1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * VM - Hardware Address Translation management for i386 and amd64 30 * 31 * Implementation of the interfaces described in <common/vm/hat.h> 32 * 33 * Nearly all the details of how the hardware is managed should not be 34 * visible outside this layer except for misc. machine specific functions 35 * that work in conjunction with this code. 36 * 37 * Routines used only inside of i86pc/vm start with hati_ for HAT Internal. 38 */ 39 40 #include <sys/machparam.h> 41 #include <sys/machsystm.h> 42 #include <sys/mman.h> 43 #include <sys/types.h> 44 #include <sys/systm.h> 45 #include <sys/cpuvar.h> 46 #include <sys/thread.h> 47 #include <sys/proc.h> 48 #include <sys/cpu.h> 49 #include <sys/kmem.h> 50 #include <sys/disp.h> 51 #include <sys/shm.h> 52 #include <sys/sysmacros.h> 53 #include <sys/machparam.h> 54 #include <sys/vmem.h> 55 #include <sys/vmsystm.h> 56 #include <sys/promif.h> 57 #include <sys/var.h> 58 #include <sys/x86_archext.h> 59 #include <sys/atomic.h> 60 #include <sys/bitmap.h> 61 #include <sys/controlregs.h> 62 #include <sys/bootconf.h> 63 #include <sys/bootsvcs.h> 64 #include <sys/bootinfo.h> 65 66 #include <vm/seg_kmem.h> 67 #include <vm/hat_i86.h> 68 #include <vm/as.h> 69 #include <vm/seg.h> 70 #include <vm/page.h> 71 #include <vm/seg_kp.h> 72 #include <vm/seg_kpm.h> 73 #include <vm/vm_dep.h> 74 #include <vm/kboot_mmu.h> 75 76 #include <sys/cmn_err.h> 77 78 /* 79 * Basic parameters for hat operation. 80 */ 81 struct hat_mmu_info mmu; 82 83 /* 84 * The page that is the kernel's top level pagetable. 85 * 86 * For 32 bit VLP support, the kernel hat will use the 1st 4 entries 87 * on this 4K page for its top level page table. The remaining groups of 88 * 4 entries are used for per processor copies of user VLP pagetables for 89 * running threads. See hat_switch() and reload_pae32() for details. 90 * 91 * vlp_page[0] - 0th level==2 PTE for kernel HAT (will be zero) 92 * vlp_page[1] - 1st level==2 PTE for kernel HAT (will be zero) 93 * vlp_page[2] - 2nd level==2 PTE for kernel HAT (zero for small memory) 94 * vlp_page[3] - 3rd level==2 PTE for kernel 95 * 96 * vlp_page[4] - 0th level==2 PTE for user thread on cpu 0 97 * vlp_page[5] - 1st level==2 PTE for user thread on cpu 0 98 * vlp_page[6] - 2nd level==2 PTE for user thread on cpu 0 99 * vlp_page[7] - probably copy of kernel PTE 100 * 101 * vlp_page[8] - 0th level==2 PTE for user thread on cpu 1 102 * vlp_page[9] - 1st level==2 PTE for user thread on cpu 1 103 * vlp_page[10] - 2nd level==2 PTE for user thread on cpu 1 104 * vlp_page[11] - probably copy of kernel PTE 105 * ... 106 * 107 * when / where the kernel PTE's are (entry 2 or 3 or none) depends 108 * on kernelbase. 109 */ 110 static x86pte_t *vlp_page; 111 112 /* 113 * forward declaration of internal utility routines 114 */ 115 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, 116 x86pte_t new); 117 118 /* 119 * The kernel address space exists in all HATs. To implement this the 120 * kernel reserves a fixed number of entries in every topmost level page 121 * table. The values are setup in hat_init() and then copied to every hat 122 * created by hat_alloc(). This means that kernelbase must be: 123 * 124 * 4Meg aligned for 32 bit kernels 125 * 512Gig aligned for x86_64 64 bit kernel 126 * 127 * The PAE 32 bit hat is handled as a special case. Otherwise requiring 1Gig 128 * alignment would use too much VA for the kernel. 129 * 130 */ 131 static uint_t khat_start; /* index of 1st entry in kernel's top ptable */ 132 static uint_t khat_entries; /* number of entries in kernel's top ptable */ 133 134 #if defined(__i386) 135 136 static htable_t *khat_pae32_htable = NULL; 137 static uint_t khat_pae32_start; 138 static uint_t khat_pae32_entries; 139 140 #endif 141 142 /* 143 * Locks, etc. to control use of the hat reserves when recursively 144 * allocating pagetables for the hat data structures. 145 */ 146 static kmutex_t hat_reserves_lock; 147 static kcondvar_t hat_reserves_cv; 148 kthread_t *hat_reserves_thread; 149 uint_t use_boot_reserve = 1; /* cleared after early boot process */ 150 uint_t can_steal_post_boot = 0; /* set late in boot to enable stealing */ 151 152 /* 153 * A cpuset for all cpus. This is used for kernel address cross calls, since 154 * the kernel addresses apply to all cpus. 155 */ 156 cpuset_t khat_cpuset; 157 158 /* 159 * management stuff for hat structures 160 */ 161 kmutex_t hat_list_lock; 162 kcondvar_t hat_list_cv; 163 kmem_cache_t *hat_cache; 164 kmem_cache_t *hat_hash_cache; 165 kmem_cache_t *vlp_hash_cache; 166 167 /* 168 * Simple statistics 169 */ 170 struct hatstats hatstat; 171 172 /* 173 * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's. 174 */ 175 extern void atomic_orb(uchar_t *addr, uchar_t val); 176 extern void atomic_andb(uchar_t *addr, uchar_t val); 177 178 #define PP_GETRM(pp, rmmask) (pp->p_nrm & rmmask) 179 #define PP_ISMOD(pp) PP_GETRM(pp, P_MOD) 180 #define PP_ISREF(pp) PP_GETRM(pp, P_REF) 181 #define PP_ISRO(pp) PP_GETRM(pp, P_RO) 182 183 #define PP_SETRM(pp, rm) atomic_orb(&(pp->p_nrm), rm) 184 #define PP_SETMOD(pp) PP_SETRM(pp, P_MOD) 185 #define PP_SETREF(pp) PP_SETRM(pp, P_REF) 186 #define PP_SETRO(pp) PP_SETRM(pp, P_RO) 187 188 #define PP_CLRRM(pp, rm) atomic_andb(&(pp->p_nrm), ~(rm)) 189 #define PP_CLRMOD(pp) PP_CLRRM(pp, P_MOD) 190 #define PP_CLRREF(pp) PP_CLRRM(pp, P_REF) 191 #define PP_CLRRO(pp) PP_CLRRM(pp, P_RO) 192 #define PP_CLRALL(pp) PP_CLRRM(pp, P_MOD | P_REF | P_RO) 193 194 /* 195 * some useful tracing macros 196 */ 197 198 int hattrace = 0; 199 #ifdef DEBUG 200 201 #define HATIN(r, h, a, l) \ 202 if (hattrace) prom_printf("->%s hat=%p, adr=%p, len=%lx\n", #r, h, a, l) 203 204 #define HATOUT(r, h, a) \ 205 if (hattrace) prom_printf("<-%s hat=%p, adr=%p\n", #r, h, a) 206 #else 207 208 #define HATIN(r, h, a, l) 209 #define HATOUT(r, h, a) 210 211 #endif 212 213 214 /* 215 * kmem cache constructor for struct hat 216 */ 217 /*ARGSUSED*/ 218 static int 219 hati_constructor(void *buf, void *handle, int kmflags) 220 { 221 hat_t *hat = buf; 222 223 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 224 bzero(hat->hat_pages_mapped, 225 sizeof (pgcnt_t) * (mmu.max_page_level + 1)); 226 hat->hat_stats = 0; 227 hat->hat_flags = 0; 228 CPUSET_ZERO(hat->hat_cpus); 229 hat->hat_htable = NULL; 230 hat->hat_ht_hash = NULL; 231 return (0); 232 } 233 234 /* 235 * Allocate a hat structure for as. We also create the top level 236 * htable and initialize it to contain the kernel hat entries. 237 */ 238 hat_t * 239 hat_alloc(struct as *as) 240 { 241 hat_t *hat; 242 htable_t *ht; /* top level htable */ 243 uint_t use_vlp; 244 245 /* 246 * Once we start creating user process HATs we can enable 247 * the htable_steal() code. 248 */ 249 if (can_steal_post_boot == 0) 250 can_steal_post_boot = 1; 251 252 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 253 hat = kmem_cache_alloc(hat_cache, KM_SLEEP); 254 hat->hat_as = as; 255 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 256 ASSERT(hat->hat_flags == 0); 257 258 /* 259 * a 32 bit process uses a VLP style hat when using PAE 260 */ 261 #if defined(__amd64) 262 use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32); 263 #elif defined(__i386) 264 use_vlp = mmu.pae_hat; 265 #endif 266 if (use_vlp) { 267 hat->hat_flags = HAT_VLP; 268 bzero(hat->hat_vlp_ptes, VLP_SIZE); 269 } 270 271 /* 272 * Allocate the htable hash 273 */ 274 if ((hat->hat_flags & HAT_VLP)) { 275 hat->hat_num_hash = mmu.vlp_hash_cnt; 276 hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP); 277 } else { 278 hat->hat_num_hash = mmu.hash_cnt; 279 hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP); 280 } 281 bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *)); 282 283 /* 284 * Initialize Kernel HAT entries at the top of the top level page 285 * table for the new hat. 286 * 287 * Note that we don't call htable_release() for the top level, that 288 * happens when the hat is destroyed in hat_free_end() 289 */ 290 hat->hat_htable = NULL; 291 hat->hat_ht_cached = NULL; 292 ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL); 293 294 if (!(hat->hat_flags & HAT_VLP)) 295 x86pte_copy(kas.a_hat->hat_htable, ht, khat_start, 296 khat_entries); 297 #if defined(__i386) 298 else if (khat_entries > 0) 299 bcopy(vlp_page + khat_start, hat->hat_vlp_ptes + khat_start, 300 khat_entries * sizeof (x86pte_t)); 301 #endif 302 hat->hat_htable = ht; 303 304 #if defined(__i386) 305 /* 306 * PAE32 HAT alignment is less restrictive than the others to keep 307 * the kernel from using too much VA. Because of this we may need 308 * one layer further down when kernelbase isn't 1Gig aligned. 309 * See hat_free_end() for the htable_release() that goes with this 310 * htable_create() 311 */ 312 if (khat_pae32_htable != NULL) { 313 ht = htable_create(hat, kernelbase, 314 khat_pae32_htable->ht_level, NULL); 315 x86pte_copy(khat_pae32_htable, ht, khat_pae32_start, 316 khat_pae32_entries); 317 ht->ht_valid_cnt = khat_pae32_entries; 318 } 319 #endif 320 321 /* 322 * Put it at the start of the global list of all hats (used by stealing) 323 * 324 * kas.a_hat is not in the list but is instead used to find the 325 * first and last items in the list. 326 * 327 * - kas.a_hat->hat_next points to the start of the user hats. 328 * The list ends where hat->hat_next == NULL 329 * 330 * - kas.a_hat->hat_prev points to the last of the user hats. 331 * The list begins where hat->hat_prev == NULL 332 */ 333 mutex_enter(&hat_list_lock); 334 hat->hat_prev = NULL; 335 hat->hat_next = kas.a_hat->hat_next; 336 if (hat->hat_next) 337 hat->hat_next->hat_prev = hat; 338 else 339 kas.a_hat->hat_prev = hat; 340 kas.a_hat->hat_next = hat; 341 mutex_exit(&hat_list_lock); 342 343 return (hat); 344 } 345 346 /* 347 * process has finished executing but as has not been cleaned up yet. 348 */ 349 /*ARGSUSED*/ 350 void 351 hat_free_start(hat_t *hat) 352 { 353 ASSERT(AS_WRITE_HELD(hat->hat_as, &hat->hat_as->a_lock)); 354 355 /* 356 * If the hat is currently a stealing victim, wait for the stealing 357 * to finish. Once we mark it as HAT_FREEING, htable_steal() 358 * won't look at its pagetables anymore. 359 */ 360 mutex_enter(&hat_list_lock); 361 while (hat->hat_flags & HAT_VICTIM) 362 cv_wait(&hat_list_cv, &hat_list_lock); 363 hat->hat_flags |= HAT_FREEING; 364 mutex_exit(&hat_list_lock); 365 } 366 367 /* 368 * An address space is being destroyed, so we destroy the associated hat. 369 */ 370 void 371 hat_free_end(hat_t *hat) 372 { 373 int i; 374 kmem_cache_t *cache; 375 376 #ifdef DEBUG 377 for (i = 0; i <= mmu.max_page_level; i++) 378 ASSERT(hat->hat_pages_mapped[i] == 0); 379 #endif 380 ASSERT(hat->hat_flags & HAT_FREEING); 381 382 /* 383 * must not be running on the given hat 384 */ 385 ASSERT(CPU->cpu_current_hat != hat); 386 387 /* 388 * Remove it from the list of HATs 389 */ 390 mutex_enter(&hat_list_lock); 391 if (hat->hat_prev) 392 hat->hat_prev->hat_next = hat->hat_next; 393 else 394 kas.a_hat->hat_next = hat->hat_next; 395 if (hat->hat_next) 396 hat->hat_next->hat_prev = hat->hat_prev; 397 else 398 kas.a_hat->hat_prev = hat->hat_prev; 399 mutex_exit(&hat_list_lock); 400 hat->hat_next = hat->hat_prev = NULL; 401 402 /* 403 * Make a pass through the htables freeing them all up. 404 */ 405 htable_purge_hat(hat); 406 407 /* 408 * Decide which kmem cache the hash table came from, then free it. 409 */ 410 if (hat->hat_flags & HAT_VLP) 411 cache = vlp_hash_cache; 412 else 413 cache = hat_hash_cache; 414 kmem_cache_free(cache, hat->hat_ht_hash); 415 hat->hat_ht_hash = NULL; 416 417 hat->hat_flags = 0; 418 kmem_cache_free(hat_cache, hat); 419 } 420 421 /* 422 * round kernelbase down to a supported value to use for _userlimit 423 * 424 * userlimit must be aligned down to an entry in the top level htable. 425 * The one exception is for 32 bit HAT's running PAE. 426 */ 427 uintptr_t 428 hat_kernelbase(uintptr_t va) 429 { 430 #if defined(__i386) 431 va &= LEVEL_MASK(1); 432 #endif 433 if (IN_VA_HOLE(va)) 434 panic("_userlimit %p will fall in VA hole\n", (void *)va); 435 return (va); 436 } 437 438 /* 439 * Initialize hat data structures based on processor MMU information. 440 */ 441 void 442 mmu_init(void) 443 { 444 uint_t max_htables; 445 uint_t pa_bits; 446 uint_t va_bits; 447 int i; 448 449 /* 450 * If CPU enabled the page table global bit, use it for the kernel 451 * This is bit 7 in CR4 (PGE - Page Global Enable). 452 */ 453 if ((x86_feature & X86_PGE) != 0 && (getcr4() & CR4_PGE) != 0) 454 mmu.pt_global = PT_GLOBAL; 455 456 /* 457 * Detect NX and PAE usage. 458 */ 459 mmu.pae_hat = kbm_pae_support; 460 if (kbm_nx_support) 461 mmu.pt_nx = PT_NX; 462 else 463 mmu.pt_nx = 0; 464 465 /* 466 * Use CPU info to set various MMU parameters 467 */ 468 cpuid_get_addrsize(CPU, &pa_bits, &va_bits); 469 470 if (va_bits < sizeof (void *) * NBBY) { 471 mmu.hole_start = (1ul << (va_bits - 1)); 472 mmu.hole_end = 0ul - mmu.hole_start - 1; 473 } else { 474 mmu.hole_end = 0; 475 mmu.hole_start = mmu.hole_end - 1; 476 } 477 #if defined(OPTERON_ERRATUM_121) 478 /* 479 * If erratum 121 has already been detected at this time, hole_start 480 * contains the value to be subtracted from mmu.hole_start. 481 */ 482 ASSERT(hole_start == 0 || opteron_erratum_121 != 0); 483 hole_start = mmu.hole_start - hole_start; 484 #else 485 hole_start = mmu.hole_start; 486 #endif 487 hole_end = mmu.hole_end; 488 489 mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1); 490 if (mmu.pae_hat == 0 && pa_bits > 32) 491 mmu.highest_pfn = PFN_4G - 1; 492 493 if (mmu.pae_hat) { 494 mmu.pte_size = 8; /* 8 byte PTEs */ 495 mmu.pte_size_shift = 3; 496 } else { 497 mmu.pte_size = 4; /* 4 byte PTEs */ 498 mmu.pte_size_shift = 2; 499 } 500 501 if (mmu.pae_hat && (x86_feature & X86_PAE) == 0) 502 panic("Processor does not support PAE"); 503 504 if ((x86_feature & X86_CX8) == 0) 505 panic("Processor does not support cmpxchg8b instruction"); 506 507 /* 508 * Initialize parameters based on the 64 or 32 bit kernels and 509 * for the 32 bit kernel decide if we should use PAE. 510 */ 511 if (kbm_largepage_support) 512 mmu.max_page_level = 1; 513 else 514 mmu.max_page_level = 0; 515 mmu_page_sizes = mmu.max_page_level + 1; 516 mmu_exported_page_sizes = mmu_page_sizes; 517 518 #if defined(__amd64) 519 520 mmu.num_level = 4; 521 mmu.max_level = 3; 522 mmu.ptes_per_table = 512; 523 mmu.top_level_count = 512; 524 525 mmu.level_shift[0] = 12; 526 mmu.level_shift[1] = 21; 527 mmu.level_shift[2] = 30; 528 mmu.level_shift[3] = 39; 529 530 #elif defined(__i386) 531 532 if (mmu.pae_hat) { 533 mmu.num_level = 3; 534 mmu.max_level = 2; 535 mmu.ptes_per_table = 512; 536 mmu.top_level_count = 4; 537 538 mmu.level_shift[0] = 12; 539 mmu.level_shift[1] = 21; 540 mmu.level_shift[2] = 30; 541 542 } else { 543 mmu.num_level = 2; 544 mmu.max_level = 1; 545 mmu.ptes_per_table = 1024; 546 mmu.top_level_count = 1024; 547 548 mmu.level_shift[0] = 12; 549 mmu.level_shift[1] = 22; 550 } 551 552 #endif /* __i386 */ 553 554 for (i = 0; i < mmu.num_level; ++i) { 555 mmu.level_size[i] = 1UL << mmu.level_shift[i]; 556 mmu.level_offset[i] = mmu.level_size[i] - 1; 557 mmu.level_mask[i] = ~mmu.level_offset[i]; 558 } 559 560 for (i = 0; i <= mmu.max_page_level; ++i) { 561 mmu.pte_bits[i] = PT_VALID; 562 if (i > 0) 563 mmu.pte_bits[i] |= PT_PAGESIZE; 564 } 565 566 /* 567 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level. 568 */ 569 for (i = 1; i < mmu.num_level; ++i) 570 mmu.ptp_bits[i] = PT_PTPBITS; 571 572 #if defined(__i386) 573 mmu.ptp_bits[2] = PT_VALID; 574 #endif 575 576 /* 577 * Compute how many hash table entries to have per process for htables. 578 * We start with 1 page's worth of entries. 579 * 580 * If physical memory is small, reduce the amount need to cover it. 581 */ 582 max_htables = physmax / mmu.ptes_per_table; 583 mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *); 584 while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables) 585 mmu.hash_cnt >>= 1; 586 mmu.vlp_hash_cnt = mmu.hash_cnt; 587 588 #if defined(__amd64) 589 /* 590 * If running in 64 bits and physical memory is large, 591 * increase the size of the cache to cover all of memory for 592 * a 64 bit process. 593 */ 594 #define HASH_MAX_LENGTH 4 595 while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables) 596 mmu.hash_cnt <<= 1; 597 #endif 598 } 599 600 601 /* 602 * initialize hat data structures 603 */ 604 void 605 hat_init() 606 { 607 #if defined(__i386) 608 /* 609 * _userlimit must be aligned correctly 610 */ 611 if ((_userlimit & LEVEL_MASK(1)) != _userlimit) { 612 prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n", 613 (void *)_userlimit, (void *)LEVEL_SIZE(1)); 614 halt("hat_init(): Unable to continue"); 615 } 616 #endif 617 618 cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL); 619 620 /* 621 * initialize kmem caches 622 */ 623 htable_init(); 624 hment_init(); 625 626 hat_cache = kmem_cache_create("hat_t", 627 sizeof (hat_t), 0, hati_constructor, NULL, NULL, 628 NULL, 0, 0); 629 630 hat_hash_cache = kmem_cache_create("HatHash", 631 mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 632 NULL, 0, 0); 633 634 /* 635 * VLP hats can use a smaller hash table size on large memroy machines 636 */ 637 if (mmu.hash_cnt == mmu.vlp_hash_cnt) { 638 vlp_hash_cache = hat_hash_cache; 639 } else { 640 vlp_hash_cache = kmem_cache_create("HatVlpHash", 641 mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 642 NULL, 0, 0); 643 } 644 645 /* 646 * Set up the kernel's hat 647 */ 648 AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER); 649 kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP); 650 mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 651 kas.a_hat->hat_as = &kas; 652 kas.a_hat->hat_flags = 0; 653 AS_LOCK_EXIT(&kas, &kas.a_lock); 654 655 CPUSET_ZERO(khat_cpuset); 656 CPUSET_ADD(khat_cpuset, CPU->cpu_id); 657 658 /* 659 * The kernel hat's next pointer serves as the head of the hat list . 660 * The kernel hat's prev pointer tracks the last hat on the list for 661 * htable_steal() to use. 662 */ 663 kas.a_hat->hat_next = NULL; 664 kas.a_hat->hat_prev = NULL; 665 666 /* 667 * Allocate an htable hash bucket for the kernel 668 * XX64 - tune for 64 bit procs 669 */ 670 kas.a_hat->hat_num_hash = mmu.hash_cnt; 671 kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP); 672 bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *)); 673 674 /* 675 * zero out the top level and cached htable pointers 676 */ 677 kas.a_hat->hat_ht_cached = NULL; 678 kas.a_hat->hat_htable = NULL; 679 680 /* 681 * Pre-allocate hrm_hashtab before enabling the collection of 682 * refmod statistics. Allocating on the fly would mean us 683 * running the risk of suffering recursive mutex enters or 684 * deadlocks. 685 */ 686 hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *), 687 KM_SLEEP); 688 } 689 690 /* 691 * Prepare CPU specific pagetables for VLP processes on 64 bit kernels. 692 * 693 * Each CPU has a set of 2 pagetables that are reused for any 32 bit 694 * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and 695 * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes. 696 */ 697 /*ARGSUSED*/ 698 static void 699 hat_vlp_setup(struct cpu *cpu) 700 { 701 #if defined(__amd64) 702 struct hat_cpu_info *hci = cpu->cpu_hat_info; 703 pfn_t pfn; 704 705 /* 706 * allocate the level==2 page table for the bottom most 707 * 512Gig of address space (this is where 32 bit apps live) 708 */ 709 ASSERT(hci != NULL); 710 hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 711 712 /* 713 * Allocate a top level pagetable and copy the kernel's 714 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry. 715 */ 716 hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 717 hci->hci_vlp_pfn = 718 hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes); 719 ASSERT(hci->hci_vlp_pfn != PFN_INVALID); 720 bcopy(vlp_page + khat_start, hci->hci_vlp_l3ptes + khat_start, 721 khat_entries * sizeof (x86pte_t)); 722 723 pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes); 724 ASSERT(pfn != PFN_INVALID); 725 hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2); 726 #endif /* __amd64 */ 727 } 728 729 /*ARGSUSED*/ 730 static void 731 hat_vlp_teardown(cpu_t *cpu) 732 { 733 #if defined(__amd64) 734 struct hat_cpu_info *hci; 735 736 if ((hci = cpu->cpu_hat_info) == NULL) 737 return; 738 if (hci->hci_vlp_l2ptes) 739 kmem_free(hci->hci_vlp_l2ptes, MMU_PAGESIZE); 740 if (hci->hci_vlp_l3ptes) 741 kmem_free(hci->hci_vlp_l3ptes, MMU_PAGESIZE); 742 #endif /* __amd64 */ 743 } 744 745 /* 746 * Finish filling in the kernel hat. 747 * Pre fill in all top level kernel page table entries for the kernel's 748 * part of the address range. From this point on we can't use any new 749 * kernel large pages if they need PTE's at max_level 750 * 751 * create the kmap mappings. 752 */ 753 void 754 hat_init_finish(void) 755 { 756 htable_t *top = kas.a_hat->hat_htable; 757 htable_t *ht; 758 uint_t e; 759 x86pte_t pte; 760 uintptr_t va = kernelbase; 761 size_t size; 762 763 764 #if defined(__i386) 765 ASSERT((va & LEVEL_MASK(1)) == va); 766 767 /* 768 * Deal with kernelbase not 1Gig aligned for 32 bit PAE hats. 769 */ 770 if (!mmu.pae_hat || (va & LEVEL_OFFSET(mmu.max_level)) == 0) { 771 khat_pae32_htable = NULL; 772 } else { 773 ASSERT(mmu.max_level == 2); 774 ASSERT((va & LEVEL_OFFSET(mmu.max_level - 1)) == 0); 775 khat_pae32_htable = 776 htable_create(kas.a_hat, va, mmu.max_level - 1, NULL); 777 khat_pae32_start = htable_va2entry(va, khat_pae32_htable); 778 khat_pae32_entries = mmu.ptes_per_table - khat_pae32_start; 779 for (e = khat_pae32_start; e < mmu.ptes_per_table; 780 ++e, va += LEVEL_SIZE(mmu.max_level - 1)) { 781 pte = x86pte_get(khat_pae32_htable, e); 782 if (PTE_ISVALID(pte)) 783 continue; 784 ht = htable_create(kas.a_hat, va, mmu.max_level - 2, 785 NULL); 786 ASSERT(ht != NULL); 787 } 788 } 789 #endif 790 791 /* 792 * The kernel hat will need fixed values in the highest level 793 * ptable for copying to all other hat's. This implies 794 * alignment restrictions on _userlimit. 795 * 796 * Note we don't htable_release() these htables. This keeps them 797 * from ever being stolen or free'd. 798 * 799 * top_level_count is used instead of ptes_per_table, since 800 * on 32-bit PAE we only have 4 usable entries at the top level ptable. 801 */ 802 if (va == 0) 803 khat_start = mmu.top_level_count; 804 else 805 khat_start = htable_va2entry(va, kas.a_hat->hat_htable); 806 khat_entries = mmu.top_level_count - khat_start; 807 for (e = khat_start; e < mmu.top_level_count; 808 ++e, va += LEVEL_SIZE(mmu.max_level)) { 809 if (IN_HYPERVISOR_VA(va)) 810 continue; 811 pte = x86pte_get(top, e); 812 if (PTE_ISVALID(pte)) 813 continue; 814 ht = htable_create(kas.a_hat, va, mmu.max_level - 1, NULL); 815 ASSERT(ht != NULL); 816 } 817 818 /* 819 * We are now effectively running on the kernel hat. 820 * Clearing use_boot_reserve shuts off using the pre-allocated boot 821 * reserve for all HAT allocations. From here on, the reserves are 822 * only used when mapping in memory for the hat's own allocations. 823 */ 824 use_boot_reserve = 0; 825 htable_adjust_reserve(); 826 827 /* 828 * 32 bit kernels use only 4 of the 512 entries in its top level 829 * pagetable. We'll use the remainder for the "per CPU" page tables 830 * for VLP processes. 831 * 832 * We also map the top level kernel pagetable into the kernel to make 833 * it easy to use bcopy to initialize new address spaces. 834 */ 835 if (mmu.pae_hat) { 836 vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP); 837 hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE, 838 kas.a_hat->hat_htable->ht_pfn, 839 PROT_WRITE | 840 PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK, 841 HAT_LOAD | HAT_LOAD_NOCONSIST); 842 } 843 hat_vlp_setup(CPU); 844 845 /* 846 * Create kmap (cached mappings of kernel PTEs) 847 * for 32 bit we map from segmap_start .. ekernelheap 848 * for 64 bit we map from segmap_start .. segmap_start + segmapsize; 849 */ 850 #if defined(__i386) 851 size = (uintptr_t)ekernelheap - segmap_start; 852 #elif defined(__amd64) 853 size = segmapsize; 854 #endif 855 hat_kmap_init((uintptr_t)segmap_start, size); 856 } 857 858 /* 859 * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references 860 * are 32 bit, so for safety we must use cas64() to install these. 861 */ 862 #ifdef __i386 863 static void 864 reload_pae32(hat_t *hat, cpu_t *cpu) 865 { 866 x86pte_t *src; 867 x86pte_t *dest; 868 x86pte_t pte; 869 int i; 870 871 /* 872 * Load the 4 entries of the level 2 page table into this 873 * cpu's range of the vlp_page and point cr3 at them. 874 */ 875 ASSERT(mmu.pae_hat); 876 src = hat->hat_vlp_ptes; 877 dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES; 878 for (i = 0; i < VLP_NUM_PTES; ++i) { 879 for (;;) { 880 pte = dest[i]; 881 if (pte == src[i]) 882 break; 883 if (cas64(dest + i, pte, src[i]) != src[i]) 884 break; 885 } 886 } 887 } 888 #endif 889 890 /* 891 * Switch to a new active hat, maintaining bit masks to track active CPUs. 892 */ 893 void 894 hat_switch(hat_t *hat) 895 { 896 uintptr_t newcr3; 897 cpu_t *cpu = CPU; 898 hat_t *old = cpu->cpu_current_hat; 899 900 /* 901 * set up this information first, so we don't miss any cross calls 902 */ 903 if (old != NULL) { 904 if (old == hat) 905 return; 906 if (old != kas.a_hat) 907 CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id); 908 } 909 910 /* 911 * Wait for any in flight pagetable invalidates on this hat to finish. 912 * This is a spin lock at DISP_LEVEL 913 */ 914 if (hat != kas.a_hat) { 915 CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id); 916 } 917 cpu->cpu_current_hat = hat; 918 919 /* 920 * now go ahead and load cr3 921 */ 922 if (hat->hat_flags & HAT_VLP) { 923 #if defined(__amd64) 924 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes; 925 926 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 927 newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn); 928 #elif defined(__i386) 929 reload_pae32(hat, cpu); 930 newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) + 931 (cpu->cpu_id + 1) * VLP_SIZE; 932 #endif 933 } else { 934 newcr3 = MAKECR3(hat->hat_htable->ht_pfn); 935 } 936 setcr3(newcr3); 937 ASSERT(cpu == CPU); 938 } 939 940 /* 941 * Utility to return a valid x86pte_t from protections, pfn, and level number 942 */ 943 static x86pte_t 944 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags) 945 { 946 x86pte_t pte; 947 uint_t cache_attr = attr & HAT_ORDER_MASK; 948 949 pte = MAKEPTE(pfn, level); 950 951 if (attr & PROT_WRITE) 952 PTE_SET(pte, PT_WRITABLE); 953 954 if (attr & PROT_USER) 955 PTE_SET(pte, PT_USER); 956 957 if (!(attr & PROT_EXEC)) 958 PTE_SET(pte, mmu.pt_nx); 959 960 /* 961 * Set the software bits used track ref/mod sync's and hments. 962 * If not using REF/MOD, set them to avoid h/w rewriting PTEs. 963 */ 964 if (flags & HAT_LOAD_NOCONSIST) 965 PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD); 966 else if (attr & HAT_NOSYNC) 967 PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD); 968 969 /* 970 * Set the caching attributes in the PTE. The combination 971 * of attributes are poorly defined, so we pay attention 972 * to them in the given order. 973 * 974 * The test for HAT_STRICTORDER is different because it's defined 975 * as "0" - which was a stupid thing to do, but is too late to change! 976 */ 977 if (cache_attr == HAT_STRICTORDER) { 978 PTE_SET(pte, PT_NOCACHE); 979 /*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */ 980 } else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) { 981 /* nothing to set */; 982 } else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) { 983 PTE_SET(pte, PT_NOCACHE); 984 if (x86_feature & X86_PAT) 985 PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE); 986 else 987 PTE_SET(pte, PT_WRITETHRU); 988 } else { 989 panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr); 990 } 991 992 return (pte); 993 } 994 995 /* 996 * Duplicate address translations of the parent to the child. 997 * This function really isn't used anymore. 998 */ 999 /*ARGSUSED*/ 1000 int 1001 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag) 1002 { 1003 ASSERT((uintptr_t)addr < kernelbase); 1004 ASSERT(new != kas.a_hat); 1005 ASSERT(old != kas.a_hat); 1006 return (0); 1007 } 1008 1009 /* 1010 * Allocate any hat resources required for a process being swapped in. 1011 */ 1012 /*ARGSUSED*/ 1013 void 1014 hat_swapin(hat_t *hat) 1015 { 1016 /* do nothing - we let everything fault back in */ 1017 } 1018 1019 /* 1020 * Unload all translations associated with an address space of a process 1021 * that is being swapped out. 1022 */ 1023 void 1024 hat_swapout(hat_t *hat) 1025 { 1026 uintptr_t vaddr = (uintptr_t)0; 1027 uintptr_t eaddr = _userlimit; 1028 htable_t *ht = NULL; 1029 level_t l; 1030 1031 /* 1032 * We can't just call hat_unload(hat, 0, _userlimit...) here, because 1033 * seg_spt and shared pagetables can't be swapped out. 1034 * Take a look at segspt_shmswapout() - it's a big no-op. 1035 * 1036 * Instead we'll walk through all the address space and unload 1037 * any mappings which we are sure are not shared, not locked. 1038 */ 1039 ASSERT(IS_PAGEALIGNED(vaddr)); 1040 ASSERT(IS_PAGEALIGNED(eaddr)); 1041 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1042 if ((uintptr_t)hat->hat_as->a_userlimit < eaddr) 1043 eaddr = (uintptr_t)hat->hat_as->a_userlimit; 1044 1045 while (vaddr < eaddr) { 1046 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1047 if (ht == NULL) 1048 break; 1049 1050 ASSERT(!IN_VA_HOLE(vaddr)); 1051 1052 /* 1053 * If the page table is shared skip its entire range. 1054 * This code knows that only level 0 page tables are shared 1055 */ 1056 l = ht->ht_level; 1057 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1058 ASSERT(l == 0); 1059 vaddr = ht->ht_vaddr + LEVEL_SIZE(1); 1060 htable_release(ht); 1061 ht = NULL; 1062 continue; 1063 } 1064 1065 /* 1066 * If the page table has no locked entries, unload this one. 1067 */ 1068 if (ht->ht_lock_cnt == 0) 1069 hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l), 1070 HAT_UNLOAD_UNMAP); 1071 1072 /* 1073 * If we have a level 0 page table with locked entries, 1074 * skip the entire page table, otherwise skip just one entry. 1075 */ 1076 if (ht->ht_lock_cnt > 0 && l == 0) 1077 vaddr = ht->ht_vaddr + LEVEL_SIZE(1); 1078 else 1079 vaddr += LEVEL_SIZE(l); 1080 } 1081 if (ht) 1082 htable_release(ht); 1083 1084 /* 1085 * We're in swapout because the system is low on memory, so 1086 * go back and flush all the htables off the cached list. 1087 */ 1088 htable_purge_hat(hat); 1089 } 1090 1091 /* 1092 * returns number of bytes that have valid mappings in hat. 1093 */ 1094 size_t 1095 hat_get_mapped_size(hat_t *hat) 1096 { 1097 size_t total = 0; 1098 int l; 1099 1100 for (l = 0; l <= mmu.max_page_level; l++) 1101 total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l)); 1102 1103 return (total); 1104 } 1105 1106 /* 1107 * enable/disable collection of stats for hat. 1108 */ 1109 int 1110 hat_stats_enable(hat_t *hat) 1111 { 1112 atomic_add_32(&hat->hat_stats, 1); 1113 return (1); 1114 } 1115 1116 void 1117 hat_stats_disable(hat_t *hat) 1118 { 1119 atomic_add_32(&hat->hat_stats, -1); 1120 } 1121 1122 /* 1123 * Utility to sync the ref/mod bits from a page table entry to the page_t 1124 * We must be holding the mapping list lock when this is called. 1125 */ 1126 static void 1127 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level) 1128 { 1129 uint_t rm = 0; 1130 pgcnt_t pgcnt; 1131 1132 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 1133 return; 1134 1135 if (PTE_GET(pte, PT_REF)) 1136 rm |= P_REF; 1137 1138 if (PTE_GET(pte, PT_MOD)) 1139 rm |= P_MOD; 1140 1141 if (rm == 0) 1142 return; 1143 1144 /* 1145 * sync to all constituent pages of a large page 1146 */ 1147 ASSERT(x86_hm_held(pp)); 1148 pgcnt = page_get_pagecnt(level); 1149 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 1150 for (; pgcnt > 0; --pgcnt) { 1151 /* 1152 * hat_page_demote() can't decrease 1153 * pszc below this mapping size 1154 * since this large mapping existed after we 1155 * took mlist lock. 1156 */ 1157 ASSERT(pp->p_szc >= level); 1158 hat_page_setattr(pp, rm); 1159 ++pp; 1160 } 1161 } 1162 1163 /* 1164 * This the set of PTE bits for PFN, permissions and caching 1165 * that require a TLB flush (hat_tlb_inval) if changed on a HAT_LOAD_REMAP 1166 */ 1167 #define PT_REMAP_BITS \ 1168 (PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU | \ 1169 PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE) 1170 1171 #define REMAPASSERT(EX) if (!(EX)) panic("hati_pte_map: " #EX) 1172 /* 1173 * Do the low-level work to get a mapping entered into a HAT's pagetables 1174 * and in the mapping list of the associated page_t. 1175 */ 1176 static int 1177 hati_pte_map( 1178 htable_t *ht, 1179 uint_t entry, 1180 page_t *pp, 1181 x86pte_t pte, 1182 int flags, 1183 void *pte_ptr) 1184 { 1185 hat_t *hat = ht->ht_hat; 1186 x86pte_t old_pte; 1187 level_t l = ht->ht_level; 1188 hment_t *hm; 1189 uint_t is_consist; 1190 int rv = 0; 1191 1192 /* 1193 * Is this a consistant (ie. need mapping list lock) mapping? 1194 */ 1195 is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0); 1196 1197 /* 1198 * Track locked mapping count in the htable. Do this first, 1199 * as we track locking even if there already is a mapping present. 1200 */ 1201 if ((flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat) 1202 HTABLE_LOCK_INC(ht); 1203 1204 /* 1205 * Acquire the page's mapping list lock and get an hment to use. 1206 * Note that hment_prepare() might return NULL. 1207 */ 1208 if (is_consist) { 1209 x86_hm_enter(pp); 1210 hm = hment_prepare(ht, entry, pp); 1211 } 1212 1213 /* 1214 * Set the new pte, retrieving the old one at the same time. 1215 */ 1216 old_pte = x86pte_set(ht, entry, pte, pte_ptr); 1217 1218 /* 1219 * did we get a large page / page table collision? 1220 */ 1221 if (old_pte == LPAGE_ERROR) { 1222 rv = -1; 1223 goto done; 1224 } 1225 1226 /* 1227 * If the mapping didn't change there is nothing more to do. 1228 */ 1229 if (PTE_EQUIV(pte, old_pte)) 1230 goto done; 1231 1232 /* 1233 * Install a new mapping in the page's mapping list 1234 */ 1235 if (!PTE_ISVALID(old_pte)) { 1236 if (is_consist) { 1237 hment_assign(ht, entry, pp, hm); 1238 x86_hm_exit(pp); 1239 } else { 1240 ASSERT(flags & HAT_LOAD_NOCONSIST); 1241 } 1242 HTABLE_INC(ht->ht_valid_cnt); 1243 PGCNT_INC(hat, l); 1244 return (rv); 1245 } 1246 1247 /* 1248 * Remap's are more complicated: 1249 * - HAT_LOAD_REMAP must be specified if changing the pfn. 1250 * We also require that NOCONSIST be specified. 1251 * - Otherwise only permission or caching bits may change. 1252 */ 1253 if (!PTE_ISPAGE(old_pte, l)) 1254 panic("non-null/page mapping pte=" FMT_PTE, old_pte); 1255 1256 if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) { 1257 REMAPASSERT(flags & HAT_LOAD_REMAP); 1258 REMAPASSERT(flags & HAT_LOAD_NOCONSIST); 1259 REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 1260 REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) == 1261 pf_is_memory(PTE2PFN(pte, l))); 1262 REMAPASSERT(!is_consist); 1263 } 1264 1265 /* 1266 * We only let remaps change the bits for PFNs, permissions 1267 * or caching type. 1268 */ 1269 ASSERT(PTE_GET(old_pte, ~(PT_REMAP_BITS | PT_REF | PT_MOD)) == 1270 PTE_GET(pte, ~PT_REMAP_BITS)); 1271 1272 /* 1273 * We don't create any mapping list entries on a remap, so release 1274 * any allocated hment after we drop the mapping list lock. 1275 */ 1276 done: 1277 if (is_consist) { 1278 x86_hm_exit(pp); 1279 if (hm != NULL) 1280 hment_free(hm); 1281 } 1282 return (rv); 1283 } 1284 1285 /* 1286 * The t_hatdepth field is an 8-bit counter. We use the lower seven bits 1287 * to track exactly how deep we are in the memload->kmem_alloc recursion. 1288 * If the depth is greater than 1, that indicates that we are performing a 1289 * hat operation to satisfy another hat operation. To prevent infinite 1290 * recursion, we switch over to using pre-allocated "reserves" of htables 1291 * and hments. 1292 * 1293 * The uppermost bit is used to indicate that we are transitioning away 1294 * from being the reserves thread. See hati_reserves_exit() for the 1295 * details. 1296 */ 1297 #define EXITING_FLAG (1 << 7) 1298 #define DEPTH_MASK (~EXITING_FLAG) 1299 #define HAT_DEPTH(t) ((t)->t_hatdepth & DEPTH_MASK) 1300 #define EXITING_RESERVES(t) ((t)->t_hatdepth & EXITING_FLAG) 1301 1302 /* 1303 * Access to reserves for HAT_NO_KALLOC is single threaded. 1304 * If someone else is in the reserves, we'll politely wait for them 1305 * to finish. This keeps normal hat_memload()s from eating up 1306 * the mappings needed to replenish the reserve. 1307 */ 1308 static void 1309 hati_reserves_enter(uint_t kmem_for_hat) 1310 { 1311 /* 1312 * 64 is an arbitrary number to catch serious problems. I'm not 1313 * sure what the absolute maximum depth is, but it should be 1314 * substantially less than this. 1315 */ 1316 ASSERT(HAT_DEPTH(curthread) < 64); 1317 1318 /* 1319 * If we are doing a memload to satisfy a kmem operation, we enter 1320 * the reserves immediately; we don't wait to recurse to a second 1321 * level of memload. 1322 */ 1323 ASSERT(kmem_for_hat < 2); 1324 curthread->t_hatdepth += (1 + kmem_for_hat); 1325 1326 if (hat_reserves_thread == curthread || use_boot_reserve) 1327 return; 1328 1329 if (HAT_DEPTH(curthread) > 1 || hat_reserves_thread != NULL) { 1330 mutex_enter(&hat_reserves_lock); 1331 while (hat_reserves_thread != NULL) 1332 cv_wait(&hat_reserves_cv, &hat_reserves_lock); 1333 1334 if (HAT_DEPTH(curthread) > 1) 1335 hat_reserves_thread = curthread; 1336 1337 mutex_exit(&hat_reserves_lock); 1338 } 1339 } 1340 1341 /* 1342 * If we are the reserves_thread and we've finally finished with all our 1343 * memloads (ie. no longer doing hat slabs), we can release our use of the 1344 * reserve. 1345 */ 1346 static void 1347 hati_reserves_exit(uint_t kmem_for_hat) 1348 { 1349 ASSERT(kmem_for_hat < 2); 1350 curthread->t_hatdepth -= (1 + kmem_for_hat); 1351 1352 /* 1353 * Simple case: either we are not the reserves thread, or we are 1354 * the reserves thread and we are nested deeply enough that we 1355 * should still be the reserves thread. 1356 * 1357 * Note: we may not become the reserves thread after we recursively 1358 * enter our second HAT routine, but we don't stop being the 1359 * reserves thread until we exit the toplevel HAT routine. This is 1360 * to work around vmem's inability to determine when an allocation 1361 * should be satisfied from the hat_memload arena, which can lead 1362 * to an infinite loop of memload->vmem_populate->memload->. 1363 */ 1364 if (curthread != hat_reserves_thread || HAT_DEPTH(curthread) > 0 || 1365 use_boot_reserve) 1366 return; 1367 1368 mutex_enter(&hat_reserves_lock); 1369 ASSERT(hat_reserves_thread == curthread); 1370 hat_reserves_thread = NULL; 1371 cv_broadcast(&hat_reserves_cv); 1372 mutex_exit(&hat_reserves_lock); 1373 1374 /* 1375 * As we leave the reserves, we want to be sure the reserve lists 1376 * aren't overstocked. Freeing excess reserves requires that we 1377 * call kmem_free(), which may require additional allocations, 1378 * causing us to re-enter the reserves. To avoid infinite 1379 * recursion, we only try to adjust reserves at the very top level. 1380 */ 1381 if (!kmem_for_hat && !EXITING_RESERVES(curthread)) { 1382 curthread->t_hatdepth |= EXITING_FLAG; 1383 htable_adjust_reserve(); 1384 hment_adjust_reserve(); 1385 curthread->t_hatdepth &= (~EXITING_FLAG); 1386 } 1387 1388 /* 1389 * just in case something went wrong in doing adjust reserves 1390 */ 1391 ASSERT(hat_reserves_thread != curthread); 1392 } 1393 1394 /* 1395 * Internal routine to load a single page table entry. This only fails if 1396 * we attempt to overwrite a page table link with a large page. 1397 */ 1398 static int 1399 hati_load_common( 1400 hat_t *hat, 1401 uintptr_t va, 1402 page_t *pp, 1403 uint_t attr, 1404 uint_t flags, 1405 level_t level, 1406 pfn_t pfn) 1407 { 1408 htable_t *ht; 1409 uint_t entry; 1410 x86pte_t pte; 1411 uint_t kmem_for_hat = (flags & HAT_NO_KALLOC) ? 1 : 0; 1412 int rv = 0; 1413 1414 ASSERT(hat == kas.a_hat || 1415 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1416 1417 if (flags & HAT_LOAD_SHARE) 1418 hat->hat_flags |= HAT_SHARED; 1419 1420 /* 1421 * Find the page table that maps this page if it already exists. 1422 */ 1423 ht = htable_lookup(hat, va, level); 1424 1425 /* 1426 * All threads go through hati_reserves_enter() to at least wait 1427 * for any existing reserves user to finish. This helps reduce 1428 * pressure on the reserves. In addition, if this thread needs 1429 * to become the new reserve user it will. 1430 */ 1431 hati_reserves_enter(kmem_for_hat); 1432 1433 ASSERT(HAT_DEPTH(curthread) == 1 || va >= kernelbase); 1434 1435 /* 1436 * Kernel memloads for HAT data should never use hments! 1437 * If it did that would seriously complicate the reserves system, since 1438 * hment_alloc() would need to know about HAT_NO_KALLOC. 1439 * 1440 * We also must have HAT_LOAD_NOCONSIST if page_t is NULL. 1441 */ 1442 if (HAT_DEPTH(curthread) > 1 || pp == NULL) 1443 flags |= HAT_LOAD_NOCONSIST; 1444 1445 if (ht == NULL) { 1446 ht = htable_create(hat, va, level, NULL); 1447 ASSERT(ht != NULL); 1448 } 1449 entry = htable_va2entry(va, ht); 1450 1451 /* 1452 * a bunch of paranoid error checking 1453 */ 1454 ASSERT(ht->ht_busy > 0); 1455 if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht)) 1456 panic("hati_load_common: bad htable %p, va %p", ht, (void *)va); 1457 ASSERT(ht->ht_level == level); 1458 1459 /* 1460 * construct the new PTE 1461 */ 1462 if (hat == kas.a_hat) 1463 attr &= ~PROT_USER; 1464 pte = hati_mkpte(pfn, attr, level, flags); 1465 if (hat == kas.a_hat && va >= kernelbase) 1466 PTE_SET(pte, mmu.pt_global); 1467 1468 /* 1469 * establish the mapping 1470 */ 1471 rv = hati_pte_map(ht, entry, pp, pte, flags, NULL); 1472 1473 /* 1474 * release the htable and any reserves 1475 */ 1476 htable_release(ht); 1477 hati_reserves_exit(kmem_for_hat); 1478 return (rv); 1479 } 1480 1481 /* 1482 * special case of hat_memload to deal with some kernel addrs for performance 1483 */ 1484 static void 1485 hat_kmap_load( 1486 caddr_t addr, 1487 page_t *pp, 1488 uint_t attr, 1489 uint_t flags) 1490 { 1491 uintptr_t va = (uintptr_t)addr; 1492 x86pte_t pte; 1493 pfn_t pfn = page_pptonum(pp); 1494 pgcnt_t pg_off = mmu_btop(va - mmu.kmap_addr); 1495 htable_t *ht; 1496 uint_t entry; 1497 void *pte_ptr; 1498 1499 /* 1500 * construct the requested PTE 1501 */ 1502 attr &= ~PROT_USER; 1503 attr |= HAT_STORECACHING_OK; 1504 pte = hati_mkpte(pfn, attr, 0, flags); 1505 PTE_SET(pte, mmu.pt_global); 1506 1507 /* 1508 * Figure out the pte_ptr and htable and use common code to finish up 1509 */ 1510 if (mmu.pae_hat) 1511 pte_ptr = mmu.kmap_ptes + pg_off; 1512 else 1513 pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off; 1514 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >> 1515 LEVEL_SHIFT(1)]; 1516 entry = htable_va2entry(va, ht); 1517 (void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr); 1518 } 1519 1520 /* 1521 * hat_memload() - load a translation to the given page struct 1522 * 1523 * Flags for hat_memload/hat_devload/hat_*attr. 1524 * 1525 * HAT_LOAD Default flags to load a translation to the page. 1526 * 1527 * HAT_LOAD_LOCK Lock down mapping resources; hat_map(), hat_memload(), 1528 * and hat_devload(). 1529 * 1530 * HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list. 1531 * sets PT_NOCONSIST 1532 * 1533 * HAT_LOAD_SHARE A flag to hat_memload() to indicate h/w page tables 1534 * that map some user pages (not kas) is shared by more 1535 * than one process (eg. ISM). 1536 * 1537 * HAT_LOAD_REMAP Reload a valid pte with a different page frame. 1538 * 1539 * HAT_NO_KALLOC Do not kmem_alloc while creating the mapping; at this 1540 * point, it's setting up mapping to allocate internal 1541 * hat layer data structures. This flag forces hat layer 1542 * to tap its reserves in order to prevent infinite 1543 * recursion. 1544 * 1545 * The following is a protection attribute (like PROT_READ, etc.) 1546 * 1547 * HAT_NOSYNC set PT_NOSYNC - this mapping's ref/mod bits 1548 * are never cleared. 1549 * 1550 * Installing new valid PTE's and creation of the mapping list 1551 * entry are controlled under the same lock. It's derived from the 1552 * page_t being mapped. 1553 */ 1554 static uint_t supported_memload_flags = 1555 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST | 1556 HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT; 1557 1558 void 1559 hat_memload( 1560 hat_t *hat, 1561 caddr_t addr, 1562 page_t *pp, 1563 uint_t attr, 1564 uint_t flags) 1565 { 1566 uintptr_t va = (uintptr_t)addr; 1567 level_t level = 0; 1568 pfn_t pfn = page_pptonum(pp); 1569 1570 HATIN(hat_memload, hat, addr, (size_t)MMU_PAGESIZE); 1571 ASSERT(IS_PAGEALIGNED(va)); 1572 ASSERT(hat == kas.a_hat || va < _userlimit); 1573 ASSERT(hat == kas.a_hat || 1574 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1575 ASSERT((flags & supported_memload_flags) == flags); 1576 1577 ASSERT(!IN_VA_HOLE(va)); 1578 ASSERT(!PP_ISFREE(pp)); 1579 1580 /* 1581 * kernel address special case for performance. 1582 */ 1583 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 1584 ASSERT(hat == kas.a_hat); 1585 hat_kmap_load(addr, pp, attr, flags); 1586 return; 1587 } 1588 1589 /* 1590 * This is used for memory with normal caching enabled, so 1591 * always set HAT_STORECACHING_OK. 1592 */ 1593 attr |= HAT_STORECACHING_OK; 1594 if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0) 1595 panic("unexpected hati_load_common() failure"); 1596 HATOUT(hat_memload, hat, addr); 1597 } 1598 1599 /* 1600 * Load the given array of page structs using large pages when possible 1601 */ 1602 void 1603 hat_memload_array( 1604 hat_t *hat, 1605 caddr_t addr, 1606 size_t len, 1607 page_t **pages, 1608 uint_t attr, 1609 uint_t flags) 1610 { 1611 uintptr_t va = (uintptr_t)addr; 1612 uintptr_t eaddr = va + len; 1613 level_t level; 1614 size_t pgsize; 1615 pgcnt_t pgindx = 0; 1616 pfn_t pfn; 1617 pgcnt_t i; 1618 1619 HATIN(hat_memload_array, hat, addr, len); 1620 ASSERT(IS_PAGEALIGNED(va)); 1621 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 1622 ASSERT(hat == kas.a_hat || 1623 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1624 ASSERT((flags & supported_memload_flags) == flags); 1625 1626 /* 1627 * memload is used for memory with full caching enabled, so 1628 * set HAT_STORECACHING_OK. 1629 */ 1630 attr |= HAT_STORECACHING_OK; 1631 1632 /* 1633 * handle all pages using largest possible pagesize 1634 */ 1635 while (va < eaddr) { 1636 /* 1637 * decide what level mapping to use (ie. pagesize) 1638 */ 1639 pfn = page_pptonum(pages[pgindx]); 1640 for (level = mmu.max_page_level; ; --level) { 1641 pgsize = LEVEL_SIZE(level); 1642 if (level == 0) 1643 break; 1644 1645 if (!IS_P2ALIGNED(va, pgsize) || 1646 (eaddr - va) < pgsize || 1647 !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize)) 1648 continue; 1649 1650 /* 1651 * To use a large mapping of this size, all the 1652 * pages we are passed must be sequential subpages 1653 * of the large page. 1654 * hat_page_demote() can't change p_szc because 1655 * all pages are locked. 1656 */ 1657 if (pages[pgindx]->p_szc >= level) { 1658 for (i = 0; i < mmu_btop(pgsize); ++i) { 1659 if (pfn + i != 1660 page_pptonum(pages[pgindx + i])) 1661 break; 1662 ASSERT(pages[pgindx + i]->p_szc >= 1663 level); 1664 ASSERT(pages[pgindx] + i == 1665 pages[pgindx + i]); 1666 } 1667 if (i == mmu_btop(pgsize)) 1668 break; 1669 } 1670 } 1671 1672 /* 1673 * Load this page mapping. If the load fails, try a smaller 1674 * pagesize. 1675 */ 1676 ASSERT(!IN_VA_HOLE(va)); 1677 while (hati_load_common(hat, va, pages[pgindx], attr, 1678 flags, level, pfn) != 0) { 1679 if (level == 0) 1680 panic("unexpected hati_load_common() failure"); 1681 --level; 1682 pgsize = LEVEL_SIZE(level); 1683 } 1684 1685 /* 1686 * move to next page 1687 */ 1688 va += pgsize; 1689 pgindx += mmu_btop(pgsize); 1690 } 1691 HATOUT(hat_memload_array, hat, addr); 1692 } 1693 1694 /* 1695 * void hat_devload(hat, addr, len, pf, attr, flags) 1696 * load/lock the given page frame number 1697 * 1698 * Advisory ordering attributes. Apply only to device mappings. 1699 * 1700 * HAT_STRICTORDER: the CPU must issue the references in order, as the 1701 * programmer specified. This is the default. 1702 * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds 1703 * of reordering; store or load with store or load). 1704 * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores 1705 * to consecutive locations (for example, turn two consecutive byte 1706 * stores into one halfword store), and it may batch individual loads 1707 * (for example, turn two consecutive byte loads into one halfword load). 1708 * This also implies re-ordering. 1709 * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it 1710 * until another store occurs. The default is to fetch new data 1711 * on every load. This also implies merging. 1712 * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to 1713 * the device (perhaps with other data) at a later time. The default is 1714 * to push the data right away. This also implies load caching. 1715 * 1716 * Equivalent of hat_memload(), but can be used for device memory where 1717 * there are no page_t's and we support additional flags (write merging, etc). 1718 * Note that we can have large page mappings with this interface. 1719 */ 1720 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK | 1721 HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK | 1722 HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK; 1723 1724 void 1725 hat_devload( 1726 hat_t *hat, 1727 caddr_t addr, 1728 size_t len, 1729 pfn_t pfn, 1730 uint_t attr, 1731 int flags) 1732 { 1733 uintptr_t va = ALIGN2PAGE(addr); 1734 uintptr_t eva = va + len; 1735 level_t level; 1736 size_t pgsize; 1737 page_t *pp; 1738 int f; /* per PTE copy of flags - maybe modified */ 1739 uint_t a; /* per PTE copy of attr */ 1740 1741 HATIN(hat_devload, hat, addr, len); 1742 ASSERT(IS_PAGEALIGNED(va)); 1743 ASSERT(hat == kas.a_hat || eva <= _userlimit); 1744 ASSERT(hat == kas.a_hat || 1745 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1746 ASSERT((flags & supported_devload_flags) == flags); 1747 1748 /* 1749 * handle all pages 1750 */ 1751 while (va < eva) { 1752 1753 /* 1754 * decide what level mapping to use (ie. pagesize) 1755 */ 1756 for (level = mmu.max_page_level; ; --level) { 1757 pgsize = LEVEL_SIZE(level); 1758 if (level == 0) 1759 break; 1760 if (IS_P2ALIGNED(va, pgsize) && 1761 (eva - va) >= pgsize && 1762 IS_P2ALIGNED(pfn, mmu_btop(pgsize))) 1763 break; 1764 } 1765 1766 /* 1767 * If this is just memory then allow caching (this happens 1768 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used 1769 * to override that. If we don't have a page_t then make sure 1770 * NOCONSIST is set. 1771 */ 1772 a = attr; 1773 f = flags; 1774 if (pf_is_memory(pfn)) { 1775 if (!(a & HAT_PLAT_NOCACHE)) 1776 a |= HAT_STORECACHING_OK; 1777 1778 if (f & HAT_LOAD_NOCONSIST) 1779 pp = NULL; 1780 else 1781 pp = page_numtopp_nolock(pfn); 1782 } else { 1783 pp = NULL; 1784 f |= HAT_LOAD_NOCONSIST; 1785 } 1786 1787 /* 1788 * load this page mapping 1789 */ 1790 ASSERT(!IN_VA_HOLE(va)); 1791 while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) { 1792 if (level == 0) 1793 panic("unexpected hati_load_common() failure"); 1794 --level; 1795 pgsize = LEVEL_SIZE(level); 1796 } 1797 1798 /* 1799 * move to next page 1800 */ 1801 va += pgsize; 1802 pfn += mmu_btop(pgsize); 1803 } 1804 HATOUT(hat_devload, hat, addr); 1805 } 1806 1807 /* 1808 * void hat_unlock(hat, addr, len) 1809 * unlock the mappings to a given range of addresses 1810 * 1811 * Locks are tracked by ht_lock_cnt in the htable. 1812 */ 1813 void 1814 hat_unlock(hat_t *hat, caddr_t addr, size_t len) 1815 { 1816 uintptr_t vaddr = (uintptr_t)addr; 1817 uintptr_t eaddr = vaddr + len; 1818 htable_t *ht = NULL; 1819 1820 /* 1821 * kernel entries are always locked, we don't track lock counts 1822 */ 1823 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 1824 ASSERT(IS_PAGEALIGNED(vaddr)); 1825 ASSERT(IS_PAGEALIGNED(eaddr)); 1826 if (hat == kas.a_hat) 1827 return; 1828 if (eaddr > _userlimit) 1829 panic("hat_unlock() address out of range - above _userlimit"); 1830 1831 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1832 while (vaddr < eaddr) { 1833 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1834 if (ht == NULL) 1835 break; 1836 1837 ASSERT(!IN_VA_HOLE(vaddr)); 1838 1839 if (ht->ht_lock_cnt < 1) 1840 panic("hat_unlock(): lock_cnt < 1, " 1841 "htable=%p, vaddr=%p\n", ht, (caddr_t)vaddr); 1842 HTABLE_LOCK_DEC(ht); 1843 1844 vaddr += LEVEL_SIZE(ht->ht_level); 1845 } 1846 if (ht) 1847 htable_release(ht); 1848 } 1849 1850 /* 1851 * Cross call service routine to demap a virtual page on 1852 * the current CPU or flush all mappings in TLB. 1853 */ 1854 /*ARGSUSED*/ 1855 static int 1856 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3) 1857 { 1858 hat_t *hat = (hat_t *)a1; 1859 caddr_t addr = (caddr_t)a2; 1860 1861 /* 1862 * If the target hat isn't the kernel and this CPU isn't operating 1863 * in the target hat, we can ignore the cross call. 1864 */ 1865 if (hat != kas.a_hat && hat != CPU->cpu_current_hat) 1866 return (0); 1867 1868 /* 1869 * For a normal address, we just flush one page mapping 1870 */ 1871 if ((uintptr_t)addr != DEMAP_ALL_ADDR) { 1872 mmu_tlbflush_entry(addr); 1873 return (0); 1874 } 1875 1876 /* 1877 * Otherwise we reload cr3 to effect a complete TLB flush. 1878 * 1879 * A reload of cr3 on a VLP process also means we must also recopy in 1880 * the pte values from the struct hat 1881 */ 1882 if (hat->hat_flags & HAT_VLP) { 1883 #if defined(__amd64) 1884 x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes; 1885 1886 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1887 #elif defined(__i386) 1888 reload_pae32(hat, CPU); 1889 #endif 1890 } 1891 reload_cr3(); 1892 return (0); 1893 } 1894 1895 /* 1896 * Internal routine to do cross calls to invalidate a range of pages on 1897 * all CPUs using a given hat. 1898 */ 1899 void 1900 hat_tlb_inval(hat_t *hat, uintptr_t va) 1901 { 1902 extern int flushes_require_xcalls; /* from mp_startup.c */ 1903 cpuset_t justme; 1904 cpuset_t cpus_to_shootdown; 1905 1906 /* 1907 * If the hat is being destroyed, there are no more users, so 1908 * demap need not do anything. 1909 */ 1910 if (hat->hat_flags & HAT_FREEING) 1911 return; 1912 1913 /* 1914 * If demapping from a shared pagetable, we best demap the 1915 * entire set of user TLBs, since we don't know what addresses 1916 * these were shared at. 1917 */ 1918 if (hat->hat_flags & HAT_SHARED) { 1919 hat = kas.a_hat; 1920 va = DEMAP_ALL_ADDR; 1921 } 1922 1923 /* 1924 * if not running with multiple CPUs, don't use cross calls 1925 */ 1926 if (panicstr || !flushes_require_xcalls) { 1927 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL); 1928 return; 1929 } 1930 1931 1932 /* 1933 * Determine CPUs to shootdown. Kernel changes always do all CPUs. 1934 * Otherwise it's just CPUs currently executing in this hat. 1935 */ 1936 kpreempt_disable(); 1937 CPUSET_ONLY(justme, CPU->cpu_id); 1938 if (hat == kas.a_hat) 1939 cpus_to_shootdown = khat_cpuset; 1940 else 1941 cpus_to_shootdown = hat->hat_cpus; 1942 1943 if (CPUSET_ISNULL(cpus_to_shootdown) || 1944 CPUSET_ISEQUAL(cpus_to_shootdown, justme)) { 1945 1946 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL); 1947 1948 } else { 1949 1950 CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id); 1951 xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL, X_CALL_HIPRI, 1952 cpus_to_shootdown, hati_demap_func); 1953 1954 } 1955 kpreempt_enable(); 1956 } 1957 1958 /* 1959 * Interior routine for HAT_UNLOADs from hat_unload_callback(), 1960 * hat_kmap_unload() OR from hat_steal() code. This routine doesn't 1961 * handle releasing of the htables. 1962 */ 1963 void 1964 hat_pte_unmap( 1965 htable_t *ht, 1966 uint_t entry, 1967 uint_t flags, 1968 x86pte_t old_pte, 1969 void *pte_ptr) 1970 { 1971 hat_t *hat = ht->ht_hat; 1972 hment_t *hm = NULL; 1973 page_t *pp = NULL; 1974 level_t l = ht->ht_level; 1975 pfn_t pfn; 1976 1977 /* 1978 * We always track the locking counts, even if nothing is unmapped 1979 */ 1980 if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) { 1981 ASSERT(ht->ht_lock_cnt > 0); 1982 HTABLE_LOCK_DEC(ht); 1983 } 1984 1985 /* 1986 * Figure out which page's mapping list lock to acquire using the PFN 1987 * passed in "old" PTE. We then attempt to invalidate the PTE. 1988 * If another thread, probably a hat_pageunload, has asynchronously 1989 * unmapped/remapped this address we'll loop here. 1990 */ 1991 ASSERT(ht->ht_busy > 0); 1992 while (PTE_ISVALID(old_pte)) { 1993 pfn = PTE2PFN(old_pte, l); 1994 if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) { 1995 pp = NULL; 1996 } else { 1997 pp = page_numtopp_nolock(pfn); 1998 if (pp == NULL) { 1999 panic("no page_t, not NOCONSIST: old_pte=" 2000 FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx", 2001 old_pte, (uintptr_t)ht, entry, 2002 (uintptr_t)pte_ptr); 2003 } 2004 x86_hm_enter(pp); 2005 } 2006 2007 /* 2008 * If freeing the address space, check that the PTE 2009 * hasn't changed, as the mappings are no longer in use by 2010 * any thread, invalidation is unnecessary. 2011 * If not freeing, do a full invalidate. 2012 */ 2013 if (hat->hat_flags & HAT_FREEING) 2014 old_pte = x86pte_get(ht, entry); 2015 else 2016 old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr); 2017 2018 /* 2019 * If the page hadn't changed we've unmapped it and can proceed 2020 */ 2021 if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn) 2022 break; 2023 2024 /* 2025 * Otherwise, we'll have to retry with the current old_pte. 2026 * Drop the hment lock, since the pfn may have changed. 2027 */ 2028 if (pp != NULL) { 2029 x86_hm_exit(pp); 2030 pp = NULL; 2031 } else { 2032 ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 2033 } 2034 } 2035 2036 /* 2037 * If the old mapping wasn't valid, there's nothing more to do 2038 */ 2039 if (!PTE_ISVALID(old_pte)) { 2040 if (pp != NULL) 2041 x86_hm_exit(pp); 2042 return; 2043 } 2044 2045 /* 2046 * Take care of syncing any MOD/REF bits and removing the hment. 2047 */ 2048 if (pp != NULL) { 2049 if (!(flags & HAT_UNLOAD_NOSYNC)) 2050 hati_sync_pte_to_page(pp, old_pte, l); 2051 hm = hment_remove(pp, ht, entry); 2052 x86_hm_exit(pp); 2053 if (hm != NULL) 2054 hment_free(hm); 2055 } 2056 2057 /* 2058 * Handle book keeping in the htable and hat 2059 */ 2060 ASSERT(ht->ht_valid_cnt > 0); 2061 HTABLE_DEC(ht->ht_valid_cnt); 2062 PGCNT_DEC(hat, l); 2063 } 2064 2065 /* 2066 * very cheap unload implementation to special case some kernel addresses 2067 */ 2068 static void 2069 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags) 2070 { 2071 uintptr_t va = (uintptr_t)addr; 2072 uintptr_t eva = va + len; 2073 pgcnt_t pg_index; 2074 htable_t *ht; 2075 uint_t entry; 2076 x86pte_t *pte_ptr; 2077 x86pte_t old_pte; 2078 2079 for (; va < eva; va += MMU_PAGESIZE) { 2080 /* 2081 * Get the PTE 2082 */ 2083 pg_index = mmu_btop(va - mmu.kmap_addr); 2084 pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index); 2085 old_pte = GET_PTE(pte_ptr); 2086 2087 /* 2088 * get the htable / entry 2089 */ 2090 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) 2091 >> LEVEL_SHIFT(1)]; 2092 entry = htable_va2entry(va, ht); 2093 2094 /* 2095 * use mostly common code to unmap it. 2096 */ 2097 hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr); 2098 } 2099 } 2100 2101 2102 /* 2103 * unload a range of virtual address space (no callback) 2104 */ 2105 void 2106 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2107 { 2108 uintptr_t va = (uintptr_t)addr; 2109 2110 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 2111 2112 /* 2113 * special case for performance. 2114 */ 2115 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 2116 ASSERT(hat == kas.a_hat); 2117 hat_kmap_unload(addr, len, flags); 2118 } else { 2119 hat_unload_callback(hat, addr, len, flags, NULL); 2120 } 2121 } 2122 2123 /* 2124 * Do the callbacks for ranges being unloaded. 2125 */ 2126 typedef struct range_info { 2127 uintptr_t rng_va; 2128 ulong_t rng_cnt; 2129 level_t rng_level; 2130 } range_info_t; 2131 2132 static void 2133 handle_ranges(hat_callback_t *cb, uint_t cnt, range_info_t *range) 2134 { 2135 /* 2136 * do callbacks to upper level VM system 2137 */ 2138 while (cb != NULL && cnt > 0) { 2139 --cnt; 2140 cb->hcb_start_addr = (caddr_t)range[cnt].rng_va; 2141 cb->hcb_end_addr = cb->hcb_start_addr; 2142 cb->hcb_end_addr += 2143 range[cnt].rng_cnt << LEVEL_SIZE(range[cnt].rng_level); 2144 cb->hcb_function(cb); 2145 } 2146 } 2147 2148 /* 2149 * Unload a given range of addresses (has optional callback) 2150 * 2151 * Flags: 2152 * define HAT_UNLOAD 0x00 2153 * define HAT_UNLOAD_NOSYNC 0x02 2154 * define HAT_UNLOAD_UNLOCK 0x04 2155 * define HAT_UNLOAD_OTHER 0x08 - not used 2156 * define HAT_UNLOAD_UNMAP 0x10 - same as HAT_UNLOAD 2157 */ 2158 #define MAX_UNLOAD_CNT (8) 2159 void 2160 hat_unload_callback( 2161 hat_t *hat, 2162 caddr_t addr, 2163 size_t len, 2164 uint_t flags, 2165 hat_callback_t *cb) 2166 { 2167 uintptr_t vaddr = (uintptr_t)addr; 2168 uintptr_t eaddr = vaddr + len; 2169 htable_t *ht = NULL; 2170 uint_t entry; 2171 uintptr_t contig_va = (uintptr_t)-1L; 2172 range_info_t r[MAX_UNLOAD_CNT]; 2173 uint_t r_cnt = 0; 2174 x86pte_t old_pte; 2175 2176 HATIN(hat_unload_callback, hat, addr, len); 2177 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2178 ASSERT(IS_PAGEALIGNED(vaddr)); 2179 ASSERT(IS_PAGEALIGNED(eaddr)); 2180 2181 /* 2182 * Special case a single page being unloaded for speed. This happens 2183 * quite frequently, COW faults after a fork() for example. 2184 */ 2185 if (cb == NULL && len == MMU_PAGESIZE) { 2186 ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0); 2187 if (ht != NULL) { 2188 if (PTE_ISVALID(old_pte)) 2189 hat_pte_unmap(ht, entry, flags, old_pte, NULL); 2190 htable_release(ht); 2191 } 2192 return; 2193 } 2194 2195 while (vaddr < eaddr) { 2196 old_pte = htable_walk(hat, &ht, &vaddr, eaddr); 2197 if (ht == NULL) 2198 break; 2199 2200 ASSERT(!IN_VA_HOLE(vaddr)); 2201 2202 if (vaddr < (uintptr_t)addr) 2203 panic("hat_unload_callback(): unmap inside large page"); 2204 2205 /* 2206 * We'll do the call backs for contiguous ranges 2207 */ 2208 if (vaddr != contig_va || 2209 (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) { 2210 if (r_cnt == MAX_UNLOAD_CNT) { 2211 handle_ranges(cb, r_cnt, r); 2212 r_cnt = 0; 2213 } 2214 r[r_cnt].rng_va = vaddr; 2215 r[r_cnt].rng_cnt = 0; 2216 r[r_cnt].rng_level = ht->ht_level; 2217 ++r_cnt; 2218 } 2219 2220 /* 2221 * Unload one mapping from the page tables. 2222 */ 2223 entry = htable_va2entry(vaddr, ht); 2224 hat_pte_unmap(ht, entry, flags, old_pte, NULL); 2225 ASSERT(ht->ht_level <= mmu.max_page_level); 2226 vaddr += LEVEL_SIZE(ht->ht_level); 2227 contig_va = vaddr; 2228 ++r[r_cnt - 1].rng_cnt; 2229 } 2230 if (ht) 2231 htable_release(ht); 2232 2233 /* 2234 * handle last range for callbacks 2235 */ 2236 if (r_cnt > 0) 2237 handle_ranges(cb, r_cnt, r); 2238 2239 HATOUT(hat_unload_callback, hat, addr); 2240 } 2241 2242 /* 2243 * synchronize mapping with software data structures 2244 * 2245 * This interface is currently only used by the working set monitor 2246 * driver. 2247 */ 2248 /*ARGSUSED*/ 2249 void 2250 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2251 { 2252 uintptr_t vaddr = (uintptr_t)addr; 2253 uintptr_t eaddr = vaddr + len; 2254 htable_t *ht = NULL; 2255 uint_t entry; 2256 x86pte_t pte; 2257 x86pte_t save_pte; 2258 x86pte_t new; 2259 page_t *pp; 2260 2261 ASSERT(!IN_VA_HOLE(vaddr)); 2262 ASSERT(IS_PAGEALIGNED(vaddr)); 2263 ASSERT(IS_PAGEALIGNED(eaddr)); 2264 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2265 2266 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2267 try_again: 2268 pte = htable_walk(hat, &ht, &vaddr, eaddr); 2269 if (ht == NULL) 2270 break; 2271 entry = htable_va2entry(vaddr, ht); 2272 2273 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 2274 PTE_GET(pte, PT_REF | PT_MOD) == 0) 2275 continue; 2276 2277 /* 2278 * We need to acquire the mapping list lock to protect 2279 * against hat_pageunload(), hat_unload(), etc. 2280 */ 2281 pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level)); 2282 if (pp == NULL) 2283 break; 2284 x86_hm_enter(pp); 2285 save_pte = pte; 2286 pte = x86pte_get(ht, entry); 2287 if (pte != save_pte) { 2288 x86_hm_exit(pp); 2289 goto try_again; 2290 } 2291 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 2292 PTE_GET(pte, PT_REF | PT_MOD) == 0) { 2293 x86_hm_exit(pp); 2294 continue; 2295 } 2296 2297 /* 2298 * Need to clear ref or mod bits. We may compete with 2299 * hardware updating the R/M bits and have to try again. 2300 */ 2301 if (flags == HAT_SYNC_ZERORM) { 2302 new = pte; 2303 PTE_CLR(new, PT_REF | PT_MOD); 2304 pte = hati_update_pte(ht, entry, pte, new); 2305 if (pte != 0) { 2306 x86_hm_exit(pp); 2307 goto try_again; 2308 } 2309 } else { 2310 /* 2311 * sync the PTE to the page_t 2312 */ 2313 hati_sync_pte_to_page(pp, save_pte, ht->ht_level); 2314 } 2315 x86_hm_exit(pp); 2316 } 2317 if (ht) 2318 htable_release(ht); 2319 } 2320 2321 /* 2322 * void hat_map(hat, addr, len, flags) 2323 */ 2324 /*ARGSUSED*/ 2325 void 2326 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2327 { 2328 /* does nothing */ 2329 } 2330 2331 /* 2332 * uint_t hat_getattr(hat, addr, *attr) 2333 * returns attr for <hat,addr> in *attr. returns 0 if there was a 2334 * mapping and *attr is valid, nonzero if there was no mapping and 2335 * *attr is not valid. 2336 */ 2337 uint_t 2338 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr) 2339 { 2340 uintptr_t vaddr = ALIGN2PAGE(addr); 2341 htable_t *ht = NULL; 2342 x86pte_t pte; 2343 2344 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2345 2346 if (IN_VA_HOLE(vaddr)) 2347 return ((uint_t)-1); 2348 2349 ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level); 2350 if (ht == NULL) 2351 return ((uint_t)-1); 2352 2353 if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) { 2354 htable_release(ht); 2355 return ((uint_t)-1); 2356 } 2357 2358 *attr = PROT_READ; 2359 if (PTE_GET(pte, PT_WRITABLE)) 2360 *attr |= PROT_WRITE; 2361 if (PTE_GET(pte, PT_USER)) 2362 *attr |= PROT_USER; 2363 if (!PTE_GET(pte, mmu.pt_nx)) 2364 *attr |= PROT_EXEC; 2365 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 2366 *attr |= HAT_NOSYNC; 2367 htable_release(ht); 2368 return (0); 2369 } 2370 2371 /* 2372 * hat_updateattr() applies the given attribute change to an existing mapping 2373 */ 2374 #define HAT_LOAD_ATTR 1 2375 #define HAT_SET_ATTR 2 2376 #define HAT_CLR_ATTR 3 2377 2378 static void 2379 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what) 2380 { 2381 uintptr_t vaddr = (uintptr_t)addr; 2382 uintptr_t eaddr = (uintptr_t)addr + len; 2383 htable_t *ht = NULL; 2384 uint_t entry; 2385 x86pte_t oldpte, newpte; 2386 page_t *pp; 2387 2388 ASSERT(IS_PAGEALIGNED(vaddr)); 2389 ASSERT(IS_PAGEALIGNED(eaddr)); 2390 ASSERT(hat == kas.a_hat || 2391 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 2392 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2393 try_again: 2394 oldpte = htable_walk(hat, &ht, &vaddr, eaddr); 2395 if (ht == NULL) 2396 break; 2397 if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST) 2398 continue; 2399 2400 pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level)); 2401 if (pp == NULL) 2402 continue; 2403 x86_hm_enter(pp); 2404 2405 newpte = oldpte; 2406 /* 2407 * We found a page table entry in the desired range, 2408 * figure out the new attributes. 2409 */ 2410 if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) { 2411 if ((attr & PROT_WRITE) && 2412 !PTE_GET(oldpte, PT_WRITABLE)) 2413 newpte |= PT_WRITABLE; 2414 2415 if ((attr & HAT_NOSYNC) && 2416 PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC) 2417 newpte |= PT_NOSYNC; 2418 2419 if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx)) 2420 newpte &= ~mmu.pt_nx; 2421 } 2422 2423 if (what == HAT_LOAD_ATTR) { 2424 if (!(attr & PROT_WRITE) && 2425 PTE_GET(oldpte, PT_WRITABLE)) 2426 newpte &= ~PT_WRITABLE; 2427 2428 if (!(attr & HAT_NOSYNC) && 2429 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 2430 newpte &= ~PT_SOFTWARE; 2431 2432 if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2433 newpte |= mmu.pt_nx; 2434 } 2435 2436 if (what == HAT_CLR_ATTR) { 2437 if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE)) 2438 newpte &= ~PT_WRITABLE; 2439 2440 if ((attr & HAT_NOSYNC) && 2441 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 2442 newpte &= ~PT_SOFTWARE; 2443 2444 if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2445 newpte |= mmu.pt_nx; 2446 } 2447 2448 /* 2449 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set. 2450 * x86pte_set() depends on this. 2451 */ 2452 if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC) 2453 newpte |= PT_REF | PT_MOD; 2454 2455 /* 2456 * what about PROT_READ or others? this code only handles: 2457 * EXEC, WRITE, NOSYNC 2458 */ 2459 2460 /* 2461 * If new PTE really changed, update the table. 2462 */ 2463 if (newpte != oldpte) { 2464 entry = htable_va2entry(vaddr, ht); 2465 oldpte = hati_update_pte(ht, entry, oldpte, newpte); 2466 if (oldpte != 0) { 2467 x86_hm_exit(pp); 2468 goto try_again; 2469 } 2470 } 2471 x86_hm_exit(pp); 2472 } 2473 if (ht) 2474 htable_release(ht); 2475 } 2476 2477 /* 2478 * Various wrappers for hat_updateattr() 2479 */ 2480 void 2481 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2482 { 2483 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2484 hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR); 2485 } 2486 2487 void 2488 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2489 { 2490 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2491 hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR); 2492 } 2493 2494 void 2495 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2496 { 2497 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2498 hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR); 2499 } 2500 2501 void 2502 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot) 2503 { 2504 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2505 hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR); 2506 } 2507 2508 /* 2509 * size_t hat_getpagesize(hat, addr) 2510 * returns pagesize in bytes for <hat, addr>. returns -1 of there is 2511 * no mapping. This is an advisory call. 2512 */ 2513 ssize_t 2514 hat_getpagesize(hat_t *hat, caddr_t addr) 2515 { 2516 uintptr_t vaddr = ALIGN2PAGE(addr); 2517 htable_t *ht; 2518 size_t pagesize; 2519 2520 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2521 if (IN_VA_HOLE(vaddr)) 2522 return (-1); 2523 ht = htable_getpage(hat, vaddr, NULL); 2524 if (ht == NULL) 2525 return (-1); 2526 pagesize = LEVEL_SIZE(ht->ht_level); 2527 htable_release(ht); 2528 return (pagesize); 2529 } 2530 2531 2532 2533 /* 2534 * pfn_t hat_getpfnum(hat, addr) 2535 * returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid. 2536 */ 2537 pfn_t 2538 hat_getpfnum(hat_t *hat, caddr_t addr) 2539 { 2540 uintptr_t vaddr = ALIGN2PAGE(addr); 2541 htable_t *ht; 2542 uint_t entry; 2543 pfn_t pfn = PFN_INVALID; 2544 2545 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2546 if (khat_running == 0) 2547 return (PFN_INVALID); 2548 2549 if (IN_VA_HOLE(vaddr)) 2550 return (PFN_INVALID); 2551 2552 /* 2553 * A very common use of hat_getpfnum() is from the DDI for kernel pages. 2554 * Use the kmap_ptes (which also covers the 32 bit heap) to speed 2555 * this up. 2556 */ 2557 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2558 x86pte_t pte; 2559 pgcnt_t pg_index; 2560 2561 pg_index = mmu_btop(vaddr - mmu.kmap_addr); 2562 pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index)); 2563 if (!PTE_ISVALID(pte)) 2564 return (PFN_INVALID); 2565 /*LINTED [use of constant 0 causes a silly lint warning] */ 2566 return (PTE2PFN(pte, 0)); 2567 } 2568 2569 ht = htable_getpage(hat, vaddr, &entry); 2570 if (ht == NULL) 2571 return (PFN_INVALID); 2572 ASSERT(vaddr >= ht->ht_vaddr); 2573 ASSERT(vaddr <= HTABLE_LAST_PAGE(ht)); 2574 pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level); 2575 if (ht->ht_level > 0) 2576 pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level)); 2577 htable_release(ht); 2578 return (pfn); 2579 } 2580 2581 /* 2582 * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged. 2583 * Use hat_getpfnum(kas.a_hat, ...) instead. 2584 * 2585 * We'd like to return PFN_INVALID if the mappings have underlying page_t's 2586 * but can't right now due to the fact that some software has grown to use 2587 * this interface incorrectly. So for now when the interface is misused, 2588 * return a warning to the user that in the future it won't work in the 2589 * way they're abusing it, and carry on. 2590 * 2591 * Note that hat_getkpfnum() is never supported on amd64. 2592 */ 2593 #if !defined(__amd64) 2594 pfn_t 2595 hat_getkpfnum(caddr_t addr) 2596 { 2597 pfn_t pfn; 2598 int badcaller = 0; 2599 2600 if (khat_running == 0) 2601 panic("hat_getkpfnum(): called too early\n"); 2602 if ((uintptr_t)addr < kernelbase) 2603 return (PFN_INVALID); 2604 2605 2606 if (segkpm && IS_KPM_ADDR(addr)) { 2607 badcaller = 1; 2608 pfn = hat_kpm_va2pfn(addr); 2609 } else { 2610 pfn = hat_getpfnum(kas.a_hat, addr); 2611 badcaller = pf_is_memory(pfn); 2612 } 2613 2614 if (badcaller) 2615 hat_getkpfnum_badcall(caller()); 2616 return (pfn); 2617 } 2618 #endif /* __amd64 */ 2619 2620 /* 2621 * int hat_probe(hat, addr) 2622 * return 0 if no valid mapping is present. Faster version 2623 * of hat_getattr in certain architectures. 2624 */ 2625 int 2626 hat_probe(hat_t *hat, caddr_t addr) 2627 { 2628 uintptr_t vaddr = ALIGN2PAGE(addr); 2629 uint_t entry; 2630 htable_t *ht; 2631 pgcnt_t pg_off; 2632 2633 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2634 ASSERT(hat == kas.a_hat || 2635 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 2636 if (IN_VA_HOLE(vaddr)) 2637 return (0); 2638 2639 /* 2640 * Most common use of hat_probe is from segmap. We special case it 2641 * for performance. 2642 */ 2643 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2644 pg_off = mmu_btop(vaddr - mmu.kmap_addr); 2645 if (mmu.pae_hat) 2646 return (PTE_ISVALID(mmu.kmap_ptes[pg_off])); 2647 else 2648 return (PTE_ISVALID( 2649 ((x86pte32_t *)mmu.kmap_ptes)[pg_off])); 2650 } 2651 2652 ht = htable_getpage(hat, vaddr, &entry); 2653 if (ht == NULL) 2654 return (0); 2655 htable_release(ht); 2656 return (1); 2657 } 2658 2659 /* 2660 * Simple implementation of ISM. hat_share() is just like hat_memload_array(), 2661 * except that we use the ism_hat's existing mappings to determine the pages 2662 * and protections to use for this hat. In case we find a properly aligned 2663 * and sized pagetable of 4K mappings, we will attempt to share the pagetable 2664 * itself. 2665 */ 2666 /*ARGSUSED*/ 2667 int 2668 hat_share( 2669 hat_t *hat, 2670 caddr_t addr, 2671 hat_t *ism_hat, 2672 caddr_t src_addr, 2673 size_t len, /* almost useless value, see below.. */ 2674 uint_t ismszc) 2675 { 2676 uintptr_t vaddr_start = (uintptr_t)addr; 2677 uintptr_t vaddr; 2678 uintptr_t pt_vaddr; 2679 uintptr_t eaddr = vaddr_start + len; 2680 uintptr_t ism_addr_start = (uintptr_t)src_addr; 2681 uintptr_t ism_addr = ism_addr_start; 2682 uintptr_t e_ism_addr = ism_addr + len; 2683 htable_t *ism_ht = NULL; 2684 htable_t *ht; 2685 x86pte_t pte; 2686 page_t *pp; 2687 pfn_t pfn; 2688 level_t l; 2689 pgcnt_t pgcnt; 2690 uint_t prot; 2691 uint_t valid_cnt; 2692 2693 /* 2694 * We might be asked to share an empty DISM hat by as_dup() 2695 */ 2696 ASSERT(hat != kas.a_hat); 2697 ASSERT(eaddr <= _userlimit); 2698 if (!(ism_hat->hat_flags & HAT_SHARED)) { 2699 ASSERT(hat_get_mapped_size(ism_hat) == 0); 2700 return (0); 2701 } 2702 2703 /* 2704 * The SPT segment driver often passes us a size larger than there are 2705 * valid mappings. That's because it rounds the segment size up to a 2706 * large pagesize, even if the actual memory mapped by ism_hat is less. 2707 */ 2708 HATIN(hat_share, hat, addr, len); 2709 ASSERT(IS_PAGEALIGNED(vaddr_start)); 2710 ASSERT(IS_PAGEALIGNED(ism_addr_start)); 2711 ASSERT(ism_hat->hat_flags & HAT_SHARED); 2712 while (ism_addr < e_ism_addr) { 2713 /* 2714 * use htable_walk to get the next valid ISM mapping 2715 */ 2716 pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr); 2717 if (ism_ht == NULL) 2718 break; 2719 2720 /* 2721 * Find the largest page size we can use, based on the 2722 * ISM mapping size, our address alignment and the remaining 2723 * map length. 2724 */ 2725 vaddr = vaddr_start + (ism_addr - ism_addr_start); 2726 for (l = ism_ht->ht_level; l > 0; --l) { 2727 if (LEVEL_SIZE(l) <= eaddr - vaddr && 2728 (vaddr & LEVEL_OFFSET(l)) == 0) 2729 break; 2730 } 2731 2732 /* 2733 * attempt to share the pagetable 2734 * 2735 * - only 4K pagetables are shared (ie. level == 0) 2736 * - the hat_share() length must cover the whole pagetable 2737 * - the shared address must align at level 1 2738 * - a shared PTE for this address already exists OR 2739 * - no page table for this address exists yet 2740 */ 2741 pt_vaddr = 2742 vaddr_start + (ism_ht->ht_vaddr - ism_addr_start); 2743 if (ism_ht->ht_level == 0 && 2744 ism_ht->ht_vaddr + LEVEL_SIZE(1) <= e_ism_addr && 2745 (pt_vaddr & LEVEL_OFFSET(1)) == 0) { 2746 2747 ht = htable_lookup(hat, pt_vaddr, 0); 2748 if (ht == NULL) 2749 ht = htable_create(hat, pt_vaddr, 0, ism_ht); 2750 2751 if (ht->ht_level > 0 || 2752 !(ht->ht_flags & HTABLE_SHARED_PFN)) { 2753 2754 htable_release(ht); 2755 2756 } else { 2757 2758 /* 2759 * share the page table 2760 */ 2761 ASSERT(ht->ht_level == 0); 2762 ASSERT(ht->ht_shares == ism_ht); 2763 valid_cnt = ism_ht->ht_valid_cnt; 2764 atomic_add_long(&hat->hat_pages_mapped[0], 2765 valid_cnt - ht->ht_valid_cnt); 2766 ht->ht_valid_cnt = valid_cnt; 2767 htable_release(ht); 2768 ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(1); 2769 htable_release(ism_ht); 2770 ism_ht = NULL; 2771 continue; 2772 } 2773 } 2774 2775 /* 2776 * Unable to share the page table. Instead we will 2777 * create new mappings from the values in the ISM mappings. 2778 * 2779 * The ISM mapping might be larger than the share area, 2780 * be careful to trunctate it if needed. 2781 */ 2782 if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) { 2783 pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level)); 2784 } else { 2785 pgcnt = mmu_btop(eaddr - vaddr); 2786 l = 0; 2787 } 2788 2789 pfn = PTE2PFN(pte, ism_ht->ht_level); 2790 ASSERT(pfn != PFN_INVALID); 2791 while (pgcnt > 0) { 2792 /* 2793 * Make a new pte for the PFN for this level. 2794 * Copy protections for the pte from the ISM pte. 2795 */ 2796 pp = page_numtopp_nolock(pfn); 2797 ASSERT(pp != NULL); 2798 2799 prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK; 2800 if (PTE_GET(pte, PT_WRITABLE)) 2801 prot |= PROT_WRITE; 2802 if (!PTE_GET(pte, PT_NX)) 2803 prot |= PROT_EXEC; 2804 2805 /* 2806 * XX64 -- can shm ever be written to swap? 2807 * if not we could use HAT_NOSYNC here. 2808 */ 2809 while (hati_load_common(hat, vaddr, pp, prot, HAT_LOAD, 2810 l, pfn) != 0) { 2811 if (l == 0) 2812 panic("hati_load_common() failure"); 2813 --l; 2814 } 2815 2816 vaddr += LEVEL_SIZE(l); 2817 ism_addr += LEVEL_SIZE(l); 2818 pfn += mmu_btop(LEVEL_SIZE(l)); 2819 pgcnt -= mmu_btop(LEVEL_SIZE(l)); 2820 } 2821 } 2822 if (ism_ht != NULL) 2823 htable_release(ism_ht); 2824 2825 HATOUT(hat_share, hat, addr); 2826 return (0); 2827 } 2828 2829 2830 /* 2831 * hat_unshare() is similar to hat_unload_callback(), but 2832 * we have to look for empty shared pagetables. Note that 2833 * hat_unshare() is always invoked against an entire segment. 2834 */ 2835 /*ARGSUSED*/ 2836 void 2837 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc) 2838 { 2839 uintptr_t vaddr = (uintptr_t)addr; 2840 uintptr_t eaddr = vaddr + len; 2841 htable_t *ht = NULL; 2842 uint_t need_demaps = 0; 2843 2844 ASSERT(hat != kas.a_hat); 2845 ASSERT(eaddr <= _userlimit); 2846 HATIN(hat_unshare, hat, addr, len); 2847 ASSERT(IS_PAGEALIGNED(vaddr)); 2848 ASSERT(IS_PAGEALIGNED(eaddr)); 2849 2850 /* 2851 * First go through and remove any shared pagetables. 2852 * 2853 * Note that it's ok to delay the TLB shootdown till the entire range is 2854 * finished, because if hat_pageunload() were to unload a shared 2855 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate. 2856 */ 2857 while (vaddr < eaddr) { 2858 ASSERT(!IN_VA_HOLE(vaddr)); 2859 /* 2860 * find the pagetable that would map the current address 2861 */ 2862 ht = htable_lookup(hat, vaddr, 0); 2863 if (ht != NULL) { 2864 if (ht->ht_flags & HTABLE_SHARED_PFN) { 2865 /* 2866 * clear mapped pages count, set valid_cnt to 0 2867 * and let htable_release() finish the job 2868 */ 2869 atomic_add_long(&hat->hat_pages_mapped[0], 2870 -ht->ht_valid_cnt); 2871 ht->ht_valid_cnt = 0; 2872 need_demaps = 1; 2873 } 2874 htable_release(ht); 2875 } 2876 vaddr = (vaddr & LEVEL_MASK(1)) + LEVEL_SIZE(1); 2877 } 2878 2879 /* 2880 * flush the TLBs - since we're probably dealing with MANY mappings 2881 * we do just one CR3 reload. 2882 */ 2883 if (!(hat->hat_flags & HAT_FREEING) && need_demaps) 2884 hat_tlb_inval(hat, DEMAP_ALL_ADDR); 2885 2886 /* 2887 * Now go back and clean up any unaligned mappings that 2888 * couldn't share pagetables. 2889 */ 2890 hat_unload(hat, addr, len, HAT_UNLOAD_UNMAP); 2891 2892 HATOUT(hat_unshare, hat, addr); 2893 } 2894 2895 2896 /* 2897 * hat_reserve() does nothing 2898 */ 2899 /*ARGSUSED*/ 2900 void 2901 hat_reserve(struct as *as, caddr_t addr, size_t len) 2902 { 2903 } 2904 2905 2906 /* 2907 * Called when all mappings to a page should have write permission removed. 2908 * Mostly stolem from hat_pagesync() 2909 */ 2910 static void 2911 hati_page_clrwrt(struct page *pp) 2912 { 2913 hment_t *hm = NULL; 2914 htable_t *ht; 2915 uint_t entry; 2916 x86pte_t old; 2917 x86pte_t new; 2918 uint_t pszc = 0; 2919 2920 next_size: 2921 /* 2922 * walk thru the mapping list clearing write permission 2923 */ 2924 x86_hm_enter(pp); 2925 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 2926 if (ht->ht_level < pszc) 2927 continue; 2928 old = x86pte_get(ht, entry); 2929 2930 for (;;) { 2931 /* 2932 * Is this mapping of interest? 2933 */ 2934 if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum || 2935 PTE_GET(old, PT_WRITABLE) == 0) 2936 break; 2937 2938 /* 2939 * Clear ref/mod writable bits. This requires cross 2940 * calls to ensure any executing TLBs see cleared bits. 2941 */ 2942 new = old; 2943 PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE); 2944 old = hati_update_pte(ht, entry, old, new); 2945 if (old != 0) 2946 continue; 2947 2948 break; 2949 } 2950 } 2951 x86_hm_exit(pp); 2952 while (pszc < pp->p_szc) { 2953 page_t *tpp; 2954 pszc++; 2955 tpp = PP_GROUPLEADER(pp, pszc); 2956 if (pp != tpp) { 2957 pp = tpp; 2958 goto next_size; 2959 } 2960 } 2961 } 2962 2963 /* 2964 * void hat_page_setattr(pp, flag) 2965 * void hat_page_clrattr(pp, flag) 2966 * used to set/clr ref/mod bits. 2967 */ 2968 void 2969 hat_page_setattr(struct page *pp, uint_t flag) 2970 { 2971 vnode_t *vp = pp->p_vnode; 2972 kmutex_t *vphm = NULL; 2973 page_t **listp; 2974 2975 if (PP_GETRM(pp, flag) == flag) 2976 return; 2977 2978 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 2979 vphm = page_vnode_mutex(vp); 2980 mutex_enter(vphm); 2981 } 2982 2983 PP_SETRM(pp, flag); 2984 2985 if (vphm != NULL) { 2986 2987 /* 2988 * Some File Systems examine v_pages for NULL w/o 2989 * grabbing the vphm mutex. Must not let it become NULL when 2990 * pp is the only page on the list. 2991 */ 2992 if (pp->p_vpnext != pp) { 2993 page_vpsub(&vp->v_pages, pp); 2994 if (vp->v_pages != NULL) 2995 listp = &vp->v_pages->p_vpprev->p_vpnext; 2996 else 2997 listp = &vp->v_pages; 2998 page_vpadd(listp, pp); 2999 } 3000 mutex_exit(vphm); 3001 } 3002 } 3003 3004 void 3005 hat_page_clrattr(struct page *pp, uint_t flag) 3006 { 3007 vnode_t *vp = pp->p_vnode; 3008 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 3009 3010 /* 3011 * Caller is expected to hold page's io lock for VMODSORT to work 3012 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod 3013 * bit is cleared. 3014 * We don't have assert to avoid tripping some existing third party 3015 * code. The dirty page is moved back to top of the v_page list 3016 * after IO is done in pvn_write_done(). 3017 */ 3018 PP_CLRRM(pp, flag); 3019 3020 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 3021 3022 /* 3023 * VMODSORT works by removing write permissions and getting 3024 * a fault when a page is made dirty. At this point 3025 * we need to remove write permission from all mappings 3026 * to this page. 3027 */ 3028 hati_page_clrwrt(pp); 3029 } 3030 } 3031 3032 /* 3033 * If flag is specified, returns 0 if attribute is disabled 3034 * and non zero if enabled. If flag specifes multiple attributs 3035 * then returns 0 if ALL atriibutes are disabled. This is an advisory 3036 * call. 3037 */ 3038 uint_t 3039 hat_page_getattr(struct page *pp, uint_t flag) 3040 { 3041 return (PP_GETRM(pp, flag)); 3042 } 3043 3044 3045 /* 3046 * common code used by hat_pageunload() and hment_steal() 3047 */ 3048 hment_t * 3049 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry) 3050 { 3051 x86pte_t old_pte; 3052 pfn_t pfn = pp->p_pagenum; 3053 hment_t *hm; 3054 3055 /* 3056 * We need to acquire a hold on the htable in order to 3057 * do the invalidate. We know the htable must exist, since 3058 * unmap's don't release the htable until after removing any 3059 * hment. Having x86_hm_enter() keeps that from proceeding. 3060 */ 3061 htable_acquire(ht); 3062 3063 /* 3064 * Invalidate the PTE and remove the hment. 3065 */ 3066 old_pte = x86pte_inval(ht, entry, 0, NULL); 3067 if (PTE2PFN(old_pte, ht->ht_level) != pfn) { 3068 panic("x86pte_inval() failure found PTE = " FMT_PTE 3069 " pfn being unmapped is %lx ht=0x%lx entry=0x%x", 3070 old_pte, pfn, (uintptr_t)ht, entry); 3071 } 3072 3073 /* 3074 * Clean up all the htable information for this mapping 3075 */ 3076 ASSERT(ht->ht_valid_cnt > 0); 3077 HTABLE_DEC(ht->ht_valid_cnt); 3078 PGCNT_DEC(ht->ht_hat, ht->ht_level); 3079 3080 /* 3081 * sync ref/mod bits to the page_t 3082 */ 3083 if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC) 3084 hati_sync_pte_to_page(pp, old_pte, ht->ht_level); 3085 3086 /* 3087 * Remove the mapping list entry for this page. 3088 */ 3089 hm = hment_remove(pp, ht, entry); 3090 3091 /* 3092 * drop the mapping list lock so that we might free the 3093 * hment and htable. 3094 */ 3095 x86_hm_exit(pp); 3096 htable_release(ht); 3097 return (hm); 3098 } 3099 3100 extern int vpm_enable; 3101 /* 3102 * Unload all translations to a page. If the page is a subpage of a large 3103 * page, the large page mappings are also removed. 3104 * 3105 * The forceflags are unused. 3106 */ 3107 3108 /*ARGSUSED*/ 3109 static int 3110 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag) 3111 { 3112 page_t *cur_pp = pp; 3113 hment_t *hm; 3114 hment_t *prev; 3115 htable_t *ht; 3116 uint_t entry; 3117 level_t level; 3118 3119 #if defined(__amd64) 3120 /* 3121 * clear the vpm ref. 3122 */ 3123 if (vpm_enable) { 3124 pp->p_vpmref = 0; 3125 } 3126 #endif 3127 /* 3128 * The loop with next_size handles pages with multiple pagesize mappings 3129 */ 3130 next_size: 3131 for (;;) { 3132 3133 /* 3134 * Get a mapping list entry 3135 */ 3136 x86_hm_enter(cur_pp); 3137 for (prev = NULL; ; prev = hm) { 3138 hm = hment_walk(cur_pp, &ht, &entry, prev); 3139 if (hm == NULL) { 3140 x86_hm_exit(cur_pp); 3141 3142 /* 3143 * If not part of a larger page, we're done. 3144 */ 3145 if (cur_pp->p_szc <= pg_szcd) { 3146 return (0); 3147 } 3148 3149 /* 3150 * Else check the next larger page size. 3151 * hat_page_demote() may decrease p_szc 3152 * but that's ok we'll just take an extra 3153 * trip discover there're no larger mappings 3154 * and return. 3155 */ 3156 ++pg_szcd; 3157 cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd); 3158 goto next_size; 3159 } 3160 3161 /* 3162 * If this mapping size matches, remove it. 3163 */ 3164 level = ht->ht_level; 3165 if (level == pg_szcd) 3166 break; 3167 } 3168 3169 /* 3170 * Remove the mapping list entry for this page. 3171 * Note this does the x86_hm_exit() for us. 3172 */ 3173 hm = hati_page_unmap(cur_pp, ht, entry); 3174 if (hm != NULL) 3175 hment_free(hm); 3176 } 3177 } 3178 3179 int 3180 hat_pageunload(struct page *pp, uint_t forceflag) 3181 { 3182 ASSERT(PAGE_EXCL(pp)); 3183 return (hati_pageunload(pp, 0, forceflag)); 3184 } 3185 3186 /* 3187 * Unload all large mappings to pp and reduce by 1 p_szc field of every large 3188 * page level that included pp. 3189 * 3190 * pp must be locked EXCL. Even though no other constituent pages are locked 3191 * it's legal to unload large mappings to pp because all constituent pages of 3192 * large locked mappings have to be locked SHARED. therefore if we have EXCL 3193 * lock on one of constituent pages none of the large mappings to pp are 3194 * locked. 3195 * 3196 * Change (always decrease) p_szc field starting from the last constituent 3197 * page and ending with root constituent page so that root's pszc always shows 3198 * the area where hat_page_demote() may be active. 3199 * 3200 * This mechanism is only used for file system pages where it's not always 3201 * possible to get EXCL locks on all constituent pages to demote the size code 3202 * (as is done for anonymous or kernel large pages). 3203 */ 3204 void 3205 hat_page_demote(page_t *pp) 3206 { 3207 uint_t pszc; 3208 uint_t rszc; 3209 uint_t szc; 3210 page_t *rootpp; 3211 page_t *firstpp; 3212 page_t *lastpp; 3213 pgcnt_t pgcnt; 3214 3215 ASSERT(PAGE_EXCL(pp)); 3216 ASSERT(!PP_ISFREE(pp)); 3217 ASSERT(page_szc_lock_assert(pp)); 3218 3219 if (pp->p_szc == 0) 3220 return; 3221 3222 rootpp = PP_GROUPLEADER(pp, 1); 3223 (void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD); 3224 3225 /* 3226 * all large mappings to pp are gone 3227 * and no new can be setup since pp is locked exclusively. 3228 * 3229 * Lock the root to make sure there's only one hat_page_demote() 3230 * outstanding within the area of this root's pszc. 3231 * 3232 * Second potential hat_page_demote() is already eliminated by upper 3233 * VM layer via page_szc_lock() but we don't rely on it and use our 3234 * own locking (so that upper layer locking can be changed without 3235 * assumptions that hat depends on upper layer VM to prevent multiple 3236 * hat_page_demote() to be issued simultaneously to the same large 3237 * page). 3238 */ 3239 again: 3240 pszc = pp->p_szc; 3241 if (pszc == 0) 3242 return; 3243 rootpp = PP_GROUPLEADER(pp, pszc); 3244 x86_hm_enter(rootpp); 3245 /* 3246 * If root's p_szc is different from pszc we raced with another 3247 * hat_page_demote(). Drop the lock and try to find the root again. 3248 * If root's p_szc is greater than pszc previous hat_page_demote() is 3249 * not done yet. Take and release mlist lock of root's root to wait 3250 * for previous hat_page_demote() to complete. 3251 */ 3252 if ((rszc = rootpp->p_szc) != pszc) { 3253 x86_hm_exit(rootpp); 3254 if (rszc > pszc) { 3255 /* p_szc of a locked non free page can't increase */ 3256 ASSERT(pp != rootpp); 3257 3258 rootpp = PP_GROUPLEADER(rootpp, rszc); 3259 x86_hm_enter(rootpp); 3260 x86_hm_exit(rootpp); 3261 } 3262 goto again; 3263 } 3264 ASSERT(pp->p_szc == pszc); 3265 3266 /* 3267 * Decrement by 1 p_szc of every constituent page of a region that 3268 * covered pp. For example if original szc is 3 it gets changed to 2 3269 * everywhere except in region 2 that covered pp. Region 2 that 3270 * covered pp gets demoted to 1 everywhere except in region 1 that 3271 * covered pp. The region 1 that covered pp is demoted to region 3272 * 0. It's done this way because from region 3 we removed level 3 3273 * mappings, from region 2 that covered pp we removed level 2 mappings 3274 * and from region 1 that covered pp we removed level 1 mappings. All 3275 * changes are done from from high pfn's to low pfn's so that roots 3276 * are changed last allowing one to know the largest region where 3277 * hat_page_demote() is stil active by only looking at the root page. 3278 * 3279 * This algorithm is implemented in 2 while loops. First loop changes 3280 * p_szc of pages to the right of pp's level 1 region and second 3281 * loop changes p_szc of pages of level 1 region that covers pp 3282 * and all pages to the left of level 1 region that covers pp. 3283 * In the first loop p_szc keeps dropping with every iteration 3284 * and in the second loop it keeps increasing with every iteration. 3285 * 3286 * First loop description: Demote pages to the right of pp outside of 3287 * level 1 region that covers pp. In every iteration of the while 3288 * loop below find the last page of szc region and the first page of 3289 * (szc - 1) region that is immediately to the right of (szc - 1) 3290 * region that covers pp. From last such page to first such page 3291 * change every page's szc to szc - 1. Decrement szc and continue 3292 * looping until szc is 1. If pp belongs to the last (szc - 1) region 3293 * of szc region skip to the next iteration. 3294 */ 3295 szc = pszc; 3296 while (szc > 1) { 3297 lastpp = PP_GROUPLEADER(pp, szc); 3298 pgcnt = page_get_pagecnt(szc); 3299 lastpp += pgcnt - 1; 3300 firstpp = PP_GROUPLEADER(pp, (szc - 1)); 3301 pgcnt = page_get_pagecnt(szc - 1); 3302 if (lastpp - firstpp < pgcnt) { 3303 szc--; 3304 continue; 3305 } 3306 firstpp += pgcnt; 3307 while (lastpp != firstpp) { 3308 ASSERT(lastpp->p_szc == pszc); 3309 lastpp->p_szc = szc - 1; 3310 lastpp--; 3311 } 3312 firstpp->p_szc = szc - 1; 3313 szc--; 3314 } 3315 3316 /* 3317 * Second loop description: 3318 * First iteration changes p_szc to 0 of every 3319 * page of level 1 region that covers pp. 3320 * Subsequent iterations find last page of szc region 3321 * immediately to the left of szc region that covered pp 3322 * and first page of (szc + 1) region that covers pp. 3323 * From last to first page change p_szc of every page to szc. 3324 * Increment szc and continue looping until szc is pszc. 3325 * If pp belongs to the fist szc region of (szc + 1) region 3326 * skip to the next iteration. 3327 * 3328 */ 3329 szc = 0; 3330 while (szc < pszc) { 3331 firstpp = PP_GROUPLEADER(pp, (szc + 1)); 3332 if (szc == 0) { 3333 pgcnt = page_get_pagecnt(1); 3334 lastpp = firstpp + (pgcnt - 1); 3335 } else { 3336 lastpp = PP_GROUPLEADER(pp, szc); 3337 if (firstpp == lastpp) { 3338 szc++; 3339 continue; 3340 } 3341 lastpp--; 3342 pgcnt = page_get_pagecnt(szc); 3343 } 3344 while (lastpp != firstpp) { 3345 ASSERT(lastpp->p_szc == pszc); 3346 lastpp->p_szc = szc; 3347 lastpp--; 3348 } 3349 firstpp->p_szc = szc; 3350 if (firstpp == rootpp) 3351 break; 3352 szc++; 3353 } 3354 x86_hm_exit(rootpp); 3355 } 3356 3357 /* 3358 * get hw stats from hardware into page struct and reset hw stats 3359 * returns attributes of page 3360 * Flags for hat_pagesync, hat_getstat, hat_sync 3361 * 3362 * define HAT_SYNC_ZERORM 0x01 3363 * 3364 * Additional flags for hat_pagesync 3365 * 3366 * define HAT_SYNC_STOPON_REF 0x02 3367 * define HAT_SYNC_STOPON_MOD 0x04 3368 * define HAT_SYNC_STOPON_RM 0x06 3369 * define HAT_SYNC_STOPON_SHARED 0x08 3370 */ 3371 uint_t 3372 hat_pagesync(struct page *pp, uint_t flags) 3373 { 3374 hment_t *hm = NULL; 3375 htable_t *ht; 3376 uint_t entry; 3377 x86pte_t old, save_old; 3378 x86pte_t new; 3379 uchar_t nrmbits = P_REF|P_MOD|P_RO; 3380 extern ulong_t po_share; 3381 page_t *save_pp = pp; 3382 uint_t pszc = 0; 3383 3384 ASSERT(PAGE_LOCKED(pp) || panicstr); 3385 3386 if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD)) 3387 return (pp->p_nrm & nrmbits); 3388 3389 if ((flags & HAT_SYNC_ZERORM) == 0) { 3390 3391 if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp)) 3392 return (pp->p_nrm & nrmbits); 3393 3394 if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp)) 3395 return (pp->p_nrm & nrmbits); 3396 3397 if ((flags & HAT_SYNC_STOPON_SHARED) != 0 && 3398 hat_page_getshare(pp) > po_share) { 3399 if (PP_ISRO(pp)) 3400 PP_SETREF(pp); 3401 return (pp->p_nrm & nrmbits); 3402 } 3403 } 3404 3405 next_size: 3406 /* 3407 * walk thru the mapping list syncing (and clearing) ref/mod bits. 3408 */ 3409 x86_hm_enter(pp); 3410 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 3411 if (ht->ht_level < pszc) 3412 continue; 3413 old = x86pte_get(ht, entry); 3414 try_again: 3415 3416 ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum); 3417 3418 if (PTE_GET(old, PT_REF | PT_MOD) == 0) 3419 continue; 3420 3421 save_old = old; 3422 if ((flags & HAT_SYNC_ZERORM) != 0) { 3423 3424 /* 3425 * Need to clear ref or mod bits. Need to demap 3426 * to make sure any executing TLBs see cleared bits. 3427 */ 3428 new = old; 3429 PTE_CLR(new, PT_REF | PT_MOD); 3430 old = hati_update_pte(ht, entry, old, new); 3431 if (old != 0) 3432 goto try_again; 3433 3434 old = save_old; 3435 } 3436 3437 /* 3438 * Sync the PTE 3439 */ 3440 if (!(flags & HAT_SYNC_ZERORM) && 3441 PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC) 3442 hati_sync_pte_to_page(pp, old, ht->ht_level); 3443 3444 /* 3445 * can stop short if we found a ref'd or mod'd page 3446 */ 3447 if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) || 3448 (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) { 3449 x86_hm_exit(pp); 3450 goto done; 3451 } 3452 } 3453 x86_hm_exit(pp); 3454 while (pszc < pp->p_szc) { 3455 page_t *tpp; 3456 pszc++; 3457 tpp = PP_GROUPLEADER(pp, pszc); 3458 if (pp != tpp) { 3459 pp = tpp; 3460 goto next_size; 3461 } 3462 } 3463 done: 3464 return (save_pp->p_nrm & nrmbits); 3465 } 3466 3467 /* 3468 * returns approx number of mappings to this pp. A return of 0 implies 3469 * there are no mappings to the page. 3470 */ 3471 ulong_t 3472 hat_page_getshare(page_t *pp) 3473 { 3474 uint_t cnt; 3475 cnt = hment_mapcnt(pp); 3476 #if defined(__amd64) 3477 if (vpm_enable && pp->p_vpmref) { 3478 cnt += 1; 3479 } 3480 #endif 3481 return (cnt); 3482 } 3483 3484 /* 3485 * hat_softlock isn't supported anymore 3486 */ 3487 /*ARGSUSED*/ 3488 faultcode_t 3489 hat_softlock( 3490 hat_t *hat, 3491 caddr_t addr, 3492 size_t *len, 3493 struct page **page_array, 3494 uint_t flags) 3495 { 3496 return (FC_NOSUPPORT); 3497 } 3498 3499 3500 3501 /* 3502 * Routine to expose supported HAT features to platform independent code. 3503 */ 3504 /*ARGSUSED*/ 3505 int 3506 hat_supported(enum hat_features feature, void *arg) 3507 { 3508 switch (feature) { 3509 3510 case HAT_SHARED_PT: /* this is really ISM */ 3511 return (1); 3512 3513 case HAT_DYNAMIC_ISM_UNMAP: 3514 return (0); 3515 3516 case HAT_VMODSORT: 3517 return (1); 3518 3519 default: 3520 panic("hat_supported() - unknown feature"); 3521 } 3522 return (0); 3523 } 3524 3525 /* 3526 * Called when a thread is exiting and has been switched to the kernel AS 3527 */ 3528 void 3529 hat_thread_exit(kthread_t *thd) 3530 { 3531 ASSERT(thd->t_procp->p_as == &kas); 3532 hat_switch(thd->t_procp->p_as->a_hat); 3533 } 3534 3535 /* 3536 * Setup the given brand new hat structure as the new HAT on this cpu's mmu. 3537 */ 3538 /*ARGSUSED*/ 3539 void 3540 hat_setup(hat_t *hat, int flags) 3541 { 3542 kpreempt_disable(); 3543 3544 hat_switch(hat); 3545 3546 kpreempt_enable(); 3547 } 3548 3549 /* 3550 * Prepare for a CPU private mapping for the given address. 3551 * 3552 * The address can only be used from a single CPU and can be remapped 3553 * using hat_mempte_remap(). Return the address of the PTE. 3554 * 3555 * We do the htable_create() if necessary and increment the valid count so 3556 * the htable can't disappear. We also hat_devload() the page table into 3557 * kernel so that the PTE is quickly accessed. 3558 */ 3559 hat_mempte_t 3560 hat_mempte_setup(caddr_t addr) 3561 { 3562 uintptr_t va = (uintptr_t)addr; 3563 htable_t *ht; 3564 uint_t entry; 3565 x86pte_t oldpte; 3566 hat_mempte_t p; 3567 uint_t created = 0; 3568 3569 ASSERT(IS_PAGEALIGNED(va)); 3570 ASSERT(!IN_VA_HOLE(va)); 3571 ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0); 3572 if (ht == NULL) { 3573 ht = htable_create(kas.a_hat, va, 0, NULL); 3574 entry = htable_va2entry(va, ht); 3575 ASSERT(ht->ht_level == 0); 3576 oldpte = x86pte_get(ht, entry); 3577 created = 1; 3578 } 3579 if (PTE_ISVALID(oldpte)) 3580 panic("hat_mempte_setup(): address already mapped" 3581 "ht=%p, entry=%d, pte=" FMT_PTE, ht, entry, oldpte); 3582 3583 /* 3584 * increment ht_valid_cnt so that the pagetable can't disappear 3585 */ 3586 HTABLE_INC(ht->ht_valid_cnt); 3587 3588 /* 3589 * return the PTE physical address to the caller. 3590 */ 3591 htable_release(ht); 3592 p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry); 3593 if (created) 3594 hati_reserves_exit(0); 3595 return (p); 3596 } 3597 3598 /* 3599 * Release a CPU private mapping for the given address. 3600 * We decrement the htable valid count so it might be destroyed. 3601 */ 3602 /*ARGSUSED1*/ 3603 void 3604 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa) 3605 { 3606 htable_t *ht; 3607 3608 /* 3609 * invalidate any left over mapping and decrement the htable valid count 3610 */ 3611 { 3612 x86pte_t *pteptr; 3613 3614 pteptr = x86pte_mapin(mmu_btop(pte_pa), 3615 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 3616 if (mmu.pae_hat) 3617 *pteptr = 0; 3618 else 3619 *(x86pte32_t *)pteptr = 0; 3620 mmu_tlbflush_entry(addr); 3621 x86pte_mapout(); 3622 } 3623 3624 ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0); 3625 if (ht == NULL) 3626 panic("hat_mempte_release(): invalid address"); 3627 ASSERT(ht->ht_level == 0); 3628 HTABLE_DEC(ht->ht_valid_cnt); 3629 htable_release(ht); 3630 } 3631 3632 /* 3633 * Apply a temporary CPU private mapping to a page. We flush the TLB only 3634 * on this CPU, so this ought to have been called with preemption disabled. 3635 */ 3636 void 3637 hat_mempte_remap( 3638 pfn_t pfn, 3639 caddr_t addr, 3640 hat_mempte_t pte_pa, 3641 uint_t attr, 3642 uint_t flags) 3643 { 3644 uintptr_t va = (uintptr_t)addr; 3645 x86pte_t pte; 3646 3647 /* 3648 * Remap the given PTE to the new page's PFN. Invalidate only 3649 * on this CPU. 3650 */ 3651 #ifdef DEBUG 3652 htable_t *ht; 3653 uint_t entry; 3654 3655 ASSERT(IS_PAGEALIGNED(va)); 3656 ASSERT(!IN_VA_HOLE(va)); 3657 ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0); 3658 ASSERT(ht != NULL); 3659 ASSERT(ht->ht_level == 0); 3660 ASSERT(ht->ht_valid_cnt > 0); 3661 ASSERT(ht->ht_pfn == mmu_btop(pte_pa)); 3662 htable_release(ht); 3663 #endif 3664 pte = hati_mkpte(pfn, attr, 0, flags); 3665 { 3666 x86pte_t *pteptr; 3667 3668 pteptr = x86pte_mapin(mmu_btop(pte_pa), 3669 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 3670 if (mmu.pae_hat) 3671 *(x86pte_t *)pteptr = pte; 3672 else 3673 *(x86pte32_t *)pteptr = (x86pte32_t)pte; 3674 mmu_tlbflush_entry(addr); 3675 x86pte_mapout(); 3676 } 3677 } 3678 3679 3680 3681 /* 3682 * Hat locking functions 3683 * XXX - these two functions are currently being used by hatstats 3684 * they can be removed by using a per-as mutex for hatstats. 3685 */ 3686 void 3687 hat_enter(hat_t *hat) 3688 { 3689 mutex_enter(&hat->hat_mutex); 3690 } 3691 3692 void 3693 hat_exit(hat_t *hat) 3694 { 3695 mutex_exit(&hat->hat_mutex); 3696 } 3697 3698 /* 3699 * HAT part of cpu initialization. 3700 */ 3701 void 3702 hat_cpu_online(struct cpu *cpup) 3703 { 3704 if (cpup != CPU) { 3705 x86pte_cpu_init(cpup); 3706 hat_vlp_setup(cpup); 3707 } 3708 CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id); 3709 } 3710 3711 /* 3712 * HAT part of cpu deletion. 3713 * (currently, we only call this after the cpu is safely passivated.) 3714 */ 3715 void 3716 hat_cpu_offline(struct cpu *cpup) 3717 { 3718 ASSERT(cpup != CPU); 3719 3720 CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id); 3721 x86pte_cpu_fini(cpup); 3722 hat_vlp_teardown(cpup); 3723 } 3724 3725 /* 3726 * Function called after all CPUs are brought online. 3727 * Used to remove low address boot mappings. 3728 */ 3729 void 3730 clear_boot_mappings(uintptr_t low, uintptr_t high) 3731 { 3732 uintptr_t vaddr = low; 3733 htable_t *ht = NULL; 3734 level_t level; 3735 uint_t entry; 3736 x86pte_t pte; 3737 3738 /* 3739 * On 1st CPU we can unload the prom mappings, basically we blow away 3740 * all virtual mappings under _userlimit. 3741 */ 3742 while (vaddr < high) { 3743 pte = htable_walk(kas.a_hat, &ht, &vaddr, high); 3744 if (ht == NULL) 3745 break; 3746 3747 level = ht->ht_level; 3748 entry = htable_va2entry(vaddr, ht); 3749 ASSERT(level <= mmu.max_page_level); 3750 ASSERT(PTE_ISPAGE(pte, level)); 3751 3752 /* 3753 * Unload the mapping from the page tables. 3754 */ 3755 (void) x86pte_inval(ht, entry, 0, NULL); 3756 ASSERT(ht->ht_valid_cnt > 0); 3757 HTABLE_DEC(ht->ht_valid_cnt); 3758 PGCNT_DEC(ht->ht_hat, ht->ht_level); 3759 3760 vaddr += LEVEL_SIZE(ht->ht_level); 3761 } 3762 if (ht) 3763 htable_release(ht); 3764 } 3765 3766 /* 3767 * Atomically update a new translation for a single page. If the 3768 * currently installed PTE doesn't match the value we expect to find, 3769 * it's not updated and we return the PTE we found. 3770 * 3771 * If activating nosync or NOWRITE and the page was modified we need to sync 3772 * with the page_t. Also sync with page_t if clearing ref/mod bits. 3773 */ 3774 static x86pte_t 3775 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new) 3776 { 3777 page_t *pp; 3778 uint_t rm = 0; 3779 x86pte_t replaced; 3780 3781 if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC && 3782 PTE_GET(expected, PT_MOD | PT_REF) && 3783 (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) || 3784 !PTE_GET(new, PT_MOD | PT_REF))) { 3785 3786 ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level))); 3787 pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level)); 3788 ASSERT(pp != NULL); 3789 if (PTE_GET(expected, PT_MOD)) 3790 rm |= P_MOD; 3791 if (PTE_GET(expected, PT_REF)) 3792 rm |= P_REF; 3793 PTE_CLR(new, PT_MOD | PT_REF); 3794 } 3795 3796 replaced = x86pte_update(ht, entry, expected, new); 3797 if (replaced != expected) 3798 return (replaced); 3799 3800 if (rm) { 3801 /* 3802 * sync to all constituent pages of a large page 3803 */ 3804 pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level); 3805 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 3806 while (pgcnt-- > 0) { 3807 /* 3808 * hat_page_demote() can't decrease 3809 * pszc below this mapping size 3810 * since large mapping existed after we 3811 * took mlist lock. 3812 */ 3813 ASSERT(pp->p_szc >= ht->ht_level); 3814 hat_page_setattr(pp, rm); 3815 ++pp; 3816 } 3817 } 3818 3819 return (0); 3820 } 3821 3822 /* 3823 * Kernel Physical Mapping (kpm) facility 3824 * 3825 * Most of the routines needed to support segkpm are almost no-ops on the 3826 * x86 platform. We map in the entire segment when it is created and leave 3827 * it mapped in, so there is no additional work required to set up and tear 3828 * down individual mappings. All of these routines were created to support 3829 * SPARC platforms that have to avoid aliasing in their virtually indexed 3830 * caches. 3831 * 3832 * Most of the routines have sanity checks in them (e.g. verifying that the 3833 * passed-in page is locked). We don't actually care about most of these 3834 * checks on x86, but we leave them in place to identify problems in the 3835 * upper levels. 3836 */ 3837 3838 /* 3839 * Map in a locked page and return the vaddr. 3840 */ 3841 /*ARGSUSED*/ 3842 caddr_t 3843 hat_kpm_mapin(struct page *pp, struct kpme *kpme) 3844 { 3845 caddr_t vaddr; 3846 3847 #ifdef DEBUG 3848 if (kpm_enable == 0) { 3849 cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n"); 3850 return ((caddr_t)NULL); 3851 } 3852 3853 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 3854 cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n"); 3855 return ((caddr_t)NULL); 3856 } 3857 #endif 3858 3859 vaddr = hat_kpm_page2va(pp, 1); 3860 3861 return (vaddr); 3862 } 3863 3864 /* 3865 * Mapout a locked page. 3866 */ 3867 /*ARGSUSED*/ 3868 void 3869 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr) 3870 { 3871 #ifdef DEBUG 3872 if (kpm_enable == 0) { 3873 cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n"); 3874 return; 3875 } 3876 3877 if (IS_KPM_ADDR(vaddr) == 0) { 3878 cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n"); 3879 return; 3880 } 3881 3882 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 3883 cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n"); 3884 return; 3885 } 3886 #endif 3887 } 3888 3889 /* 3890 * Return the kpm virtual address for a specific pfn 3891 */ 3892 caddr_t 3893 hat_kpm_pfn2va(pfn_t pfn) 3894 { 3895 uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn); 3896 3897 return ((caddr_t)vaddr); 3898 } 3899 3900 /* 3901 * Return the kpm virtual address for the page at pp. 3902 */ 3903 /*ARGSUSED*/ 3904 caddr_t 3905 hat_kpm_page2va(struct page *pp, int checkswap) 3906 { 3907 return (hat_kpm_pfn2va(pp->p_pagenum)); 3908 } 3909 3910 /* 3911 * Return the page frame number for the kpm virtual address vaddr. 3912 */ 3913 pfn_t 3914 hat_kpm_va2pfn(caddr_t vaddr) 3915 { 3916 pfn_t pfn; 3917 3918 ASSERT(IS_KPM_ADDR(vaddr)); 3919 3920 pfn = (pfn_t)btop(vaddr - kpm_vbase); 3921 3922 return (pfn); 3923 } 3924 3925 3926 /* 3927 * Return the page for the kpm virtual address vaddr. 3928 */ 3929 page_t * 3930 hat_kpm_vaddr2page(caddr_t vaddr) 3931 { 3932 pfn_t pfn; 3933 3934 ASSERT(IS_KPM_ADDR(vaddr)); 3935 3936 pfn = hat_kpm_va2pfn(vaddr); 3937 3938 return (page_numtopp_nolock(pfn)); 3939 } 3940 3941 /* 3942 * hat_kpm_fault is called from segkpm_fault when we take a page fault on a 3943 * KPM page. This should never happen on x86 3944 */ 3945 int 3946 hat_kpm_fault(hat_t *hat, caddr_t vaddr) 3947 { 3948 panic("pagefault in seg_kpm. hat: 0x%p vaddr: 0x%p", hat, vaddr); 3949 3950 return (0); 3951 } 3952 3953 /*ARGSUSED*/ 3954 void 3955 hat_kpm_mseghash_clear(int nentries) 3956 {} 3957 3958 /*ARGSUSED*/ 3959 void 3960 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp) 3961 {} 3962