;) { 328 329 /* 330 * The most common case is establishing the first mapping to a 331 * page, so check that first. This doesn't need any allocated 332 * hment. 333 */ 334 if (pp->p_mapping == NULL) { 335 ASSERT(!pp->p_embed); 336 ASSERT(pp->p_share == 0); 337 if (hm == NULL) 338 break; 339 340 /* 341 * we had an hment already, so free it and retry 342 */ 343 goto free_and_continue; 344 } 345 346 /* 347 * If there is an embedded mapping, we may need to 348 * convert it to an hment. 349 */ 350 if (pp->p_embed) { 351 352 /* should point to htable */ 353 ASSERT(pp->p_mapping != NULL); 354 355 /* 356 * If we are faulting on a pre-existing mapping 357 * there is no need to promote/allocate a new hment. 358 * This happens a lot due to segmap. 359 */ 360 if (pp->p_mapping == htable && pp->p_mlentry == entry) { 361 if (hm == NULL) 362 break; 363 goto free_and_continue; 364 } 365 366 /* 367 * If we have an hment allocated, use it to promote the 368 * existing embedded mapping. 369 */ 370 if (hm != NULL) { 371 hm->hm_htable = pp->p_mapping; 372 hm->hm_entry = pp->p_mlentry; 373 pp->p_mapping = NULL; 374 pp->p_share = 0; 375 pp->p_embed = 0; 376 hment_insert(hm, pp); 377 } 378 379 /* 380 * We either didn't have an hment allocated or we just 381 * used it for the embedded mapping. In either case, 382 * allocate another hment and restart. 383 */ 384 goto allocate_and_continue; 385 } 386 387 /* 388 * Last possibility is that we're adding an hment to a list 389 * of hments. 390 */ 391 if (hm != NULL) 392 break; 393 allocate_and_continue: 394 x86_hm_exit(pp); 395 hm = hment_alloc(); 396 x86_hm_enter(pp); 397 continue; 398 399 free_and_continue: 400 /* 401 * we allocated an hment already, free it and retry 402 */ 403 x86_hm_exit(pp); 404 hment_free(hm); 405 hm = NULL; 406 x86_hm_enter(pp); 407 } 408 ASSERT(x86_hm_held(pp)); 409 return (hm); 410 } 411 412 /* 413 * Record a mapping list entry for the htable/entry to the given page. 414 * 415 * hment_prepare() should have properly set up the situation. 416 */ 417 void 418 hment_assign(htable_t *htable, uint_t entry, page_t *pp, hment_t *hm) 419 { 420 ASSERT(x86_hm_held(pp)); 421 422 /* 423 * The most common case is establishing the first mapping to a 424 * page, so check that first. This doesn't need any allocated 425 * hment. 426 */ 427 if (pp->p_mapping == NULL) { 428 ASSERT(hm == NULL); 429 ASSERT(!pp->p_embed); 430 ASSERT(pp->p_share == 0); 431 pp->p_embed = 1; 432 pp->p_mapping = htable; 433 pp->p_mlentry = entry; 434 return; 435 } 436 437 /* 438 * We should never get here with a pre-existing embedded maping 439 */ 440 ASSERT(!pp->p_embed); 441 442 /* 443 * add the new hment to the mapping list 444 */ 445 ASSERT(hm != NULL); 446 hm->hm_htable = htable; 447 hm->hm_entry = entry; 448 hment_insert(hm, pp); 449 } 450 451 /* 452 * Walk through the mappings for a page. 453 * 454 * must already have done an x86_hm_enter() 455 */ 456 hment_t * 457 hment_walk(page_t *pp, htable_t **ht, uint_t *entry, hment_t *prev) 458 { 459 hment_t *hm; 460 461 ASSERT(x86_hm_held(pp)); 462 463 if (pp->p_embed) { 464 if (prev == NULL) { 465 *ht = (htable_t *)pp->p_mapping; 466 *entry = pp->p_mlentry; 467 hm = HMENT_EMBEDDED; 468 } else { 469 ASSERT(prev == HMENT_EMBEDDED); 470 hm = NULL; 471 } 472 } else { 473 if (prev == NULL) { 474 ASSERT(prev != HMENT_EMBEDDED); 475 hm = (hment_t *)pp->p_mapping; 476 } else { 477 hm = prev->hm_next; 478 } 479 480 if (hm != NULL) { 481 *ht = hm->hm_htable; 482 *entry = hm->hm_entry; 483 } 484 } 485 return (hm); 486 } 487 488 /* 489 * Remove a mapping to a page from its mapping list. Must have 490 * the corresponding mapping list locked. 491 * Finds the mapping list entry with the given pte_t and 492 * unlinks it from the mapping list. 493 */ 494 hment_t * 495 hment_remove(page_t *pp, htable_t *ht, uint_t entry) 496 { 497 hment_t *prev = NULL; 498 hment_t *hm; 499 uint_t idx; 500 501 ASSERT(x86_hm_held(pp)); 502 503 /* 504 * Check if we have only one mapping embedded in the page_t. 505 */ 506 if (pp->p_embed) { 507 ASSERT(ht == (htable_t *)pp->p_mapping); 508 ASSERT(entry == pp->p_mlentry); 509 ASSERT(pp->p_share == 0); 510 pp->p_mapping = NULL; 511 pp->p_mlentry = 0; 512 pp->p_embed = 0; 513 return (NULL); 514 } 515 516 /* 517 * Otherwise it must be in the list of hments. 518 * Find the hment in the system-wide hash table and remove it. 519 */ 520 ASSERT(pp->p_share != 0); 521 idx = HMENT_HASH(ht->ht_pfn, entry); 522 mutex_enter(HASH_MUTEX(idx)); 523 hm = hment_hash[idx]; 524 while (hm && (hm->hm_htable != ht || hm->hm_entry != entry)) { 525 prev = hm; 526 hm = hm->hm_hashnext; 527 } 528 if (hm == NULL) { 529 panic("hment_remove() missing in hash table pp=%lx, ht=%lx," 530 "entry=0x%x hash index=0x%x", (uintptr_t)pp, (uintptr_t)ht, 531 entry, idx); 532 } 533 534 if (prev) 535 prev->hm_hashnext = hm->hm_hashnext; 536 else 537 hment_hash[idx] = hm->hm_hashnext; 538 mutex_exit(HASH_MUTEX(idx)); 539 540 /* 541 * Remove the hment from the page's mapping list 542 */ 543 if (hm->hm_next) 544 hm->hm_next->hm_prev = hm->hm_prev; 545 if (hm->hm_prev) 546 hm->hm_prev->hm_next = hm->hm_next; 547 else 548 pp->p_mapping = hm->hm_next; 549 550 --pp->p_share; 551 hm->hm_hashnext = NULL; 552 hm->hm_next = NULL; 553 hm->hm_prev = NULL; 554 555 return (hm); 556 } 557 558 /* 559 * Put initial hment's in the reserve pool. 560 */ 561 void 562 hment_reserve(uint_t count) 563 { 564 hment_t *hm; 565 566 count += hment_reserve_amount; 567 568 while (hment_reserve_count < count) { 569 hm = kmem_cache_alloc(hment_cache, KM_NOSLEEP); 570 if (hm == NULL) 571 return; 572 hment_put_reserve(hm); 573 } 574 } 575 576 /* 577 * Readjust the hment reserves after they may have been used. 578 */ 579 void 580 hment_adjust_reserve() 581 { 582 hment_t *hm; 583 584 /* 585 * Free up any excess reserves 586 */ 587 while (hment_reserve_count > hment_reserve_amount) { 588 ASSERT(curthread != hat_reserves_thread); 589 hm = hment_get_reserve(); 590 if (hm == NULL) 591 return; 592 hment_free(hm); 593 } 594 } 595 596 /* 597 * initialize hment data structures 598 */ 599 void 600 hment_init(void) 601 { 602 int i; 603 int flags = KMC_NOHASH | KMC_NODEBUG; 604 605 /* 606 * Initialize kmem caches. On 32 bit kernel's we shut off 607 * debug information to save on precious kernel VA usage. 608 */ 609 hment_cache = kmem_cache_create("hment_t", 610 sizeof (hment_t), 0, NULL, NULL, NULL, 611 NULL, hat_memload_arena, flags); 612 613 hment_hash = kmem_zalloc(hment_hash_entries * sizeof (hment_t *), 614 KM_SLEEP); 615 616 for (i = 0; i < MLIST_NUM_LOCK; i++) 617 mutex_init(&mlist_lock[i], NULL, MUTEX_DEFAULT, NULL); 618 619 for (i = 0; i < HASH_NUM_LOCK; i++) 620 mutex_init(&hash_lock[i], NULL, MUTEX_DEFAULT, NULL); 621 622 623 } 624 625 /* 626 * return the number of mappings to a page 627 * 628 * Note there is no ASSERT() that the MUTEX is held for this. 629 * Hence the return value might be inaccurate if this is called without 630 * doing an x86_hm_enter(). 631 */ 632 uint_t 633 hment_mapcnt(page_t *pp) 634 { 635 uint_t cnt; 636 uint_t szc; 637 page_t *larger; 638 hment_t *hm; 639 640 x86_hm_enter(pp); 641 if (pp->p_mapping == NULL) 642 cnt = 0; 643 else if (pp->p_embed) 644 cnt = 1; 645 else 646 cnt = pp->p_share; 647 x86_hm_exit(pp); 648 649 /* 650 * walk through all larger mapping sizes counting mappings 651 */ 652 for (szc = 1; szc <= pp->p_szc; ++szc) { 653 larger = PP_GROUPLEADER(pp, szc); 654 if (larger == pp) /* don't double count large mappings */ 655 continue; 656 657 x86_hm_enter(larger); 658 if (larger->p_mapping != NULL) { 659 if (larger->p_embed && 660 ((htable_t *)larger->p_mapping)->ht_level == szc) { 661 ++cnt; 662 } else if (!larger->p_embed) { 663 for (hm = larger->p_mapping; hm; 664 hm = hm->hm_next) { 665 if (hm->hm_htable->ht_level == szc) 666 ++cnt; 667 } 668 } 669 } 670 x86_hm_exit(larger); 671 } 672 return (cnt); 673 } 674 675 /* 676 * We need to steal an hment. Walk through all the page_t's until we 677 * find one that has multiple mappings. Unload one of the mappings 678 * and reclaim that hment. Note that we'll save/restart the starting 679 * page to try and spread the pain. 680 */ 681 static page_t *last_page = NULL; 682 683 static hment_t * 684 hment_steal(void) 685 { 686 page_t *last = last_page; 687 page_t *pp = last; 688 hment_t *hm = NULL; 689 hment_t *hm2; 690 htable_t *ht; 691 uint_t found_one = 0; 692 693 HATSTAT_INC(hs_hm_steals); 694 if (pp == NULL) 695 last = pp = page_first(); 696 697 while (!found_one) { 698 HATSTAT_INC(hs_hm_steal_exam); 699 pp = page_next(pp); 700 if (pp == NULL) 701 pp = page_first(); 702 703 /* 704 * The loop and function exit here if nothing found to steal. 705 */ 706 if (pp == last) 707 return (NULL); 708 709 /* 710 * Only lock the page_t if it has hments. 711 */ 712 if (pp->p_mapping == NULL || pp->p_embed) 713 continue; 714 715 /* 716 * Search the mapping list for a usable mapping. 717 */ 718 x86_hm_enter(pp); 719 if (!pp->p_embed) { 720 for (hm = pp->p_mapping; hm; hm = hm->hm_next) { 721 ht = hm->hm_htable; 722 if (ht->ht_hat != kas.a_hat && 723 ht->ht_busy == 0 && 724 ht->ht_lock_cnt == 0) { 725 found_one = 1; 726 break; 727 } 728 } 729 } 730 if (!found_one) 731 x86_hm_exit(pp); 732 } 733 734 /* 735 * Steal the mapping we found. Note that hati_page_unmap() will 736 * do the x86_hm_exit(). 737 */ 738 hm2 = hati_page_unmap(pp, ht, hm->hm_entry); 739 ASSERT(hm2 == hm); 740 last_page = pp; 741 return (hm); 742 } 743