xref: /titanic_41/usr/src/uts/i86pc/vm/hat_i86.c (revision e23347b1b88ce2c0847fad6e9467a1f953597aa7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 
27 /*
28  * VM - Hardware Address Translation management for i386 and amd64
29  *
30  * Implementation of the interfaces described in <common/vm/hat.h>
31  *
32  * Nearly all the details of how the hardware is managed should not be
33  * visible outside this layer except for misc. machine specific functions
34  * that work in conjunction with this code.
35  *
36  * Routines used only inside of i86pc/vm start with hati_ for HAT Internal.
37  */
38 
39 #include <sys/machparam.h>
40 #include <sys/machsystm.h>
41 #include <sys/mman.h>
42 #include <sys/types.h>
43 #include <sys/systm.h>
44 #include <sys/cpuvar.h>
45 #include <sys/thread.h>
46 #include <sys/proc.h>
47 #include <sys/cpu.h>
48 #include <sys/kmem.h>
49 #include <sys/disp.h>
50 #include <sys/shm.h>
51 #include <sys/sysmacros.h>
52 #include <sys/machparam.h>
53 #include <sys/vmem.h>
54 #include <sys/vmsystm.h>
55 #include <sys/promif.h>
56 #include <sys/var.h>
57 #include <sys/x86_archext.h>
58 #include <sys/atomic.h>
59 #include <sys/bitmap.h>
60 #include <sys/controlregs.h>
61 #include <sys/bootconf.h>
62 #include <sys/bootsvcs.h>
63 #include <sys/bootinfo.h>
64 #include <sys/archsystm.h>
65 
66 #include <vm/seg_kmem.h>
67 #include <vm/hat_i86.h>
68 #include <vm/as.h>
69 #include <vm/seg.h>
70 #include <vm/page.h>
71 #include <vm/seg_kp.h>
72 #include <vm/seg_kpm.h>
73 #include <vm/vm_dep.h>
74 #ifdef __xpv
75 #include <sys/hypervisor.h>
76 #endif
77 #include <vm/kboot_mmu.h>
78 #include <vm/seg_spt.h>
79 
80 #include <sys/cmn_err.h>
81 
82 /*
83  * Basic parameters for hat operation.
84  */
85 struct hat_mmu_info mmu;
86 
87 /*
88  * The page that is the kernel's top level pagetable.
89  *
90  * For 32 bit PAE support on i86pc, the kernel hat will use the 1st 4 entries
91  * on this 4K page for its top level page table. The remaining groups of
92  * 4 entries are used for per processor copies of user VLP pagetables for
93  * running threads.  See hat_switch() and reload_pae32() for details.
94  *
95  * vlp_page[0..3] - level==2 PTEs for kernel HAT
96  * vlp_page[4..7] - level==2 PTEs for user thread on cpu 0
97  * vlp_page[8..11]  - level==2 PTE for user thread on cpu 1
98  * etc...
99  */
100 static x86pte_t *vlp_page;
101 
102 /*
103  * forward declaration of internal utility routines
104  */
105 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected,
106 	x86pte_t new);
107 
108 /*
109  * The kernel address space exists in all HATs. To implement this the
110  * kernel reserves a fixed number of entries in the topmost level(s) of page
111  * tables. The values are setup during startup and then copied to every user
112  * hat created by hat_alloc(). This means that kernelbase must be:
113  *
114  *	  4Meg aligned for 32 bit kernels
115  *	512Gig aligned for x86_64 64 bit kernel
116  *
117  * The hat_kernel_range_ts describe what needs to be copied from kernel hat
118  * to each user hat.
119  */
120 typedef struct hat_kernel_range {
121 	level_t		hkr_level;
122 	uintptr_t	hkr_start_va;
123 	uintptr_t	hkr_end_va;	/* zero means to end of memory */
124 } hat_kernel_range_t;
125 #define	NUM_KERNEL_RANGE 2
126 static hat_kernel_range_t kernel_ranges[NUM_KERNEL_RANGE];
127 static int num_kernel_ranges;
128 
129 uint_t use_boot_reserve = 1;	/* cleared after early boot process */
130 uint_t can_steal_post_boot = 0;	/* set late in boot to enable stealing */
131 
132 /*
133  * enable_1gpg: controls 1g page support for user applications.
134  * By default, 1g pages are exported to user applications. enable_1gpg can
135  * be set to 0 to not export.
136  */
137 int	enable_1gpg = 1;
138 
139 /*
140  * AMD shanghai processors provide better management of 1gb ptes in its tlb.
141  * By default, 1g page support will be disabled for pre-shanghai AMD
142  * processors that don't have optimal tlb support for the 1g page size.
143  * chk_optimal_1gtlb can be set to 0 to force 1g page support on sub-optimal
144  * processors.
145  */
146 int	chk_optimal_1gtlb = 1;
147 
148 
149 #ifdef DEBUG
150 uint_t	map1gcnt;
151 #endif
152 
153 
154 /*
155  * A cpuset for all cpus. This is used for kernel address cross calls, since
156  * the kernel addresses apply to all cpus.
157  */
158 cpuset_t khat_cpuset;
159 
160 /*
161  * management stuff for hat structures
162  */
163 kmutex_t	hat_list_lock;
164 kcondvar_t	hat_list_cv;
165 kmem_cache_t	*hat_cache;
166 kmem_cache_t	*hat_hash_cache;
167 kmem_cache_t	*vlp_hash_cache;
168 
169 /*
170  * Simple statistics
171  */
172 struct hatstats hatstat;
173 
174 /*
175  * Some earlier hypervisor versions do not emulate cmpxchg of PTEs
176  * correctly.  For such hypervisors we must set PT_USER for kernel
177  * entries ourselves (normally the emulation would set PT_USER for
178  * kernel entries and PT_USER|PT_GLOBAL for user entries).  pt_kern is
179  * thus set appropriately.  Note that dboot/kbm is OK, as only the full
180  * HAT uses cmpxchg() and the other paths (hypercall etc.) were never
181  * incorrect.
182  */
183 int pt_kern;
184 
185 /*
186  * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's.
187  */
188 extern void atomic_orb(uchar_t *addr, uchar_t val);
189 extern void atomic_andb(uchar_t *addr, uchar_t val);
190 
191 #define	PP_GETRM(pp, rmmask)    (pp->p_nrm & rmmask)
192 #define	PP_ISMOD(pp)		PP_GETRM(pp, P_MOD)
193 #define	PP_ISREF(pp)		PP_GETRM(pp, P_REF)
194 #define	PP_ISRO(pp)		PP_GETRM(pp, P_RO)
195 
196 #define	PP_SETRM(pp, rm)	atomic_orb(&(pp->p_nrm), rm)
197 #define	PP_SETMOD(pp)		PP_SETRM(pp, P_MOD)
198 #define	PP_SETREF(pp)		PP_SETRM(pp, P_REF)
199 #define	PP_SETRO(pp)		PP_SETRM(pp, P_RO)
200 
201 #define	PP_CLRRM(pp, rm)	atomic_andb(&(pp->p_nrm), ~(rm))
202 #define	PP_CLRMOD(pp)   	PP_CLRRM(pp, P_MOD)
203 #define	PP_CLRREF(pp)   	PP_CLRRM(pp, P_REF)
204 #define	PP_CLRRO(pp)    	PP_CLRRM(pp, P_RO)
205 #define	PP_CLRALL(pp)		PP_CLRRM(pp, P_MOD | P_REF | P_RO)
206 
207 /*
208  * kmem cache constructor for struct hat
209  */
210 /*ARGSUSED*/
211 static int
212 hati_constructor(void *buf, void *handle, int kmflags)
213 {
214 	hat_t	*hat = buf;
215 
216 	mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
217 	bzero(hat->hat_pages_mapped,
218 	    sizeof (pgcnt_t) * (mmu.max_page_level + 1));
219 	hat->hat_ism_pgcnt = 0;
220 	hat->hat_stats = 0;
221 	hat->hat_flags = 0;
222 	CPUSET_ZERO(hat->hat_cpus);
223 	hat->hat_htable = NULL;
224 	hat->hat_ht_hash = NULL;
225 	return (0);
226 }
227 
228 /*
229  * Allocate a hat structure for as. We also create the top level
230  * htable and initialize it to contain the kernel hat entries.
231  */
232 hat_t *
233 hat_alloc(struct as *as)
234 {
235 	hat_t			*hat;
236 	htable_t		*ht;	/* top level htable */
237 	uint_t			use_vlp;
238 	uint_t			r;
239 	hat_kernel_range_t	*rp;
240 	uintptr_t		va;
241 	uintptr_t		eva;
242 	uint_t			start;
243 	uint_t			cnt;
244 	htable_t		*src;
245 
246 	/*
247 	 * Once we start creating user process HATs we can enable
248 	 * the htable_steal() code.
249 	 */
250 	if (can_steal_post_boot == 0)
251 		can_steal_post_boot = 1;
252 
253 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
254 	hat = kmem_cache_alloc(hat_cache, KM_SLEEP);
255 	hat->hat_as = as;
256 	mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
257 	ASSERT(hat->hat_flags == 0);
258 
259 #if defined(__xpv)
260 	/*
261 	 * No VLP stuff on the hypervisor due to the 64-bit split top level
262 	 * page tables.  On 32-bit it's not needed as the hypervisor takes
263 	 * care of copying the top level PTEs to a below 4Gig page.
264 	 */
265 	use_vlp = 0;
266 #else	/* __xpv */
267 	/* 32 bit processes uses a VLP style hat when running with PAE */
268 #if defined(__amd64)
269 	use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32);
270 #elif defined(__i386)
271 	use_vlp = mmu.pae_hat;
272 #endif
273 #endif	/* __xpv */
274 	if (use_vlp) {
275 		hat->hat_flags = HAT_VLP;
276 		bzero(hat->hat_vlp_ptes, VLP_SIZE);
277 	}
278 
279 	/*
280 	 * Allocate the htable hash
281 	 */
282 	if ((hat->hat_flags & HAT_VLP)) {
283 		hat->hat_num_hash = mmu.vlp_hash_cnt;
284 		hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP);
285 	} else {
286 		hat->hat_num_hash = mmu.hash_cnt;
287 		hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP);
288 	}
289 	bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *));
290 
291 	/*
292 	 * Initialize Kernel HAT entries at the top of the top level page
293 	 * tables for the new hat.
294 	 */
295 	hat->hat_htable = NULL;
296 	hat->hat_ht_cached = NULL;
297 	XPV_DISALLOW_MIGRATE();
298 	ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL);
299 	hat->hat_htable = ht;
300 
301 #if defined(__amd64)
302 	if (hat->hat_flags & HAT_VLP)
303 		goto init_done;
304 #endif
305 
306 	for (r = 0; r < num_kernel_ranges; ++r) {
307 		rp = &kernel_ranges[r];
308 		for (va = rp->hkr_start_va; va != rp->hkr_end_va;
309 		    va += cnt * LEVEL_SIZE(rp->hkr_level)) {
310 
311 			if (rp->hkr_level == TOP_LEVEL(hat))
312 				ht = hat->hat_htable;
313 			else
314 				ht = htable_create(hat, va, rp->hkr_level,
315 				    NULL);
316 
317 			start = htable_va2entry(va, ht);
318 			cnt = HTABLE_NUM_PTES(ht) - start;
319 			eva = va +
320 			    ((uintptr_t)cnt << LEVEL_SHIFT(rp->hkr_level));
321 			if (rp->hkr_end_va != 0 &&
322 			    (eva > rp->hkr_end_va || eva == 0))
323 				cnt = htable_va2entry(rp->hkr_end_va, ht) -
324 				    start;
325 
326 #if defined(__i386) && !defined(__xpv)
327 			if (ht->ht_flags & HTABLE_VLP) {
328 				bcopy(&vlp_page[start],
329 				    &hat->hat_vlp_ptes[start],
330 				    cnt * sizeof (x86pte_t));
331 				continue;
332 			}
333 #endif
334 			src = htable_lookup(kas.a_hat, va, rp->hkr_level);
335 			ASSERT(src != NULL);
336 			x86pte_copy(src, ht, start, cnt);
337 			htable_release(src);
338 		}
339 	}
340 
341 init_done:
342 
343 #if defined(__xpv)
344 	/*
345 	 * Pin top level page tables after initializing them
346 	 */
347 	xen_pin(hat->hat_htable->ht_pfn, mmu.max_level);
348 #if defined(__amd64)
349 	xen_pin(hat->hat_user_ptable, mmu.max_level);
350 #endif
351 #endif
352 	XPV_ALLOW_MIGRATE();
353 
354 	/*
355 	 * Put it at the start of the global list of all hats (used by stealing)
356 	 *
357 	 * kas.a_hat is not in the list but is instead used to find the
358 	 * first and last items in the list.
359 	 *
360 	 * - kas.a_hat->hat_next points to the start of the user hats.
361 	 *   The list ends where hat->hat_next == NULL
362 	 *
363 	 * - kas.a_hat->hat_prev points to the last of the user hats.
364 	 *   The list begins where hat->hat_prev == NULL
365 	 */
366 	mutex_enter(&hat_list_lock);
367 	hat->hat_prev = NULL;
368 	hat->hat_next = kas.a_hat->hat_next;
369 	if (hat->hat_next)
370 		hat->hat_next->hat_prev = hat;
371 	else
372 		kas.a_hat->hat_prev = hat;
373 	kas.a_hat->hat_next = hat;
374 	mutex_exit(&hat_list_lock);
375 
376 	return (hat);
377 }
378 
379 /*
380  * process has finished executing but as has not been cleaned up yet.
381  */
382 /*ARGSUSED*/
383 void
384 hat_free_start(hat_t *hat)
385 {
386 	ASSERT(AS_WRITE_HELD(hat->hat_as, &hat->hat_as->a_lock));
387 
388 	/*
389 	 * If the hat is currently a stealing victim, wait for the stealing
390 	 * to finish.  Once we mark it as HAT_FREEING, htable_steal()
391 	 * won't look at its pagetables anymore.
392 	 */
393 	mutex_enter(&hat_list_lock);
394 	while (hat->hat_flags & HAT_VICTIM)
395 		cv_wait(&hat_list_cv, &hat_list_lock);
396 	hat->hat_flags |= HAT_FREEING;
397 	mutex_exit(&hat_list_lock);
398 }
399 
400 /*
401  * An address space is being destroyed, so we destroy the associated hat.
402  */
403 void
404 hat_free_end(hat_t *hat)
405 {
406 	kmem_cache_t *cache;
407 
408 	ASSERT(hat->hat_flags & HAT_FREEING);
409 
410 	/*
411 	 * must not be running on the given hat
412 	 */
413 	ASSERT(CPU->cpu_current_hat != hat);
414 
415 	/*
416 	 * Remove it from the list of HATs
417 	 */
418 	mutex_enter(&hat_list_lock);
419 	if (hat->hat_prev)
420 		hat->hat_prev->hat_next = hat->hat_next;
421 	else
422 		kas.a_hat->hat_next = hat->hat_next;
423 	if (hat->hat_next)
424 		hat->hat_next->hat_prev = hat->hat_prev;
425 	else
426 		kas.a_hat->hat_prev = hat->hat_prev;
427 	mutex_exit(&hat_list_lock);
428 	hat->hat_next = hat->hat_prev = NULL;
429 
430 #if defined(__xpv)
431 	/*
432 	 * On the hypervisor, unpin top level page table(s)
433 	 */
434 	xen_unpin(hat->hat_htable->ht_pfn);
435 #if defined(__amd64)
436 	xen_unpin(hat->hat_user_ptable);
437 #endif
438 #endif
439 
440 	/*
441 	 * Make a pass through the htables freeing them all up.
442 	 */
443 	htable_purge_hat(hat);
444 
445 	/*
446 	 * Decide which kmem cache the hash table came from, then free it.
447 	 */
448 	if (hat->hat_flags & HAT_VLP)
449 		cache = vlp_hash_cache;
450 	else
451 		cache = hat_hash_cache;
452 	kmem_cache_free(cache, hat->hat_ht_hash);
453 	hat->hat_ht_hash = NULL;
454 
455 	hat->hat_flags = 0;
456 	kmem_cache_free(hat_cache, hat);
457 }
458 
459 /*
460  * round kernelbase down to a supported value to use for _userlimit
461  *
462  * userlimit must be aligned down to an entry in the top level htable.
463  * The one exception is for 32 bit HAT's running PAE.
464  */
465 uintptr_t
466 hat_kernelbase(uintptr_t va)
467 {
468 #if defined(__i386)
469 	va &= LEVEL_MASK(1);
470 #endif
471 	if (IN_VA_HOLE(va))
472 		panic("_userlimit %p will fall in VA hole\n", (void *)va);
473 	return (va);
474 }
475 
476 /*
477  *
478  */
479 static void
480 set_max_page_level()
481 {
482 	level_t lvl;
483 
484 	if (!kbm_largepage_support) {
485 		lvl = 0;
486 	} else {
487 		if (x86_feature & X86_1GPG) {
488 			lvl = 2;
489 			if (chk_optimal_1gtlb &&
490 			    cpuid_opteron_erratum(CPU, 6671130)) {
491 				lvl = 1;
492 			}
493 			if (plat_mnode_xcheck(LEVEL_SIZE(2) >>
494 			    LEVEL_SHIFT(0))) {
495 				lvl = 1;
496 			}
497 		} else {
498 			lvl = 1;
499 		}
500 	}
501 	mmu.max_page_level = lvl;
502 
503 	if ((lvl == 2) && (enable_1gpg == 0))
504 		mmu.umax_page_level = 1;
505 	else
506 		mmu.umax_page_level = lvl;
507 }
508 
509 /*
510  * Initialize hat data structures based on processor MMU information.
511  */
512 void
513 mmu_init(void)
514 {
515 	uint_t max_htables;
516 	uint_t pa_bits;
517 	uint_t va_bits;
518 	int i;
519 
520 	/*
521 	 * If CPU enabled the page table global bit, use it for the kernel
522 	 * This is bit 7 in CR4 (PGE - Page Global Enable).
523 	 */
524 	if ((x86_feature & X86_PGE) != 0 && (getcr4() & CR4_PGE) != 0)
525 		mmu.pt_global = PT_GLOBAL;
526 
527 	/*
528 	 * Detect NX and PAE usage.
529 	 */
530 	mmu.pae_hat = kbm_pae_support;
531 	if (kbm_nx_support)
532 		mmu.pt_nx = PT_NX;
533 	else
534 		mmu.pt_nx = 0;
535 
536 	/*
537 	 * Use CPU info to set various MMU parameters
538 	 */
539 	cpuid_get_addrsize(CPU, &pa_bits, &va_bits);
540 
541 	if (va_bits < sizeof (void *) * NBBY) {
542 		mmu.hole_start = (1ul << (va_bits - 1));
543 		mmu.hole_end = 0ul - mmu.hole_start - 1;
544 	} else {
545 		mmu.hole_end = 0;
546 		mmu.hole_start = mmu.hole_end - 1;
547 	}
548 #if defined(OPTERON_ERRATUM_121)
549 	/*
550 	 * If erratum 121 has already been detected at this time, hole_start
551 	 * contains the value to be subtracted from mmu.hole_start.
552 	 */
553 	ASSERT(hole_start == 0 || opteron_erratum_121 != 0);
554 	hole_start = mmu.hole_start - hole_start;
555 #else
556 	hole_start = mmu.hole_start;
557 #endif
558 	hole_end = mmu.hole_end;
559 
560 	mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1);
561 	if (mmu.pae_hat == 0 && pa_bits > 32)
562 		mmu.highest_pfn = PFN_4G - 1;
563 
564 	if (mmu.pae_hat) {
565 		mmu.pte_size = 8;	/* 8 byte PTEs */
566 		mmu.pte_size_shift = 3;
567 	} else {
568 		mmu.pte_size = 4;	/* 4 byte PTEs */
569 		mmu.pte_size_shift = 2;
570 	}
571 
572 	if (mmu.pae_hat && (x86_feature & X86_PAE) == 0)
573 		panic("Processor does not support PAE");
574 
575 	if ((x86_feature & X86_CX8) == 0)
576 		panic("Processor does not support cmpxchg8b instruction");
577 
578 #if defined(__amd64)
579 
580 	mmu.num_level = 4;
581 	mmu.max_level = 3;
582 	mmu.ptes_per_table = 512;
583 	mmu.top_level_count = 512;
584 
585 	mmu.level_shift[0] = 12;
586 	mmu.level_shift[1] = 21;
587 	mmu.level_shift[2] = 30;
588 	mmu.level_shift[3] = 39;
589 
590 #elif defined(__i386)
591 
592 	if (mmu.pae_hat) {
593 		mmu.num_level = 3;
594 		mmu.max_level = 2;
595 		mmu.ptes_per_table = 512;
596 		mmu.top_level_count = 4;
597 
598 		mmu.level_shift[0] = 12;
599 		mmu.level_shift[1] = 21;
600 		mmu.level_shift[2] = 30;
601 
602 	} else {
603 		mmu.num_level = 2;
604 		mmu.max_level = 1;
605 		mmu.ptes_per_table = 1024;
606 		mmu.top_level_count = 1024;
607 
608 		mmu.level_shift[0] = 12;
609 		mmu.level_shift[1] = 22;
610 	}
611 
612 #endif	/* __i386 */
613 
614 	for (i = 0; i < mmu.num_level; ++i) {
615 		mmu.level_size[i] = 1UL << mmu.level_shift[i];
616 		mmu.level_offset[i] = mmu.level_size[i] - 1;
617 		mmu.level_mask[i] = ~mmu.level_offset[i];
618 	}
619 
620 	set_max_page_level();
621 
622 	mmu_page_sizes = mmu.max_page_level + 1;
623 	mmu_exported_page_sizes = mmu.umax_page_level + 1;
624 
625 	/* restrict legacy applications from using pagesizes 1g and above */
626 	mmu_legacy_page_sizes =
627 	    (mmu_exported_page_sizes > 2) ? 2 : mmu_exported_page_sizes;
628 
629 
630 	for (i = 0; i <= mmu.max_page_level; ++i) {
631 		mmu.pte_bits[i] = PT_VALID | pt_kern;
632 		if (i > 0)
633 			mmu.pte_bits[i] |= PT_PAGESIZE;
634 	}
635 
636 	/*
637 	 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level.
638 	 */
639 	for (i = 1; i < mmu.num_level; ++i)
640 		mmu.ptp_bits[i] = PT_PTPBITS;
641 
642 #if defined(__i386)
643 	mmu.ptp_bits[2] = PT_VALID;
644 #endif
645 
646 	/*
647 	 * Compute how many hash table entries to have per process for htables.
648 	 * We start with 1 page's worth of entries.
649 	 *
650 	 * If physical memory is small, reduce the amount need to cover it.
651 	 */
652 	max_htables = physmax / mmu.ptes_per_table;
653 	mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *);
654 	while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables)
655 		mmu.hash_cnt >>= 1;
656 	mmu.vlp_hash_cnt = mmu.hash_cnt;
657 
658 #if defined(__amd64)
659 	/*
660 	 * If running in 64 bits and physical memory is large,
661 	 * increase the size of the cache to cover all of memory for
662 	 * a 64 bit process.
663 	 */
664 #define	HASH_MAX_LENGTH 4
665 	while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables)
666 		mmu.hash_cnt <<= 1;
667 #endif
668 }
669 
670 
671 /*
672  * initialize hat data structures
673  */
674 void
675 hat_init()
676 {
677 #if defined(__i386)
678 	/*
679 	 * _userlimit must be aligned correctly
680 	 */
681 	if ((_userlimit & LEVEL_MASK(1)) != _userlimit) {
682 		prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n",
683 		    (void *)_userlimit, (void *)LEVEL_SIZE(1));
684 		halt("hat_init(): Unable to continue");
685 	}
686 #endif
687 
688 	cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL);
689 
690 	/*
691 	 * initialize kmem caches
692 	 */
693 	htable_init();
694 	hment_init();
695 
696 	hat_cache = kmem_cache_create("hat_t",
697 	    sizeof (hat_t), 0, hati_constructor, NULL, NULL,
698 	    NULL, 0, 0);
699 
700 	hat_hash_cache = kmem_cache_create("HatHash",
701 	    mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
702 	    NULL, 0, 0);
703 
704 	/*
705 	 * VLP hats can use a smaller hash table size on large memroy machines
706 	 */
707 	if (mmu.hash_cnt == mmu.vlp_hash_cnt) {
708 		vlp_hash_cache = hat_hash_cache;
709 	} else {
710 		vlp_hash_cache = kmem_cache_create("HatVlpHash",
711 		    mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
712 		    NULL, 0, 0);
713 	}
714 
715 	/*
716 	 * Set up the kernel's hat
717 	 */
718 	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
719 	kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP);
720 	mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
721 	kas.a_hat->hat_as = &kas;
722 	kas.a_hat->hat_flags = 0;
723 	AS_LOCK_EXIT(&kas, &kas.a_lock);
724 
725 	CPUSET_ZERO(khat_cpuset);
726 	CPUSET_ADD(khat_cpuset, CPU->cpu_id);
727 
728 	/*
729 	 * The kernel hat's next pointer serves as the head of the hat list .
730 	 * The kernel hat's prev pointer tracks the last hat on the list for
731 	 * htable_steal() to use.
732 	 */
733 	kas.a_hat->hat_next = NULL;
734 	kas.a_hat->hat_prev = NULL;
735 
736 	/*
737 	 * Allocate an htable hash bucket for the kernel
738 	 * XX64 - tune for 64 bit procs
739 	 */
740 	kas.a_hat->hat_num_hash = mmu.hash_cnt;
741 	kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP);
742 	bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *));
743 
744 	/*
745 	 * zero out the top level and cached htable pointers
746 	 */
747 	kas.a_hat->hat_ht_cached = NULL;
748 	kas.a_hat->hat_htable = NULL;
749 
750 	/*
751 	 * Pre-allocate hrm_hashtab before enabling the collection of
752 	 * refmod statistics.  Allocating on the fly would mean us
753 	 * running the risk of suffering recursive mutex enters or
754 	 * deadlocks.
755 	 */
756 	hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
757 	    KM_SLEEP);
758 }
759 
760 /*
761  * Prepare CPU specific pagetables for VLP processes on 64 bit kernels.
762  *
763  * Each CPU has a set of 2 pagetables that are reused for any 32 bit
764  * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and
765  * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes.
766  */
767 /*ARGSUSED*/
768 static void
769 hat_vlp_setup(struct cpu *cpu)
770 {
771 #if defined(__amd64) && !defined(__xpv)
772 	struct hat_cpu_info *hci = cpu->cpu_hat_info;
773 	pfn_t pfn;
774 
775 	/*
776 	 * allocate the level==2 page table for the bottom most
777 	 * 512Gig of address space (this is where 32 bit apps live)
778 	 */
779 	ASSERT(hci != NULL);
780 	hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
781 
782 	/*
783 	 * Allocate a top level pagetable and copy the kernel's
784 	 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry.
785 	 */
786 	hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
787 	hci->hci_vlp_pfn =
788 	    hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes);
789 	ASSERT(hci->hci_vlp_pfn != PFN_INVALID);
790 	bcopy(vlp_page, hci->hci_vlp_l3ptes, MMU_PAGESIZE);
791 
792 	pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes);
793 	ASSERT(pfn != PFN_INVALID);
794 	hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2);
795 #endif /* __amd64 && !__xpv */
796 }
797 
798 /*ARGSUSED*/
799 static void
800 hat_vlp_teardown(cpu_t *cpu)
801 {
802 #if defined(__amd64) && !defined(__xpv)
803 	struct hat_cpu_info *hci;
804 
805 	if ((hci = cpu->cpu_hat_info) == NULL)
806 		return;
807 	if (hci->hci_vlp_l2ptes)
808 		kmem_free(hci->hci_vlp_l2ptes, MMU_PAGESIZE);
809 	if (hci->hci_vlp_l3ptes)
810 		kmem_free(hci->hci_vlp_l3ptes, MMU_PAGESIZE);
811 #endif
812 }
813 
814 #define	NEXT_HKR(r, l, s, e) {			\
815 	kernel_ranges[r].hkr_level = l;		\
816 	kernel_ranges[r].hkr_start_va = s;	\
817 	kernel_ranges[r].hkr_end_va = e;	\
818 	++r;					\
819 }
820 
821 /*
822  * Finish filling in the kernel hat.
823  * Pre fill in all top level kernel page table entries for the kernel's
824  * part of the address range.  From this point on we can't use any new
825  * kernel large pages if they need PTE's at max_level
826  *
827  * create the kmap mappings.
828  */
829 void
830 hat_init_finish(void)
831 {
832 	size_t		size;
833 	uint_t		r = 0;
834 	uintptr_t	va;
835 	hat_kernel_range_t *rp;
836 
837 
838 	/*
839 	 * We are now effectively running on the kernel hat.
840 	 * Clearing use_boot_reserve shuts off using the pre-allocated boot
841 	 * reserve for all HAT allocations.  From here on, the reserves are
842 	 * only used when avoiding recursion in kmem_alloc().
843 	 */
844 	use_boot_reserve = 0;
845 	htable_adjust_reserve();
846 
847 	/*
848 	 * User HATs are initialized with copies of all kernel mappings in
849 	 * higher level page tables. Ensure that those entries exist.
850 	 */
851 #if defined(__amd64)
852 
853 	NEXT_HKR(r, 3, kernelbase, 0);
854 #if defined(__xpv)
855 	NEXT_HKR(r, 3, HYPERVISOR_VIRT_START, HYPERVISOR_VIRT_END);
856 #endif
857 
858 #elif defined(__i386)
859 
860 #if !defined(__xpv)
861 	if (mmu.pae_hat) {
862 		va = kernelbase;
863 		if ((va & LEVEL_MASK(2)) != va) {
864 			va = P2ROUNDUP(va, LEVEL_SIZE(2));
865 			NEXT_HKR(r, 1, kernelbase, va);
866 		}
867 		if (va != 0)
868 			NEXT_HKR(r, 2, va, 0);
869 	} else
870 #endif /* __xpv */
871 		NEXT_HKR(r, 1, kernelbase, 0);
872 
873 #endif /* __i386 */
874 
875 	num_kernel_ranges = r;
876 
877 	/*
878 	 * Create all the kernel pagetables that will have entries
879 	 * shared to user HATs.
880 	 */
881 	for (r = 0; r < num_kernel_ranges; ++r) {
882 		rp = &kernel_ranges[r];
883 		for (va = rp->hkr_start_va; va != rp->hkr_end_va;
884 		    va += LEVEL_SIZE(rp->hkr_level)) {
885 			htable_t *ht;
886 
887 			if (IN_HYPERVISOR_VA(va))
888 				continue;
889 
890 			/* can/must skip if a page mapping already exists */
891 			if (rp->hkr_level <= mmu.max_page_level &&
892 			    (ht = htable_getpage(kas.a_hat, va, NULL)) !=
893 			    NULL) {
894 				htable_release(ht);
895 				continue;
896 			}
897 
898 			(void) htable_create(kas.a_hat, va, rp->hkr_level - 1,
899 			    NULL);
900 		}
901 	}
902 
903 	/*
904 	 * 32 bit PAE metal kernels use only 4 of the 512 entries in the
905 	 * page holding the top level pagetable. We use the remainder for
906 	 * the "per CPU" page tables for VLP processes.
907 	 * Map the top level kernel pagetable into the kernel to make
908 	 * it easy to use bcopy access these tables.
909 	 */
910 	if (mmu.pae_hat) {
911 		vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP);
912 		hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE,
913 		    kas.a_hat->hat_htable->ht_pfn,
914 #if !defined(__xpv)
915 		    PROT_WRITE |
916 #endif
917 		    PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK,
918 		    HAT_LOAD | HAT_LOAD_NOCONSIST);
919 	}
920 	hat_vlp_setup(CPU);
921 
922 	/*
923 	 * Create kmap (cached mappings of kernel PTEs)
924 	 * for 32 bit we map from segmap_start .. ekernelheap
925 	 * for 64 bit we map from segmap_start .. segmap_start + segmapsize;
926 	 */
927 #if defined(__i386)
928 	size = (uintptr_t)ekernelheap - segmap_start;
929 #elif defined(__amd64)
930 	size = segmapsize;
931 #endif
932 	hat_kmap_init((uintptr_t)segmap_start, size);
933 }
934 
935 /*
936  * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references
937  * are 32 bit, so for safety we must use cas64() to install these.
938  */
939 #ifdef __i386
940 static void
941 reload_pae32(hat_t *hat, cpu_t *cpu)
942 {
943 	x86pte_t *src;
944 	x86pte_t *dest;
945 	x86pte_t pte;
946 	int i;
947 
948 	/*
949 	 * Load the 4 entries of the level 2 page table into this
950 	 * cpu's range of the vlp_page and point cr3 at them.
951 	 */
952 	ASSERT(mmu.pae_hat);
953 	src = hat->hat_vlp_ptes;
954 	dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES;
955 	for (i = 0; i < VLP_NUM_PTES; ++i) {
956 		for (;;) {
957 			pte = dest[i];
958 			if (pte == src[i])
959 				break;
960 			if (cas64(dest + i, pte, src[i]) != src[i])
961 				break;
962 		}
963 	}
964 }
965 #endif
966 
967 /*
968  * Switch to a new active hat, maintaining bit masks to track active CPUs.
969  *
970  * On the 32-bit PAE hypervisor, %cr3 is a 64-bit value, on metal it
971  * remains a 32-bit value.
972  */
973 void
974 hat_switch(hat_t *hat)
975 {
976 	uint64_t	newcr3;
977 	cpu_t		*cpu = CPU;
978 	hat_t		*old = cpu->cpu_current_hat;
979 
980 	/*
981 	 * set up this information first, so we don't miss any cross calls
982 	 */
983 	if (old != NULL) {
984 		if (old == hat)
985 			return;
986 		if (old != kas.a_hat)
987 			CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id);
988 	}
989 
990 	/*
991 	 * Add this CPU to the active set for this HAT.
992 	 */
993 	if (hat != kas.a_hat) {
994 		CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id);
995 	}
996 	cpu->cpu_current_hat = hat;
997 
998 	/*
999 	 * now go ahead and load cr3
1000 	 */
1001 	if (hat->hat_flags & HAT_VLP) {
1002 #if defined(__amd64)
1003 		x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes;
1004 
1005 		VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1006 		newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn);
1007 #elif defined(__i386)
1008 		reload_pae32(hat, cpu);
1009 		newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) +
1010 		    (cpu->cpu_id + 1) * VLP_SIZE;
1011 #endif
1012 	} else {
1013 		newcr3 = MAKECR3((uint64_t)hat->hat_htable->ht_pfn);
1014 	}
1015 #ifdef __xpv
1016 	{
1017 		struct mmuext_op t[2];
1018 		uint_t retcnt;
1019 		uint_t opcnt = 1;
1020 
1021 		t[0].cmd = MMUEXT_NEW_BASEPTR;
1022 		t[0].arg1.mfn = mmu_btop(pa_to_ma(newcr3));
1023 #if defined(__amd64)
1024 		/*
1025 		 * There's an interesting problem here, as to what to
1026 		 * actually specify when switching to the kernel hat.
1027 		 * For now we'll reuse the kernel hat again.
1028 		 */
1029 		t[1].cmd = MMUEXT_NEW_USER_BASEPTR;
1030 		if (hat == kas.a_hat)
1031 			t[1].arg1.mfn = mmu_btop(pa_to_ma(newcr3));
1032 		else
1033 			t[1].arg1.mfn = pfn_to_mfn(hat->hat_user_ptable);
1034 		++opcnt;
1035 #endif	/* __amd64 */
1036 		if (HYPERVISOR_mmuext_op(t, opcnt, &retcnt, DOMID_SELF) < 0)
1037 			panic("HYPERVISOR_mmu_update() failed");
1038 		ASSERT(retcnt == opcnt);
1039 
1040 	}
1041 #else
1042 	setcr3(newcr3);
1043 #endif
1044 	ASSERT(cpu == CPU);
1045 }
1046 
1047 /*
1048  * Utility to return a valid x86pte_t from protections, pfn, and level number
1049  */
1050 static x86pte_t
1051 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags)
1052 {
1053 	x86pte_t	pte;
1054 	uint_t		cache_attr = attr & HAT_ORDER_MASK;
1055 
1056 	pte = MAKEPTE(pfn, level);
1057 
1058 	if (attr & PROT_WRITE)
1059 		PTE_SET(pte, PT_WRITABLE);
1060 
1061 	if (attr & PROT_USER)
1062 		PTE_SET(pte, PT_USER);
1063 
1064 	if (!(attr & PROT_EXEC))
1065 		PTE_SET(pte, mmu.pt_nx);
1066 
1067 	/*
1068 	 * Set the software bits used track ref/mod sync's and hments.
1069 	 * If not using REF/MOD, set them to avoid h/w rewriting PTEs.
1070 	 */
1071 	if (flags & HAT_LOAD_NOCONSIST)
1072 		PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD);
1073 	else if (attr & HAT_NOSYNC)
1074 		PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD);
1075 
1076 	/*
1077 	 * Set the caching attributes in the PTE. The combination
1078 	 * of attributes are poorly defined, so we pay attention
1079 	 * to them in the given order.
1080 	 *
1081 	 * The test for HAT_STRICTORDER is different because it's defined
1082 	 * as "0" - which was a stupid thing to do, but is too late to change!
1083 	 */
1084 	if (cache_attr == HAT_STRICTORDER) {
1085 		PTE_SET(pte, PT_NOCACHE);
1086 	/*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */
1087 	} else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) {
1088 		/* nothing to set */;
1089 	} else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) {
1090 		PTE_SET(pte, PT_NOCACHE);
1091 		if (x86_feature & X86_PAT)
1092 			PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE);
1093 		else
1094 			PTE_SET(pte, PT_WRITETHRU);
1095 	} else {
1096 		panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr);
1097 	}
1098 
1099 	return (pte);
1100 }
1101 
1102 /*
1103  * Duplicate address translations of the parent to the child.
1104  * This function really isn't used anymore.
1105  */
1106 /*ARGSUSED*/
1107 int
1108 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag)
1109 {
1110 	ASSERT((uintptr_t)addr < kernelbase);
1111 	ASSERT(new != kas.a_hat);
1112 	ASSERT(old != kas.a_hat);
1113 	return (0);
1114 }
1115 
1116 /*
1117  * Allocate any hat resources required for a process being swapped in.
1118  */
1119 /*ARGSUSED*/
1120 void
1121 hat_swapin(hat_t *hat)
1122 {
1123 	/* do nothing - we let everything fault back in */
1124 }
1125 
1126 /*
1127  * Unload all translations associated with an address space of a process
1128  * that is being swapped out.
1129  */
1130 void
1131 hat_swapout(hat_t *hat)
1132 {
1133 	uintptr_t	vaddr = (uintptr_t)0;
1134 	uintptr_t	eaddr = _userlimit;
1135 	htable_t	*ht = NULL;
1136 	level_t		l;
1137 
1138 	XPV_DISALLOW_MIGRATE();
1139 	/*
1140 	 * We can't just call hat_unload(hat, 0, _userlimit...)  here, because
1141 	 * seg_spt and shared pagetables can't be swapped out.
1142 	 * Take a look at segspt_shmswapout() - it's a big no-op.
1143 	 *
1144 	 * Instead we'll walk through all the address space and unload
1145 	 * any mappings which we are sure are not shared, not locked.
1146 	 */
1147 	ASSERT(IS_PAGEALIGNED(vaddr));
1148 	ASSERT(IS_PAGEALIGNED(eaddr));
1149 	ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1150 	if ((uintptr_t)hat->hat_as->a_userlimit < eaddr)
1151 		eaddr = (uintptr_t)hat->hat_as->a_userlimit;
1152 
1153 	while (vaddr < eaddr) {
1154 		(void) htable_walk(hat, &ht, &vaddr, eaddr);
1155 		if (ht == NULL)
1156 			break;
1157 
1158 		ASSERT(!IN_VA_HOLE(vaddr));
1159 
1160 		/*
1161 		 * If the page table is shared skip its entire range.
1162 		 */
1163 		l = ht->ht_level;
1164 		if (ht->ht_flags & HTABLE_SHARED_PFN) {
1165 			vaddr = ht->ht_vaddr + LEVEL_SIZE(l + 1);
1166 			htable_release(ht);
1167 			ht = NULL;
1168 			continue;
1169 		}
1170 
1171 		/*
1172 		 * If the page table has no locked entries, unload this one.
1173 		 */
1174 		if (ht->ht_lock_cnt == 0)
1175 			hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l),
1176 			    HAT_UNLOAD_UNMAP);
1177 
1178 		/*
1179 		 * If we have a level 0 page table with locked entries,
1180 		 * skip the entire page table, otherwise skip just one entry.
1181 		 */
1182 		if (ht->ht_lock_cnt > 0 && l == 0)
1183 			vaddr = ht->ht_vaddr + LEVEL_SIZE(1);
1184 		else
1185 			vaddr += LEVEL_SIZE(l);
1186 	}
1187 	if (ht)
1188 		htable_release(ht);
1189 
1190 	/*
1191 	 * We're in swapout because the system is low on memory, so
1192 	 * go back and flush all the htables off the cached list.
1193 	 */
1194 	htable_purge_hat(hat);
1195 	XPV_ALLOW_MIGRATE();
1196 }
1197 
1198 /*
1199  * returns number of bytes that have valid mappings in hat.
1200  */
1201 size_t
1202 hat_get_mapped_size(hat_t *hat)
1203 {
1204 	size_t total = 0;
1205 	int l;
1206 
1207 	for (l = 0; l <= mmu.max_page_level; l++)
1208 		total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l));
1209 	total += hat->hat_ism_pgcnt;
1210 
1211 	return (total);
1212 }
1213 
1214 /*
1215  * enable/disable collection of stats for hat.
1216  */
1217 int
1218 hat_stats_enable(hat_t *hat)
1219 {
1220 	atomic_add_32(&hat->hat_stats, 1);
1221 	return (1);
1222 }
1223 
1224 void
1225 hat_stats_disable(hat_t *hat)
1226 {
1227 	atomic_add_32(&hat->hat_stats, -1);
1228 }
1229 
1230 /*
1231  * Utility to sync the ref/mod bits from a page table entry to the page_t
1232  * We must be holding the mapping list lock when this is called.
1233  */
1234 static void
1235 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level)
1236 {
1237 	uint_t	rm = 0;
1238 	pgcnt_t	pgcnt;
1239 
1240 	if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
1241 		return;
1242 
1243 	if (PTE_GET(pte, PT_REF))
1244 		rm |= P_REF;
1245 
1246 	if (PTE_GET(pte, PT_MOD))
1247 		rm |= P_MOD;
1248 
1249 	if (rm == 0)
1250 		return;
1251 
1252 	/*
1253 	 * sync to all constituent pages of a large page
1254 	 */
1255 	ASSERT(x86_hm_held(pp));
1256 	pgcnt = page_get_pagecnt(level);
1257 	ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
1258 	for (; pgcnt > 0; --pgcnt) {
1259 		/*
1260 		 * hat_page_demote() can't decrease
1261 		 * pszc below this mapping size
1262 		 * since this large mapping existed after we
1263 		 * took mlist lock.
1264 		 */
1265 		ASSERT(pp->p_szc >= level);
1266 		hat_page_setattr(pp, rm);
1267 		++pp;
1268 	}
1269 }
1270 
1271 /*
1272  * This the set of PTE bits for PFN, permissions and caching
1273  * that are allowed to change on a HAT_LOAD_REMAP
1274  */
1275 #define	PT_REMAP_BITS							\
1276 	(PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU |		\
1277 	PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE | PT_IGNORE | PT_REF | PT_MOD)
1278 
1279 #define	REMAPASSERT(EX)	if (!(EX)) panic("hati_pte_map: " #EX)
1280 /*
1281  * Do the low-level work to get a mapping entered into a HAT's pagetables
1282  * and in the mapping list of the associated page_t.
1283  */
1284 static int
1285 hati_pte_map(
1286 	htable_t	*ht,
1287 	uint_t		entry,
1288 	page_t		*pp,
1289 	x86pte_t	pte,
1290 	int		flags,
1291 	void		*pte_ptr)
1292 {
1293 	hat_t		*hat = ht->ht_hat;
1294 	x86pte_t	old_pte;
1295 	level_t		l = ht->ht_level;
1296 	hment_t		*hm;
1297 	uint_t		is_consist;
1298 	uint_t		is_locked;
1299 	int		rv = 0;
1300 
1301 	/*
1302 	 * Is this a consistent (ie. need mapping list lock) mapping?
1303 	 */
1304 	is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0);
1305 
1306 	/*
1307 	 * Track locked mapping count in the htable.  Do this first,
1308 	 * as we track locking even if there already is a mapping present.
1309 	 */
1310 	is_locked = (flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat;
1311 	if (is_locked)
1312 		HTABLE_LOCK_INC(ht);
1313 
1314 	/*
1315 	 * Acquire the page's mapping list lock and get an hment to use.
1316 	 * Note that hment_prepare() might return NULL.
1317 	 */
1318 	if (is_consist) {
1319 		x86_hm_enter(pp);
1320 		hm = hment_prepare(ht, entry, pp);
1321 	}
1322 
1323 	/*
1324 	 * Set the new pte, retrieving the old one at the same time.
1325 	 */
1326 	old_pte = x86pte_set(ht, entry, pte, pte_ptr);
1327 
1328 	/*
1329 	 * Did we get a large page / page table collision?
1330 	 */
1331 	if (old_pte == LPAGE_ERROR) {
1332 		if (is_locked)
1333 			HTABLE_LOCK_DEC(ht);
1334 		rv = -1;
1335 		goto done;
1336 	}
1337 
1338 	/*
1339 	 * If the mapping didn't change there is nothing more to do.
1340 	 */
1341 	if (PTE_EQUIV(pte, old_pte))
1342 		goto done;
1343 
1344 	/*
1345 	 * Install a new mapping in the page's mapping list
1346 	 */
1347 	if (!PTE_ISVALID(old_pte)) {
1348 		if (is_consist) {
1349 			hment_assign(ht, entry, pp, hm);
1350 			x86_hm_exit(pp);
1351 		} else {
1352 			ASSERT(flags & HAT_LOAD_NOCONSIST);
1353 		}
1354 #if defined(__amd64)
1355 		if (ht->ht_flags & HTABLE_VLP) {
1356 			cpu_t *cpu = CPU;
1357 			x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes;
1358 			VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1359 		}
1360 #endif
1361 		HTABLE_INC(ht->ht_valid_cnt);
1362 		PGCNT_INC(hat, l);
1363 		return (rv);
1364 	}
1365 
1366 	/*
1367 	 * Remap's are more complicated:
1368 	 *  - HAT_LOAD_REMAP must be specified if changing the pfn.
1369 	 *    We also require that NOCONSIST be specified.
1370 	 *  - Otherwise only permission or caching bits may change.
1371 	 */
1372 	if (!PTE_ISPAGE(old_pte, l))
1373 		panic("non-null/page mapping pte=" FMT_PTE, old_pte);
1374 
1375 	if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) {
1376 		REMAPASSERT(flags & HAT_LOAD_REMAP);
1377 		REMAPASSERT(flags & HAT_LOAD_NOCONSIST);
1378 		REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
1379 		REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) ==
1380 		    pf_is_memory(PTE2PFN(pte, l)));
1381 		REMAPASSERT(!is_consist);
1382 	}
1383 
1384 	/*
1385 	 * We only let remaps change the certain bits in the PTE.
1386 	 */
1387 	if (PTE_GET(old_pte, ~PT_REMAP_BITS) != PTE_GET(pte, ~PT_REMAP_BITS))
1388 		panic("remap bits changed: old_pte="FMT_PTE", pte="FMT_PTE"\n",
1389 		    old_pte, pte);
1390 
1391 	/*
1392 	 * We don't create any mapping list entries on a remap, so release
1393 	 * any allocated hment after we drop the mapping list lock.
1394 	 */
1395 done:
1396 	if (is_consist) {
1397 		x86_hm_exit(pp);
1398 		if (hm != NULL)
1399 			hment_free(hm);
1400 	}
1401 	return (rv);
1402 }
1403 
1404 /*
1405  * Internal routine to load a single page table entry. This only fails if
1406  * we attempt to overwrite a page table link with a large page.
1407  */
1408 static int
1409 hati_load_common(
1410 	hat_t		*hat,
1411 	uintptr_t	va,
1412 	page_t		*pp,
1413 	uint_t		attr,
1414 	uint_t		flags,
1415 	level_t		level,
1416 	pfn_t		pfn)
1417 {
1418 	htable_t	*ht;
1419 	uint_t		entry;
1420 	x86pte_t	pte;
1421 	int		rv = 0;
1422 
1423 	/*
1424 	 * The number 16 is arbitrary and here to catch a recursion problem
1425 	 * early before we blow out the kernel stack.
1426 	 */
1427 	++curthread->t_hatdepth;
1428 	ASSERT(curthread->t_hatdepth < 16);
1429 
1430 	ASSERT(hat == kas.a_hat ||
1431 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1432 
1433 	if (flags & HAT_LOAD_SHARE)
1434 		hat->hat_flags |= HAT_SHARED;
1435 
1436 	/*
1437 	 * Find the page table that maps this page if it already exists.
1438 	 */
1439 	ht = htable_lookup(hat, va, level);
1440 
1441 	/*
1442 	 * We must have HAT_LOAD_NOCONSIST if page_t is NULL.
1443 	 */
1444 	if (pp == NULL)
1445 		flags |= HAT_LOAD_NOCONSIST;
1446 
1447 	if (ht == NULL) {
1448 		ht = htable_create(hat, va, level, NULL);
1449 		ASSERT(ht != NULL);
1450 	}
1451 	entry = htable_va2entry(va, ht);
1452 
1453 	/*
1454 	 * a bunch of paranoid error checking
1455 	 */
1456 	ASSERT(ht->ht_busy > 0);
1457 	if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht))
1458 		panic("hati_load_common: bad htable %p, va %p",
1459 		    (void *)ht, (void *)va);
1460 	ASSERT(ht->ht_level == level);
1461 
1462 	/*
1463 	 * construct the new PTE
1464 	 */
1465 	if (hat == kas.a_hat)
1466 		attr &= ~PROT_USER;
1467 	pte = hati_mkpte(pfn, attr, level, flags);
1468 	if (hat == kas.a_hat && va >= kernelbase)
1469 		PTE_SET(pte, mmu.pt_global);
1470 
1471 	/*
1472 	 * establish the mapping
1473 	 */
1474 	rv = hati_pte_map(ht, entry, pp, pte, flags, NULL);
1475 
1476 	/*
1477 	 * release the htable and any reserves
1478 	 */
1479 	htable_release(ht);
1480 	--curthread->t_hatdepth;
1481 	return (rv);
1482 }
1483 
1484 /*
1485  * special case of hat_memload to deal with some kernel addrs for performance
1486  */
1487 static void
1488 hat_kmap_load(
1489 	caddr_t		addr,
1490 	page_t		*pp,
1491 	uint_t		attr,
1492 	uint_t		flags)
1493 {
1494 	uintptr_t	va = (uintptr_t)addr;
1495 	x86pte_t	pte;
1496 	pfn_t		pfn = page_pptonum(pp);
1497 	pgcnt_t		pg_off = mmu_btop(va - mmu.kmap_addr);
1498 	htable_t	*ht;
1499 	uint_t		entry;
1500 	void		*pte_ptr;
1501 
1502 	/*
1503 	 * construct the requested PTE
1504 	 */
1505 	attr &= ~PROT_USER;
1506 	attr |= HAT_STORECACHING_OK;
1507 	pte = hati_mkpte(pfn, attr, 0, flags);
1508 	PTE_SET(pte, mmu.pt_global);
1509 
1510 	/*
1511 	 * Figure out the pte_ptr and htable and use common code to finish up
1512 	 */
1513 	if (mmu.pae_hat)
1514 		pte_ptr = mmu.kmap_ptes + pg_off;
1515 	else
1516 		pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off;
1517 	ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >>
1518 	    LEVEL_SHIFT(1)];
1519 	entry = htable_va2entry(va, ht);
1520 	++curthread->t_hatdepth;
1521 	ASSERT(curthread->t_hatdepth < 16);
1522 	(void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr);
1523 	--curthread->t_hatdepth;
1524 }
1525 
1526 /*
1527  * hat_memload() - load a translation to the given page struct
1528  *
1529  * Flags for hat_memload/hat_devload/hat_*attr.
1530  *
1531  * 	HAT_LOAD	Default flags to load a translation to the page.
1532  *
1533  * 	HAT_LOAD_LOCK	Lock down mapping resources; hat_map(), hat_memload(),
1534  *			and hat_devload().
1535  *
1536  *	HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list.
1537  *			sets PT_NOCONSIST
1538  *
1539  *	HAT_LOAD_SHARE	A flag to hat_memload() to indicate h/w page tables
1540  *			that map some user pages (not kas) is shared by more
1541  *			than one process (eg. ISM).
1542  *
1543  *	HAT_LOAD_REMAP	Reload a valid pte with a different page frame.
1544  *
1545  *	HAT_NO_KALLOC	Do not kmem_alloc while creating the mapping; at this
1546  *			point, it's setting up mapping to allocate internal
1547  *			hat layer data structures.  This flag forces hat layer
1548  *			to tap its reserves in order to prevent infinite
1549  *			recursion.
1550  *
1551  * The following is a protection attribute (like PROT_READ, etc.)
1552  *
1553  *	HAT_NOSYNC	set PT_NOSYNC - this mapping's ref/mod bits
1554  *			are never cleared.
1555  *
1556  * Installing new valid PTE's and creation of the mapping list
1557  * entry are controlled under the same lock. It's derived from the
1558  * page_t being mapped.
1559  */
1560 static uint_t supported_memload_flags =
1561 	HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST |
1562 	HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT;
1563 
1564 void
1565 hat_memload(
1566 	hat_t		*hat,
1567 	caddr_t		addr,
1568 	page_t		*pp,
1569 	uint_t		attr,
1570 	uint_t		flags)
1571 {
1572 	uintptr_t	va = (uintptr_t)addr;
1573 	level_t		level = 0;
1574 	pfn_t		pfn = page_pptonum(pp);
1575 
1576 	XPV_DISALLOW_MIGRATE();
1577 	ASSERT(IS_PAGEALIGNED(va));
1578 	ASSERT(hat == kas.a_hat || va < _userlimit);
1579 	ASSERT(hat == kas.a_hat ||
1580 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1581 	ASSERT((flags & supported_memload_flags) == flags);
1582 
1583 	ASSERT(!IN_VA_HOLE(va));
1584 	ASSERT(!PP_ISFREE(pp));
1585 
1586 	/*
1587 	 * kernel address special case for performance.
1588 	 */
1589 	if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
1590 		ASSERT(hat == kas.a_hat);
1591 		hat_kmap_load(addr, pp, attr, flags);
1592 		XPV_ALLOW_MIGRATE();
1593 		return;
1594 	}
1595 
1596 	/*
1597 	 * This is used for memory with normal caching enabled, so
1598 	 * always set HAT_STORECACHING_OK.
1599 	 */
1600 	attr |= HAT_STORECACHING_OK;
1601 	if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0)
1602 		panic("unexpected hati_load_common() failure");
1603 	XPV_ALLOW_MIGRATE();
1604 }
1605 
1606 /* ARGSUSED */
1607 void
1608 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
1609     uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
1610 {
1611 	hat_memload(hat, addr, pp, attr, flags);
1612 }
1613 
1614 /*
1615  * Load the given array of page structs using large pages when possible
1616  */
1617 void
1618 hat_memload_array(
1619 	hat_t		*hat,
1620 	caddr_t		addr,
1621 	size_t		len,
1622 	page_t		**pages,
1623 	uint_t		attr,
1624 	uint_t		flags)
1625 {
1626 	uintptr_t	va = (uintptr_t)addr;
1627 	uintptr_t	eaddr = va + len;
1628 	level_t		level;
1629 	size_t		pgsize;
1630 	pgcnt_t		pgindx = 0;
1631 	pfn_t		pfn;
1632 	pgcnt_t		i;
1633 
1634 	XPV_DISALLOW_MIGRATE();
1635 	ASSERT(IS_PAGEALIGNED(va));
1636 	ASSERT(hat == kas.a_hat || va + len <= _userlimit);
1637 	ASSERT(hat == kas.a_hat ||
1638 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1639 	ASSERT((flags & supported_memload_flags) == flags);
1640 
1641 	/*
1642 	 * memload is used for memory with full caching enabled, so
1643 	 * set HAT_STORECACHING_OK.
1644 	 */
1645 	attr |= HAT_STORECACHING_OK;
1646 
1647 	/*
1648 	 * handle all pages using largest possible pagesize
1649 	 */
1650 	while (va < eaddr) {
1651 		/*
1652 		 * decide what level mapping to use (ie. pagesize)
1653 		 */
1654 		pfn = page_pptonum(pages[pgindx]);
1655 		for (level = mmu.max_page_level; ; --level) {
1656 			pgsize = LEVEL_SIZE(level);
1657 			if (level == 0)
1658 				break;
1659 
1660 			if (!IS_P2ALIGNED(va, pgsize) ||
1661 			    (eaddr - va) < pgsize ||
1662 			    !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize))
1663 				continue;
1664 
1665 			/*
1666 			 * To use a large mapping of this size, all the
1667 			 * pages we are passed must be sequential subpages
1668 			 * of the large page.
1669 			 * hat_page_demote() can't change p_szc because
1670 			 * all pages are locked.
1671 			 */
1672 			if (pages[pgindx]->p_szc >= level) {
1673 				for (i = 0; i < mmu_btop(pgsize); ++i) {
1674 					if (pfn + i !=
1675 					    page_pptonum(pages[pgindx + i]))
1676 						break;
1677 					ASSERT(pages[pgindx + i]->p_szc >=
1678 					    level);
1679 					ASSERT(pages[pgindx] + i ==
1680 					    pages[pgindx + i]);
1681 				}
1682 				if (i == mmu_btop(pgsize)) {
1683 #ifdef DEBUG
1684 					if (level == 2)
1685 						map1gcnt++;
1686 #endif
1687 					break;
1688 				}
1689 			}
1690 		}
1691 
1692 		/*
1693 		 * Load this page mapping. If the load fails, try a smaller
1694 		 * pagesize.
1695 		 */
1696 		ASSERT(!IN_VA_HOLE(va));
1697 		while (hati_load_common(hat, va, pages[pgindx], attr,
1698 		    flags, level, pfn) != 0) {
1699 			if (level == 0)
1700 				panic("unexpected hati_load_common() failure");
1701 			--level;
1702 			pgsize = LEVEL_SIZE(level);
1703 		}
1704 
1705 		/*
1706 		 * move to next page
1707 		 */
1708 		va += pgsize;
1709 		pgindx += mmu_btop(pgsize);
1710 	}
1711 	XPV_ALLOW_MIGRATE();
1712 }
1713 
1714 /* ARGSUSED */
1715 void
1716 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
1717     struct page **pps, uint_t attr, uint_t flags,
1718     hat_region_cookie_t rcookie)
1719 {
1720 	hat_memload_array(hat, addr, len, pps, attr, flags);
1721 }
1722 
1723 /*
1724  * void hat_devload(hat, addr, len, pf, attr, flags)
1725  *	load/lock the given page frame number
1726  *
1727  * Advisory ordering attributes. Apply only to device mappings.
1728  *
1729  * HAT_STRICTORDER: the CPU must issue the references in order, as the
1730  *	programmer specified.  This is the default.
1731  * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds
1732  *	of reordering; store or load with store or load).
1733  * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores
1734  *	to consecutive locations (for example, turn two consecutive byte
1735  *	stores into one halfword store), and it may batch individual loads
1736  *	(for example, turn two consecutive byte loads into one halfword load).
1737  *	This also implies re-ordering.
1738  * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it
1739  *	until another store occurs.  The default is to fetch new data
1740  *	on every load.  This also implies merging.
1741  * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to
1742  *	the device (perhaps with other data) at a later time.  The default is
1743  *	to push the data right away.  This also implies load caching.
1744  *
1745  * Equivalent of hat_memload(), but can be used for device memory where
1746  * there are no page_t's and we support additional flags (write merging, etc).
1747  * Note that we can have large page mappings with this interface.
1748  */
1749 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK |
1750 	HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK |
1751 	HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK;
1752 
1753 void
1754 hat_devload(
1755 	hat_t		*hat,
1756 	caddr_t		addr,
1757 	size_t		len,
1758 	pfn_t		pfn,
1759 	uint_t		attr,
1760 	int		flags)
1761 {
1762 	uintptr_t	va = ALIGN2PAGE(addr);
1763 	uintptr_t	eva = va + len;
1764 	level_t		level;
1765 	size_t		pgsize;
1766 	page_t		*pp;
1767 	int		f;	/* per PTE copy of flags  - maybe modified */
1768 	uint_t		a;	/* per PTE copy of attr */
1769 
1770 	XPV_DISALLOW_MIGRATE();
1771 	ASSERT(IS_PAGEALIGNED(va));
1772 	ASSERT(hat == kas.a_hat || eva <= _userlimit);
1773 	ASSERT(hat == kas.a_hat ||
1774 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1775 	ASSERT((flags & supported_devload_flags) == flags);
1776 
1777 	/*
1778 	 * handle all pages
1779 	 */
1780 	while (va < eva) {
1781 
1782 		/*
1783 		 * decide what level mapping to use (ie. pagesize)
1784 		 */
1785 		for (level = mmu.max_page_level; ; --level) {
1786 			pgsize = LEVEL_SIZE(level);
1787 			if (level == 0)
1788 				break;
1789 			if (IS_P2ALIGNED(va, pgsize) &&
1790 			    (eva - va) >= pgsize &&
1791 			    IS_P2ALIGNED(pfn, mmu_btop(pgsize))) {
1792 #ifdef DEBUG
1793 				if (level == 2)
1794 					map1gcnt++;
1795 #endif
1796 				break;
1797 			}
1798 		}
1799 
1800 		/*
1801 		 * If this is just memory then allow caching (this happens
1802 		 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used
1803 		 * to override that. If we don't have a page_t then make sure
1804 		 * NOCONSIST is set.
1805 		 */
1806 		a = attr;
1807 		f = flags;
1808 		if (!pf_is_memory(pfn))
1809 			f |= HAT_LOAD_NOCONSIST;
1810 		else if (!(a & HAT_PLAT_NOCACHE))
1811 			a |= HAT_STORECACHING_OK;
1812 
1813 		if (f & HAT_LOAD_NOCONSIST)
1814 			pp = NULL;
1815 		else
1816 			pp = page_numtopp_nolock(pfn);
1817 
1818 		/*
1819 		 * Check to make sure we are really trying to map a valid
1820 		 * memory page. The caller wishing to intentionally map
1821 		 * free memory pages will have passed the HAT_LOAD_NOCONSIST
1822 		 * flag, then pp will be NULL.
1823 		 */
1824 		if (pp != NULL) {
1825 			if (PP_ISFREE(pp)) {
1826 				panic("hat_devload: loading "
1827 				    "a mapping to free page %p", (void *)pp);
1828 			}
1829 
1830 			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
1831 				panic("hat_devload: loading a mapping "
1832 				    "to an unlocked page %p",
1833 				    (void *)pp);
1834 			}
1835 		}
1836 
1837 		/*
1838 		 * load this page mapping
1839 		 */
1840 		ASSERT(!IN_VA_HOLE(va));
1841 		while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) {
1842 			if (level == 0)
1843 				panic("unexpected hati_load_common() failure");
1844 			--level;
1845 			pgsize = LEVEL_SIZE(level);
1846 		}
1847 
1848 		/*
1849 		 * move to next page
1850 		 */
1851 		va += pgsize;
1852 		pfn += mmu_btop(pgsize);
1853 	}
1854 	XPV_ALLOW_MIGRATE();
1855 }
1856 
1857 /*
1858  * void hat_unlock(hat, addr, len)
1859  *	unlock the mappings to a given range of addresses
1860  *
1861  * Locks are tracked by ht_lock_cnt in the htable.
1862  */
1863 void
1864 hat_unlock(hat_t *hat, caddr_t addr, size_t len)
1865 {
1866 	uintptr_t	vaddr = (uintptr_t)addr;
1867 	uintptr_t	eaddr = vaddr + len;
1868 	htable_t	*ht = NULL;
1869 
1870 	/*
1871 	 * kernel entries are always locked, we don't track lock counts
1872 	 */
1873 	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
1874 	ASSERT(IS_PAGEALIGNED(vaddr));
1875 	ASSERT(IS_PAGEALIGNED(eaddr));
1876 	if (hat == kas.a_hat)
1877 		return;
1878 	if (eaddr > _userlimit)
1879 		panic("hat_unlock() address out of range - above _userlimit");
1880 
1881 	XPV_DISALLOW_MIGRATE();
1882 	ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1883 	while (vaddr < eaddr) {
1884 		(void) htable_walk(hat, &ht, &vaddr, eaddr);
1885 		if (ht == NULL)
1886 			break;
1887 
1888 		ASSERT(!IN_VA_HOLE(vaddr));
1889 
1890 		if (ht->ht_lock_cnt < 1)
1891 			panic("hat_unlock(): lock_cnt < 1, "
1892 			    "htable=%p, vaddr=%p\n", (void *)ht, (void *)vaddr);
1893 		HTABLE_LOCK_DEC(ht);
1894 
1895 		vaddr += LEVEL_SIZE(ht->ht_level);
1896 	}
1897 	if (ht)
1898 		htable_release(ht);
1899 	XPV_ALLOW_MIGRATE();
1900 }
1901 
1902 /* ARGSUSED */
1903 void
1904 hat_unlock_region(struct hat *hat, caddr_t addr, size_t len,
1905     hat_region_cookie_t rcookie)
1906 {
1907 	panic("No shared region support on x86");
1908 }
1909 
1910 #if !defined(__xpv)
1911 /*
1912  * Cross call service routine to demap a virtual page on
1913  * the current CPU or flush all mappings in TLB.
1914  */
1915 /*ARGSUSED*/
1916 static int
1917 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3)
1918 {
1919 	hat_t	*hat = (hat_t *)a1;
1920 	caddr_t	addr = (caddr_t)a2;
1921 
1922 	/*
1923 	 * If the target hat isn't the kernel and this CPU isn't operating
1924 	 * in the target hat, we can ignore the cross call.
1925 	 */
1926 	if (hat != kas.a_hat && hat != CPU->cpu_current_hat)
1927 		return (0);
1928 
1929 	/*
1930 	 * For a normal address, we just flush one page mapping
1931 	 */
1932 	if ((uintptr_t)addr != DEMAP_ALL_ADDR) {
1933 		mmu_tlbflush_entry(addr);
1934 		return (0);
1935 	}
1936 
1937 	/*
1938 	 * Otherwise we reload cr3 to effect a complete TLB flush.
1939 	 *
1940 	 * A reload of cr3 on a VLP process also means we must also recopy in
1941 	 * the pte values from the struct hat
1942 	 */
1943 	if (hat->hat_flags & HAT_VLP) {
1944 #if defined(__amd64)
1945 		x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes;
1946 
1947 		VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1948 #elif defined(__i386)
1949 		reload_pae32(hat, CPU);
1950 #endif
1951 	}
1952 	reload_cr3();
1953 	return (0);
1954 }
1955 
1956 /*
1957  * Flush all TLB entries, including global (ie. kernel) ones.
1958  */
1959 static void
1960 flush_all_tlb_entries(void)
1961 {
1962 	ulong_t cr4 = getcr4();
1963 
1964 	if (cr4 & CR4_PGE) {
1965 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
1966 		setcr4(cr4);
1967 
1968 		/*
1969 		 * 32 bit PAE also needs to always reload_cr3()
1970 		 */
1971 		if (mmu.max_level == 2)
1972 			reload_cr3();
1973 	} else {
1974 		reload_cr3();
1975 	}
1976 }
1977 
1978 #define	TLB_CPU_HALTED	(01ul)
1979 #define	TLB_INVAL_ALL	(02ul)
1980 #define	CAS_TLB_INFO(cpu, old, new)	\
1981 	caslong((ulong_t *)&(cpu)->cpu_m.mcpu_tlb_info, (old), (new))
1982 
1983 /*
1984  * Record that a CPU is going idle
1985  */
1986 void
1987 tlb_going_idle(void)
1988 {
1989 	atomic_or_long((ulong_t *)&CPU->cpu_m.mcpu_tlb_info, TLB_CPU_HALTED);
1990 }
1991 
1992 /*
1993  * Service a delayed TLB flush if coming out of being idle.
1994  * It will be called from cpu idle notification with interrupt disabled.
1995  */
1996 void
1997 tlb_service(void)
1998 {
1999 	ulong_t tlb_info;
2000 	ulong_t found;
2001 
2002 	/*
2003 	 * We only have to do something if coming out of being idle.
2004 	 */
2005 	tlb_info = CPU->cpu_m.mcpu_tlb_info;
2006 	if (tlb_info & TLB_CPU_HALTED) {
2007 		ASSERT(CPU->cpu_current_hat == kas.a_hat);
2008 
2009 		/*
2010 		 * Atomic clear and fetch of old state.
2011 		 */
2012 		while ((found = CAS_TLB_INFO(CPU, tlb_info, 0)) != tlb_info) {
2013 			ASSERT(found & TLB_CPU_HALTED);
2014 			tlb_info = found;
2015 			SMT_PAUSE();
2016 		}
2017 		if (tlb_info & TLB_INVAL_ALL)
2018 			flush_all_tlb_entries();
2019 	}
2020 }
2021 #endif /* !__xpv */
2022 
2023 /*
2024  * Internal routine to do cross calls to invalidate a range of pages on
2025  * all CPUs using a given hat.
2026  */
2027 void
2028 hat_tlb_inval(hat_t *hat, uintptr_t va)
2029 {
2030 	extern int	flushes_require_xcalls;	/* from mp_startup.c */
2031 	cpuset_t	justme;
2032 	cpuset_t	cpus_to_shootdown;
2033 #ifndef __xpv
2034 	cpuset_t	check_cpus;
2035 	cpu_t		*cpup;
2036 	int		c;
2037 #endif
2038 
2039 	/*
2040 	 * If the hat is being destroyed, there are no more users, so
2041 	 * demap need not do anything.
2042 	 */
2043 	if (hat->hat_flags & HAT_FREEING)
2044 		return;
2045 
2046 	/*
2047 	 * If demapping from a shared pagetable, we best demap the
2048 	 * entire set of user TLBs, since we don't know what addresses
2049 	 * these were shared at.
2050 	 */
2051 	if (hat->hat_flags & HAT_SHARED) {
2052 		hat = kas.a_hat;
2053 		va = DEMAP_ALL_ADDR;
2054 	}
2055 
2056 	/*
2057 	 * if not running with multiple CPUs, don't use cross calls
2058 	 */
2059 	if (panicstr || !flushes_require_xcalls) {
2060 #ifdef __xpv
2061 		if (va == DEMAP_ALL_ADDR)
2062 			xen_flush_tlb();
2063 		else
2064 			xen_flush_va((caddr_t)va);
2065 #else
2066 		(void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL);
2067 #endif
2068 		return;
2069 	}
2070 
2071 
2072 	/*
2073 	 * Determine CPUs to shootdown. Kernel changes always do all CPUs.
2074 	 * Otherwise it's just CPUs currently executing in this hat.
2075 	 */
2076 	kpreempt_disable();
2077 	CPUSET_ONLY(justme, CPU->cpu_id);
2078 	if (hat == kas.a_hat)
2079 		cpus_to_shootdown = khat_cpuset;
2080 	else
2081 		cpus_to_shootdown = hat->hat_cpus;
2082 
2083 #ifndef __xpv
2084 	/*
2085 	 * If any CPUs in the set are idle, just request a delayed flush
2086 	 * and avoid waking them up.
2087 	 */
2088 	check_cpus = cpus_to_shootdown;
2089 	for (c = 0; c < NCPU && !CPUSET_ISNULL(check_cpus); ++c) {
2090 		ulong_t tlb_info;
2091 
2092 		if (!CPU_IN_SET(check_cpus, c))
2093 			continue;
2094 		CPUSET_DEL(check_cpus, c);
2095 		cpup = cpu[c];
2096 		if (cpup == NULL)
2097 			continue;
2098 
2099 		tlb_info = cpup->cpu_m.mcpu_tlb_info;
2100 		while (tlb_info == TLB_CPU_HALTED) {
2101 			(void) CAS_TLB_INFO(cpup, TLB_CPU_HALTED,
2102 			    TLB_CPU_HALTED | TLB_INVAL_ALL);
2103 			SMT_PAUSE();
2104 			tlb_info = cpup->cpu_m.mcpu_tlb_info;
2105 		}
2106 		if (tlb_info == (TLB_CPU_HALTED | TLB_INVAL_ALL)) {
2107 			HATSTAT_INC(hs_tlb_inval_delayed);
2108 			CPUSET_DEL(cpus_to_shootdown, c);
2109 		}
2110 	}
2111 #endif
2112 
2113 	if (CPUSET_ISNULL(cpus_to_shootdown) ||
2114 	    CPUSET_ISEQUAL(cpus_to_shootdown, justme)) {
2115 
2116 #ifdef __xpv
2117 		if (va == DEMAP_ALL_ADDR)
2118 			xen_flush_tlb();
2119 		else
2120 			xen_flush_va((caddr_t)va);
2121 #else
2122 		(void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL);
2123 #endif
2124 
2125 	} else {
2126 
2127 		CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id);
2128 #ifdef __xpv
2129 		if (va == DEMAP_ALL_ADDR)
2130 			xen_gflush_tlb(cpus_to_shootdown);
2131 		else
2132 			xen_gflush_va((caddr_t)va, cpus_to_shootdown);
2133 #else
2134 		xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL,
2135 		    CPUSET2BV(cpus_to_shootdown), hati_demap_func);
2136 #endif
2137 
2138 	}
2139 	kpreempt_enable();
2140 }
2141 
2142 /*
2143  * Interior routine for HAT_UNLOADs from hat_unload_callback(),
2144  * hat_kmap_unload() OR from hat_steal() code.  This routine doesn't
2145  * handle releasing of the htables.
2146  */
2147 void
2148 hat_pte_unmap(
2149 	htable_t	*ht,
2150 	uint_t		entry,
2151 	uint_t		flags,
2152 	x86pte_t	old_pte,
2153 	void		*pte_ptr)
2154 {
2155 	hat_t		*hat = ht->ht_hat;
2156 	hment_t		*hm = NULL;
2157 	page_t		*pp = NULL;
2158 	level_t		l = ht->ht_level;
2159 	pfn_t		pfn;
2160 
2161 	/*
2162 	 * We always track the locking counts, even if nothing is unmapped
2163 	 */
2164 	if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) {
2165 		ASSERT(ht->ht_lock_cnt > 0);
2166 		HTABLE_LOCK_DEC(ht);
2167 	}
2168 
2169 	/*
2170 	 * Figure out which page's mapping list lock to acquire using the PFN
2171 	 * passed in "old" PTE. We then attempt to invalidate the PTE.
2172 	 * If another thread, probably a hat_pageunload, has asynchronously
2173 	 * unmapped/remapped this address we'll loop here.
2174 	 */
2175 	ASSERT(ht->ht_busy > 0);
2176 	while (PTE_ISVALID(old_pte)) {
2177 		pfn = PTE2PFN(old_pte, l);
2178 		if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) {
2179 			pp = NULL;
2180 		} else {
2181 #ifdef __xpv
2182 			if (pfn == PFN_INVALID)
2183 				panic("Invalid PFN, but not PT_NOCONSIST");
2184 #endif
2185 			pp = page_numtopp_nolock(pfn);
2186 			if (pp == NULL) {
2187 				panic("no page_t, not NOCONSIST: old_pte="
2188 				    FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx",
2189 				    old_pte, (uintptr_t)ht, entry,
2190 				    (uintptr_t)pte_ptr);
2191 			}
2192 			x86_hm_enter(pp);
2193 		}
2194 
2195 		/*
2196 		 * If freeing the address space, check that the PTE
2197 		 * hasn't changed, as the mappings are no longer in use by
2198 		 * any thread, invalidation is unnecessary.
2199 		 * If not freeing, do a full invalidate.
2200 		 *
2201 		 * On the hypervisor we must always remove mappings, as a
2202 		 * writable mapping left behind could cause a page table
2203 		 * allocation to fail.
2204 		 */
2205 #if !defined(__xpv)
2206 		if (hat->hat_flags & HAT_FREEING)
2207 			old_pte = x86pte_get(ht, entry);
2208 		else
2209 #endif
2210 			old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr);
2211 
2212 		/*
2213 		 * If the page hadn't changed we've unmapped it and can proceed
2214 		 */
2215 		if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn)
2216 			break;
2217 
2218 		/*
2219 		 * Otherwise, we'll have to retry with the current old_pte.
2220 		 * Drop the hment lock, since the pfn may have changed.
2221 		 */
2222 		if (pp != NULL) {
2223 			x86_hm_exit(pp);
2224 			pp = NULL;
2225 		} else {
2226 			ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
2227 		}
2228 	}
2229 
2230 	/*
2231 	 * If the old mapping wasn't valid, there's nothing more to do
2232 	 */
2233 	if (!PTE_ISVALID(old_pte)) {
2234 		if (pp != NULL)
2235 			x86_hm_exit(pp);
2236 		return;
2237 	}
2238 
2239 	/*
2240 	 * Take care of syncing any MOD/REF bits and removing the hment.
2241 	 */
2242 	if (pp != NULL) {
2243 		if (!(flags & HAT_UNLOAD_NOSYNC))
2244 			hati_sync_pte_to_page(pp, old_pte, l);
2245 		hm = hment_remove(pp, ht, entry);
2246 		x86_hm_exit(pp);
2247 		if (hm != NULL)
2248 			hment_free(hm);
2249 	}
2250 
2251 	/*
2252 	 * Handle book keeping in the htable and hat
2253 	 */
2254 	ASSERT(ht->ht_valid_cnt > 0);
2255 	HTABLE_DEC(ht->ht_valid_cnt);
2256 	PGCNT_DEC(hat, l);
2257 }
2258 
2259 /*
2260  * very cheap unload implementation to special case some kernel addresses
2261  */
2262 static void
2263 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags)
2264 {
2265 	uintptr_t	va = (uintptr_t)addr;
2266 	uintptr_t	eva = va + len;
2267 	pgcnt_t		pg_index;
2268 	htable_t	*ht;
2269 	uint_t		entry;
2270 	x86pte_t	*pte_ptr;
2271 	x86pte_t	old_pte;
2272 
2273 	for (; va < eva; va += MMU_PAGESIZE) {
2274 		/*
2275 		 * Get the PTE
2276 		 */
2277 		pg_index = mmu_btop(va - mmu.kmap_addr);
2278 		pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index);
2279 		old_pte = GET_PTE(pte_ptr);
2280 
2281 		/*
2282 		 * get the htable / entry
2283 		 */
2284 		ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr)
2285 		    >> LEVEL_SHIFT(1)];
2286 		entry = htable_va2entry(va, ht);
2287 
2288 		/*
2289 		 * use mostly common code to unmap it.
2290 		 */
2291 		hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr);
2292 	}
2293 }
2294 
2295 
2296 /*
2297  * unload a range of virtual address space (no callback)
2298  */
2299 void
2300 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2301 {
2302 	uintptr_t va = (uintptr_t)addr;
2303 
2304 	XPV_DISALLOW_MIGRATE();
2305 	ASSERT(hat == kas.a_hat || va + len <= _userlimit);
2306 
2307 	/*
2308 	 * special case for performance.
2309 	 */
2310 	if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
2311 		ASSERT(hat == kas.a_hat);
2312 		hat_kmap_unload(addr, len, flags);
2313 	} else {
2314 		hat_unload_callback(hat, addr, len, flags, NULL);
2315 	}
2316 	XPV_ALLOW_MIGRATE();
2317 }
2318 
2319 /*
2320  * Do the callbacks for ranges being unloaded.
2321  */
2322 typedef struct range_info {
2323 	uintptr_t	rng_va;
2324 	ulong_t		rng_cnt;
2325 	level_t		rng_level;
2326 } range_info_t;
2327 
2328 static void
2329 handle_ranges(hat_callback_t *cb, uint_t cnt, range_info_t *range)
2330 {
2331 	/*
2332 	 * do callbacks to upper level VM system
2333 	 */
2334 	while (cb != NULL && cnt > 0) {
2335 		--cnt;
2336 		cb->hcb_start_addr = (caddr_t)range[cnt].rng_va;
2337 		cb->hcb_end_addr = cb->hcb_start_addr;
2338 		cb->hcb_end_addr +=
2339 		    range[cnt].rng_cnt << LEVEL_SIZE(range[cnt].rng_level);
2340 		cb->hcb_function(cb);
2341 	}
2342 }
2343 
2344 /*
2345  * Unload a given range of addresses (has optional callback)
2346  *
2347  * Flags:
2348  * define	HAT_UNLOAD		0x00
2349  * define	HAT_UNLOAD_NOSYNC	0x02
2350  * define	HAT_UNLOAD_UNLOCK	0x04
2351  * define	HAT_UNLOAD_OTHER	0x08 - not used
2352  * define	HAT_UNLOAD_UNMAP	0x10 - same as HAT_UNLOAD
2353  */
2354 #define	MAX_UNLOAD_CNT (8)
2355 void
2356 hat_unload_callback(
2357 	hat_t		*hat,
2358 	caddr_t		addr,
2359 	size_t		len,
2360 	uint_t		flags,
2361 	hat_callback_t	*cb)
2362 {
2363 	uintptr_t	vaddr = (uintptr_t)addr;
2364 	uintptr_t	eaddr = vaddr + len;
2365 	htable_t	*ht = NULL;
2366 	uint_t		entry;
2367 	uintptr_t	contig_va = (uintptr_t)-1L;
2368 	range_info_t	r[MAX_UNLOAD_CNT];
2369 	uint_t		r_cnt = 0;
2370 	x86pte_t	old_pte;
2371 
2372 	XPV_DISALLOW_MIGRATE();
2373 	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2374 	ASSERT(IS_PAGEALIGNED(vaddr));
2375 	ASSERT(IS_PAGEALIGNED(eaddr));
2376 
2377 	/*
2378 	 * Special case a single page being unloaded for speed. This happens
2379 	 * quite frequently, COW faults after a fork() for example.
2380 	 */
2381 	if (cb == NULL && len == MMU_PAGESIZE) {
2382 		ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0);
2383 		if (ht != NULL) {
2384 			if (PTE_ISVALID(old_pte))
2385 				hat_pte_unmap(ht, entry, flags, old_pte, NULL);
2386 			htable_release(ht);
2387 		}
2388 		XPV_ALLOW_MIGRATE();
2389 		return;
2390 	}
2391 
2392 	while (vaddr < eaddr) {
2393 		old_pte = htable_walk(hat, &ht, &vaddr, eaddr);
2394 		if (ht == NULL)
2395 			break;
2396 
2397 		ASSERT(!IN_VA_HOLE(vaddr));
2398 
2399 		if (vaddr < (uintptr_t)addr)
2400 			panic("hat_unload_callback(): unmap inside large page");
2401 
2402 		/*
2403 		 * We'll do the call backs for contiguous ranges
2404 		 */
2405 		if (vaddr != contig_va ||
2406 		    (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) {
2407 			if (r_cnt == MAX_UNLOAD_CNT) {
2408 				handle_ranges(cb, r_cnt, r);
2409 				r_cnt = 0;
2410 			}
2411 			r[r_cnt].rng_va = vaddr;
2412 			r[r_cnt].rng_cnt = 0;
2413 			r[r_cnt].rng_level = ht->ht_level;
2414 			++r_cnt;
2415 		}
2416 
2417 		/*
2418 		 * Unload one mapping from the page tables.
2419 		 */
2420 		entry = htable_va2entry(vaddr, ht);
2421 		hat_pte_unmap(ht, entry, flags, old_pte, NULL);
2422 		ASSERT(ht->ht_level <= mmu.max_page_level);
2423 		vaddr += LEVEL_SIZE(ht->ht_level);
2424 		contig_va = vaddr;
2425 		++r[r_cnt - 1].rng_cnt;
2426 	}
2427 	if (ht)
2428 		htable_release(ht);
2429 
2430 	/*
2431 	 * handle last range for callbacks
2432 	 */
2433 	if (r_cnt > 0)
2434 		handle_ranges(cb, r_cnt, r);
2435 	XPV_ALLOW_MIGRATE();
2436 }
2437 
2438 /*
2439  * synchronize mapping with software data structures
2440  *
2441  * This interface is currently only used by the working set monitor
2442  * driver.
2443  */
2444 /*ARGSUSED*/
2445 void
2446 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2447 {
2448 	uintptr_t	vaddr = (uintptr_t)addr;
2449 	uintptr_t	eaddr = vaddr + len;
2450 	htable_t	*ht = NULL;
2451 	uint_t		entry;
2452 	x86pte_t	pte;
2453 	x86pte_t	save_pte;
2454 	x86pte_t	new;
2455 	page_t		*pp;
2456 
2457 	ASSERT(!IN_VA_HOLE(vaddr));
2458 	ASSERT(IS_PAGEALIGNED(vaddr));
2459 	ASSERT(IS_PAGEALIGNED(eaddr));
2460 	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2461 
2462 	XPV_DISALLOW_MIGRATE();
2463 	for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2464 try_again:
2465 		pte = htable_walk(hat, &ht, &vaddr, eaddr);
2466 		if (ht == NULL)
2467 			break;
2468 		entry = htable_va2entry(vaddr, ht);
2469 
2470 		if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2471 		    PTE_GET(pte, PT_REF | PT_MOD) == 0)
2472 			continue;
2473 
2474 		/*
2475 		 * We need to acquire the mapping list lock to protect
2476 		 * against hat_pageunload(), hat_unload(), etc.
2477 		 */
2478 		pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level));
2479 		if (pp == NULL)
2480 			break;
2481 		x86_hm_enter(pp);
2482 		save_pte = pte;
2483 		pte = x86pte_get(ht, entry);
2484 		if (pte != save_pte) {
2485 			x86_hm_exit(pp);
2486 			goto try_again;
2487 		}
2488 		if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2489 		    PTE_GET(pte, PT_REF | PT_MOD) == 0) {
2490 			x86_hm_exit(pp);
2491 			continue;
2492 		}
2493 
2494 		/*
2495 		 * Need to clear ref or mod bits. We may compete with
2496 		 * hardware updating the R/M bits and have to try again.
2497 		 */
2498 		if (flags == HAT_SYNC_ZERORM) {
2499 			new = pte;
2500 			PTE_CLR(new, PT_REF | PT_MOD);
2501 			pte = hati_update_pte(ht, entry, pte, new);
2502 			if (pte != 0) {
2503 				x86_hm_exit(pp);
2504 				goto try_again;
2505 			}
2506 		} else {
2507 			/*
2508 			 * sync the PTE to the page_t
2509 			 */
2510 			hati_sync_pte_to_page(pp, save_pte, ht->ht_level);
2511 		}
2512 		x86_hm_exit(pp);
2513 	}
2514 	if (ht)
2515 		htable_release(ht);
2516 	XPV_ALLOW_MIGRATE();
2517 }
2518 
2519 /*
2520  * void	hat_map(hat, addr, len, flags)
2521  */
2522 /*ARGSUSED*/
2523 void
2524 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2525 {
2526 	/* does nothing */
2527 }
2528 
2529 /*
2530  * uint_t hat_getattr(hat, addr, *attr)
2531  *	returns attr for <hat,addr> in *attr.  returns 0 if there was a
2532  *	mapping and *attr is valid, nonzero if there was no mapping and
2533  *	*attr is not valid.
2534  */
2535 uint_t
2536 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr)
2537 {
2538 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2539 	htable_t	*ht = NULL;
2540 	x86pte_t	pte;
2541 
2542 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2543 
2544 	if (IN_VA_HOLE(vaddr))
2545 		return ((uint_t)-1);
2546 
2547 	ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level);
2548 	if (ht == NULL)
2549 		return ((uint_t)-1);
2550 
2551 	if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) {
2552 		htable_release(ht);
2553 		return ((uint_t)-1);
2554 	}
2555 
2556 	*attr = PROT_READ;
2557 	if (PTE_GET(pte, PT_WRITABLE))
2558 		*attr |= PROT_WRITE;
2559 	if (PTE_GET(pte, PT_USER))
2560 		*attr |= PROT_USER;
2561 	if (!PTE_GET(pte, mmu.pt_nx))
2562 		*attr |= PROT_EXEC;
2563 	if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
2564 		*attr |= HAT_NOSYNC;
2565 	htable_release(ht);
2566 	return (0);
2567 }
2568 
2569 /*
2570  * hat_updateattr() applies the given attribute change to an existing mapping
2571  */
2572 #define	HAT_LOAD_ATTR		1
2573 #define	HAT_SET_ATTR		2
2574 #define	HAT_CLR_ATTR		3
2575 
2576 static void
2577 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what)
2578 {
2579 	uintptr_t	vaddr = (uintptr_t)addr;
2580 	uintptr_t	eaddr = (uintptr_t)addr + len;
2581 	htable_t	*ht = NULL;
2582 	uint_t		entry;
2583 	x86pte_t	oldpte, newpte;
2584 	page_t		*pp;
2585 
2586 	XPV_DISALLOW_MIGRATE();
2587 	ASSERT(IS_PAGEALIGNED(vaddr));
2588 	ASSERT(IS_PAGEALIGNED(eaddr));
2589 	ASSERT(hat == kas.a_hat ||
2590 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
2591 	for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2592 try_again:
2593 		oldpte = htable_walk(hat, &ht, &vaddr, eaddr);
2594 		if (ht == NULL)
2595 			break;
2596 		if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST)
2597 			continue;
2598 
2599 		pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level));
2600 		if (pp == NULL)
2601 			continue;
2602 		x86_hm_enter(pp);
2603 
2604 		newpte = oldpte;
2605 		/*
2606 		 * We found a page table entry in the desired range,
2607 		 * figure out the new attributes.
2608 		 */
2609 		if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) {
2610 			if ((attr & PROT_WRITE) &&
2611 			    !PTE_GET(oldpte, PT_WRITABLE))
2612 				newpte |= PT_WRITABLE;
2613 
2614 			if ((attr & HAT_NOSYNC) &&
2615 			    PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC)
2616 				newpte |= PT_NOSYNC;
2617 
2618 			if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx))
2619 				newpte &= ~mmu.pt_nx;
2620 		}
2621 
2622 		if (what == HAT_LOAD_ATTR) {
2623 			if (!(attr & PROT_WRITE) &&
2624 			    PTE_GET(oldpte, PT_WRITABLE))
2625 				newpte &= ~PT_WRITABLE;
2626 
2627 			if (!(attr & HAT_NOSYNC) &&
2628 			    PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2629 				newpte &= ~PT_SOFTWARE;
2630 
2631 			if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2632 				newpte |= mmu.pt_nx;
2633 		}
2634 
2635 		if (what == HAT_CLR_ATTR) {
2636 			if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE))
2637 				newpte &= ~PT_WRITABLE;
2638 
2639 			if ((attr & HAT_NOSYNC) &&
2640 			    PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2641 				newpte &= ~PT_SOFTWARE;
2642 
2643 			if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2644 				newpte |= mmu.pt_nx;
2645 		}
2646 
2647 		/*
2648 		 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set.
2649 		 * x86pte_set() depends on this.
2650 		 */
2651 		if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC)
2652 			newpte |= PT_REF | PT_MOD;
2653 
2654 		/*
2655 		 * what about PROT_READ or others? this code only handles:
2656 		 * EXEC, WRITE, NOSYNC
2657 		 */
2658 
2659 		/*
2660 		 * If new PTE really changed, update the table.
2661 		 */
2662 		if (newpte != oldpte) {
2663 			entry = htable_va2entry(vaddr, ht);
2664 			oldpte = hati_update_pte(ht, entry, oldpte, newpte);
2665 			if (oldpte != 0) {
2666 				x86_hm_exit(pp);
2667 				goto try_again;
2668 			}
2669 		}
2670 		x86_hm_exit(pp);
2671 	}
2672 	if (ht)
2673 		htable_release(ht);
2674 	XPV_ALLOW_MIGRATE();
2675 }
2676 
2677 /*
2678  * Various wrappers for hat_updateattr()
2679  */
2680 void
2681 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2682 {
2683 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2684 	hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR);
2685 }
2686 
2687 void
2688 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2689 {
2690 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2691 	hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR);
2692 }
2693 
2694 void
2695 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2696 {
2697 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2698 	hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR);
2699 }
2700 
2701 void
2702 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot)
2703 {
2704 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2705 	hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR);
2706 }
2707 
2708 /*
2709  * size_t hat_getpagesize(hat, addr)
2710  *	returns pagesize in bytes for <hat, addr>. returns -1 of there is
2711  *	no mapping. This is an advisory call.
2712  */
2713 ssize_t
2714 hat_getpagesize(hat_t *hat, caddr_t addr)
2715 {
2716 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2717 	htable_t	*ht;
2718 	size_t		pagesize;
2719 
2720 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2721 	if (IN_VA_HOLE(vaddr))
2722 		return (-1);
2723 	ht = htable_getpage(hat, vaddr, NULL);
2724 	if (ht == NULL)
2725 		return (-1);
2726 	pagesize = LEVEL_SIZE(ht->ht_level);
2727 	htable_release(ht);
2728 	return (pagesize);
2729 }
2730 
2731 
2732 
2733 /*
2734  * pfn_t hat_getpfnum(hat, addr)
2735  *	returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid.
2736  */
2737 pfn_t
2738 hat_getpfnum(hat_t *hat, caddr_t addr)
2739 {
2740 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2741 	htable_t	*ht;
2742 	uint_t		entry;
2743 	pfn_t		pfn = PFN_INVALID;
2744 
2745 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2746 	if (khat_running == 0)
2747 		return (PFN_INVALID);
2748 
2749 	if (IN_VA_HOLE(vaddr))
2750 		return (PFN_INVALID);
2751 
2752 	XPV_DISALLOW_MIGRATE();
2753 	/*
2754 	 * A very common use of hat_getpfnum() is from the DDI for kernel pages.
2755 	 * Use the kmap_ptes (which also covers the 32 bit heap) to speed
2756 	 * this up.
2757 	 */
2758 	if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2759 		x86pte_t pte;
2760 		pgcnt_t pg_index;
2761 
2762 		pg_index = mmu_btop(vaddr - mmu.kmap_addr);
2763 		pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index));
2764 		if (PTE_ISVALID(pte))
2765 			/*LINTED [use of constant 0 causes a lint warning] */
2766 			pfn = PTE2PFN(pte, 0);
2767 		XPV_ALLOW_MIGRATE();
2768 		return (pfn);
2769 	}
2770 
2771 	ht = htable_getpage(hat, vaddr, &entry);
2772 	if (ht == NULL) {
2773 		XPV_ALLOW_MIGRATE();
2774 		return (PFN_INVALID);
2775 	}
2776 	ASSERT(vaddr >= ht->ht_vaddr);
2777 	ASSERT(vaddr <= HTABLE_LAST_PAGE(ht));
2778 	pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level);
2779 	if (ht->ht_level > 0)
2780 		pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level));
2781 	htable_release(ht);
2782 	XPV_ALLOW_MIGRATE();
2783 	return (pfn);
2784 }
2785 
2786 /*
2787  * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
2788  * Use hat_getpfnum(kas.a_hat, ...) instead.
2789  *
2790  * We'd like to return PFN_INVALID if the mappings have underlying page_t's
2791  * but can't right now due to the fact that some software has grown to use
2792  * this interface incorrectly. So for now when the interface is misused,
2793  * return a warning to the user that in the future it won't work in the
2794  * way they're abusing it, and carry on.
2795  *
2796  * Note that hat_getkpfnum() is never supported on amd64.
2797  */
2798 #if !defined(__amd64)
2799 pfn_t
2800 hat_getkpfnum(caddr_t addr)
2801 {
2802 	pfn_t	pfn;
2803 	int badcaller = 0;
2804 
2805 	if (khat_running == 0)
2806 		panic("hat_getkpfnum(): called too early\n");
2807 	if ((uintptr_t)addr < kernelbase)
2808 		return (PFN_INVALID);
2809 
2810 	XPV_DISALLOW_MIGRATE();
2811 	if (segkpm && IS_KPM_ADDR(addr)) {
2812 		badcaller = 1;
2813 		pfn = hat_kpm_va2pfn(addr);
2814 	} else {
2815 		pfn = hat_getpfnum(kas.a_hat, addr);
2816 		badcaller = pf_is_memory(pfn);
2817 	}
2818 
2819 	if (badcaller)
2820 		hat_getkpfnum_badcall(caller());
2821 	XPV_ALLOW_MIGRATE();
2822 	return (pfn);
2823 }
2824 #endif /* __amd64 */
2825 
2826 /*
2827  * int hat_probe(hat, addr)
2828  *	return 0 if no valid mapping is present.  Faster version
2829  *	of hat_getattr in certain architectures.
2830  */
2831 int
2832 hat_probe(hat_t *hat, caddr_t addr)
2833 {
2834 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2835 	uint_t		entry;
2836 	htable_t	*ht;
2837 	pgcnt_t		pg_off;
2838 
2839 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2840 	ASSERT(hat == kas.a_hat ||
2841 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
2842 	if (IN_VA_HOLE(vaddr))
2843 		return (0);
2844 
2845 	/*
2846 	 * Most common use of hat_probe is from segmap. We special case it
2847 	 * for performance.
2848 	 */
2849 	if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2850 		pg_off = mmu_btop(vaddr - mmu.kmap_addr);
2851 		if (mmu.pae_hat)
2852 			return (PTE_ISVALID(mmu.kmap_ptes[pg_off]));
2853 		else
2854 			return (PTE_ISVALID(
2855 			    ((x86pte32_t *)mmu.kmap_ptes)[pg_off]));
2856 	}
2857 
2858 	ht = htable_getpage(hat, vaddr, &entry);
2859 	htable_release(ht);
2860 	return (ht != NULL);
2861 }
2862 
2863 /*
2864  * Find out if the segment for hat_share()/hat_unshare() is DISM or locked ISM.
2865  */
2866 static int
2867 is_it_dism(hat_t *hat, caddr_t va)
2868 {
2869 	struct seg *seg;
2870 	struct shm_data *shmd;
2871 	struct spt_data *sptd;
2872 
2873 	seg = as_findseg(hat->hat_as, va, 0);
2874 	ASSERT(seg != NULL);
2875 	ASSERT(seg->s_base <= va);
2876 	shmd = (struct shm_data *)seg->s_data;
2877 	ASSERT(shmd != NULL);
2878 	sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2879 	ASSERT(sptd != NULL);
2880 	if (sptd->spt_flags & SHM_PAGEABLE)
2881 		return (1);
2882 	return (0);
2883 }
2884 
2885 /*
2886  * Simple implementation of ISM. hat_share() is similar to hat_memload_array(),
2887  * except that we use the ism_hat's existing mappings to determine the pages
2888  * and protections to use for this hat. If we find a full properly aligned
2889  * and sized pagetable, we will attempt to share the pagetable itself.
2890  */
2891 /*ARGSUSED*/
2892 int
2893 hat_share(
2894 	hat_t		*hat,
2895 	caddr_t		addr,
2896 	hat_t		*ism_hat,
2897 	caddr_t		src_addr,
2898 	size_t		len,	/* almost useless value, see below.. */
2899 	uint_t		ismszc)
2900 {
2901 	uintptr_t	vaddr_start = (uintptr_t)addr;
2902 	uintptr_t	vaddr;
2903 	uintptr_t	eaddr = vaddr_start + len;
2904 	uintptr_t	ism_addr_start = (uintptr_t)src_addr;
2905 	uintptr_t	ism_addr = ism_addr_start;
2906 	uintptr_t	e_ism_addr = ism_addr + len;
2907 	htable_t	*ism_ht = NULL;
2908 	htable_t	*ht;
2909 	x86pte_t	pte;
2910 	page_t		*pp;
2911 	pfn_t		pfn;
2912 	level_t		l;
2913 	pgcnt_t		pgcnt;
2914 	uint_t		prot;
2915 	int		is_dism;
2916 	int		flags;
2917 
2918 	/*
2919 	 * We might be asked to share an empty DISM hat by as_dup()
2920 	 */
2921 	ASSERT(hat != kas.a_hat);
2922 	ASSERT(eaddr <= _userlimit);
2923 	if (!(ism_hat->hat_flags & HAT_SHARED)) {
2924 		ASSERT(hat_get_mapped_size(ism_hat) == 0);
2925 		return (0);
2926 	}
2927 	XPV_DISALLOW_MIGRATE();
2928 
2929 	/*
2930 	 * The SPT segment driver often passes us a size larger than there are
2931 	 * valid mappings. That's because it rounds the segment size up to a
2932 	 * large pagesize, even if the actual memory mapped by ism_hat is less.
2933 	 */
2934 	ASSERT(IS_PAGEALIGNED(vaddr_start));
2935 	ASSERT(IS_PAGEALIGNED(ism_addr_start));
2936 	ASSERT(ism_hat->hat_flags & HAT_SHARED);
2937 	is_dism = is_it_dism(hat, addr);
2938 	while (ism_addr < e_ism_addr) {
2939 		/*
2940 		 * use htable_walk to get the next valid ISM mapping
2941 		 */
2942 		pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr);
2943 		if (ism_ht == NULL)
2944 			break;
2945 
2946 		/*
2947 		 * First check to see if we already share the page table.
2948 		 */
2949 		l = ism_ht->ht_level;
2950 		vaddr = vaddr_start + (ism_addr - ism_addr_start);
2951 		ht = htable_lookup(hat, vaddr, l);
2952 		if (ht != NULL) {
2953 			if (ht->ht_flags & HTABLE_SHARED_PFN)
2954 				goto shared;
2955 			htable_release(ht);
2956 			goto not_shared;
2957 		}
2958 
2959 		/*
2960 		 * Can't ever share top table.
2961 		 */
2962 		if (l == mmu.max_level)
2963 			goto not_shared;
2964 
2965 		/*
2966 		 * Avoid level mismatches later due to DISM faults.
2967 		 */
2968 		if (is_dism && l > 0)
2969 			goto not_shared;
2970 
2971 		/*
2972 		 * addresses and lengths must align
2973 		 * table must be fully populated
2974 		 * no lower level page tables
2975 		 */
2976 		if (ism_addr != ism_ht->ht_vaddr ||
2977 		    (vaddr & LEVEL_OFFSET(l + 1)) != 0)
2978 			goto not_shared;
2979 
2980 		/*
2981 		 * The range of address space must cover a full table.
2982 		 */
2983 		if (e_ism_addr - ism_addr < LEVEL_SIZE(l + 1))
2984 			goto not_shared;
2985 
2986 		/*
2987 		 * All entries in the ISM page table must be leaf PTEs.
2988 		 */
2989 		if (l > 0) {
2990 			int e;
2991 
2992 			/*
2993 			 * We know the 0th is from htable_walk() above.
2994 			 */
2995 			for (e = 1; e < HTABLE_NUM_PTES(ism_ht); ++e) {
2996 				x86pte_t pte;
2997 				pte = x86pte_get(ism_ht, e);
2998 				if (!PTE_ISPAGE(pte, l))
2999 					goto not_shared;
3000 			}
3001 		}
3002 
3003 		/*
3004 		 * share the page table
3005 		 */
3006 		ht = htable_create(hat, vaddr, l, ism_ht);
3007 shared:
3008 		ASSERT(ht->ht_flags & HTABLE_SHARED_PFN);
3009 		ASSERT(ht->ht_shares == ism_ht);
3010 		hat->hat_ism_pgcnt +=
3011 		    (ism_ht->ht_valid_cnt - ht->ht_valid_cnt) <<
3012 		    (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT);
3013 		ht->ht_valid_cnt = ism_ht->ht_valid_cnt;
3014 		htable_release(ht);
3015 		ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(l + 1);
3016 		htable_release(ism_ht);
3017 		ism_ht = NULL;
3018 		continue;
3019 
3020 not_shared:
3021 		/*
3022 		 * Unable to share the page table. Instead we will
3023 		 * create new mappings from the values in the ISM mappings.
3024 		 * Figure out what level size mappings to use;
3025 		 */
3026 		for (l = ism_ht->ht_level; l > 0; --l) {
3027 			if (LEVEL_SIZE(l) <= eaddr - vaddr &&
3028 			    (vaddr & LEVEL_OFFSET(l)) == 0)
3029 				break;
3030 		}
3031 
3032 		/*
3033 		 * The ISM mapping might be larger than the share area,
3034 		 * be careful to truncate it if needed.
3035 		 */
3036 		if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) {
3037 			pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level));
3038 		} else {
3039 			pgcnt = mmu_btop(eaddr - vaddr);
3040 			l = 0;
3041 		}
3042 
3043 		pfn = PTE2PFN(pte, ism_ht->ht_level);
3044 		ASSERT(pfn != PFN_INVALID);
3045 		while (pgcnt > 0) {
3046 			/*
3047 			 * Make a new pte for the PFN for this level.
3048 			 * Copy protections for the pte from the ISM pte.
3049 			 */
3050 			pp = page_numtopp_nolock(pfn);
3051 			ASSERT(pp != NULL);
3052 
3053 			prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK;
3054 			if (PTE_GET(pte, PT_WRITABLE))
3055 				prot |= PROT_WRITE;
3056 			if (!PTE_GET(pte, PT_NX))
3057 				prot |= PROT_EXEC;
3058 
3059 			flags = HAT_LOAD;
3060 			if (!is_dism)
3061 				flags |= HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST;
3062 			while (hati_load_common(hat, vaddr, pp, prot, flags,
3063 			    l, pfn) != 0) {
3064 				if (l == 0)
3065 					panic("hati_load_common() failure");
3066 				--l;
3067 			}
3068 
3069 			vaddr += LEVEL_SIZE(l);
3070 			ism_addr += LEVEL_SIZE(l);
3071 			pfn += mmu_btop(LEVEL_SIZE(l));
3072 			pgcnt -= mmu_btop(LEVEL_SIZE(l));
3073 		}
3074 	}
3075 	if (ism_ht != NULL)
3076 		htable_release(ism_ht);
3077 	XPV_ALLOW_MIGRATE();
3078 	return (0);
3079 }
3080 
3081 
3082 /*
3083  * hat_unshare() is similar to hat_unload_callback(), but
3084  * we have to look for empty shared pagetables. Note that
3085  * hat_unshare() is always invoked against an entire segment.
3086  */
3087 /*ARGSUSED*/
3088 void
3089 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc)
3090 {
3091 	uint64_t	vaddr = (uintptr_t)addr;
3092 	uintptr_t	eaddr = vaddr + len;
3093 	htable_t	*ht = NULL;
3094 	uint_t		need_demaps = 0;
3095 	int		flags = HAT_UNLOAD_UNMAP;
3096 	level_t		l;
3097 
3098 	ASSERT(hat != kas.a_hat);
3099 	ASSERT(eaddr <= _userlimit);
3100 	ASSERT(IS_PAGEALIGNED(vaddr));
3101 	ASSERT(IS_PAGEALIGNED(eaddr));
3102 	XPV_DISALLOW_MIGRATE();
3103 
3104 	/*
3105 	 * First go through and remove any shared pagetables.
3106 	 *
3107 	 * Note that it's ok to delay the TLB shootdown till the entire range is
3108 	 * finished, because if hat_pageunload() were to unload a shared
3109 	 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate.
3110 	 */
3111 	l = mmu.max_page_level;
3112 	if (l == mmu.max_level)
3113 		--l;
3114 	for (; l >= 0; --l) {
3115 		for (vaddr = (uintptr_t)addr; vaddr < eaddr;
3116 		    vaddr = (vaddr & LEVEL_MASK(l + 1)) + LEVEL_SIZE(l + 1)) {
3117 			ASSERT(!IN_VA_HOLE(vaddr));
3118 			/*
3119 			 * find a pagetable that maps the current address
3120 			 */
3121 			ht = htable_lookup(hat, vaddr, l);
3122 			if (ht == NULL)
3123 				continue;
3124 			if (ht->ht_flags & HTABLE_SHARED_PFN) {
3125 				/*
3126 				 * clear page count, set valid_cnt to 0,
3127 				 * let htable_release() finish the job
3128 				 */
3129 				hat->hat_ism_pgcnt -= ht->ht_valid_cnt <<
3130 				    (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT);
3131 				ht->ht_valid_cnt = 0;
3132 				need_demaps = 1;
3133 			}
3134 			htable_release(ht);
3135 		}
3136 	}
3137 
3138 	/*
3139 	 * flush the TLBs - since we're probably dealing with MANY mappings
3140 	 * we do just one CR3 reload.
3141 	 */
3142 	if (!(hat->hat_flags & HAT_FREEING) && need_demaps)
3143 		hat_tlb_inval(hat, DEMAP_ALL_ADDR);
3144 
3145 	/*
3146 	 * Now go back and clean up any unaligned mappings that
3147 	 * couldn't share pagetables.
3148 	 */
3149 	if (!is_it_dism(hat, addr))
3150 		flags |= HAT_UNLOAD_UNLOCK;
3151 	hat_unload(hat, addr, len, flags);
3152 	XPV_ALLOW_MIGRATE();
3153 }
3154 
3155 
3156 /*
3157  * hat_reserve() does nothing
3158  */
3159 /*ARGSUSED*/
3160 void
3161 hat_reserve(struct as *as, caddr_t addr, size_t len)
3162 {
3163 }
3164 
3165 
3166 /*
3167  * Called when all mappings to a page should have write permission removed.
3168  * Mostly stolen from hat_pagesync()
3169  */
3170 static void
3171 hati_page_clrwrt(struct page *pp)
3172 {
3173 	hment_t		*hm = NULL;
3174 	htable_t	*ht;
3175 	uint_t		entry;
3176 	x86pte_t	old;
3177 	x86pte_t	new;
3178 	uint_t		pszc = 0;
3179 
3180 	XPV_DISALLOW_MIGRATE();
3181 next_size:
3182 	/*
3183 	 * walk thru the mapping list clearing write permission
3184 	 */
3185 	x86_hm_enter(pp);
3186 	while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3187 		if (ht->ht_level < pszc)
3188 			continue;
3189 		old = x86pte_get(ht, entry);
3190 
3191 		for (;;) {
3192 			/*
3193 			 * Is this mapping of interest?
3194 			 */
3195 			if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum ||
3196 			    PTE_GET(old, PT_WRITABLE) == 0)
3197 				break;
3198 
3199 			/*
3200 			 * Clear ref/mod writable bits. This requires cross
3201 			 * calls to ensure any executing TLBs see cleared bits.
3202 			 */
3203 			new = old;
3204 			PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE);
3205 			old = hati_update_pte(ht, entry, old, new);
3206 			if (old != 0)
3207 				continue;
3208 
3209 			break;
3210 		}
3211 	}
3212 	x86_hm_exit(pp);
3213 	while (pszc < pp->p_szc) {
3214 		page_t *tpp;
3215 		pszc++;
3216 		tpp = PP_GROUPLEADER(pp, pszc);
3217 		if (pp != tpp) {
3218 			pp = tpp;
3219 			goto next_size;
3220 		}
3221 	}
3222 	XPV_ALLOW_MIGRATE();
3223 }
3224 
3225 /*
3226  * void hat_page_setattr(pp, flag)
3227  * void hat_page_clrattr(pp, flag)
3228  *	used to set/clr ref/mod bits.
3229  */
3230 void
3231 hat_page_setattr(struct page *pp, uint_t flag)
3232 {
3233 	vnode_t		*vp = pp->p_vnode;
3234 	kmutex_t	*vphm = NULL;
3235 	page_t		**listp;
3236 	int		noshuffle;
3237 
3238 	noshuffle = flag & P_NSH;
3239 	flag &= ~P_NSH;
3240 
3241 	if (PP_GETRM(pp, flag) == flag)
3242 		return;
3243 
3244 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
3245 	    !noshuffle) {
3246 		vphm = page_vnode_mutex(vp);
3247 		mutex_enter(vphm);
3248 	}
3249 
3250 	PP_SETRM(pp, flag);
3251 
3252 	if (vphm != NULL) {
3253 
3254 		/*
3255 		 * Some File Systems examine v_pages for NULL w/o
3256 		 * grabbing the vphm mutex. Must not let it become NULL when
3257 		 * pp is the only page on the list.
3258 		 */
3259 		if (pp->p_vpnext != pp) {
3260 			page_vpsub(&vp->v_pages, pp);
3261 			if (vp->v_pages != NULL)
3262 				listp = &vp->v_pages->p_vpprev->p_vpnext;
3263 			else
3264 				listp = &vp->v_pages;
3265 			page_vpadd(listp, pp);
3266 		}
3267 		mutex_exit(vphm);
3268 	}
3269 }
3270 
3271 void
3272 hat_page_clrattr(struct page *pp, uint_t flag)
3273 {
3274 	vnode_t		*vp = pp->p_vnode;
3275 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
3276 
3277 	/*
3278 	 * Caller is expected to hold page's io lock for VMODSORT to work
3279 	 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
3280 	 * bit is cleared.
3281 	 * We don't have assert to avoid tripping some existing third party
3282 	 * code. The dirty page is moved back to top of the v_page list
3283 	 * after IO is done in pvn_write_done().
3284 	 */
3285 	PP_CLRRM(pp, flag);
3286 
3287 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
3288 
3289 		/*
3290 		 * VMODSORT works by removing write permissions and getting
3291 		 * a fault when a page is made dirty. At this point
3292 		 * we need to remove write permission from all mappings
3293 		 * to this page.
3294 		 */
3295 		hati_page_clrwrt(pp);
3296 	}
3297 }
3298 
3299 /*
3300  *	If flag is specified, returns 0 if attribute is disabled
3301  *	and non zero if enabled.  If flag specifes multiple attributes
3302  *	then returns 0 if ALL attributes are disabled.  This is an advisory
3303  *	call.
3304  */
3305 uint_t
3306 hat_page_getattr(struct page *pp, uint_t flag)
3307 {
3308 	return (PP_GETRM(pp, flag));
3309 }
3310 
3311 
3312 /*
3313  * common code used by hat_pageunload() and hment_steal()
3314  */
3315 hment_t *
3316 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry)
3317 {
3318 	x86pte_t old_pte;
3319 	pfn_t pfn = pp->p_pagenum;
3320 	hment_t *hm;
3321 
3322 	/*
3323 	 * We need to acquire a hold on the htable in order to
3324 	 * do the invalidate. We know the htable must exist, since
3325 	 * unmap's don't release the htable until after removing any
3326 	 * hment. Having x86_hm_enter() keeps that from proceeding.
3327 	 */
3328 	htable_acquire(ht);
3329 
3330 	/*
3331 	 * Invalidate the PTE and remove the hment.
3332 	 */
3333 	old_pte = x86pte_inval(ht, entry, 0, NULL);
3334 	if (PTE2PFN(old_pte, ht->ht_level) != pfn) {
3335 		panic("x86pte_inval() failure found PTE = " FMT_PTE
3336 		    " pfn being unmapped is %lx ht=0x%lx entry=0x%x",
3337 		    old_pte, pfn, (uintptr_t)ht, entry);
3338 	}
3339 
3340 	/*
3341 	 * Clean up all the htable information for this mapping
3342 	 */
3343 	ASSERT(ht->ht_valid_cnt > 0);
3344 	HTABLE_DEC(ht->ht_valid_cnt);
3345 	PGCNT_DEC(ht->ht_hat, ht->ht_level);
3346 
3347 	/*
3348 	 * sync ref/mod bits to the page_t
3349 	 */
3350 	if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC)
3351 		hati_sync_pte_to_page(pp, old_pte, ht->ht_level);
3352 
3353 	/*
3354 	 * Remove the mapping list entry for this page.
3355 	 */
3356 	hm = hment_remove(pp, ht, entry);
3357 
3358 	/*
3359 	 * drop the mapping list lock so that we might free the
3360 	 * hment and htable.
3361 	 */
3362 	x86_hm_exit(pp);
3363 	htable_release(ht);
3364 	return (hm);
3365 }
3366 
3367 extern int	vpm_enable;
3368 /*
3369  * Unload all translations to a page. If the page is a subpage of a large
3370  * page, the large page mappings are also removed.
3371  *
3372  * The forceflags are unused.
3373  */
3374 
3375 /*ARGSUSED*/
3376 static int
3377 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag)
3378 {
3379 	page_t		*cur_pp = pp;
3380 	hment_t		*hm;
3381 	hment_t		*prev;
3382 	htable_t	*ht;
3383 	uint_t		entry;
3384 	level_t		level;
3385 
3386 	XPV_DISALLOW_MIGRATE();
3387 #if defined(__amd64)
3388 	/*
3389 	 * clear the vpm ref.
3390 	 */
3391 	if (vpm_enable) {
3392 		pp->p_vpmref = 0;
3393 	}
3394 #endif
3395 	/*
3396 	 * The loop with next_size handles pages with multiple pagesize mappings
3397 	 */
3398 next_size:
3399 	for (;;) {
3400 
3401 		/*
3402 		 * Get a mapping list entry
3403 		 */
3404 		x86_hm_enter(cur_pp);
3405 		for (prev = NULL; ; prev = hm) {
3406 			hm = hment_walk(cur_pp, &ht, &entry, prev);
3407 			if (hm == NULL) {
3408 				x86_hm_exit(cur_pp);
3409 
3410 				/*
3411 				 * If not part of a larger page, we're done.
3412 				 */
3413 				if (cur_pp->p_szc <= pg_szcd) {
3414 					XPV_ALLOW_MIGRATE();
3415 					return (0);
3416 				}
3417 
3418 				/*
3419 				 * Else check the next larger page size.
3420 				 * hat_page_demote() may decrease p_szc
3421 				 * but that's ok we'll just take an extra
3422 				 * trip discover there're no larger mappings
3423 				 * and return.
3424 				 */
3425 				++pg_szcd;
3426 				cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd);
3427 				goto next_size;
3428 			}
3429 
3430 			/*
3431 			 * If this mapping size matches, remove it.
3432 			 */
3433 			level = ht->ht_level;
3434 			if (level == pg_szcd)
3435 				break;
3436 		}
3437 
3438 		/*
3439 		 * Remove the mapping list entry for this page.
3440 		 * Note this does the x86_hm_exit() for us.
3441 		 */
3442 		hm = hati_page_unmap(cur_pp, ht, entry);
3443 		if (hm != NULL)
3444 			hment_free(hm);
3445 	}
3446 }
3447 
3448 int
3449 hat_pageunload(struct page *pp, uint_t forceflag)
3450 {
3451 	ASSERT(PAGE_EXCL(pp));
3452 	return (hati_pageunload(pp, 0, forceflag));
3453 }
3454 
3455 /*
3456  * Unload all large mappings to pp and reduce by 1 p_szc field of every large
3457  * page level that included pp.
3458  *
3459  * pp must be locked EXCL. Even though no other constituent pages are locked
3460  * it's legal to unload large mappings to pp because all constituent pages of
3461  * large locked mappings have to be locked SHARED.  therefore if we have EXCL
3462  * lock on one of constituent pages none of the large mappings to pp are
3463  * locked.
3464  *
3465  * Change (always decrease) p_szc field starting from the last constituent
3466  * page and ending with root constituent page so that root's pszc always shows
3467  * the area where hat_page_demote() may be active.
3468  *
3469  * This mechanism is only used for file system pages where it's not always
3470  * possible to get EXCL locks on all constituent pages to demote the size code
3471  * (as is done for anonymous or kernel large pages).
3472  */
3473 void
3474 hat_page_demote(page_t *pp)
3475 {
3476 	uint_t		pszc;
3477 	uint_t		rszc;
3478 	uint_t		szc;
3479 	page_t		*rootpp;
3480 	page_t		*firstpp;
3481 	page_t		*lastpp;
3482 	pgcnt_t		pgcnt;
3483 
3484 	ASSERT(PAGE_EXCL(pp));
3485 	ASSERT(!PP_ISFREE(pp));
3486 	ASSERT(page_szc_lock_assert(pp));
3487 
3488 	if (pp->p_szc == 0)
3489 		return;
3490 
3491 	rootpp = PP_GROUPLEADER(pp, 1);
3492 	(void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD);
3493 
3494 	/*
3495 	 * all large mappings to pp are gone
3496 	 * and no new can be setup since pp is locked exclusively.
3497 	 *
3498 	 * Lock the root to make sure there's only one hat_page_demote()
3499 	 * outstanding within the area of this root's pszc.
3500 	 *
3501 	 * Second potential hat_page_demote() is already eliminated by upper
3502 	 * VM layer via page_szc_lock() but we don't rely on it and use our
3503 	 * own locking (so that upper layer locking can be changed without
3504 	 * assumptions that hat depends on upper layer VM to prevent multiple
3505 	 * hat_page_demote() to be issued simultaneously to the same large
3506 	 * page).
3507 	 */
3508 again:
3509 	pszc = pp->p_szc;
3510 	if (pszc == 0)
3511 		return;
3512 	rootpp = PP_GROUPLEADER(pp, pszc);
3513 	x86_hm_enter(rootpp);
3514 	/*
3515 	 * If root's p_szc is different from pszc we raced with another
3516 	 * hat_page_demote().  Drop the lock and try to find the root again.
3517 	 * If root's p_szc is greater than pszc previous hat_page_demote() is
3518 	 * not done yet.  Take and release mlist lock of root's root to wait
3519 	 * for previous hat_page_demote() to complete.
3520 	 */
3521 	if ((rszc = rootpp->p_szc) != pszc) {
3522 		x86_hm_exit(rootpp);
3523 		if (rszc > pszc) {
3524 			/* p_szc of a locked non free page can't increase */
3525 			ASSERT(pp != rootpp);
3526 
3527 			rootpp = PP_GROUPLEADER(rootpp, rszc);
3528 			x86_hm_enter(rootpp);
3529 			x86_hm_exit(rootpp);
3530 		}
3531 		goto again;
3532 	}
3533 	ASSERT(pp->p_szc == pszc);
3534 
3535 	/*
3536 	 * Decrement by 1 p_szc of every constituent page of a region that
3537 	 * covered pp. For example if original szc is 3 it gets changed to 2
3538 	 * everywhere except in region 2 that covered pp. Region 2 that
3539 	 * covered pp gets demoted to 1 everywhere except in region 1 that
3540 	 * covered pp. The region 1 that covered pp is demoted to region
3541 	 * 0. It's done this way because from region 3 we removed level 3
3542 	 * mappings, from region 2 that covered pp we removed level 2 mappings
3543 	 * and from region 1 that covered pp we removed level 1 mappings.  All
3544 	 * changes are done from from high pfn's to low pfn's so that roots
3545 	 * are changed last allowing one to know the largest region where
3546 	 * hat_page_demote() is stil active by only looking at the root page.
3547 	 *
3548 	 * This algorithm is implemented in 2 while loops. First loop changes
3549 	 * p_szc of pages to the right of pp's level 1 region and second
3550 	 * loop changes p_szc of pages of level 1 region that covers pp
3551 	 * and all pages to the left of level 1 region that covers pp.
3552 	 * In the first loop p_szc keeps dropping with every iteration
3553 	 * and in the second loop it keeps increasing with every iteration.
3554 	 *
3555 	 * First loop description: Demote pages to the right of pp outside of
3556 	 * level 1 region that covers pp.  In every iteration of the while
3557 	 * loop below find the last page of szc region and the first page of
3558 	 * (szc - 1) region that is immediately to the right of (szc - 1)
3559 	 * region that covers pp.  From last such page to first such page
3560 	 * change every page's szc to szc - 1. Decrement szc and continue
3561 	 * looping until szc is 1. If pp belongs to the last (szc - 1) region
3562 	 * of szc region skip to the next iteration.
3563 	 */
3564 	szc = pszc;
3565 	while (szc > 1) {
3566 		lastpp = PP_GROUPLEADER(pp, szc);
3567 		pgcnt = page_get_pagecnt(szc);
3568 		lastpp += pgcnt - 1;
3569 		firstpp = PP_GROUPLEADER(pp, (szc - 1));
3570 		pgcnt = page_get_pagecnt(szc - 1);
3571 		if (lastpp - firstpp < pgcnt) {
3572 			szc--;
3573 			continue;
3574 		}
3575 		firstpp += pgcnt;
3576 		while (lastpp != firstpp) {
3577 			ASSERT(lastpp->p_szc == pszc);
3578 			lastpp->p_szc = szc - 1;
3579 			lastpp--;
3580 		}
3581 		firstpp->p_szc = szc - 1;
3582 		szc--;
3583 	}
3584 
3585 	/*
3586 	 * Second loop description:
3587 	 * First iteration changes p_szc to 0 of every
3588 	 * page of level 1 region that covers pp.
3589 	 * Subsequent iterations find last page of szc region
3590 	 * immediately to the left of szc region that covered pp
3591 	 * and first page of (szc + 1) region that covers pp.
3592 	 * From last to first page change p_szc of every page to szc.
3593 	 * Increment szc and continue looping until szc is pszc.
3594 	 * If pp belongs to the fist szc region of (szc + 1) region
3595 	 * skip to the next iteration.
3596 	 *
3597 	 */
3598 	szc = 0;
3599 	while (szc < pszc) {
3600 		firstpp = PP_GROUPLEADER(pp, (szc + 1));
3601 		if (szc == 0) {
3602 			pgcnt = page_get_pagecnt(1);
3603 			lastpp = firstpp + (pgcnt - 1);
3604 		} else {
3605 			lastpp = PP_GROUPLEADER(pp, szc);
3606 			if (firstpp == lastpp) {
3607 				szc++;
3608 				continue;
3609 			}
3610 			lastpp--;
3611 			pgcnt = page_get_pagecnt(szc);
3612 		}
3613 		while (lastpp != firstpp) {
3614 			ASSERT(lastpp->p_szc == pszc);
3615 			lastpp->p_szc = szc;
3616 			lastpp--;
3617 		}
3618 		firstpp->p_szc = szc;
3619 		if (firstpp == rootpp)
3620 			break;
3621 		szc++;
3622 	}
3623 	x86_hm_exit(rootpp);
3624 }
3625 
3626 /*
3627  * get hw stats from hardware into page struct and reset hw stats
3628  * returns attributes of page
3629  * Flags for hat_pagesync, hat_getstat, hat_sync
3630  *
3631  * define	HAT_SYNC_ZERORM		0x01
3632  *
3633  * Additional flags for hat_pagesync
3634  *
3635  * define	HAT_SYNC_STOPON_REF	0x02
3636  * define	HAT_SYNC_STOPON_MOD	0x04
3637  * define	HAT_SYNC_STOPON_RM	0x06
3638  * define	HAT_SYNC_STOPON_SHARED	0x08
3639  */
3640 uint_t
3641 hat_pagesync(struct page *pp, uint_t flags)
3642 {
3643 	hment_t		*hm = NULL;
3644 	htable_t	*ht;
3645 	uint_t		entry;
3646 	x86pte_t	old, save_old;
3647 	x86pte_t	new;
3648 	uchar_t		nrmbits = P_REF|P_MOD|P_RO;
3649 	extern ulong_t	po_share;
3650 	page_t		*save_pp = pp;
3651 	uint_t		pszc = 0;
3652 
3653 	ASSERT(PAGE_LOCKED(pp) || panicstr);
3654 
3655 	if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD))
3656 		return (pp->p_nrm & nrmbits);
3657 
3658 	if ((flags & HAT_SYNC_ZERORM) == 0) {
3659 
3660 		if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp))
3661 			return (pp->p_nrm & nrmbits);
3662 
3663 		if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp))
3664 			return (pp->p_nrm & nrmbits);
3665 
3666 		if ((flags & HAT_SYNC_STOPON_SHARED) != 0 &&
3667 		    hat_page_getshare(pp) > po_share) {
3668 			if (PP_ISRO(pp))
3669 				PP_SETREF(pp);
3670 			return (pp->p_nrm & nrmbits);
3671 		}
3672 	}
3673 
3674 	XPV_DISALLOW_MIGRATE();
3675 next_size:
3676 	/*
3677 	 * walk thru the mapping list syncing (and clearing) ref/mod bits.
3678 	 */
3679 	x86_hm_enter(pp);
3680 	while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3681 		if (ht->ht_level < pszc)
3682 			continue;
3683 		old = x86pte_get(ht, entry);
3684 try_again:
3685 
3686 		ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum);
3687 
3688 		if (PTE_GET(old, PT_REF | PT_MOD) == 0)
3689 			continue;
3690 
3691 		save_old = old;
3692 		if ((flags & HAT_SYNC_ZERORM) != 0) {
3693 
3694 			/*
3695 			 * Need to clear ref or mod bits. Need to demap
3696 			 * to make sure any executing TLBs see cleared bits.
3697 			 */
3698 			new = old;
3699 			PTE_CLR(new, PT_REF | PT_MOD);
3700 			old = hati_update_pte(ht, entry, old, new);
3701 			if (old != 0)
3702 				goto try_again;
3703 
3704 			old = save_old;
3705 		}
3706 
3707 		/*
3708 		 * Sync the PTE
3709 		 */
3710 		if (!(flags & HAT_SYNC_ZERORM) &&
3711 		    PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC)
3712 			hati_sync_pte_to_page(pp, old, ht->ht_level);
3713 
3714 		/*
3715 		 * can stop short if we found a ref'd or mod'd page
3716 		 */
3717 		if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) ||
3718 		    (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) {
3719 			x86_hm_exit(pp);
3720 			goto done;
3721 		}
3722 	}
3723 	x86_hm_exit(pp);
3724 	while (pszc < pp->p_szc) {
3725 		page_t *tpp;
3726 		pszc++;
3727 		tpp = PP_GROUPLEADER(pp, pszc);
3728 		if (pp != tpp) {
3729 			pp = tpp;
3730 			goto next_size;
3731 		}
3732 	}
3733 done:
3734 	XPV_ALLOW_MIGRATE();
3735 	return (save_pp->p_nrm & nrmbits);
3736 }
3737 
3738 /*
3739  * returns approx number of mappings to this pp.  A return of 0 implies
3740  * there are no mappings to the page.
3741  */
3742 ulong_t
3743 hat_page_getshare(page_t *pp)
3744 {
3745 	uint_t cnt;
3746 	cnt = hment_mapcnt(pp);
3747 #if defined(__amd64)
3748 	if (vpm_enable && pp->p_vpmref) {
3749 		cnt += 1;
3750 	}
3751 #endif
3752 	return (cnt);
3753 }
3754 
3755 /*
3756  * Return 1 the number of mappings exceeds sh_thresh. Return 0
3757  * otherwise.
3758  */
3759 int
3760 hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
3761 {
3762 	return (hat_page_getshare(pp) > sh_thresh);
3763 }
3764 
3765 /*
3766  * hat_softlock isn't supported anymore
3767  */
3768 /*ARGSUSED*/
3769 faultcode_t
3770 hat_softlock(
3771 	hat_t *hat,
3772 	caddr_t addr,
3773 	size_t *len,
3774 	struct page **page_array,
3775 	uint_t flags)
3776 {
3777 	return (FC_NOSUPPORT);
3778 }
3779 
3780 
3781 
3782 /*
3783  * Routine to expose supported HAT features to platform independent code.
3784  */
3785 /*ARGSUSED*/
3786 int
3787 hat_supported(enum hat_features feature, void *arg)
3788 {
3789 	switch (feature) {
3790 
3791 	case HAT_SHARED_PT:	/* this is really ISM */
3792 		return (1);
3793 
3794 	case HAT_DYNAMIC_ISM_UNMAP:
3795 		return (0);
3796 
3797 	case HAT_VMODSORT:
3798 		return (1);
3799 
3800 	case HAT_SHARED_REGIONS:
3801 		return (0);
3802 
3803 	default:
3804 		panic("hat_supported() - unknown feature");
3805 	}
3806 	return (0);
3807 }
3808 
3809 /*
3810  * Called when a thread is exiting and has been switched to the kernel AS
3811  */
3812 void
3813 hat_thread_exit(kthread_t *thd)
3814 {
3815 	ASSERT(thd->t_procp->p_as == &kas);
3816 	XPV_DISALLOW_MIGRATE();
3817 	hat_switch(thd->t_procp->p_as->a_hat);
3818 	XPV_ALLOW_MIGRATE();
3819 }
3820 
3821 /*
3822  * Setup the given brand new hat structure as the new HAT on this cpu's mmu.
3823  */
3824 /*ARGSUSED*/
3825 void
3826 hat_setup(hat_t *hat, int flags)
3827 {
3828 	XPV_DISALLOW_MIGRATE();
3829 	kpreempt_disable();
3830 
3831 	hat_switch(hat);
3832 
3833 	kpreempt_enable();
3834 	XPV_ALLOW_MIGRATE();
3835 }
3836 
3837 /*
3838  * Prepare for a CPU private mapping for the given address.
3839  *
3840  * The address can only be used from a single CPU and can be remapped
3841  * using hat_mempte_remap().  Return the address of the PTE.
3842  *
3843  * We do the htable_create() if necessary and increment the valid count so
3844  * the htable can't disappear.  We also hat_devload() the page table into
3845  * kernel so that the PTE is quickly accessed.
3846  */
3847 hat_mempte_t
3848 hat_mempte_setup(caddr_t addr)
3849 {
3850 	uintptr_t	va = (uintptr_t)addr;
3851 	htable_t	*ht;
3852 	uint_t		entry;
3853 	x86pte_t	oldpte;
3854 	hat_mempte_t	p;
3855 
3856 	ASSERT(IS_PAGEALIGNED(va));
3857 	ASSERT(!IN_VA_HOLE(va));
3858 	++curthread->t_hatdepth;
3859 	XPV_DISALLOW_MIGRATE();
3860 	ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0);
3861 	if (ht == NULL) {
3862 		ht = htable_create(kas.a_hat, va, 0, NULL);
3863 		entry = htable_va2entry(va, ht);
3864 		ASSERT(ht->ht_level == 0);
3865 		oldpte = x86pte_get(ht, entry);
3866 	}
3867 	if (PTE_ISVALID(oldpte))
3868 		panic("hat_mempte_setup(): address already mapped"
3869 		    "ht=%p, entry=%d, pte=" FMT_PTE, (void *)ht, entry, oldpte);
3870 
3871 	/*
3872 	 * increment ht_valid_cnt so that the pagetable can't disappear
3873 	 */
3874 	HTABLE_INC(ht->ht_valid_cnt);
3875 
3876 	/*
3877 	 * return the PTE physical address to the caller.
3878 	 */
3879 	htable_release(ht);
3880 	XPV_ALLOW_MIGRATE();
3881 	p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry);
3882 	--curthread->t_hatdepth;
3883 	return (p);
3884 }
3885 
3886 /*
3887  * Release a CPU private mapping for the given address.
3888  * We decrement the htable valid count so it might be destroyed.
3889  */
3890 /*ARGSUSED1*/
3891 void
3892 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa)
3893 {
3894 	htable_t	*ht;
3895 
3896 	XPV_DISALLOW_MIGRATE();
3897 	/*
3898 	 * invalidate any left over mapping and decrement the htable valid count
3899 	 */
3900 #ifdef __xpv
3901 	if (HYPERVISOR_update_va_mapping((uintptr_t)addr, 0,
3902 	    UVMF_INVLPG | UVMF_LOCAL))
3903 		panic("HYPERVISOR_update_va_mapping() failed");
3904 #else
3905 	{
3906 		x86pte_t *pteptr;
3907 
3908 		pteptr = x86pte_mapin(mmu_btop(pte_pa),
3909 		    (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
3910 		if (mmu.pae_hat)
3911 			*pteptr = 0;
3912 		else
3913 			*(x86pte32_t *)pteptr = 0;
3914 		mmu_tlbflush_entry(addr);
3915 		x86pte_mapout();
3916 	}
3917 #endif
3918 
3919 	ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0);
3920 	if (ht == NULL)
3921 		panic("hat_mempte_release(): invalid address");
3922 	ASSERT(ht->ht_level == 0);
3923 	HTABLE_DEC(ht->ht_valid_cnt);
3924 	htable_release(ht);
3925 	XPV_ALLOW_MIGRATE();
3926 }
3927 
3928 /*
3929  * Apply a temporary CPU private mapping to a page. We flush the TLB only
3930  * on this CPU, so this ought to have been called with preemption disabled.
3931  */
3932 void
3933 hat_mempte_remap(
3934 	pfn_t		pfn,
3935 	caddr_t		addr,
3936 	hat_mempte_t	pte_pa,
3937 	uint_t		attr,
3938 	uint_t		flags)
3939 {
3940 	uintptr_t	va = (uintptr_t)addr;
3941 	x86pte_t	pte;
3942 
3943 	/*
3944 	 * Remap the given PTE to the new page's PFN. Invalidate only
3945 	 * on this CPU.
3946 	 */
3947 #ifdef DEBUG
3948 	htable_t	*ht;
3949 	uint_t		entry;
3950 
3951 	ASSERT(IS_PAGEALIGNED(va));
3952 	ASSERT(!IN_VA_HOLE(va));
3953 	ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0);
3954 	ASSERT(ht != NULL);
3955 	ASSERT(ht->ht_level == 0);
3956 	ASSERT(ht->ht_valid_cnt > 0);
3957 	ASSERT(ht->ht_pfn == mmu_btop(pte_pa));
3958 	htable_release(ht);
3959 #endif
3960 	XPV_DISALLOW_MIGRATE();
3961 	pte = hati_mkpte(pfn, attr, 0, flags);
3962 #ifdef __xpv
3963 	if (HYPERVISOR_update_va_mapping(va, pte, UVMF_INVLPG | UVMF_LOCAL))
3964 		panic("HYPERVISOR_update_va_mapping() failed");
3965 #else
3966 	{
3967 		x86pte_t *pteptr;
3968 
3969 		pteptr = x86pte_mapin(mmu_btop(pte_pa),
3970 		    (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
3971 		if (mmu.pae_hat)
3972 			*(x86pte_t *)pteptr = pte;
3973 		else
3974 			*(x86pte32_t *)pteptr = (x86pte32_t)pte;
3975 		mmu_tlbflush_entry(addr);
3976 		x86pte_mapout();
3977 	}
3978 #endif
3979 	XPV_ALLOW_MIGRATE();
3980 }
3981 
3982 
3983 
3984 /*
3985  * Hat locking functions
3986  * XXX - these two functions are currently being used by hatstats
3987  * 	they can be removed by using a per-as mutex for hatstats.
3988  */
3989 void
3990 hat_enter(hat_t *hat)
3991 {
3992 	mutex_enter(&hat->hat_mutex);
3993 }
3994 
3995 void
3996 hat_exit(hat_t *hat)
3997 {
3998 	mutex_exit(&hat->hat_mutex);
3999 }
4000 
4001 /*
4002  * HAT part of cpu initialization.
4003  */
4004 void
4005 hat_cpu_online(struct cpu *cpup)
4006 {
4007 	if (cpup != CPU) {
4008 		x86pte_cpu_init(cpup);
4009 		hat_vlp_setup(cpup);
4010 	}
4011 	CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id);
4012 }
4013 
4014 /*
4015  * HAT part of cpu deletion.
4016  * (currently, we only call this after the cpu is safely passivated.)
4017  */
4018 void
4019 hat_cpu_offline(struct cpu *cpup)
4020 {
4021 	ASSERT(cpup != CPU);
4022 
4023 	CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id);
4024 	x86pte_cpu_fini(cpup);
4025 	hat_vlp_teardown(cpup);
4026 }
4027 
4028 /*
4029  * Function called after all CPUs are brought online.
4030  * Used to remove low address boot mappings.
4031  */
4032 void
4033 clear_boot_mappings(uintptr_t low, uintptr_t high)
4034 {
4035 	uintptr_t vaddr = low;
4036 	htable_t *ht = NULL;
4037 	level_t level;
4038 	uint_t entry;
4039 	x86pte_t pte;
4040 
4041 	/*
4042 	 * On 1st CPU we can unload the prom mappings, basically we blow away
4043 	 * all virtual mappings under _userlimit.
4044 	 */
4045 	while (vaddr < high) {
4046 		pte = htable_walk(kas.a_hat, &ht, &vaddr, high);
4047 		if (ht == NULL)
4048 			break;
4049 
4050 		level = ht->ht_level;
4051 		entry = htable_va2entry(vaddr, ht);
4052 		ASSERT(level <= mmu.max_page_level);
4053 		ASSERT(PTE_ISPAGE(pte, level));
4054 
4055 		/*
4056 		 * Unload the mapping from the page tables.
4057 		 */
4058 		(void) x86pte_inval(ht, entry, 0, NULL);
4059 		ASSERT(ht->ht_valid_cnt > 0);
4060 		HTABLE_DEC(ht->ht_valid_cnt);
4061 		PGCNT_DEC(ht->ht_hat, ht->ht_level);
4062 
4063 		vaddr += LEVEL_SIZE(ht->ht_level);
4064 	}
4065 	if (ht)
4066 		htable_release(ht);
4067 }
4068 
4069 /*
4070  * Atomically update a new translation for a single page.  If the
4071  * currently installed PTE doesn't match the value we expect to find,
4072  * it's not updated and we return the PTE we found.
4073  *
4074  * If activating nosync or NOWRITE and the page was modified we need to sync
4075  * with the page_t. Also sync with page_t if clearing ref/mod bits.
4076  */
4077 static x86pte_t
4078 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new)
4079 {
4080 	page_t		*pp;
4081 	uint_t		rm = 0;
4082 	x86pte_t	replaced;
4083 
4084 	if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC &&
4085 	    PTE_GET(expected, PT_MOD | PT_REF) &&
4086 	    (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) ||
4087 	    !PTE_GET(new, PT_MOD | PT_REF))) {
4088 
4089 		ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level)));
4090 		pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level));
4091 		ASSERT(pp != NULL);
4092 		if (PTE_GET(expected, PT_MOD))
4093 			rm |= P_MOD;
4094 		if (PTE_GET(expected, PT_REF))
4095 			rm |= P_REF;
4096 		PTE_CLR(new, PT_MOD | PT_REF);
4097 	}
4098 
4099 	replaced = x86pte_update(ht, entry, expected, new);
4100 	if (replaced != expected)
4101 		return (replaced);
4102 
4103 	if (rm) {
4104 		/*
4105 		 * sync to all constituent pages of a large page
4106 		 */
4107 		pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level);
4108 		ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
4109 		while (pgcnt-- > 0) {
4110 			/*
4111 			 * hat_page_demote() can't decrease
4112 			 * pszc below this mapping size
4113 			 * since large mapping existed after we
4114 			 * took mlist lock.
4115 			 */
4116 			ASSERT(pp->p_szc >= ht->ht_level);
4117 			hat_page_setattr(pp, rm);
4118 			++pp;
4119 		}
4120 	}
4121 
4122 	return (0);
4123 }
4124 
4125 /* ARGSUSED */
4126 void
4127 hat_join_srd(struct hat *hat, vnode_t *evp)
4128 {
4129 }
4130 
4131 /* ARGSUSED */
4132 hat_region_cookie_t
4133 hat_join_region(struct hat *hat,
4134     caddr_t r_saddr,
4135     size_t r_size,
4136     void *r_obj,
4137     u_offset_t r_objoff,
4138     uchar_t r_perm,
4139     uchar_t r_pgszc,
4140     hat_rgn_cb_func_t r_cb_function,
4141     uint_t flags)
4142 {
4143 	panic("No shared region support on x86");
4144 	return (HAT_INVALID_REGION_COOKIE);
4145 }
4146 
4147 /* ARGSUSED */
4148 void
4149 hat_leave_region(struct hat *hat, hat_region_cookie_t rcookie, uint_t flags)
4150 {
4151 	panic("No shared region support on x86");
4152 }
4153 
4154 /* ARGSUSED */
4155 void
4156 hat_dup_region(struct hat *hat, hat_region_cookie_t rcookie)
4157 {
4158 	panic("No shared region support on x86");
4159 }
4160 
4161 
4162 /*
4163  * Kernel Physical Mapping (kpm) facility
4164  *
4165  * Most of the routines needed to support segkpm are almost no-ops on the
4166  * x86 platform.  We map in the entire segment when it is created and leave
4167  * it mapped in, so there is no additional work required to set up and tear
4168  * down individual mappings.  All of these routines were created to support
4169  * SPARC platforms that have to avoid aliasing in their virtually indexed
4170  * caches.
4171  *
4172  * Most of the routines have sanity checks in them (e.g. verifying that the
4173  * passed-in page is locked).  We don't actually care about most of these
4174  * checks on x86, but we leave them in place to identify problems in the
4175  * upper levels.
4176  */
4177 
4178 /*
4179  * Map in a locked page and return the vaddr.
4180  */
4181 /*ARGSUSED*/
4182 caddr_t
4183 hat_kpm_mapin(struct page *pp, struct kpme *kpme)
4184 {
4185 	caddr_t		vaddr;
4186 
4187 #ifdef DEBUG
4188 	if (kpm_enable == 0) {
4189 		cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n");
4190 		return ((caddr_t)NULL);
4191 	}
4192 
4193 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
4194 		cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n");
4195 		return ((caddr_t)NULL);
4196 	}
4197 #endif
4198 
4199 	vaddr = hat_kpm_page2va(pp, 1);
4200 
4201 	return (vaddr);
4202 }
4203 
4204 /*
4205  * Mapout a locked page.
4206  */
4207 /*ARGSUSED*/
4208 void
4209 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr)
4210 {
4211 #ifdef DEBUG
4212 	if (kpm_enable == 0) {
4213 		cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n");
4214 		return;
4215 	}
4216 
4217 	if (IS_KPM_ADDR(vaddr) == 0) {
4218 		cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n");
4219 		return;
4220 	}
4221 
4222 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
4223 		cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n");
4224 		return;
4225 	}
4226 #endif
4227 }
4228 
4229 /*
4230  * hat_kpm_mapin_pfn is used to obtain a kpm mapping for physical
4231  * memory addresses that are not described by a page_t.  It can
4232  * also be used for normal pages that are not locked, but beware
4233  * this is dangerous - no locking is performed, so the identity of
4234  * the page could change.  hat_kpm_mapin_pfn is not supported when
4235  * vac_colors > 1, because the chosen va depends on the page identity,
4236  * which could change.
4237  * The caller must only pass pfn's for valid physical addresses; violation
4238  * of this rule will cause panic.
4239  */
4240 caddr_t
4241 hat_kpm_mapin_pfn(pfn_t pfn)
4242 {
4243 	caddr_t paddr, vaddr;
4244 
4245 	if (kpm_enable == 0)
4246 		return ((caddr_t)NULL);
4247 
4248 	paddr = (caddr_t)ptob(pfn);
4249 	vaddr = (uintptr_t)kpm_vbase + paddr;
4250 
4251 	return ((caddr_t)vaddr);
4252 }
4253 
4254 /*ARGSUSED*/
4255 void
4256 hat_kpm_mapout_pfn(pfn_t pfn)
4257 {
4258 	/* empty */
4259 }
4260 
4261 /*
4262  * Return the kpm virtual address for a specific pfn
4263  */
4264 caddr_t
4265 hat_kpm_pfn2va(pfn_t pfn)
4266 {
4267 	uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn);
4268 
4269 	ASSERT(!pfn_is_foreign(pfn));
4270 	return ((caddr_t)vaddr);
4271 }
4272 
4273 /*
4274  * Return the kpm virtual address for the page at pp.
4275  */
4276 /*ARGSUSED*/
4277 caddr_t
4278 hat_kpm_page2va(struct page *pp, int checkswap)
4279 {
4280 	return (hat_kpm_pfn2va(pp->p_pagenum));
4281 }
4282 
4283 /*
4284  * Return the page frame number for the kpm virtual address vaddr.
4285  */
4286 pfn_t
4287 hat_kpm_va2pfn(caddr_t vaddr)
4288 {
4289 	pfn_t		pfn;
4290 
4291 	ASSERT(IS_KPM_ADDR(vaddr));
4292 
4293 	pfn = (pfn_t)btop(vaddr - kpm_vbase);
4294 
4295 	return (pfn);
4296 }
4297 
4298 
4299 /*
4300  * Return the page for the kpm virtual address vaddr.
4301  */
4302 page_t *
4303 hat_kpm_vaddr2page(caddr_t vaddr)
4304 {
4305 	pfn_t		pfn;
4306 
4307 	ASSERT(IS_KPM_ADDR(vaddr));
4308 
4309 	pfn = hat_kpm_va2pfn(vaddr);
4310 
4311 	return (page_numtopp_nolock(pfn));
4312 }
4313 
4314 /*
4315  * hat_kpm_fault is called from segkpm_fault when we take a page fault on a
4316  * KPM page.  This should never happen on x86
4317  */
4318 int
4319 hat_kpm_fault(hat_t *hat, caddr_t vaddr)
4320 {
4321 	panic("pagefault in seg_kpm.  hat: 0x%p  vaddr: 0x%p",
4322 	    (void *)hat, (void *)vaddr);
4323 
4324 	return (0);
4325 }
4326 
4327 /*ARGSUSED*/
4328 void
4329 hat_kpm_mseghash_clear(int nentries)
4330 {}
4331 
4332 /*ARGSUSED*/
4333 void
4334 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp)
4335 {}
4336 
4337 #ifdef __xpv
4338 /*
4339  * There are specific Hypervisor calls to establish and remove mappings
4340  * to grant table references and the privcmd driver. We have to ensure
4341  * that a page table actually exists.
4342  */
4343 void
4344 hat_prepare_mapping(hat_t *hat, caddr_t addr, uint64_t *pte_ma)
4345 {
4346 	maddr_t base_ma;
4347 	htable_t *ht;
4348 	uint_t entry;
4349 
4350 	ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE));
4351 	XPV_DISALLOW_MIGRATE();
4352 	ht = htable_create(hat, (uintptr_t)addr, 0, NULL);
4353 
4354 	/*
4355 	 * if an address for pte_ma is passed in, return the MA of the pte
4356 	 * for this specific address.  This address is only valid as long
4357 	 * as the htable stays locked.
4358 	 */
4359 	if (pte_ma != NULL) {
4360 		entry = htable_va2entry((uintptr_t)addr, ht);
4361 		base_ma = pa_to_ma(ptob(ht->ht_pfn));
4362 		*pte_ma = base_ma + (entry << mmu.pte_size_shift);
4363 	}
4364 	XPV_ALLOW_MIGRATE();
4365 }
4366 
4367 void
4368 hat_release_mapping(hat_t *hat, caddr_t addr)
4369 {
4370 	htable_t *ht;
4371 
4372 	ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE));
4373 	XPV_DISALLOW_MIGRATE();
4374 	ht = htable_lookup(hat, (uintptr_t)addr, 0);
4375 	ASSERT(ht != NULL);
4376 	ASSERT(ht->ht_busy >= 2);
4377 	htable_release(ht);
4378 	htable_release(ht);
4379 	XPV_ALLOW_MIGRATE();
4380 									}
4381 #endif
4382