1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 */ 29 30 31 /* 32 * VM - Hardware Address Translation management for i386 and amd64 33 * 34 * Implementation of the interfaces described in <common/vm/hat.h> 35 * 36 * Nearly all the details of how the hardware is managed should not be 37 * visible outside this layer except for misc. machine specific functions 38 * that work in conjunction with this code. 39 * 40 * Routines used only inside of i86pc/vm start with hati_ for HAT Internal. 41 */ 42 43 #include <sys/machparam.h> 44 #include <sys/machsystm.h> 45 #include <sys/mman.h> 46 #include <sys/types.h> 47 #include <sys/systm.h> 48 #include <sys/cpuvar.h> 49 #include <sys/thread.h> 50 #include <sys/proc.h> 51 #include <sys/cpu.h> 52 #include <sys/kmem.h> 53 #include <sys/disp.h> 54 #include <sys/shm.h> 55 #include <sys/sysmacros.h> 56 #include <sys/machparam.h> 57 #include <sys/vmem.h> 58 #include <sys/vmsystm.h> 59 #include <sys/promif.h> 60 #include <sys/var.h> 61 #include <sys/x86_archext.h> 62 #include <sys/atomic.h> 63 #include <sys/bitmap.h> 64 #include <sys/controlregs.h> 65 #include <sys/bootconf.h> 66 #include <sys/bootsvcs.h> 67 #include <sys/bootinfo.h> 68 #include <sys/archsystm.h> 69 70 #include <vm/seg_kmem.h> 71 #include <vm/hat_i86.h> 72 #include <vm/as.h> 73 #include <vm/seg.h> 74 #include <vm/page.h> 75 #include <vm/seg_kp.h> 76 #include <vm/seg_kpm.h> 77 #include <vm/vm_dep.h> 78 #ifdef __xpv 79 #include <sys/hypervisor.h> 80 #endif 81 #include <vm/kboot_mmu.h> 82 #include <vm/seg_spt.h> 83 84 #include <sys/cmn_err.h> 85 86 /* 87 * Basic parameters for hat operation. 88 */ 89 struct hat_mmu_info mmu; 90 91 /* 92 * The page that is the kernel's top level pagetable. 93 * 94 * For 32 bit PAE support on i86pc, the kernel hat will use the 1st 4 entries 95 * on this 4K page for its top level page table. The remaining groups of 96 * 4 entries are used for per processor copies of user VLP pagetables for 97 * running threads. See hat_switch() and reload_pae32() for details. 98 * 99 * vlp_page[0..3] - level==2 PTEs for kernel HAT 100 * vlp_page[4..7] - level==2 PTEs for user thread on cpu 0 101 * vlp_page[8..11] - level==2 PTE for user thread on cpu 1 102 * etc... 103 */ 104 static x86pte_t *vlp_page; 105 106 /* 107 * forward declaration of internal utility routines 108 */ 109 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, 110 x86pte_t new); 111 112 /* 113 * The kernel address space exists in all HATs. To implement this the 114 * kernel reserves a fixed number of entries in the topmost level(s) of page 115 * tables. The values are setup during startup and then copied to every user 116 * hat created by hat_alloc(). This means that kernelbase must be: 117 * 118 * 4Meg aligned for 32 bit kernels 119 * 512Gig aligned for x86_64 64 bit kernel 120 * 121 * The hat_kernel_range_ts describe what needs to be copied from kernel hat 122 * to each user hat. 123 */ 124 typedef struct hat_kernel_range { 125 level_t hkr_level; 126 uintptr_t hkr_start_va; 127 uintptr_t hkr_end_va; /* zero means to end of memory */ 128 } hat_kernel_range_t; 129 #define NUM_KERNEL_RANGE 2 130 static hat_kernel_range_t kernel_ranges[NUM_KERNEL_RANGE]; 131 static int num_kernel_ranges; 132 133 uint_t use_boot_reserve = 1; /* cleared after early boot process */ 134 uint_t can_steal_post_boot = 0; /* set late in boot to enable stealing */ 135 136 /* 137 * enable_1gpg: controls 1g page support for user applications. 138 * By default, 1g pages are exported to user applications. enable_1gpg can 139 * be set to 0 to not export. 140 */ 141 int enable_1gpg = 1; 142 143 /* 144 * AMD shanghai processors provide better management of 1gb ptes in its tlb. 145 * By default, 1g page support will be disabled for pre-shanghai AMD 146 * processors that don't have optimal tlb support for the 1g page size. 147 * chk_optimal_1gtlb can be set to 0 to force 1g page support on sub-optimal 148 * processors. 149 */ 150 int chk_optimal_1gtlb = 1; 151 152 153 #ifdef DEBUG 154 uint_t map1gcnt; 155 #endif 156 157 158 /* 159 * A cpuset for all cpus. This is used for kernel address cross calls, since 160 * the kernel addresses apply to all cpus. 161 */ 162 cpuset_t khat_cpuset; 163 164 /* 165 * management stuff for hat structures 166 */ 167 kmutex_t hat_list_lock; 168 kcondvar_t hat_list_cv; 169 kmem_cache_t *hat_cache; 170 kmem_cache_t *hat_hash_cache; 171 kmem_cache_t *vlp_hash_cache; 172 173 /* 174 * Simple statistics 175 */ 176 struct hatstats hatstat; 177 178 /* 179 * Some earlier hypervisor versions do not emulate cmpxchg of PTEs 180 * correctly. For such hypervisors we must set PT_USER for kernel 181 * entries ourselves (normally the emulation would set PT_USER for 182 * kernel entries and PT_USER|PT_GLOBAL for user entries). pt_kern is 183 * thus set appropriately. Note that dboot/kbm is OK, as only the full 184 * HAT uses cmpxchg() and the other paths (hypercall etc.) were never 185 * incorrect. 186 */ 187 int pt_kern; 188 189 /* 190 * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's. 191 */ 192 extern void atomic_orb(uchar_t *addr, uchar_t val); 193 extern void atomic_andb(uchar_t *addr, uchar_t val); 194 195 #ifndef __xpv 196 extern pfn_t memseg_get_start(struct memseg *); 197 #endif 198 199 #define PP_GETRM(pp, rmmask) (pp->p_nrm & rmmask) 200 #define PP_ISMOD(pp) PP_GETRM(pp, P_MOD) 201 #define PP_ISREF(pp) PP_GETRM(pp, P_REF) 202 #define PP_ISRO(pp) PP_GETRM(pp, P_RO) 203 204 #define PP_SETRM(pp, rm) atomic_orb(&(pp->p_nrm), rm) 205 #define PP_SETMOD(pp) PP_SETRM(pp, P_MOD) 206 #define PP_SETREF(pp) PP_SETRM(pp, P_REF) 207 #define PP_SETRO(pp) PP_SETRM(pp, P_RO) 208 209 #define PP_CLRRM(pp, rm) atomic_andb(&(pp->p_nrm), ~(rm)) 210 #define PP_CLRMOD(pp) PP_CLRRM(pp, P_MOD) 211 #define PP_CLRREF(pp) PP_CLRRM(pp, P_REF) 212 #define PP_CLRRO(pp) PP_CLRRM(pp, P_RO) 213 #define PP_CLRALL(pp) PP_CLRRM(pp, P_MOD | P_REF | P_RO) 214 215 /* 216 * kmem cache constructor for struct hat 217 */ 218 /*ARGSUSED*/ 219 static int 220 hati_constructor(void *buf, void *handle, int kmflags) 221 { 222 hat_t *hat = buf; 223 224 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 225 bzero(hat->hat_pages_mapped, 226 sizeof (pgcnt_t) * (mmu.max_page_level + 1)); 227 hat->hat_ism_pgcnt = 0; 228 hat->hat_stats = 0; 229 hat->hat_flags = 0; 230 CPUSET_ZERO(hat->hat_cpus); 231 hat->hat_htable = NULL; 232 hat->hat_ht_hash = NULL; 233 return (0); 234 } 235 236 /* 237 * Allocate a hat structure for as. We also create the top level 238 * htable and initialize it to contain the kernel hat entries. 239 */ 240 hat_t * 241 hat_alloc(struct as *as) 242 { 243 hat_t *hat; 244 htable_t *ht; /* top level htable */ 245 uint_t use_vlp; 246 uint_t r; 247 hat_kernel_range_t *rp; 248 uintptr_t va; 249 uintptr_t eva; 250 uint_t start; 251 uint_t cnt; 252 htable_t *src; 253 254 /* 255 * Once we start creating user process HATs we can enable 256 * the htable_steal() code. 257 */ 258 if (can_steal_post_boot == 0) 259 can_steal_post_boot = 1; 260 261 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 262 hat = kmem_cache_alloc(hat_cache, KM_SLEEP); 263 hat->hat_as = as; 264 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 265 ASSERT(hat->hat_flags == 0); 266 267 #if defined(__xpv) 268 /* 269 * No VLP stuff on the hypervisor due to the 64-bit split top level 270 * page tables. On 32-bit it's not needed as the hypervisor takes 271 * care of copying the top level PTEs to a below 4Gig page. 272 */ 273 use_vlp = 0; 274 #else /* __xpv */ 275 /* 32 bit processes uses a VLP style hat when running with PAE */ 276 #if defined(__amd64) 277 use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32); 278 #elif defined(__i386) 279 use_vlp = mmu.pae_hat; 280 #endif 281 #endif /* __xpv */ 282 if (use_vlp) { 283 hat->hat_flags = HAT_VLP; 284 bzero(hat->hat_vlp_ptes, VLP_SIZE); 285 } 286 287 /* 288 * Allocate the htable hash 289 */ 290 if ((hat->hat_flags & HAT_VLP)) { 291 hat->hat_num_hash = mmu.vlp_hash_cnt; 292 hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP); 293 } else { 294 hat->hat_num_hash = mmu.hash_cnt; 295 hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP); 296 } 297 bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *)); 298 299 /* 300 * Initialize Kernel HAT entries at the top of the top level page 301 * tables for the new hat. 302 */ 303 hat->hat_htable = NULL; 304 hat->hat_ht_cached = NULL; 305 XPV_DISALLOW_MIGRATE(); 306 ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL); 307 hat->hat_htable = ht; 308 309 #if defined(__amd64) 310 if (hat->hat_flags & HAT_VLP) 311 goto init_done; 312 #endif 313 314 for (r = 0; r < num_kernel_ranges; ++r) { 315 rp = &kernel_ranges[r]; 316 for (va = rp->hkr_start_va; va != rp->hkr_end_va; 317 va += cnt * LEVEL_SIZE(rp->hkr_level)) { 318 319 if (rp->hkr_level == TOP_LEVEL(hat)) 320 ht = hat->hat_htable; 321 else 322 ht = htable_create(hat, va, rp->hkr_level, 323 NULL); 324 325 start = htable_va2entry(va, ht); 326 cnt = HTABLE_NUM_PTES(ht) - start; 327 eva = va + 328 ((uintptr_t)cnt << LEVEL_SHIFT(rp->hkr_level)); 329 if (rp->hkr_end_va != 0 && 330 (eva > rp->hkr_end_va || eva == 0)) 331 cnt = htable_va2entry(rp->hkr_end_va, ht) - 332 start; 333 334 #if defined(__i386) && !defined(__xpv) 335 if (ht->ht_flags & HTABLE_VLP) { 336 bcopy(&vlp_page[start], 337 &hat->hat_vlp_ptes[start], 338 cnt * sizeof (x86pte_t)); 339 continue; 340 } 341 #endif 342 src = htable_lookup(kas.a_hat, va, rp->hkr_level); 343 ASSERT(src != NULL); 344 x86pte_copy(src, ht, start, cnt); 345 htable_release(src); 346 } 347 } 348 349 init_done: 350 351 #if defined(__xpv) 352 /* 353 * Pin top level page tables after initializing them 354 */ 355 xen_pin(hat->hat_htable->ht_pfn, mmu.max_level); 356 #if defined(__amd64) 357 xen_pin(hat->hat_user_ptable, mmu.max_level); 358 #endif 359 #endif 360 XPV_ALLOW_MIGRATE(); 361 362 /* 363 * Put it at the start of the global list of all hats (used by stealing) 364 * 365 * kas.a_hat is not in the list but is instead used to find the 366 * first and last items in the list. 367 * 368 * - kas.a_hat->hat_next points to the start of the user hats. 369 * The list ends where hat->hat_next == NULL 370 * 371 * - kas.a_hat->hat_prev points to the last of the user hats. 372 * The list begins where hat->hat_prev == NULL 373 */ 374 mutex_enter(&hat_list_lock); 375 hat->hat_prev = NULL; 376 hat->hat_next = kas.a_hat->hat_next; 377 if (hat->hat_next) 378 hat->hat_next->hat_prev = hat; 379 else 380 kas.a_hat->hat_prev = hat; 381 kas.a_hat->hat_next = hat; 382 mutex_exit(&hat_list_lock); 383 384 return (hat); 385 } 386 387 /* 388 * process has finished executing but as has not been cleaned up yet. 389 */ 390 /*ARGSUSED*/ 391 void 392 hat_free_start(hat_t *hat) 393 { 394 ASSERT(AS_WRITE_HELD(hat->hat_as, &hat->hat_as->a_lock)); 395 396 /* 397 * If the hat is currently a stealing victim, wait for the stealing 398 * to finish. Once we mark it as HAT_FREEING, htable_steal() 399 * won't look at its pagetables anymore. 400 */ 401 mutex_enter(&hat_list_lock); 402 while (hat->hat_flags & HAT_VICTIM) 403 cv_wait(&hat_list_cv, &hat_list_lock); 404 hat->hat_flags |= HAT_FREEING; 405 mutex_exit(&hat_list_lock); 406 } 407 408 /* 409 * An address space is being destroyed, so we destroy the associated hat. 410 */ 411 void 412 hat_free_end(hat_t *hat) 413 { 414 kmem_cache_t *cache; 415 416 ASSERT(hat->hat_flags & HAT_FREEING); 417 418 /* 419 * must not be running on the given hat 420 */ 421 ASSERT(CPU->cpu_current_hat != hat); 422 423 /* 424 * Remove it from the list of HATs 425 */ 426 mutex_enter(&hat_list_lock); 427 if (hat->hat_prev) 428 hat->hat_prev->hat_next = hat->hat_next; 429 else 430 kas.a_hat->hat_next = hat->hat_next; 431 if (hat->hat_next) 432 hat->hat_next->hat_prev = hat->hat_prev; 433 else 434 kas.a_hat->hat_prev = hat->hat_prev; 435 mutex_exit(&hat_list_lock); 436 hat->hat_next = hat->hat_prev = NULL; 437 438 #if defined(__xpv) 439 /* 440 * On the hypervisor, unpin top level page table(s) 441 */ 442 xen_unpin(hat->hat_htable->ht_pfn); 443 #if defined(__amd64) 444 xen_unpin(hat->hat_user_ptable); 445 #endif 446 #endif 447 448 /* 449 * Make a pass through the htables freeing them all up. 450 */ 451 htable_purge_hat(hat); 452 453 /* 454 * Decide which kmem cache the hash table came from, then free it. 455 */ 456 if (hat->hat_flags & HAT_VLP) 457 cache = vlp_hash_cache; 458 else 459 cache = hat_hash_cache; 460 kmem_cache_free(cache, hat->hat_ht_hash); 461 hat->hat_ht_hash = NULL; 462 463 hat->hat_flags = 0; 464 kmem_cache_free(hat_cache, hat); 465 } 466 467 /* 468 * round kernelbase down to a supported value to use for _userlimit 469 * 470 * userlimit must be aligned down to an entry in the top level htable. 471 * The one exception is for 32 bit HAT's running PAE. 472 */ 473 uintptr_t 474 hat_kernelbase(uintptr_t va) 475 { 476 #if defined(__i386) 477 va &= LEVEL_MASK(1); 478 #endif 479 if (IN_VA_HOLE(va)) 480 panic("_userlimit %p will fall in VA hole\n", (void *)va); 481 return (va); 482 } 483 484 /* 485 * 486 */ 487 static void 488 set_max_page_level() 489 { 490 level_t lvl; 491 492 if (!kbm_largepage_support) { 493 lvl = 0; 494 } else { 495 if (x86_feature & X86_1GPG) { 496 lvl = 2; 497 if (chk_optimal_1gtlb && 498 cpuid_opteron_erratum(CPU, 6671130)) { 499 lvl = 1; 500 } 501 if (plat_mnode_xcheck(LEVEL_SIZE(2) >> 502 LEVEL_SHIFT(0))) { 503 lvl = 1; 504 } 505 } else { 506 lvl = 1; 507 } 508 } 509 mmu.max_page_level = lvl; 510 511 if ((lvl == 2) && (enable_1gpg == 0)) 512 mmu.umax_page_level = 1; 513 else 514 mmu.umax_page_level = lvl; 515 } 516 517 /* 518 * Initialize hat data structures based on processor MMU information. 519 */ 520 void 521 mmu_init(void) 522 { 523 uint_t max_htables; 524 uint_t pa_bits; 525 uint_t va_bits; 526 int i; 527 528 /* 529 * If CPU enabled the page table global bit, use it for the kernel 530 * This is bit 7 in CR4 (PGE - Page Global Enable). 531 */ 532 if ((x86_feature & X86_PGE) != 0 && (getcr4() & CR4_PGE) != 0) 533 mmu.pt_global = PT_GLOBAL; 534 535 /* 536 * Detect NX and PAE usage. 537 */ 538 mmu.pae_hat = kbm_pae_support; 539 if (kbm_nx_support) 540 mmu.pt_nx = PT_NX; 541 else 542 mmu.pt_nx = 0; 543 544 /* 545 * Use CPU info to set various MMU parameters 546 */ 547 cpuid_get_addrsize(CPU, &pa_bits, &va_bits); 548 549 if (va_bits < sizeof (void *) * NBBY) { 550 mmu.hole_start = (1ul << (va_bits - 1)); 551 mmu.hole_end = 0ul - mmu.hole_start - 1; 552 } else { 553 mmu.hole_end = 0; 554 mmu.hole_start = mmu.hole_end - 1; 555 } 556 #if defined(OPTERON_ERRATUM_121) 557 /* 558 * If erratum 121 has already been detected at this time, hole_start 559 * contains the value to be subtracted from mmu.hole_start. 560 */ 561 ASSERT(hole_start == 0 || opteron_erratum_121 != 0); 562 hole_start = mmu.hole_start - hole_start; 563 #else 564 hole_start = mmu.hole_start; 565 #endif 566 hole_end = mmu.hole_end; 567 568 mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1); 569 if (mmu.pae_hat == 0 && pa_bits > 32) 570 mmu.highest_pfn = PFN_4G - 1; 571 572 if (mmu.pae_hat) { 573 mmu.pte_size = 8; /* 8 byte PTEs */ 574 mmu.pte_size_shift = 3; 575 } else { 576 mmu.pte_size = 4; /* 4 byte PTEs */ 577 mmu.pte_size_shift = 2; 578 } 579 580 if (mmu.pae_hat && (x86_feature & X86_PAE) == 0) 581 panic("Processor does not support PAE"); 582 583 if ((x86_feature & X86_CX8) == 0) 584 panic("Processor does not support cmpxchg8b instruction"); 585 586 #if defined(__amd64) 587 588 mmu.num_level = 4; 589 mmu.max_level = 3; 590 mmu.ptes_per_table = 512; 591 mmu.top_level_count = 512; 592 593 mmu.level_shift[0] = 12; 594 mmu.level_shift[1] = 21; 595 mmu.level_shift[2] = 30; 596 mmu.level_shift[3] = 39; 597 598 #elif defined(__i386) 599 600 if (mmu.pae_hat) { 601 mmu.num_level = 3; 602 mmu.max_level = 2; 603 mmu.ptes_per_table = 512; 604 mmu.top_level_count = 4; 605 606 mmu.level_shift[0] = 12; 607 mmu.level_shift[1] = 21; 608 mmu.level_shift[2] = 30; 609 610 } else { 611 mmu.num_level = 2; 612 mmu.max_level = 1; 613 mmu.ptes_per_table = 1024; 614 mmu.top_level_count = 1024; 615 616 mmu.level_shift[0] = 12; 617 mmu.level_shift[1] = 22; 618 } 619 620 #endif /* __i386 */ 621 622 for (i = 0; i < mmu.num_level; ++i) { 623 mmu.level_size[i] = 1UL << mmu.level_shift[i]; 624 mmu.level_offset[i] = mmu.level_size[i] - 1; 625 mmu.level_mask[i] = ~mmu.level_offset[i]; 626 } 627 628 set_max_page_level(); 629 630 mmu_page_sizes = mmu.max_page_level + 1; 631 mmu_exported_page_sizes = mmu.umax_page_level + 1; 632 633 /* restrict legacy applications from using pagesizes 1g and above */ 634 mmu_legacy_page_sizes = 635 (mmu_exported_page_sizes > 2) ? 2 : mmu_exported_page_sizes; 636 637 638 for (i = 0; i <= mmu.max_page_level; ++i) { 639 mmu.pte_bits[i] = PT_VALID | pt_kern; 640 if (i > 0) 641 mmu.pte_bits[i] |= PT_PAGESIZE; 642 } 643 644 /* 645 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level. 646 */ 647 for (i = 1; i < mmu.num_level; ++i) 648 mmu.ptp_bits[i] = PT_PTPBITS; 649 650 #if defined(__i386) 651 mmu.ptp_bits[2] = PT_VALID; 652 #endif 653 654 /* 655 * Compute how many hash table entries to have per process for htables. 656 * We start with 1 page's worth of entries. 657 * 658 * If physical memory is small, reduce the amount need to cover it. 659 */ 660 max_htables = physmax / mmu.ptes_per_table; 661 mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *); 662 while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables) 663 mmu.hash_cnt >>= 1; 664 mmu.vlp_hash_cnt = mmu.hash_cnt; 665 666 #if defined(__amd64) 667 /* 668 * If running in 64 bits and physical memory is large, 669 * increase the size of the cache to cover all of memory for 670 * a 64 bit process. 671 */ 672 #define HASH_MAX_LENGTH 4 673 while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables) 674 mmu.hash_cnt <<= 1; 675 #endif 676 } 677 678 679 /* 680 * initialize hat data structures 681 */ 682 void 683 hat_init() 684 { 685 #if defined(__i386) 686 /* 687 * _userlimit must be aligned correctly 688 */ 689 if ((_userlimit & LEVEL_MASK(1)) != _userlimit) { 690 prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n", 691 (void *)_userlimit, (void *)LEVEL_SIZE(1)); 692 halt("hat_init(): Unable to continue"); 693 } 694 #endif 695 696 cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL); 697 698 /* 699 * initialize kmem caches 700 */ 701 htable_init(); 702 hment_init(); 703 704 hat_cache = kmem_cache_create("hat_t", 705 sizeof (hat_t), 0, hati_constructor, NULL, NULL, 706 NULL, 0, 0); 707 708 hat_hash_cache = kmem_cache_create("HatHash", 709 mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 710 NULL, 0, 0); 711 712 /* 713 * VLP hats can use a smaller hash table size on large memroy machines 714 */ 715 if (mmu.hash_cnt == mmu.vlp_hash_cnt) { 716 vlp_hash_cache = hat_hash_cache; 717 } else { 718 vlp_hash_cache = kmem_cache_create("HatVlpHash", 719 mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 720 NULL, 0, 0); 721 } 722 723 /* 724 * Set up the kernel's hat 725 */ 726 AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER); 727 kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP); 728 mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 729 kas.a_hat->hat_as = &kas; 730 kas.a_hat->hat_flags = 0; 731 AS_LOCK_EXIT(&kas, &kas.a_lock); 732 733 CPUSET_ZERO(khat_cpuset); 734 CPUSET_ADD(khat_cpuset, CPU->cpu_id); 735 736 /* 737 * The kernel hat's next pointer serves as the head of the hat list . 738 * The kernel hat's prev pointer tracks the last hat on the list for 739 * htable_steal() to use. 740 */ 741 kas.a_hat->hat_next = NULL; 742 kas.a_hat->hat_prev = NULL; 743 744 /* 745 * Allocate an htable hash bucket for the kernel 746 * XX64 - tune for 64 bit procs 747 */ 748 kas.a_hat->hat_num_hash = mmu.hash_cnt; 749 kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP); 750 bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *)); 751 752 /* 753 * zero out the top level and cached htable pointers 754 */ 755 kas.a_hat->hat_ht_cached = NULL; 756 kas.a_hat->hat_htable = NULL; 757 758 /* 759 * Pre-allocate hrm_hashtab before enabling the collection of 760 * refmod statistics. Allocating on the fly would mean us 761 * running the risk of suffering recursive mutex enters or 762 * deadlocks. 763 */ 764 hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *), 765 KM_SLEEP); 766 } 767 768 /* 769 * Prepare CPU specific pagetables for VLP processes on 64 bit kernels. 770 * 771 * Each CPU has a set of 2 pagetables that are reused for any 32 bit 772 * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and 773 * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes. 774 */ 775 /*ARGSUSED*/ 776 static void 777 hat_vlp_setup(struct cpu *cpu) 778 { 779 #if defined(__amd64) && !defined(__xpv) 780 struct hat_cpu_info *hci = cpu->cpu_hat_info; 781 pfn_t pfn; 782 783 /* 784 * allocate the level==2 page table for the bottom most 785 * 512Gig of address space (this is where 32 bit apps live) 786 */ 787 ASSERT(hci != NULL); 788 hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 789 790 /* 791 * Allocate a top level pagetable and copy the kernel's 792 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry. 793 */ 794 hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 795 hci->hci_vlp_pfn = 796 hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes); 797 ASSERT(hci->hci_vlp_pfn != PFN_INVALID); 798 bcopy(vlp_page, hci->hci_vlp_l3ptes, MMU_PAGESIZE); 799 800 pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes); 801 ASSERT(pfn != PFN_INVALID); 802 hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2); 803 #endif /* __amd64 && !__xpv */ 804 } 805 806 /*ARGSUSED*/ 807 static void 808 hat_vlp_teardown(cpu_t *cpu) 809 { 810 #if defined(__amd64) && !defined(__xpv) 811 struct hat_cpu_info *hci; 812 813 if ((hci = cpu->cpu_hat_info) == NULL) 814 return; 815 if (hci->hci_vlp_l2ptes) 816 kmem_free(hci->hci_vlp_l2ptes, MMU_PAGESIZE); 817 if (hci->hci_vlp_l3ptes) 818 kmem_free(hci->hci_vlp_l3ptes, MMU_PAGESIZE); 819 #endif 820 } 821 822 #define NEXT_HKR(r, l, s, e) { \ 823 kernel_ranges[r].hkr_level = l; \ 824 kernel_ranges[r].hkr_start_va = s; \ 825 kernel_ranges[r].hkr_end_va = e; \ 826 ++r; \ 827 } 828 829 /* 830 * Finish filling in the kernel hat. 831 * Pre fill in all top level kernel page table entries for the kernel's 832 * part of the address range. From this point on we can't use any new 833 * kernel large pages if they need PTE's at max_level 834 * 835 * create the kmap mappings. 836 */ 837 void 838 hat_init_finish(void) 839 { 840 size_t size; 841 uint_t r = 0; 842 uintptr_t va; 843 hat_kernel_range_t *rp; 844 845 846 /* 847 * We are now effectively running on the kernel hat. 848 * Clearing use_boot_reserve shuts off using the pre-allocated boot 849 * reserve for all HAT allocations. From here on, the reserves are 850 * only used when avoiding recursion in kmem_alloc(). 851 */ 852 use_boot_reserve = 0; 853 htable_adjust_reserve(); 854 855 /* 856 * User HATs are initialized with copies of all kernel mappings in 857 * higher level page tables. Ensure that those entries exist. 858 */ 859 #if defined(__amd64) 860 861 NEXT_HKR(r, 3, kernelbase, 0); 862 #if defined(__xpv) 863 NEXT_HKR(r, 3, HYPERVISOR_VIRT_START, HYPERVISOR_VIRT_END); 864 #endif 865 866 #elif defined(__i386) 867 868 #if !defined(__xpv) 869 if (mmu.pae_hat) { 870 va = kernelbase; 871 if ((va & LEVEL_MASK(2)) != va) { 872 va = P2ROUNDUP(va, LEVEL_SIZE(2)); 873 NEXT_HKR(r, 1, kernelbase, va); 874 } 875 if (va != 0) 876 NEXT_HKR(r, 2, va, 0); 877 } else 878 #endif /* __xpv */ 879 NEXT_HKR(r, 1, kernelbase, 0); 880 881 #endif /* __i386 */ 882 883 num_kernel_ranges = r; 884 885 /* 886 * Create all the kernel pagetables that will have entries 887 * shared to user HATs. 888 */ 889 for (r = 0; r < num_kernel_ranges; ++r) { 890 rp = &kernel_ranges[r]; 891 for (va = rp->hkr_start_va; va != rp->hkr_end_va; 892 va += LEVEL_SIZE(rp->hkr_level)) { 893 htable_t *ht; 894 895 if (IN_HYPERVISOR_VA(va)) 896 continue; 897 898 /* can/must skip if a page mapping already exists */ 899 if (rp->hkr_level <= mmu.max_page_level && 900 (ht = htable_getpage(kas.a_hat, va, NULL)) != 901 NULL) { 902 htable_release(ht); 903 continue; 904 } 905 906 (void) htable_create(kas.a_hat, va, rp->hkr_level - 1, 907 NULL); 908 } 909 } 910 911 /* 912 * 32 bit PAE metal kernels use only 4 of the 512 entries in the 913 * page holding the top level pagetable. We use the remainder for 914 * the "per CPU" page tables for VLP processes. 915 * Map the top level kernel pagetable into the kernel to make 916 * it easy to use bcopy access these tables. 917 */ 918 if (mmu.pae_hat) { 919 vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP); 920 hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE, 921 kas.a_hat->hat_htable->ht_pfn, 922 #if !defined(__xpv) 923 PROT_WRITE | 924 #endif 925 PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK, 926 HAT_LOAD | HAT_LOAD_NOCONSIST); 927 } 928 hat_vlp_setup(CPU); 929 930 /* 931 * Create kmap (cached mappings of kernel PTEs) 932 * for 32 bit we map from segmap_start .. ekernelheap 933 * for 64 bit we map from segmap_start .. segmap_start + segmapsize; 934 */ 935 #if defined(__i386) 936 size = (uintptr_t)ekernelheap - segmap_start; 937 #elif defined(__amd64) 938 size = segmapsize; 939 #endif 940 hat_kmap_init((uintptr_t)segmap_start, size); 941 } 942 943 /* 944 * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references 945 * are 32 bit, so for safety we must use cas64() to install these. 946 */ 947 #ifdef __i386 948 static void 949 reload_pae32(hat_t *hat, cpu_t *cpu) 950 { 951 x86pte_t *src; 952 x86pte_t *dest; 953 x86pte_t pte; 954 int i; 955 956 /* 957 * Load the 4 entries of the level 2 page table into this 958 * cpu's range of the vlp_page and point cr3 at them. 959 */ 960 ASSERT(mmu.pae_hat); 961 src = hat->hat_vlp_ptes; 962 dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES; 963 for (i = 0; i < VLP_NUM_PTES; ++i) { 964 for (;;) { 965 pte = dest[i]; 966 if (pte == src[i]) 967 break; 968 if (cas64(dest + i, pte, src[i]) != src[i]) 969 break; 970 } 971 } 972 } 973 #endif 974 975 /* 976 * Switch to a new active hat, maintaining bit masks to track active CPUs. 977 * 978 * On the 32-bit PAE hypervisor, %cr3 is a 64-bit value, on metal it 979 * remains a 32-bit value. 980 */ 981 void 982 hat_switch(hat_t *hat) 983 { 984 uint64_t newcr3; 985 cpu_t *cpu = CPU; 986 hat_t *old = cpu->cpu_current_hat; 987 988 /* 989 * set up this information first, so we don't miss any cross calls 990 */ 991 if (old != NULL) { 992 if (old == hat) 993 return; 994 if (old != kas.a_hat) 995 CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id); 996 } 997 998 /* 999 * Add this CPU to the active set for this HAT. 1000 */ 1001 if (hat != kas.a_hat) { 1002 CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id); 1003 } 1004 cpu->cpu_current_hat = hat; 1005 1006 /* 1007 * now go ahead and load cr3 1008 */ 1009 if (hat->hat_flags & HAT_VLP) { 1010 #if defined(__amd64) 1011 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes; 1012 1013 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1014 newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn); 1015 #elif defined(__i386) 1016 reload_pae32(hat, cpu); 1017 newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) + 1018 (cpu->cpu_id + 1) * VLP_SIZE; 1019 #endif 1020 } else { 1021 newcr3 = MAKECR3((uint64_t)hat->hat_htable->ht_pfn); 1022 } 1023 #ifdef __xpv 1024 { 1025 struct mmuext_op t[2]; 1026 uint_t retcnt; 1027 uint_t opcnt = 1; 1028 1029 t[0].cmd = MMUEXT_NEW_BASEPTR; 1030 t[0].arg1.mfn = mmu_btop(pa_to_ma(newcr3)); 1031 #if defined(__amd64) 1032 /* 1033 * There's an interesting problem here, as to what to 1034 * actually specify when switching to the kernel hat. 1035 * For now we'll reuse the kernel hat again. 1036 */ 1037 t[1].cmd = MMUEXT_NEW_USER_BASEPTR; 1038 if (hat == kas.a_hat) 1039 t[1].arg1.mfn = mmu_btop(pa_to_ma(newcr3)); 1040 else 1041 t[1].arg1.mfn = pfn_to_mfn(hat->hat_user_ptable); 1042 ++opcnt; 1043 #endif /* __amd64 */ 1044 if (HYPERVISOR_mmuext_op(t, opcnt, &retcnt, DOMID_SELF) < 0) 1045 panic("HYPERVISOR_mmu_update() failed"); 1046 ASSERT(retcnt == opcnt); 1047 1048 } 1049 #else 1050 setcr3(newcr3); 1051 #endif 1052 ASSERT(cpu == CPU); 1053 } 1054 1055 /* 1056 * Utility to return a valid x86pte_t from protections, pfn, and level number 1057 */ 1058 static x86pte_t 1059 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags) 1060 { 1061 x86pte_t pte; 1062 uint_t cache_attr = attr & HAT_ORDER_MASK; 1063 1064 pte = MAKEPTE(pfn, level); 1065 1066 if (attr & PROT_WRITE) 1067 PTE_SET(pte, PT_WRITABLE); 1068 1069 if (attr & PROT_USER) 1070 PTE_SET(pte, PT_USER); 1071 1072 if (!(attr & PROT_EXEC)) 1073 PTE_SET(pte, mmu.pt_nx); 1074 1075 /* 1076 * Set the software bits used track ref/mod sync's and hments. 1077 * If not using REF/MOD, set them to avoid h/w rewriting PTEs. 1078 */ 1079 if (flags & HAT_LOAD_NOCONSIST) 1080 PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD); 1081 else if (attr & HAT_NOSYNC) 1082 PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD); 1083 1084 /* 1085 * Set the caching attributes in the PTE. The combination 1086 * of attributes are poorly defined, so we pay attention 1087 * to them in the given order. 1088 * 1089 * The test for HAT_STRICTORDER is different because it's defined 1090 * as "0" - which was a stupid thing to do, but is too late to change! 1091 */ 1092 if (cache_attr == HAT_STRICTORDER) { 1093 PTE_SET(pte, PT_NOCACHE); 1094 /*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */ 1095 } else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) { 1096 /* nothing to set */; 1097 } else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) { 1098 PTE_SET(pte, PT_NOCACHE); 1099 if (x86_feature & X86_PAT) 1100 PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE); 1101 else 1102 PTE_SET(pte, PT_WRITETHRU); 1103 } else { 1104 panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr); 1105 } 1106 1107 return (pte); 1108 } 1109 1110 /* 1111 * Duplicate address translations of the parent to the child. 1112 * This function really isn't used anymore. 1113 */ 1114 /*ARGSUSED*/ 1115 int 1116 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag) 1117 { 1118 ASSERT((uintptr_t)addr < kernelbase); 1119 ASSERT(new != kas.a_hat); 1120 ASSERT(old != kas.a_hat); 1121 return (0); 1122 } 1123 1124 /* 1125 * Allocate any hat resources required for a process being swapped in. 1126 */ 1127 /*ARGSUSED*/ 1128 void 1129 hat_swapin(hat_t *hat) 1130 { 1131 /* do nothing - we let everything fault back in */ 1132 } 1133 1134 /* 1135 * Unload all translations associated with an address space of a process 1136 * that is being swapped out. 1137 */ 1138 void 1139 hat_swapout(hat_t *hat) 1140 { 1141 uintptr_t vaddr = (uintptr_t)0; 1142 uintptr_t eaddr = _userlimit; 1143 htable_t *ht = NULL; 1144 level_t l; 1145 1146 XPV_DISALLOW_MIGRATE(); 1147 /* 1148 * We can't just call hat_unload(hat, 0, _userlimit...) here, because 1149 * seg_spt and shared pagetables can't be swapped out. 1150 * Take a look at segspt_shmswapout() - it's a big no-op. 1151 * 1152 * Instead we'll walk through all the address space and unload 1153 * any mappings which we are sure are not shared, not locked. 1154 */ 1155 ASSERT(IS_PAGEALIGNED(vaddr)); 1156 ASSERT(IS_PAGEALIGNED(eaddr)); 1157 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1158 if ((uintptr_t)hat->hat_as->a_userlimit < eaddr) 1159 eaddr = (uintptr_t)hat->hat_as->a_userlimit; 1160 1161 while (vaddr < eaddr) { 1162 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1163 if (ht == NULL) 1164 break; 1165 1166 ASSERT(!IN_VA_HOLE(vaddr)); 1167 1168 /* 1169 * If the page table is shared skip its entire range. 1170 */ 1171 l = ht->ht_level; 1172 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1173 vaddr = ht->ht_vaddr + LEVEL_SIZE(l + 1); 1174 htable_release(ht); 1175 ht = NULL; 1176 continue; 1177 } 1178 1179 /* 1180 * If the page table has no locked entries, unload this one. 1181 */ 1182 if (ht->ht_lock_cnt == 0) 1183 hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l), 1184 HAT_UNLOAD_UNMAP); 1185 1186 /* 1187 * If we have a level 0 page table with locked entries, 1188 * skip the entire page table, otherwise skip just one entry. 1189 */ 1190 if (ht->ht_lock_cnt > 0 && l == 0) 1191 vaddr = ht->ht_vaddr + LEVEL_SIZE(1); 1192 else 1193 vaddr += LEVEL_SIZE(l); 1194 } 1195 if (ht) 1196 htable_release(ht); 1197 1198 /* 1199 * We're in swapout because the system is low on memory, so 1200 * go back and flush all the htables off the cached list. 1201 */ 1202 htable_purge_hat(hat); 1203 XPV_ALLOW_MIGRATE(); 1204 } 1205 1206 /* 1207 * returns number of bytes that have valid mappings in hat. 1208 */ 1209 size_t 1210 hat_get_mapped_size(hat_t *hat) 1211 { 1212 size_t total = 0; 1213 int l; 1214 1215 for (l = 0; l <= mmu.max_page_level; l++) 1216 total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l)); 1217 total += hat->hat_ism_pgcnt; 1218 1219 return (total); 1220 } 1221 1222 /* 1223 * enable/disable collection of stats for hat. 1224 */ 1225 int 1226 hat_stats_enable(hat_t *hat) 1227 { 1228 atomic_add_32(&hat->hat_stats, 1); 1229 return (1); 1230 } 1231 1232 void 1233 hat_stats_disable(hat_t *hat) 1234 { 1235 atomic_add_32(&hat->hat_stats, -1); 1236 } 1237 1238 /* 1239 * Utility to sync the ref/mod bits from a page table entry to the page_t 1240 * We must be holding the mapping list lock when this is called. 1241 */ 1242 static void 1243 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level) 1244 { 1245 uint_t rm = 0; 1246 pgcnt_t pgcnt; 1247 1248 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 1249 return; 1250 1251 if (PTE_GET(pte, PT_REF)) 1252 rm |= P_REF; 1253 1254 if (PTE_GET(pte, PT_MOD)) 1255 rm |= P_MOD; 1256 1257 if (rm == 0) 1258 return; 1259 1260 /* 1261 * sync to all constituent pages of a large page 1262 */ 1263 ASSERT(x86_hm_held(pp)); 1264 pgcnt = page_get_pagecnt(level); 1265 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 1266 for (; pgcnt > 0; --pgcnt) { 1267 /* 1268 * hat_page_demote() can't decrease 1269 * pszc below this mapping size 1270 * since this large mapping existed after we 1271 * took mlist lock. 1272 */ 1273 ASSERT(pp->p_szc >= level); 1274 hat_page_setattr(pp, rm); 1275 ++pp; 1276 } 1277 } 1278 1279 /* 1280 * This the set of PTE bits for PFN, permissions and caching 1281 * that are allowed to change on a HAT_LOAD_REMAP 1282 */ 1283 #define PT_REMAP_BITS \ 1284 (PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU | \ 1285 PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE | PT_IGNORE | PT_REF | PT_MOD) 1286 1287 #define REMAPASSERT(EX) if (!(EX)) panic("hati_pte_map: " #EX) 1288 /* 1289 * Do the low-level work to get a mapping entered into a HAT's pagetables 1290 * and in the mapping list of the associated page_t. 1291 */ 1292 static int 1293 hati_pte_map( 1294 htable_t *ht, 1295 uint_t entry, 1296 page_t *pp, 1297 x86pte_t pte, 1298 int flags, 1299 void *pte_ptr) 1300 { 1301 hat_t *hat = ht->ht_hat; 1302 x86pte_t old_pte; 1303 level_t l = ht->ht_level; 1304 hment_t *hm; 1305 uint_t is_consist; 1306 uint_t is_locked; 1307 int rv = 0; 1308 1309 /* 1310 * Is this a consistent (ie. need mapping list lock) mapping? 1311 */ 1312 is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0); 1313 1314 /* 1315 * Track locked mapping count in the htable. Do this first, 1316 * as we track locking even if there already is a mapping present. 1317 */ 1318 is_locked = (flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat; 1319 if (is_locked) 1320 HTABLE_LOCK_INC(ht); 1321 1322 /* 1323 * Acquire the page's mapping list lock and get an hment to use. 1324 * Note that hment_prepare() might return NULL. 1325 */ 1326 if (is_consist) { 1327 x86_hm_enter(pp); 1328 hm = hment_prepare(ht, entry, pp); 1329 } 1330 1331 /* 1332 * Set the new pte, retrieving the old one at the same time. 1333 */ 1334 old_pte = x86pte_set(ht, entry, pte, pte_ptr); 1335 1336 /* 1337 * Did we get a large page / page table collision? 1338 */ 1339 if (old_pte == LPAGE_ERROR) { 1340 if (is_locked) 1341 HTABLE_LOCK_DEC(ht); 1342 rv = -1; 1343 goto done; 1344 } 1345 1346 /* 1347 * If the mapping didn't change there is nothing more to do. 1348 */ 1349 if (PTE_EQUIV(pte, old_pte)) 1350 goto done; 1351 1352 /* 1353 * Install a new mapping in the page's mapping list 1354 */ 1355 if (!PTE_ISVALID(old_pte)) { 1356 if (is_consist) { 1357 hment_assign(ht, entry, pp, hm); 1358 x86_hm_exit(pp); 1359 } else { 1360 ASSERT(flags & HAT_LOAD_NOCONSIST); 1361 } 1362 #if defined(__amd64) 1363 if (ht->ht_flags & HTABLE_VLP) { 1364 cpu_t *cpu = CPU; 1365 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes; 1366 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1367 } 1368 #endif 1369 HTABLE_INC(ht->ht_valid_cnt); 1370 PGCNT_INC(hat, l); 1371 return (rv); 1372 } 1373 1374 /* 1375 * Remap's are more complicated: 1376 * - HAT_LOAD_REMAP must be specified if changing the pfn. 1377 * We also require that NOCONSIST be specified. 1378 * - Otherwise only permission or caching bits may change. 1379 */ 1380 if (!PTE_ISPAGE(old_pte, l)) 1381 panic("non-null/page mapping pte=" FMT_PTE, old_pte); 1382 1383 if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) { 1384 REMAPASSERT(flags & HAT_LOAD_REMAP); 1385 REMAPASSERT(flags & HAT_LOAD_NOCONSIST); 1386 REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 1387 REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) == 1388 pf_is_memory(PTE2PFN(pte, l))); 1389 REMAPASSERT(!is_consist); 1390 } 1391 1392 /* 1393 * We only let remaps change the certain bits in the PTE. 1394 */ 1395 if (PTE_GET(old_pte, ~PT_REMAP_BITS) != PTE_GET(pte, ~PT_REMAP_BITS)) 1396 panic("remap bits changed: old_pte="FMT_PTE", pte="FMT_PTE"\n", 1397 old_pte, pte); 1398 1399 /* 1400 * We don't create any mapping list entries on a remap, so release 1401 * any allocated hment after we drop the mapping list lock. 1402 */ 1403 done: 1404 if (is_consist) { 1405 x86_hm_exit(pp); 1406 if (hm != NULL) 1407 hment_free(hm); 1408 } 1409 return (rv); 1410 } 1411 1412 /* 1413 * Internal routine to load a single page table entry. This only fails if 1414 * we attempt to overwrite a page table link with a large page. 1415 */ 1416 static int 1417 hati_load_common( 1418 hat_t *hat, 1419 uintptr_t va, 1420 page_t *pp, 1421 uint_t attr, 1422 uint_t flags, 1423 level_t level, 1424 pfn_t pfn) 1425 { 1426 htable_t *ht; 1427 uint_t entry; 1428 x86pte_t pte; 1429 int rv = 0; 1430 1431 /* 1432 * The number 16 is arbitrary and here to catch a recursion problem 1433 * early before we blow out the kernel stack. 1434 */ 1435 ++curthread->t_hatdepth; 1436 ASSERT(curthread->t_hatdepth < 16); 1437 1438 ASSERT(hat == kas.a_hat || 1439 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1440 1441 if (flags & HAT_LOAD_SHARE) 1442 hat->hat_flags |= HAT_SHARED; 1443 1444 /* 1445 * Find the page table that maps this page if it already exists. 1446 */ 1447 ht = htable_lookup(hat, va, level); 1448 1449 /* 1450 * We must have HAT_LOAD_NOCONSIST if page_t is NULL. 1451 */ 1452 if (pp == NULL) 1453 flags |= HAT_LOAD_NOCONSIST; 1454 1455 if (ht == NULL) { 1456 ht = htable_create(hat, va, level, NULL); 1457 ASSERT(ht != NULL); 1458 } 1459 entry = htable_va2entry(va, ht); 1460 1461 /* 1462 * a bunch of paranoid error checking 1463 */ 1464 ASSERT(ht->ht_busy > 0); 1465 if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht)) 1466 panic("hati_load_common: bad htable %p, va %p", 1467 (void *)ht, (void *)va); 1468 ASSERT(ht->ht_level == level); 1469 1470 /* 1471 * construct the new PTE 1472 */ 1473 if (hat == kas.a_hat) 1474 attr &= ~PROT_USER; 1475 pte = hati_mkpte(pfn, attr, level, flags); 1476 if (hat == kas.a_hat && va >= kernelbase) 1477 PTE_SET(pte, mmu.pt_global); 1478 1479 /* 1480 * establish the mapping 1481 */ 1482 rv = hati_pte_map(ht, entry, pp, pte, flags, NULL); 1483 1484 /* 1485 * release the htable and any reserves 1486 */ 1487 htable_release(ht); 1488 --curthread->t_hatdepth; 1489 return (rv); 1490 } 1491 1492 /* 1493 * special case of hat_memload to deal with some kernel addrs for performance 1494 */ 1495 static void 1496 hat_kmap_load( 1497 caddr_t addr, 1498 page_t *pp, 1499 uint_t attr, 1500 uint_t flags) 1501 { 1502 uintptr_t va = (uintptr_t)addr; 1503 x86pte_t pte; 1504 pfn_t pfn = page_pptonum(pp); 1505 pgcnt_t pg_off = mmu_btop(va - mmu.kmap_addr); 1506 htable_t *ht; 1507 uint_t entry; 1508 void *pte_ptr; 1509 1510 /* 1511 * construct the requested PTE 1512 */ 1513 attr &= ~PROT_USER; 1514 attr |= HAT_STORECACHING_OK; 1515 pte = hati_mkpte(pfn, attr, 0, flags); 1516 PTE_SET(pte, mmu.pt_global); 1517 1518 /* 1519 * Figure out the pte_ptr and htable and use common code to finish up 1520 */ 1521 if (mmu.pae_hat) 1522 pte_ptr = mmu.kmap_ptes + pg_off; 1523 else 1524 pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off; 1525 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >> 1526 LEVEL_SHIFT(1)]; 1527 entry = htable_va2entry(va, ht); 1528 ++curthread->t_hatdepth; 1529 ASSERT(curthread->t_hatdepth < 16); 1530 (void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr); 1531 --curthread->t_hatdepth; 1532 } 1533 1534 /* 1535 * hat_memload() - load a translation to the given page struct 1536 * 1537 * Flags for hat_memload/hat_devload/hat_*attr. 1538 * 1539 * HAT_LOAD Default flags to load a translation to the page. 1540 * 1541 * HAT_LOAD_LOCK Lock down mapping resources; hat_map(), hat_memload(), 1542 * and hat_devload(). 1543 * 1544 * HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list. 1545 * sets PT_NOCONSIST 1546 * 1547 * HAT_LOAD_SHARE A flag to hat_memload() to indicate h/w page tables 1548 * that map some user pages (not kas) is shared by more 1549 * than one process (eg. ISM). 1550 * 1551 * HAT_LOAD_REMAP Reload a valid pte with a different page frame. 1552 * 1553 * HAT_NO_KALLOC Do not kmem_alloc while creating the mapping; at this 1554 * point, it's setting up mapping to allocate internal 1555 * hat layer data structures. This flag forces hat layer 1556 * to tap its reserves in order to prevent infinite 1557 * recursion. 1558 * 1559 * The following is a protection attribute (like PROT_READ, etc.) 1560 * 1561 * HAT_NOSYNC set PT_NOSYNC - this mapping's ref/mod bits 1562 * are never cleared. 1563 * 1564 * Installing new valid PTE's and creation of the mapping list 1565 * entry are controlled under the same lock. It's derived from the 1566 * page_t being mapped. 1567 */ 1568 static uint_t supported_memload_flags = 1569 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST | 1570 HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT; 1571 1572 void 1573 hat_memload( 1574 hat_t *hat, 1575 caddr_t addr, 1576 page_t *pp, 1577 uint_t attr, 1578 uint_t flags) 1579 { 1580 uintptr_t va = (uintptr_t)addr; 1581 level_t level = 0; 1582 pfn_t pfn = page_pptonum(pp); 1583 1584 XPV_DISALLOW_MIGRATE(); 1585 ASSERT(IS_PAGEALIGNED(va)); 1586 ASSERT(hat == kas.a_hat || va < _userlimit); 1587 ASSERT(hat == kas.a_hat || 1588 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1589 ASSERT((flags & supported_memload_flags) == flags); 1590 1591 ASSERT(!IN_VA_HOLE(va)); 1592 ASSERT(!PP_ISFREE(pp)); 1593 1594 /* 1595 * kernel address special case for performance. 1596 */ 1597 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 1598 ASSERT(hat == kas.a_hat); 1599 hat_kmap_load(addr, pp, attr, flags); 1600 XPV_ALLOW_MIGRATE(); 1601 return; 1602 } 1603 1604 /* 1605 * This is used for memory with normal caching enabled, so 1606 * always set HAT_STORECACHING_OK. 1607 */ 1608 attr |= HAT_STORECACHING_OK; 1609 if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0) 1610 panic("unexpected hati_load_common() failure"); 1611 XPV_ALLOW_MIGRATE(); 1612 } 1613 1614 /* ARGSUSED */ 1615 void 1616 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp, 1617 uint_t attr, uint_t flags, hat_region_cookie_t rcookie) 1618 { 1619 hat_memload(hat, addr, pp, attr, flags); 1620 } 1621 1622 /* 1623 * Load the given array of page structs using large pages when possible 1624 */ 1625 void 1626 hat_memload_array( 1627 hat_t *hat, 1628 caddr_t addr, 1629 size_t len, 1630 page_t **pages, 1631 uint_t attr, 1632 uint_t flags) 1633 { 1634 uintptr_t va = (uintptr_t)addr; 1635 uintptr_t eaddr = va + len; 1636 level_t level; 1637 size_t pgsize; 1638 pgcnt_t pgindx = 0; 1639 pfn_t pfn; 1640 pgcnt_t i; 1641 1642 XPV_DISALLOW_MIGRATE(); 1643 ASSERT(IS_PAGEALIGNED(va)); 1644 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 1645 ASSERT(hat == kas.a_hat || 1646 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1647 ASSERT((flags & supported_memload_flags) == flags); 1648 1649 /* 1650 * memload is used for memory with full caching enabled, so 1651 * set HAT_STORECACHING_OK. 1652 */ 1653 attr |= HAT_STORECACHING_OK; 1654 1655 /* 1656 * handle all pages using largest possible pagesize 1657 */ 1658 while (va < eaddr) { 1659 /* 1660 * decide what level mapping to use (ie. pagesize) 1661 */ 1662 pfn = page_pptonum(pages[pgindx]); 1663 for (level = mmu.max_page_level; ; --level) { 1664 pgsize = LEVEL_SIZE(level); 1665 if (level == 0) 1666 break; 1667 1668 if (!IS_P2ALIGNED(va, pgsize) || 1669 (eaddr - va) < pgsize || 1670 !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize)) 1671 continue; 1672 1673 /* 1674 * To use a large mapping of this size, all the 1675 * pages we are passed must be sequential subpages 1676 * of the large page. 1677 * hat_page_demote() can't change p_szc because 1678 * all pages are locked. 1679 */ 1680 if (pages[pgindx]->p_szc >= level) { 1681 for (i = 0; i < mmu_btop(pgsize); ++i) { 1682 if (pfn + i != 1683 page_pptonum(pages[pgindx + i])) 1684 break; 1685 ASSERT(pages[pgindx + i]->p_szc >= 1686 level); 1687 ASSERT(pages[pgindx] + i == 1688 pages[pgindx + i]); 1689 } 1690 if (i == mmu_btop(pgsize)) { 1691 #ifdef DEBUG 1692 if (level == 2) 1693 map1gcnt++; 1694 #endif 1695 break; 1696 } 1697 } 1698 } 1699 1700 /* 1701 * Load this page mapping. If the load fails, try a smaller 1702 * pagesize. 1703 */ 1704 ASSERT(!IN_VA_HOLE(va)); 1705 while (hati_load_common(hat, va, pages[pgindx], attr, 1706 flags, level, pfn) != 0) { 1707 if (level == 0) 1708 panic("unexpected hati_load_common() failure"); 1709 --level; 1710 pgsize = LEVEL_SIZE(level); 1711 } 1712 1713 /* 1714 * move to next page 1715 */ 1716 va += pgsize; 1717 pgindx += mmu_btop(pgsize); 1718 } 1719 XPV_ALLOW_MIGRATE(); 1720 } 1721 1722 /* ARGSUSED */ 1723 void 1724 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len, 1725 struct page **pps, uint_t attr, uint_t flags, 1726 hat_region_cookie_t rcookie) 1727 { 1728 hat_memload_array(hat, addr, len, pps, attr, flags); 1729 } 1730 1731 /* 1732 * void hat_devload(hat, addr, len, pf, attr, flags) 1733 * load/lock the given page frame number 1734 * 1735 * Advisory ordering attributes. Apply only to device mappings. 1736 * 1737 * HAT_STRICTORDER: the CPU must issue the references in order, as the 1738 * programmer specified. This is the default. 1739 * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds 1740 * of reordering; store or load with store or load). 1741 * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores 1742 * to consecutive locations (for example, turn two consecutive byte 1743 * stores into one halfword store), and it may batch individual loads 1744 * (for example, turn two consecutive byte loads into one halfword load). 1745 * This also implies re-ordering. 1746 * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it 1747 * until another store occurs. The default is to fetch new data 1748 * on every load. This also implies merging. 1749 * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to 1750 * the device (perhaps with other data) at a later time. The default is 1751 * to push the data right away. This also implies load caching. 1752 * 1753 * Equivalent of hat_memload(), but can be used for device memory where 1754 * there are no page_t's and we support additional flags (write merging, etc). 1755 * Note that we can have large page mappings with this interface. 1756 */ 1757 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK | 1758 HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK | 1759 HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK; 1760 1761 void 1762 hat_devload( 1763 hat_t *hat, 1764 caddr_t addr, 1765 size_t len, 1766 pfn_t pfn, 1767 uint_t attr, 1768 int flags) 1769 { 1770 uintptr_t va = ALIGN2PAGE(addr); 1771 uintptr_t eva = va + len; 1772 level_t level; 1773 size_t pgsize; 1774 page_t *pp; 1775 int f; /* per PTE copy of flags - maybe modified */ 1776 uint_t a; /* per PTE copy of attr */ 1777 1778 XPV_DISALLOW_MIGRATE(); 1779 ASSERT(IS_PAGEALIGNED(va)); 1780 ASSERT(hat == kas.a_hat || eva <= _userlimit); 1781 ASSERT(hat == kas.a_hat || 1782 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1783 ASSERT((flags & supported_devload_flags) == flags); 1784 1785 /* 1786 * handle all pages 1787 */ 1788 while (va < eva) { 1789 1790 /* 1791 * decide what level mapping to use (ie. pagesize) 1792 */ 1793 for (level = mmu.max_page_level; ; --level) { 1794 pgsize = LEVEL_SIZE(level); 1795 if (level == 0) 1796 break; 1797 if (IS_P2ALIGNED(va, pgsize) && 1798 (eva - va) >= pgsize && 1799 IS_P2ALIGNED(pfn, mmu_btop(pgsize))) { 1800 #ifdef DEBUG 1801 if (level == 2) 1802 map1gcnt++; 1803 #endif 1804 break; 1805 } 1806 } 1807 1808 /* 1809 * If this is just memory then allow caching (this happens 1810 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used 1811 * to override that. If we don't have a page_t then make sure 1812 * NOCONSIST is set. 1813 */ 1814 a = attr; 1815 f = flags; 1816 if (!pf_is_memory(pfn)) 1817 f |= HAT_LOAD_NOCONSIST; 1818 else if (!(a & HAT_PLAT_NOCACHE)) 1819 a |= HAT_STORECACHING_OK; 1820 1821 if (f & HAT_LOAD_NOCONSIST) 1822 pp = NULL; 1823 else 1824 pp = page_numtopp_nolock(pfn); 1825 1826 /* 1827 * Check to make sure we are really trying to map a valid 1828 * memory page. The caller wishing to intentionally map 1829 * free memory pages will have passed the HAT_LOAD_NOCONSIST 1830 * flag, then pp will be NULL. 1831 */ 1832 if (pp != NULL) { 1833 if (PP_ISFREE(pp)) { 1834 panic("hat_devload: loading " 1835 "a mapping to free page %p", (void *)pp); 1836 } 1837 1838 if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) { 1839 panic("hat_devload: loading a mapping " 1840 "to an unlocked page %p", 1841 (void *)pp); 1842 } 1843 } 1844 1845 /* 1846 * load this page mapping 1847 */ 1848 ASSERT(!IN_VA_HOLE(va)); 1849 while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) { 1850 if (level == 0) 1851 panic("unexpected hati_load_common() failure"); 1852 --level; 1853 pgsize = LEVEL_SIZE(level); 1854 } 1855 1856 /* 1857 * move to next page 1858 */ 1859 va += pgsize; 1860 pfn += mmu_btop(pgsize); 1861 } 1862 XPV_ALLOW_MIGRATE(); 1863 } 1864 1865 /* 1866 * void hat_unlock(hat, addr, len) 1867 * unlock the mappings to a given range of addresses 1868 * 1869 * Locks are tracked by ht_lock_cnt in the htable. 1870 */ 1871 void 1872 hat_unlock(hat_t *hat, caddr_t addr, size_t len) 1873 { 1874 uintptr_t vaddr = (uintptr_t)addr; 1875 uintptr_t eaddr = vaddr + len; 1876 htable_t *ht = NULL; 1877 1878 /* 1879 * kernel entries are always locked, we don't track lock counts 1880 */ 1881 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 1882 ASSERT(IS_PAGEALIGNED(vaddr)); 1883 ASSERT(IS_PAGEALIGNED(eaddr)); 1884 if (hat == kas.a_hat) 1885 return; 1886 if (eaddr > _userlimit) 1887 panic("hat_unlock() address out of range - above _userlimit"); 1888 1889 XPV_DISALLOW_MIGRATE(); 1890 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1891 while (vaddr < eaddr) { 1892 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1893 if (ht == NULL) 1894 break; 1895 1896 ASSERT(!IN_VA_HOLE(vaddr)); 1897 1898 if (ht->ht_lock_cnt < 1) 1899 panic("hat_unlock(): lock_cnt < 1, " 1900 "htable=%p, vaddr=%p\n", (void *)ht, (void *)vaddr); 1901 HTABLE_LOCK_DEC(ht); 1902 1903 vaddr += LEVEL_SIZE(ht->ht_level); 1904 } 1905 if (ht) 1906 htable_release(ht); 1907 XPV_ALLOW_MIGRATE(); 1908 } 1909 1910 /* ARGSUSED */ 1911 void 1912 hat_unlock_region(struct hat *hat, caddr_t addr, size_t len, 1913 hat_region_cookie_t rcookie) 1914 { 1915 panic("No shared region support on x86"); 1916 } 1917 1918 #if !defined(__xpv) 1919 /* 1920 * Cross call service routine to demap a virtual page on 1921 * the current CPU or flush all mappings in TLB. 1922 */ 1923 /*ARGSUSED*/ 1924 static int 1925 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3) 1926 { 1927 hat_t *hat = (hat_t *)a1; 1928 caddr_t addr = (caddr_t)a2; 1929 1930 /* 1931 * If the target hat isn't the kernel and this CPU isn't operating 1932 * in the target hat, we can ignore the cross call. 1933 */ 1934 if (hat != kas.a_hat && hat != CPU->cpu_current_hat) 1935 return (0); 1936 1937 /* 1938 * For a normal address, we just flush one page mapping 1939 */ 1940 if ((uintptr_t)addr != DEMAP_ALL_ADDR) { 1941 mmu_tlbflush_entry(addr); 1942 return (0); 1943 } 1944 1945 /* 1946 * Otherwise we reload cr3 to effect a complete TLB flush. 1947 * 1948 * A reload of cr3 on a VLP process also means we must also recopy in 1949 * the pte values from the struct hat 1950 */ 1951 if (hat->hat_flags & HAT_VLP) { 1952 #if defined(__amd64) 1953 x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes; 1954 1955 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1956 #elif defined(__i386) 1957 reload_pae32(hat, CPU); 1958 #endif 1959 } 1960 reload_cr3(); 1961 return (0); 1962 } 1963 1964 /* 1965 * Flush all TLB entries, including global (ie. kernel) ones. 1966 */ 1967 static void 1968 flush_all_tlb_entries(void) 1969 { 1970 ulong_t cr4 = getcr4(); 1971 1972 if (cr4 & CR4_PGE) { 1973 setcr4(cr4 & ~(ulong_t)CR4_PGE); 1974 setcr4(cr4); 1975 1976 /* 1977 * 32 bit PAE also needs to always reload_cr3() 1978 */ 1979 if (mmu.max_level == 2) 1980 reload_cr3(); 1981 } else { 1982 reload_cr3(); 1983 } 1984 } 1985 1986 #define TLB_CPU_HALTED (01ul) 1987 #define TLB_INVAL_ALL (02ul) 1988 #define CAS_TLB_INFO(cpu, old, new) \ 1989 caslong((ulong_t *)&(cpu)->cpu_m.mcpu_tlb_info, (old), (new)) 1990 1991 /* 1992 * Record that a CPU is going idle 1993 */ 1994 void 1995 tlb_going_idle(void) 1996 { 1997 atomic_or_long((ulong_t *)&CPU->cpu_m.mcpu_tlb_info, TLB_CPU_HALTED); 1998 } 1999 2000 /* 2001 * Service a delayed TLB flush if coming out of being idle. 2002 * It will be called from cpu idle notification with interrupt disabled. 2003 */ 2004 void 2005 tlb_service(void) 2006 { 2007 ulong_t tlb_info; 2008 ulong_t found; 2009 2010 /* 2011 * We only have to do something if coming out of being idle. 2012 */ 2013 tlb_info = CPU->cpu_m.mcpu_tlb_info; 2014 if (tlb_info & TLB_CPU_HALTED) { 2015 ASSERT(CPU->cpu_current_hat == kas.a_hat); 2016 2017 /* 2018 * Atomic clear and fetch of old state. 2019 */ 2020 while ((found = CAS_TLB_INFO(CPU, tlb_info, 0)) != tlb_info) { 2021 ASSERT(found & TLB_CPU_HALTED); 2022 tlb_info = found; 2023 SMT_PAUSE(); 2024 } 2025 if (tlb_info & TLB_INVAL_ALL) 2026 flush_all_tlb_entries(); 2027 } 2028 } 2029 #endif /* !__xpv */ 2030 2031 /* 2032 * Internal routine to do cross calls to invalidate a range of pages on 2033 * all CPUs using a given hat. 2034 */ 2035 void 2036 hat_tlb_inval(hat_t *hat, uintptr_t va) 2037 { 2038 extern int flushes_require_xcalls; /* from mp_startup.c */ 2039 cpuset_t justme; 2040 cpuset_t cpus_to_shootdown; 2041 #ifndef __xpv 2042 cpuset_t check_cpus; 2043 cpu_t *cpup; 2044 int c; 2045 #endif 2046 2047 /* 2048 * If the hat is being destroyed, there are no more users, so 2049 * demap need not do anything. 2050 */ 2051 if (hat->hat_flags & HAT_FREEING) 2052 return; 2053 2054 /* 2055 * If demapping from a shared pagetable, we best demap the 2056 * entire set of user TLBs, since we don't know what addresses 2057 * these were shared at. 2058 */ 2059 if (hat->hat_flags & HAT_SHARED) { 2060 hat = kas.a_hat; 2061 va = DEMAP_ALL_ADDR; 2062 } 2063 2064 /* 2065 * if not running with multiple CPUs, don't use cross calls 2066 */ 2067 if (panicstr || !flushes_require_xcalls) { 2068 #ifdef __xpv 2069 if (va == DEMAP_ALL_ADDR) 2070 xen_flush_tlb(); 2071 else 2072 xen_flush_va((caddr_t)va); 2073 #else 2074 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL); 2075 #endif 2076 return; 2077 } 2078 2079 2080 /* 2081 * Determine CPUs to shootdown. Kernel changes always do all CPUs. 2082 * Otherwise it's just CPUs currently executing in this hat. 2083 */ 2084 kpreempt_disable(); 2085 CPUSET_ONLY(justme, CPU->cpu_id); 2086 if (hat == kas.a_hat) 2087 cpus_to_shootdown = khat_cpuset; 2088 else 2089 cpus_to_shootdown = hat->hat_cpus; 2090 2091 #ifndef __xpv 2092 /* 2093 * If any CPUs in the set are idle, just request a delayed flush 2094 * and avoid waking them up. 2095 */ 2096 check_cpus = cpus_to_shootdown; 2097 for (c = 0; c < NCPU && !CPUSET_ISNULL(check_cpus); ++c) { 2098 ulong_t tlb_info; 2099 2100 if (!CPU_IN_SET(check_cpus, c)) 2101 continue; 2102 CPUSET_DEL(check_cpus, c); 2103 cpup = cpu[c]; 2104 if (cpup == NULL) 2105 continue; 2106 2107 tlb_info = cpup->cpu_m.mcpu_tlb_info; 2108 while (tlb_info == TLB_CPU_HALTED) { 2109 (void) CAS_TLB_INFO(cpup, TLB_CPU_HALTED, 2110 TLB_CPU_HALTED | TLB_INVAL_ALL); 2111 SMT_PAUSE(); 2112 tlb_info = cpup->cpu_m.mcpu_tlb_info; 2113 } 2114 if (tlb_info == (TLB_CPU_HALTED | TLB_INVAL_ALL)) { 2115 HATSTAT_INC(hs_tlb_inval_delayed); 2116 CPUSET_DEL(cpus_to_shootdown, c); 2117 } 2118 } 2119 #endif 2120 2121 if (CPUSET_ISNULL(cpus_to_shootdown) || 2122 CPUSET_ISEQUAL(cpus_to_shootdown, justme)) { 2123 2124 #ifdef __xpv 2125 if (va == DEMAP_ALL_ADDR) 2126 xen_flush_tlb(); 2127 else 2128 xen_flush_va((caddr_t)va); 2129 #else 2130 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL); 2131 #endif 2132 2133 } else { 2134 2135 CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id); 2136 #ifdef __xpv 2137 if (va == DEMAP_ALL_ADDR) 2138 xen_gflush_tlb(cpus_to_shootdown); 2139 else 2140 xen_gflush_va((caddr_t)va, cpus_to_shootdown); 2141 #else 2142 xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL, 2143 CPUSET2BV(cpus_to_shootdown), hati_demap_func); 2144 #endif 2145 2146 } 2147 kpreempt_enable(); 2148 } 2149 2150 /* 2151 * Interior routine for HAT_UNLOADs from hat_unload_callback(), 2152 * hat_kmap_unload() OR from hat_steal() code. This routine doesn't 2153 * handle releasing of the htables. 2154 */ 2155 void 2156 hat_pte_unmap( 2157 htable_t *ht, 2158 uint_t entry, 2159 uint_t flags, 2160 x86pte_t old_pte, 2161 void *pte_ptr) 2162 { 2163 hat_t *hat = ht->ht_hat; 2164 hment_t *hm = NULL; 2165 page_t *pp = NULL; 2166 level_t l = ht->ht_level; 2167 pfn_t pfn; 2168 2169 /* 2170 * We always track the locking counts, even if nothing is unmapped 2171 */ 2172 if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) { 2173 ASSERT(ht->ht_lock_cnt > 0); 2174 HTABLE_LOCK_DEC(ht); 2175 } 2176 2177 /* 2178 * Figure out which page's mapping list lock to acquire using the PFN 2179 * passed in "old" PTE. We then attempt to invalidate the PTE. 2180 * If another thread, probably a hat_pageunload, has asynchronously 2181 * unmapped/remapped this address we'll loop here. 2182 */ 2183 ASSERT(ht->ht_busy > 0); 2184 while (PTE_ISVALID(old_pte)) { 2185 pfn = PTE2PFN(old_pte, l); 2186 if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) { 2187 pp = NULL; 2188 } else { 2189 #ifdef __xpv 2190 if (pfn == PFN_INVALID) 2191 panic("Invalid PFN, but not PT_NOCONSIST"); 2192 #endif 2193 pp = page_numtopp_nolock(pfn); 2194 if (pp == NULL) { 2195 panic("no page_t, not NOCONSIST: old_pte=" 2196 FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx", 2197 old_pte, (uintptr_t)ht, entry, 2198 (uintptr_t)pte_ptr); 2199 } 2200 x86_hm_enter(pp); 2201 } 2202 2203 /* 2204 * If freeing the address space, check that the PTE 2205 * hasn't changed, as the mappings are no longer in use by 2206 * any thread, invalidation is unnecessary. 2207 * If not freeing, do a full invalidate. 2208 * 2209 * On the hypervisor we must always remove mappings, as a 2210 * writable mapping left behind could cause a page table 2211 * allocation to fail. 2212 */ 2213 #if !defined(__xpv) 2214 if (hat->hat_flags & HAT_FREEING) 2215 old_pte = x86pte_get(ht, entry); 2216 else 2217 #endif 2218 old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr); 2219 2220 /* 2221 * If the page hadn't changed we've unmapped it and can proceed 2222 */ 2223 if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn) 2224 break; 2225 2226 /* 2227 * Otherwise, we'll have to retry with the current old_pte. 2228 * Drop the hment lock, since the pfn may have changed. 2229 */ 2230 if (pp != NULL) { 2231 x86_hm_exit(pp); 2232 pp = NULL; 2233 } else { 2234 ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 2235 } 2236 } 2237 2238 /* 2239 * If the old mapping wasn't valid, there's nothing more to do 2240 */ 2241 if (!PTE_ISVALID(old_pte)) { 2242 if (pp != NULL) 2243 x86_hm_exit(pp); 2244 return; 2245 } 2246 2247 /* 2248 * Take care of syncing any MOD/REF bits and removing the hment. 2249 */ 2250 if (pp != NULL) { 2251 if (!(flags & HAT_UNLOAD_NOSYNC)) 2252 hati_sync_pte_to_page(pp, old_pte, l); 2253 hm = hment_remove(pp, ht, entry); 2254 x86_hm_exit(pp); 2255 if (hm != NULL) 2256 hment_free(hm); 2257 } 2258 2259 /* 2260 * Handle book keeping in the htable and hat 2261 */ 2262 ASSERT(ht->ht_valid_cnt > 0); 2263 HTABLE_DEC(ht->ht_valid_cnt); 2264 PGCNT_DEC(hat, l); 2265 } 2266 2267 /* 2268 * very cheap unload implementation to special case some kernel addresses 2269 */ 2270 static void 2271 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags) 2272 { 2273 uintptr_t va = (uintptr_t)addr; 2274 uintptr_t eva = va + len; 2275 pgcnt_t pg_index; 2276 htable_t *ht; 2277 uint_t entry; 2278 x86pte_t *pte_ptr; 2279 x86pte_t old_pte; 2280 2281 for (; va < eva; va += MMU_PAGESIZE) { 2282 /* 2283 * Get the PTE 2284 */ 2285 pg_index = mmu_btop(va - mmu.kmap_addr); 2286 pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index); 2287 old_pte = GET_PTE(pte_ptr); 2288 2289 /* 2290 * get the htable / entry 2291 */ 2292 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) 2293 >> LEVEL_SHIFT(1)]; 2294 entry = htable_va2entry(va, ht); 2295 2296 /* 2297 * use mostly common code to unmap it. 2298 */ 2299 hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr); 2300 } 2301 } 2302 2303 2304 /* 2305 * unload a range of virtual address space (no callback) 2306 */ 2307 void 2308 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2309 { 2310 uintptr_t va = (uintptr_t)addr; 2311 2312 XPV_DISALLOW_MIGRATE(); 2313 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 2314 2315 /* 2316 * special case for performance. 2317 */ 2318 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 2319 ASSERT(hat == kas.a_hat); 2320 hat_kmap_unload(addr, len, flags); 2321 } else { 2322 hat_unload_callback(hat, addr, len, flags, NULL); 2323 } 2324 XPV_ALLOW_MIGRATE(); 2325 } 2326 2327 /* 2328 * Do the callbacks for ranges being unloaded. 2329 */ 2330 typedef struct range_info { 2331 uintptr_t rng_va; 2332 ulong_t rng_cnt; 2333 level_t rng_level; 2334 } range_info_t; 2335 2336 static void 2337 handle_ranges(hat_callback_t *cb, uint_t cnt, range_info_t *range) 2338 { 2339 /* 2340 * do callbacks to upper level VM system 2341 */ 2342 while (cb != NULL && cnt > 0) { 2343 --cnt; 2344 cb->hcb_start_addr = (caddr_t)range[cnt].rng_va; 2345 cb->hcb_end_addr = cb->hcb_start_addr; 2346 cb->hcb_end_addr += 2347 range[cnt].rng_cnt << LEVEL_SIZE(range[cnt].rng_level); 2348 cb->hcb_function(cb); 2349 } 2350 } 2351 2352 /* 2353 * Unload a given range of addresses (has optional callback) 2354 * 2355 * Flags: 2356 * define HAT_UNLOAD 0x00 2357 * define HAT_UNLOAD_NOSYNC 0x02 2358 * define HAT_UNLOAD_UNLOCK 0x04 2359 * define HAT_UNLOAD_OTHER 0x08 - not used 2360 * define HAT_UNLOAD_UNMAP 0x10 - same as HAT_UNLOAD 2361 */ 2362 #define MAX_UNLOAD_CNT (8) 2363 void 2364 hat_unload_callback( 2365 hat_t *hat, 2366 caddr_t addr, 2367 size_t len, 2368 uint_t flags, 2369 hat_callback_t *cb) 2370 { 2371 uintptr_t vaddr = (uintptr_t)addr; 2372 uintptr_t eaddr = vaddr + len; 2373 htable_t *ht = NULL; 2374 uint_t entry; 2375 uintptr_t contig_va = (uintptr_t)-1L; 2376 range_info_t r[MAX_UNLOAD_CNT]; 2377 uint_t r_cnt = 0; 2378 x86pte_t old_pte; 2379 2380 XPV_DISALLOW_MIGRATE(); 2381 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2382 ASSERT(IS_PAGEALIGNED(vaddr)); 2383 ASSERT(IS_PAGEALIGNED(eaddr)); 2384 2385 /* 2386 * Special case a single page being unloaded for speed. This happens 2387 * quite frequently, COW faults after a fork() for example. 2388 */ 2389 if (cb == NULL && len == MMU_PAGESIZE) { 2390 ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0); 2391 if (ht != NULL) { 2392 if (PTE_ISVALID(old_pte)) 2393 hat_pte_unmap(ht, entry, flags, old_pte, NULL); 2394 htable_release(ht); 2395 } 2396 XPV_ALLOW_MIGRATE(); 2397 return; 2398 } 2399 2400 while (vaddr < eaddr) { 2401 old_pte = htable_walk(hat, &ht, &vaddr, eaddr); 2402 if (ht == NULL) 2403 break; 2404 2405 ASSERT(!IN_VA_HOLE(vaddr)); 2406 2407 if (vaddr < (uintptr_t)addr) 2408 panic("hat_unload_callback(): unmap inside large page"); 2409 2410 /* 2411 * We'll do the call backs for contiguous ranges 2412 */ 2413 if (vaddr != contig_va || 2414 (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) { 2415 if (r_cnt == MAX_UNLOAD_CNT) { 2416 handle_ranges(cb, r_cnt, r); 2417 r_cnt = 0; 2418 } 2419 r[r_cnt].rng_va = vaddr; 2420 r[r_cnt].rng_cnt = 0; 2421 r[r_cnt].rng_level = ht->ht_level; 2422 ++r_cnt; 2423 } 2424 2425 /* 2426 * Unload one mapping from the page tables. 2427 */ 2428 entry = htable_va2entry(vaddr, ht); 2429 hat_pte_unmap(ht, entry, flags, old_pte, NULL); 2430 ASSERT(ht->ht_level <= mmu.max_page_level); 2431 vaddr += LEVEL_SIZE(ht->ht_level); 2432 contig_va = vaddr; 2433 ++r[r_cnt - 1].rng_cnt; 2434 } 2435 if (ht) 2436 htable_release(ht); 2437 2438 /* 2439 * handle last range for callbacks 2440 */ 2441 if (r_cnt > 0) 2442 handle_ranges(cb, r_cnt, r); 2443 XPV_ALLOW_MIGRATE(); 2444 } 2445 2446 /* 2447 * Invalidate a virtual address translation on a slave CPU during 2448 * panic() dumps. 2449 */ 2450 void 2451 hat_flush_range(hat_t *hat, caddr_t va, size_t size) 2452 { 2453 ssize_t sz; 2454 caddr_t endva = va + size; 2455 2456 while (va < endva) { 2457 sz = hat_getpagesize(hat, va); 2458 if (sz < 0) { 2459 #ifdef __xpv 2460 xen_flush_tlb(); 2461 #else 2462 flush_all_tlb_entries(); 2463 #endif 2464 break; 2465 } 2466 #ifdef __xpv 2467 xen_flush_va(va); 2468 #else 2469 mmu_tlbflush_entry(va); 2470 #endif 2471 va += sz; 2472 } 2473 } 2474 2475 /* 2476 * synchronize mapping with software data structures 2477 * 2478 * This interface is currently only used by the working set monitor 2479 * driver. 2480 */ 2481 /*ARGSUSED*/ 2482 void 2483 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2484 { 2485 uintptr_t vaddr = (uintptr_t)addr; 2486 uintptr_t eaddr = vaddr + len; 2487 htable_t *ht = NULL; 2488 uint_t entry; 2489 x86pte_t pte; 2490 x86pte_t save_pte; 2491 x86pte_t new; 2492 page_t *pp; 2493 2494 ASSERT(!IN_VA_HOLE(vaddr)); 2495 ASSERT(IS_PAGEALIGNED(vaddr)); 2496 ASSERT(IS_PAGEALIGNED(eaddr)); 2497 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2498 2499 XPV_DISALLOW_MIGRATE(); 2500 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2501 try_again: 2502 pte = htable_walk(hat, &ht, &vaddr, eaddr); 2503 if (ht == NULL) 2504 break; 2505 entry = htable_va2entry(vaddr, ht); 2506 2507 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 2508 PTE_GET(pte, PT_REF | PT_MOD) == 0) 2509 continue; 2510 2511 /* 2512 * We need to acquire the mapping list lock to protect 2513 * against hat_pageunload(), hat_unload(), etc. 2514 */ 2515 pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level)); 2516 if (pp == NULL) 2517 break; 2518 x86_hm_enter(pp); 2519 save_pte = pte; 2520 pte = x86pte_get(ht, entry); 2521 if (pte != save_pte) { 2522 x86_hm_exit(pp); 2523 goto try_again; 2524 } 2525 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 2526 PTE_GET(pte, PT_REF | PT_MOD) == 0) { 2527 x86_hm_exit(pp); 2528 continue; 2529 } 2530 2531 /* 2532 * Need to clear ref or mod bits. We may compete with 2533 * hardware updating the R/M bits and have to try again. 2534 */ 2535 if (flags == HAT_SYNC_ZERORM) { 2536 new = pte; 2537 PTE_CLR(new, PT_REF | PT_MOD); 2538 pte = hati_update_pte(ht, entry, pte, new); 2539 if (pte != 0) { 2540 x86_hm_exit(pp); 2541 goto try_again; 2542 } 2543 } else { 2544 /* 2545 * sync the PTE to the page_t 2546 */ 2547 hati_sync_pte_to_page(pp, save_pte, ht->ht_level); 2548 } 2549 x86_hm_exit(pp); 2550 } 2551 if (ht) 2552 htable_release(ht); 2553 XPV_ALLOW_MIGRATE(); 2554 } 2555 2556 /* 2557 * void hat_map(hat, addr, len, flags) 2558 */ 2559 /*ARGSUSED*/ 2560 void 2561 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2562 { 2563 /* does nothing */ 2564 } 2565 2566 /* 2567 * uint_t hat_getattr(hat, addr, *attr) 2568 * returns attr for <hat,addr> in *attr. returns 0 if there was a 2569 * mapping and *attr is valid, nonzero if there was no mapping and 2570 * *attr is not valid. 2571 */ 2572 uint_t 2573 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr) 2574 { 2575 uintptr_t vaddr = ALIGN2PAGE(addr); 2576 htable_t *ht = NULL; 2577 x86pte_t pte; 2578 2579 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2580 2581 if (IN_VA_HOLE(vaddr)) 2582 return ((uint_t)-1); 2583 2584 ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level); 2585 if (ht == NULL) 2586 return ((uint_t)-1); 2587 2588 if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) { 2589 htable_release(ht); 2590 return ((uint_t)-1); 2591 } 2592 2593 *attr = PROT_READ; 2594 if (PTE_GET(pte, PT_WRITABLE)) 2595 *attr |= PROT_WRITE; 2596 if (PTE_GET(pte, PT_USER)) 2597 *attr |= PROT_USER; 2598 if (!PTE_GET(pte, mmu.pt_nx)) 2599 *attr |= PROT_EXEC; 2600 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 2601 *attr |= HAT_NOSYNC; 2602 htable_release(ht); 2603 return (0); 2604 } 2605 2606 /* 2607 * hat_updateattr() applies the given attribute change to an existing mapping 2608 */ 2609 #define HAT_LOAD_ATTR 1 2610 #define HAT_SET_ATTR 2 2611 #define HAT_CLR_ATTR 3 2612 2613 static void 2614 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what) 2615 { 2616 uintptr_t vaddr = (uintptr_t)addr; 2617 uintptr_t eaddr = (uintptr_t)addr + len; 2618 htable_t *ht = NULL; 2619 uint_t entry; 2620 x86pte_t oldpte, newpte; 2621 page_t *pp; 2622 2623 XPV_DISALLOW_MIGRATE(); 2624 ASSERT(IS_PAGEALIGNED(vaddr)); 2625 ASSERT(IS_PAGEALIGNED(eaddr)); 2626 ASSERT(hat == kas.a_hat || 2627 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 2628 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2629 try_again: 2630 oldpte = htable_walk(hat, &ht, &vaddr, eaddr); 2631 if (ht == NULL) 2632 break; 2633 if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST) 2634 continue; 2635 2636 pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level)); 2637 if (pp == NULL) 2638 continue; 2639 x86_hm_enter(pp); 2640 2641 newpte = oldpte; 2642 /* 2643 * We found a page table entry in the desired range, 2644 * figure out the new attributes. 2645 */ 2646 if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) { 2647 if ((attr & PROT_WRITE) && 2648 !PTE_GET(oldpte, PT_WRITABLE)) 2649 newpte |= PT_WRITABLE; 2650 2651 if ((attr & HAT_NOSYNC) && 2652 PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC) 2653 newpte |= PT_NOSYNC; 2654 2655 if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx)) 2656 newpte &= ~mmu.pt_nx; 2657 } 2658 2659 if (what == HAT_LOAD_ATTR) { 2660 if (!(attr & PROT_WRITE) && 2661 PTE_GET(oldpte, PT_WRITABLE)) 2662 newpte &= ~PT_WRITABLE; 2663 2664 if (!(attr & HAT_NOSYNC) && 2665 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 2666 newpte &= ~PT_SOFTWARE; 2667 2668 if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2669 newpte |= mmu.pt_nx; 2670 } 2671 2672 if (what == HAT_CLR_ATTR) { 2673 if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE)) 2674 newpte &= ~PT_WRITABLE; 2675 2676 if ((attr & HAT_NOSYNC) && 2677 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 2678 newpte &= ~PT_SOFTWARE; 2679 2680 if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2681 newpte |= mmu.pt_nx; 2682 } 2683 2684 /* 2685 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set. 2686 * x86pte_set() depends on this. 2687 */ 2688 if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC) 2689 newpte |= PT_REF | PT_MOD; 2690 2691 /* 2692 * what about PROT_READ or others? this code only handles: 2693 * EXEC, WRITE, NOSYNC 2694 */ 2695 2696 /* 2697 * If new PTE really changed, update the table. 2698 */ 2699 if (newpte != oldpte) { 2700 entry = htable_va2entry(vaddr, ht); 2701 oldpte = hati_update_pte(ht, entry, oldpte, newpte); 2702 if (oldpte != 0) { 2703 x86_hm_exit(pp); 2704 goto try_again; 2705 } 2706 } 2707 x86_hm_exit(pp); 2708 } 2709 if (ht) 2710 htable_release(ht); 2711 XPV_ALLOW_MIGRATE(); 2712 } 2713 2714 /* 2715 * Various wrappers for hat_updateattr() 2716 */ 2717 void 2718 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2719 { 2720 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2721 hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR); 2722 } 2723 2724 void 2725 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2726 { 2727 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2728 hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR); 2729 } 2730 2731 void 2732 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2733 { 2734 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2735 hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR); 2736 } 2737 2738 void 2739 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot) 2740 { 2741 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2742 hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR); 2743 } 2744 2745 /* 2746 * size_t hat_getpagesize(hat, addr) 2747 * returns pagesize in bytes for <hat, addr>. returns -1 of there is 2748 * no mapping. This is an advisory call. 2749 */ 2750 ssize_t 2751 hat_getpagesize(hat_t *hat, caddr_t addr) 2752 { 2753 uintptr_t vaddr = ALIGN2PAGE(addr); 2754 htable_t *ht; 2755 size_t pagesize; 2756 2757 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2758 if (IN_VA_HOLE(vaddr)) 2759 return (-1); 2760 ht = htable_getpage(hat, vaddr, NULL); 2761 if (ht == NULL) 2762 return (-1); 2763 pagesize = LEVEL_SIZE(ht->ht_level); 2764 htable_release(ht); 2765 return (pagesize); 2766 } 2767 2768 2769 2770 /* 2771 * pfn_t hat_getpfnum(hat, addr) 2772 * returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid. 2773 */ 2774 pfn_t 2775 hat_getpfnum(hat_t *hat, caddr_t addr) 2776 { 2777 uintptr_t vaddr = ALIGN2PAGE(addr); 2778 htable_t *ht; 2779 uint_t entry; 2780 pfn_t pfn = PFN_INVALID; 2781 2782 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2783 if (khat_running == 0) 2784 return (PFN_INVALID); 2785 2786 if (IN_VA_HOLE(vaddr)) 2787 return (PFN_INVALID); 2788 2789 XPV_DISALLOW_MIGRATE(); 2790 /* 2791 * A very common use of hat_getpfnum() is from the DDI for kernel pages. 2792 * Use the kmap_ptes (which also covers the 32 bit heap) to speed 2793 * this up. 2794 */ 2795 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2796 x86pte_t pte; 2797 pgcnt_t pg_index; 2798 2799 pg_index = mmu_btop(vaddr - mmu.kmap_addr); 2800 pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index)); 2801 if (PTE_ISVALID(pte)) 2802 /*LINTED [use of constant 0 causes a lint warning] */ 2803 pfn = PTE2PFN(pte, 0); 2804 XPV_ALLOW_MIGRATE(); 2805 return (pfn); 2806 } 2807 2808 ht = htable_getpage(hat, vaddr, &entry); 2809 if (ht == NULL) { 2810 XPV_ALLOW_MIGRATE(); 2811 return (PFN_INVALID); 2812 } 2813 ASSERT(vaddr >= ht->ht_vaddr); 2814 ASSERT(vaddr <= HTABLE_LAST_PAGE(ht)); 2815 pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level); 2816 if (ht->ht_level > 0) 2817 pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level)); 2818 htable_release(ht); 2819 XPV_ALLOW_MIGRATE(); 2820 return (pfn); 2821 } 2822 2823 /* 2824 * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged. 2825 * Use hat_getpfnum(kas.a_hat, ...) instead. 2826 * 2827 * We'd like to return PFN_INVALID if the mappings have underlying page_t's 2828 * but can't right now due to the fact that some software has grown to use 2829 * this interface incorrectly. So for now when the interface is misused, 2830 * return a warning to the user that in the future it won't work in the 2831 * way they're abusing it, and carry on. 2832 * 2833 * Note that hat_getkpfnum() is never supported on amd64. 2834 */ 2835 #if !defined(__amd64) 2836 pfn_t 2837 hat_getkpfnum(caddr_t addr) 2838 { 2839 pfn_t pfn; 2840 int badcaller = 0; 2841 2842 if (khat_running == 0) 2843 panic("hat_getkpfnum(): called too early\n"); 2844 if ((uintptr_t)addr < kernelbase) 2845 return (PFN_INVALID); 2846 2847 XPV_DISALLOW_MIGRATE(); 2848 if (segkpm && IS_KPM_ADDR(addr)) { 2849 badcaller = 1; 2850 pfn = hat_kpm_va2pfn(addr); 2851 } else { 2852 pfn = hat_getpfnum(kas.a_hat, addr); 2853 badcaller = pf_is_memory(pfn); 2854 } 2855 2856 if (badcaller) 2857 hat_getkpfnum_badcall(caller()); 2858 XPV_ALLOW_MIGRATE(); 2859 return (pfn); 2860 } 2861 #endif /* __amd64 */ 2862 2863 /* 2864 * int hat_probe(hat, addr) 2865 * return 0 if no valid mapping is present. Faster version 2866 * of hat_getattr in certain architectures. 2867 */ 2868 int 2869 hat_probe(hat_t *hat, caddr_t addr) 2870 { 2871 uintptr_t vaddr = ALIGN2PAGE(addr); 2872 uint_t entry; 2873 htable_t *ht; 2874 pgcnt_t pg_off; 2875 2876 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2877 ASSERT(hat == kas.a_hat || 2878 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 2879 if (IN_VA_HOLE(vaddr)) 2880 return (0); 2881 2882 /* 2883 * Most common use of hat_probe is from segmap. We special case it 2884 * for performance. 2885 */ 2886 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2887 pg_off = mmu_btop(vaddr - mmu.kmap_addr); 2888 if (mmu.pae_hat) 2889 return (PTE_ISVALID(mmu.kmap_ptes[pg_off])); 2890 else 2891 return (PTE_ISVALID( 2892 ((x86pte32_t *)mmu.kmap_ptes)[pg_off])); 2893 } 2894 2895 ht = htable_getpage(hat, vaddr, &entry); 2896 htable_release(ht); 2897 return (ht != NULL); 2898 } 2899 2900 /* 2901 * Find out if the segment for hat_share()/hat_unshare() is DISM or locked ISM. 2902 */ 2903 static int 2904 is_it_dism(hat_t *hat, caddr_t va) 2905 { 2906 struct seg *seg; 2907 struct shm_data *shmd; 2908 struct spt_data *sptd; 2909 2910 seg = as_findseg(hat->hat_as, va, 0); 2911 ASSERT(seg != NULL); 2912 ASSERT(seg->s_base <= va); 2913 shmd = (struct shm_data *)seg->s_data; 2914 ASSERT(shmd != NULL); 2915 sptd = (struct spt_data *)shmd->shm_sptseg->s_data; 2916 ASSERT(sptd != NULL); 2917 if (sptd->spt_flags & SHM_PAGEABLE) 2918 return (1); 2919 return (0); 2920 } 2921 2922 /* 2923 * Simple implementation of ISM. hat_share() is similar to hat_memload_array(), 2924 * except that we use the ism_hat's existing mappings to determine the pages 2925 * and protections to use for this hat. If we find a full properly aligned 2926 * and sized pagetable, we will attempt to share the pagetable itself. 2927 */ 2928 /*ARGSUSED*/ 2929 int 2930 hat_share( 2931 hat_t *hat, 2932 caddr_t addr, 2933 hat_t *ism_hat, 2934 caddr_t src_addr, 2935 size_t len, /* almost useless value, see below.. */ 2936 uint_t ismszc) 2937 { 2938 uintptr_t vaddr_start = (uintptr_t)addr; 2939 uintptr_t vaddr; 2940 uintptr_t eaddr = vaddr_start + len; 2941 uintptr_t ism_addr_start = (uintptr_t)src_addr; 2942 uintptr_t ism_addr = ism_addr_start; 2943 uintptr_t e_ism_addr = ism_addr + len; 2944 htable_t *ism_ht = NULL; 2945 htable_t *ht; 2946 x86pte_t pte; 2947 page_t *pp; 2948 pfn_t pfn; 2949 level_t l; 2950 pgcnt_t pgcnt; 2951 uint_t prot; 2952 int is_dism; 2953 int flags; 2954 2955 /* 2956 * We might be asked to share an empty DISM hat by as_dup() 2957 */ 2958 ASSERT(hat != kas.a_hat); 2959 ASSERT(eaddr <= _userlimit); 2960 if (!(ism_hat->hat_flags & HAT_SHARED)) { 2961 ASSERT(hat_get_mapped_size(ism_hat) == 0); 2962 return (0); 2963 } 2964 XPV_DISALLOW_MIGRATE(); 2965 2966 /* 2967 * The SPT segment driver often passes us a size larger than there are 2968 * valid mappings. That's because it rounds the segment size up to a 2969 * large pagesize, even if the actual memory mapped by ism_hat is less. 2970 */ 2971 ASSERT(IS_PAGEALIGNED(vaddr_start)); 2972 ASSERT(IS_PAGEALIGNED(ism_addr_start)); 2973 ASSERT(ism_hat->hat_flags & HAT_SHARED); 2974 is_dism = is_it_dism(hat, addr); 2975 while (ism_addr < e_ism_addr) { 2976 /* 2977 * use htable_walk to get the next valid ISM mapping 2978 */ 2979 pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr); 2980 if (ism_ht == NULL) 2981 break; 2982 2983 /* 2984 * First check to see if we already share the page table. 2985 */ 2986 l = ism_ht->ht_level; 2987 vaddr = vaddr_start + (ism_addr - ism_addr_start); 2988 ht = htable_lookup(hat, vaddr, l); 2989 if (ht != NULL) { 2990 if (ht->ht_flags & HTABLE_SHARED_PFN) 2991 goto shared; 2992 htable_release(ht); 2993 goto not_shared; 2994 } 2995 2996 /* 2997 * Can't ever share top table. 2998 */ 2999 if (l == mmu.max_level) 3000 goto not_shared; 3001 3002 /* 3003 * Avoid level mismatches later due to DISM faults. 3004 */ 3005 if (is_dism && l > 0) 3006 goto not_shared; 3007 3008 /* 3009 * addresses and lengths must align 3010 * table must be fully populated 3011 * no lower level page tables 3012 */ 3013 if (ism_addr != ism_ht->ht_vaddr || 3014 (vaddr & LEVEL_OFFSET(l + 1)) != 0) 3015 goto not_shared; 3016 3017 /* 3018 * The range of address space must cover a full table. 3019 */ 3020 if (e_ism_addr - ism_addr < LEVEL_SIZE(l + 1)) 3021 goto not_shared; 3022 3023 /* 3024 * All entries in the ISM page table must be leaf PTEs. 3025 */ 3026 if (l > 0) { 3027 int e; 3028 3029 /* 3030 * We know the 0th is from htable_walk() above. 3031 */ 3032 for (e = 1; e < HTABLE_NUM_PTES(ism_ht); ++e) { 3033 x86pte_t pte; 3034 pte = x86pte_get(ism_ht, e); 3035 if (!PTE_ISPAGE(pte, l)) 3036 goto not_shared; 3037 } 3038 } 3039 3040 /* 3041 * share the page table 3042 */ 3043 ht = htable_create(hat, vaddr, l, ism_ht); 3044 shared: 3045 ASSERT(ht->ht_flags & HTABLE_SHARED_PFN); 3046 ASSERT(ht->ht_shares == ism_ht); 3047 hat->hat_ism_pgcnt += 3048 (ism_ht->ht_valid_cnt - ht->ht_valid_cnt) << 3049 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT); 3050 ht->ht_valid_cnt = ism_ht->ht_valid_cnt; 3051 htable_release(ht); 3052 ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(l + 1); 3053 htable_release(ism_ht); 3054 ism_ht = NULL; 3055 continue; 3056 3057 not_shared: 3058 /* 3059 * Unable to share the page table. Instead we will 3060 * create new mappings from the values in the ISM mappings. 3061 * Figure out what level size mappings to use; 3062 */ 3063 for (l = ism_ht->ht_level; l > 0; --l) { 3064 if (LEVEL_SIZE(l) <= eaddr - vaddr && 3065 (vaddr & LEVEL_OFFSET(l)) == 0) 3066 break; 3067 } 3068 3069 /* 3070 * The ISM mapping might be larger than the share area, 3071 * be careful to truncate it if needed. 3072 */ 3073 if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) { 3074 pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level)); 3075 } else { 3076 pgcnt = mmu_btop(eaddr - vaddr); 3077 l = 0; 3078 } 3079 3080 pfn = PTE2PFN(pte, ism_ht->ht_level); 3081 ASSERT(pfn != PFN_INVALID); 3082 while (pgcnt > 0) { 3083 /* 3084 * Make a new pte for the PFN for this level. 3085 * Copy protections for the pte from the ISM pte. 3086 */ 3087 pp = page_numtopp_nolock(pfn); 3088 ASSERT(pp != NULL); 3089 3090 prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK; 3091 if (PTE_GET(pte, PT_WRITABLE)) 3092 prot |= PROT_WRITE; 3093 if (!PTE_GET(pte, PT_NX)) 3094 prot |= PROT_EXEC; 3095 3096 flags = HAT_LOAD; 3097 if (!is_dism) 3098 flags |= HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST; 3099 while (hati_load_common(hat, vaddr, pp, prot, flags, 3100 l, pfn) != 0) { 3101 if (l == 0) 3102 panic("hati_load_common() failure"); 3103 --l; 3104 } 3105 3106 vaddr += LEVEL_SIZE(l); 3107 ism_addr += LEVEL_SIZE(l); 3108 pfn += mmu_btop(LEVEL_SIZE(l)); 3109 pgcnt -= mmu_btop(LEVEL_SIZE(l)); 3110 } 3111 } 3112 if (ism_ht != NULL) 3113 htable_release(ism_ht); 3114 XPV_ALLOW_MIGRATE(); 3115 return (0); 3116 } 3117 3118 3119 /* 3120 * hat_unshare() is similar to hat_unload_callback(), but 3121 * we have to look for empty shared pagetables. Note that 3122 * hat_unshare() is always invoked against an entire segment. 3123 */ 3124 /*ARGSUSED*/ 3125 void 3126 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc) 3127 { 3128 uint64_t vaddr = (uintptr_t)addr; 3129 uintptr_t eaddr = vaddr + len; 3130 htable_t *ht = NULL; 3131 uint_t need_demaps = 0; 3132 int flags = HAT_UNLOAD_UNMAP; 3133 level_t l; 3134 3135 ASSERT(hat != kas.a_hat); 3136 ASSERT(eaddr <= _userlimit); 3137 ASSERT(IS_PAGEALIGNED(vaddr)); 3138 ASSERT(IS_PAGEALIGNED(eaddr)); 3139 XPV_DISALLOW_MIGRATE(); 3140 3141 /* 3142 * First go through and remove any shared pagetables. 3143 * 3144 * Note that it's ok to delay the TLB shootdown till the entire range is 3145 * finished, because if hat_pageunload() were to unload a shared 3146 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate. 3147 */ 3148 l = mmu.max_page_level; 3149 if (l == mmu.max_level) 3150 --l; 3151 for (; l >= 0; --l) { 3152 for (vaddr = (uintptr_t)addr; vaddr < eaddr; 3153 vaddr = (vaddr & LEVEL_MASK(l + 1)) + LEVEL_SIZE(l + 1)) { 3154 ASSERT(!IN_VA_HOLE(vaddr)); 3155 /* 3156 * find a pagetable that maps the current address 3157 */ 3158 ht = htable_lookup(hat, vaddr, l); 3159 if (ht == NULL) 3160 continue; 3161 if (ht->ht_flags & HTABLE_SHARED_PFN) { 3162 /* 3163 * clear page count, set valid_cnt to 0, 3164 * let htable_release() finish the job 3165 */ 3166 hat->hat_ism_pgcnt -= ht->ht_valid_cnt << 3167 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT); 3168 ht->ht_valid_cnt = 0; 3169 need_demaps = 1; 3170 } 3171 htable_release(ht); 3172 } 3173 } 3174 3175 /* 3176 * flush the TLBs - since we're probably dealing with MANY mappings 3177 * we do just one CR3 reload. 3178 */ 3179 if (!(hat->hat_flags & HAT_FREEING) && need_demaps) 3180 hat_tlb_inval(hat, DEMAP_ALL_ADDR); 3181 3182 /* 3183 * Now go back and clean up any unaligned mappings that 3184 * couldn't share pagetables. 3185 */ 3186 if (!is_it_dism(hat, addr)) 3187 flags |= HAT_UNLOAD_UNLOCK; 3188 hat_unload(hat, addr, len, flags); 3189 XPV_ALLOW_MIGRATE(); 3190 } 3191 3192 3193 /* 3194 * hat_reserve() does nothing 3195 */ 3196 /*ARGSUSED*/ 3197 void 3198 hat_reserve(struct as *as, caddr_t addr, size_t len) 3199 { 3200 } 3201 3202 3203 /* 3204 * Called when all mappings to a page should have write permission removed. 3205 * Mostly stolen from hat_pagesync() 3206 */ 3207 static void 3208 hati_page_clrwrt(struct page *pp) 3209 { 3210 hment_t *hm = NULL; 3211 htable_t *ht; 3212 uint_t entry; 3213 x86pte_t old; 3214 x86pte_t new; 3215 uint_t pszc = 0; 3216 3217 XPV_DISALLOW_MIGRATE(); 3218 next_size: 3219 /* 3220 * walk thru the mapping list clearing write permission 3221 */ 3222 x86_hm_enter(pp); 3223 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 3224 if (ht->ht_level < pszc) 3225 continue; 3226 old = x86pte_get(ht, entry); 3227 3228 for (;;) { 3229 /* 3230 * Is this mapping of interest? 3231 */ 3232 if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum || 3233 PTE_GET(old, PT_WRITABLE) == 0) 3234 break; 3235 3236 /* 3237 * Clear ref/mod writable bits. This requires cross 3238 * calls to ensure any executing TLBs see cleared bits. 3239 */ 3240 new = old; 3241 PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE); 3242 old = hati_update_pte(ht, entry, old, new); 3243 if (old != 0) 3244 continue; 3245 3246 break; 3247 } 3248 } 3249 x86_hm_exit(pp); 3250 while (pszc < pp->p_szc) { 3251 page_t *tpp; 3252 pszc++; 3253 tpp = PP_GROUPLEADER(pp, pszc); 3254 if (pp != tpp) { 3255 pp = tpp; 3256 goto next_size; 3257 } 3258 } 3259 XPV_ALLOW_MIGRATE(); 3260 } 3261 3262 /* 3263 * void hat_page_setattr(pp, flag) 3264 * void hat_page_clrattr(pp, flag) 3265 * used to set/clr ref/mod bits. 3266 */ 3267 void 3268 hat_page_setattr(struct page *pp, uint_t flag) 3269 { 3270 vnode_t *vp = pp->p_vnode; 3271 kmutex_t *vphm = NULL; 3272 page_t **listp; 3273 int noshuffle; 3274 3275 noshuffle = flag & P_NSH; 3276 flag &= ~P_NSH; 3277 3278 if (PP_GETRM(pp, flag) == flag) 3279 return; 3280 3281 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) && 3282 !noshuffle) { 3283 vphm = page_vnode_mutex(vp); 3284 mutex_enter(vphm); 3285 } 3286 3287 PP_SETRM(pp, flag); 3288 3289 if (vphm != NULL) { 3290 3291 /* 3292 * Some File Systems examine v_pages for NULL w/o 3293 * grabbing the vphm mutex. Must not let it become NULL when 3294 * pp is the only page on the list. 3295 */ 3296 if (pp->p_vpnext != pp) { 3297 page_vpsub(&vp->v_pages, pp); 3298 if (vp->v_pages != NULL) 3299 listp = &vp->v_pages->p_vpprev->p_vpnext; 3300 else 3301 listp = &vp->v_pages; 3302 page_vpadd(listp, pp); 3303 } 3304 mutex_exit(vphm); 3305 } 3306 } 3307 3308 void 3309 hat_page_clrattr(struct page *pp, uint_t flag) 3310 { 3311 vnode_t *vp = pp->p_vnode; 3312 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 3313 3314 /* 3315 * Caller is expected to hold page's io lock for VMODSORT to work 3316 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod 3317 * bit is cleared. 3318 * We don't have assert to avoid tripping some existing third party 3319 * code. The dirty page is moved back to top of the v_page list 3320 * after IO is done in pvn_write_done(). 3321 */ 3322 PP_CLRRM(pp, flag); 3323 3324 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 3325 3326 /* 3327 * VMODSORT works by removing write permissions and getting 3328 * a fault when a page is made dirty. At this point 3329 * we need to remove write permission from all mappings 3330 * to this page. 3331 */ 3332 hati_page_clrwrt(pp); 3333 } 3334 } 3335 3336 /* 3337 * If flag is specified, returns 0 if attribute is disabled 3338 * and non zero if enabled. If flag specifes multiple attributes 3339 * then returns 0 if ALL attributes are disabled. This is an advisory 3340 * call. 3341 */ 3342 uint_t 3343 hat_page_getattr(struct page *pp, uint_t flag) 3344 { 3345 return (PP_GETRM(pp, flag)); 3346 } 3347 3348 3349 /* 3350 * common code used by hat_pageunload() and hment_steal() 3351 */ 3352 hment_t * 3353 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry) 3354 { 3355 x86pte_t old_pte; 3356 pfn_t pfn = pp->p_pagenum; 3357 hment_t *hm; 3358 3359 /* 3360 * We need to acquire a hold on the htable in order to 3361 * do the invalidate. We know the htable must exist, since 3362 * unmap's don't release the htable until after removing any 3363 * hment. Having x86_hm_enter() keeps that from proceeding. 3364 */ 3365 htable_acquire(ht); 3366 3367 /* 3368 * Invalidate the PTE and remove the hment. 3369 */ 3370 old_pte = x86pte_inval(ht, entry, 0, NULL); 3371 if (PTE2PFN(old_pte, ht->ht_level) != pfn) { 3372 panic("x86pte_inval() failure found PTE = " FMT_PTE 3373 " pfn being unmapped is %lx ht=0x%lx entry=0x%x", 3374 old_pte, pfn, (uintptr_t)ht, entry); 3375 } 3376 3377 /* 3378 * Clean up all the htable information for this mapping 3379 */ 3380 ASSERT(ht->ht_valid_cnt > 0); 3381 HTABLE_DEC(ht->ht_valid_cnt); 3382 PGCNT_DEC(ht->ht_hat, ht->ht_level); 3383 3384 /* 3385 * sync ref/mod bits to the page_t 3386 */ 3387 if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC) 3388 hati_sync_pte_to_page(pp, old_pte, ht->ht_level); 3389 3390 /* 3391 * Remove the mapping list entry for this page. 3392 */ 3393 hm = hment_remove(pp, ht, entry); 3394 3395 /* 3396 * drop the mapping list lock so that we might free the 3397 * hment and htable. 3398 */ 3399 x86_hm_exit(pp); 3400 htable_release(ht); 3401 return (hm); 3402 } 3403 3404 extern int vpm_enable; 3405 /* 3406 * Unload all translations to a page. If the page is a subpage of a large 3407 * page, the large page mappings are also removed. 3408 * 3409 * The forceflags are unused. 3410 */ 3411 3412 /*ARGSUSED*/ 3413 static int 3414 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag) 3415 { 3416 page_t *cur_pp = pp; 3417 hment_t *hm; 3418 hment_t *prev; 3419 htable_t *ht; 3420 uint_t entry; 3421 level_t level; 3422 3423 XPV_DISALLOW_MIGRATE(); 3424 #if defined(__amd64) 3425 /* 3426 * clear the vpm ref. 3427 */ 3428 if (vpm_enable) { 3429 pp->p_vpmref = 0; 3430 } 3431 #endif 3432 /* 3433 * The loop with next_size handles pages with multiple pagesize mappings 3434 */ 3435 next_size: 3436 for (;;) { 3437 3438 /* 3439 * Get a mapping list entry 3440 */ 3441 x86_hm_enter(cur_pp); 3442 for (prev = NULL; ; prev = hm) { 3443 hm = hment_walk(cur_pp, &ht, &entry, prev); 3444 if (hm == NULL) { 3445 x86_hm_exit(cur_pp); 3446 3447 /* 3448 * If not part of a larger page, we're done. 3449 */ 3450 if (cur_pp->p_szc <= pg_szcd) { 3451 XPV_ALLOW_MIGRATE(); 3452 return (0); 3453 } 3454 3455 /* 3456 * Else check the next larger page size. 3457 * hat_page_demote() may decrease p_szc 3458 * but that's ok we'll just take an extra 3459 * trip discover there're no larger mappings 3460 * and return. 3461 */ 3462 ++pg_szcd; 3463 cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd); 3464 goto next_size; 3465 } 3466 3467 /* 3468 * If this mapping size matches, remove it. 3469 */ 3470 level = ht->ht_level; 3471 if (level == pg_szcd) 3472 break; 3473 } 3474 3475 /* 3476 * Remove the mapping list entry for this page. 3477 * Note this does the x86_hm_exit() for us. 3478 */ 3479 hm = hati_page_unmap(cur_pp, ht, entry); 3480 if (hm != NULL) 3481 hment_free(hm); 3482 } 3483 } 3484 3485 int 3486 hat_pageunload(struct page *pp, uint_t forceflag) 3487 { 3488 ASSERT(PAGE_EXCL(pp)); 3489 return (hati_pageunload(pp, 0, forceflag)); 3490 } 3491 3492 /* 3493 * Unload all large mappings to pp and reduce by 1 p_szc field of every large 3494 * page level that included pp. 3495 * 3496 * pp must be locked EXCL. Even though no other constituent pages are locked 3497 * it's legal to unload large mappings to pp because all constituent pages of 3498 * large locked mappings have to be locked SHARED. therefore if we have EXCL 3499 * lock on one of constituent pages none of the large mappings to pp are 3500 * locked. 3501 * 3502 * Change (always decrease) p_szc field starting from the last constituent 3503 * page and ending with root constituent page so that root's pszc always shows 3504 * the area where hat_page_demote() may be active. 3505 * 3506 * This mechanism is only used for file system pages where it's not always 3507 * possible to get EXCL locks on all constituent pages to demote the size code 3508 * (as is done for anonymous or kernel large pages). 3509 */ 3510 void 3511 hat_page_demote(page_t *pp) 3512 { 3513 uint_t pszc; 3514 uint_t rszc; 3515 uint_t szc; 3516 page_t *rootpp; 3517 page_t *firstpp; 3518 page_t *lastpp; 3519 pgcnt_t pgcnt; 3520 3521 ASSERT(PAGE_EXCL(pp)); 3522 ASSERT(!PP_ISFREE(pp)); 3523 ASSERT(page_szc_lock_assert(pp)); 3524 3525 if (pp->p_szc == 0) 3526 return; 3527 3528 rootpp = PP_GROUPLEADER(pp, 1); 3529 (void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD); 3530 3531 /* 3532 * all large mappings to pp are gone 3533 * and no new can be setup since pp is locked exclusively. 3534 * 3535 * Lock the root to make sure there's only one hat_page_demote() 3536 * outstanding within the area of this root's pszc. 3537 * 3538 * Second potential hat_page_demote() is already eliminated by upper 3539 * VM layer via page_szc_lock() but we don't rely on it and use our 3540 * own locking (so that upper layer locking can be changed without 3541 * assumptions that hat depends on upper layer VM to prevent multiple 3542 * hat_page_demote() to be issued simultaneously to the same large 3543 * page). 3544 */ 3545 again: 3546 pszc = pp->p_szc; 3547 if (pszc == 0) 3548 return; 3549 rootpp = PP_GROUPLEADER(pp, pszc); 3550 x86_hm_enter(rootpp); 3551 /* 3552 * If root's p_szc is different from pszc we raced with another 3553 * hat_page_demote(). Drop the lock and try to find the root again. 3554 * If root's p_szc is greater than pszc previous hat_page_demote() is 3555 * not done yet. Take and release mlist lock of root's root to wait 3556 * for previous hat_page_demote() to complete. 3557 */ 3558 if ((rszc = rootpp->p_szc) != pszc) { 3559 x86_hm_exit(rootpp); 3560 if (rszc > pszc) { 3561 /* p_szc of a locked non free page can't increase */ 3562 ASSERT(pp != rootpp); 3563 3564 rootpp = PP_GROUPLEADER(rootpp, rszc); 3565 x86_hm_enter(rootpp); 3566 x86_hm_exit(rootpp); 3567 } 3568 goto again; 3569 } 3570 ASSERT(pp->p_szc == pszc); 3571 3572 /* 3573 * Decrement by 1 p_szc of every constituent page of a region that 3574 * covered pp. For example if original szc is 3 it gets changed to 2 3575 * everywhere except in region 2 that covered pp. Region 2 that 3576 * covered pp gets demoted to 1 everywhere except in region 1 that 3577 * covered pp. The region 1 that covered pp is demoted to region 3578 * 0. It's done this way because from region 3 we removed level 3 3579 * mappings, from region 2 that covered pp we removed level 2 mappings 3580 * and from region 1 that covered pp we removed level 1 mappings. All 3581 * changes are done from from high pfn's to low pfn's so that roots 3582 * are changed last allowing one to know the largest region where 3583 * hat_page_demote() is stil active by only looking at the root page. 3584 * 3585 * This algorithm is implemented in 2 while loops. First loop changes 3586 * p_szc of pages to the right of pp's level 1 region and second 3587 * loop changes p_szc of pages of level 1 region that covers pp 3588 * and all pages to the left of level 1 region that covers pp. 3589 * In the first loop p_szc keeps dropping with every iteration 3590 * and in the second loop it keeps increasing with every iteration. 3591 * 3592 * First loop description: Demote pages to the right of pp outside of 3593 * level 1 region that covers pp. In every iteration of the while 3594 * loop below find the last page of szc region and the first page of 3595 * (szc - 1) region that is immediately to the right of (szc - 1) 3596 * region that covers pp. From last such page to first such page 3597 * change every page's szc to szc - 1. Decrement szc and continue 3598 * looping until szc is 1. If pp belongs to the last (szc - 1) region 3599 * of szc region skip to the next iteration. 3600 */ 3601 szc = pszc; 3602 while (szc > 1) { 3603 lastpp = PP_GROUPLEADER(pp, szc); 3604 pgcnt = page_get_pagecnt(szc); 3605 lastpp += pgcnt - 1; 3606 firstpp = PP_GROUPLEADER(pp, (szc - 1)); 3607 pgcnt = page_get_pagecnt(szc - 1); 3608 if (lastpp - firstpp < pgcnt) { 3609 szc--; 3610 continue; 3611 } 3612 firstpp += pgcnt; 3613 while (lastpp != firstpp) { 3614 ASSERT(lastpp->p_szc == pszc); 3615 lastpp->p_szc = szc - 1; 3616 lastpp--; 3617 } 3618 firstpp->p_szc = szc - 1; 3619 szc--; 3620 } 3621 3622 /* 3623 * Second loop description: 3624 * First iteration changes p_szc to 0 of every 3625 * page of level 1 region that covers pp. 3626 * Subsequent iterations find last page of szc region 3627 * immediately to the left of szc region that covered pp 3628 * and first page of (szc + 1) region that covers pp. 3629 * From last to first page change p_szc of every page to szc. 3630 * Increment szc and continue looping until szc is pszc. 3631 * If pp belongs to the fist szc region of (szc + 1) region 3632 * skip to the next iteration. 3633 * 3634 */ 3635 szc = 0; 3636 while (szc < pszc) { 3637 firstpp = PP_GROUPLEADER(pp, (szc + 1)); 3638 if (szc == 0) { 3639 pgcnt = page_get_pagecnt(1); 3640 lastpp = firstpp + (pgcnt - 1); 3641 } else { 3642 lastpp = PP_GROUPLEADER(pp, szc); 3643 if (firstpp == lastpp) { 3644 szc++; 3645 continue; 3646 } 3647 lastpp--; 3648 pgcnt = page_get_pagecnt(szc); 3649 } 3650 while (lastpp != firstpp) { 3651 ASSERT(lastpp->p_szc == pszc); 3652 lastpp->p_szc = szc; 3653 lastpp--; 3654 } 3655 firstpp->p_szc = szc; 3656 if (firstpp == rootpp) 3657 break; 3658 szc++; 3659 } 3660 x86_hm_exit(rootpp); 3661 } 3662 3663 /* 3664 * get hw stats from hardware into page struct and reset hw stats 3665 * returns attributes of page 3666 * Flags for hat_pagesync, hat_getstat, hat_sync 3667 * 3668 * define HAT_SYNC_ZERORM 0x01 3669 * 3670 * Additional flags for hat_pagesync 3671 * 3672 * define HAT_SYNC_STOPON_REF 0x02 3673 * define HAT_SYNC_STOPON_MOD 0x04 3674 * define HAT_SYNC_STOPON_RM 0x06 3675 * define HAT_SYNC_STOPON_SHARED 0x08 3676 */ 3677 uint_t 3678 hat_pagesync(struct page *pp, uint_t flags) 3679 { 3680 hment_t *hm = NULL; 3681 htable_t *ht; 3682 uint_t entry; 3683 x86pte_t old, save_old; 3684 x86pte_t new; 3685 uchar_t nrmbits = P_REF|P_MOD|P_RO; 3686 extern ulong_t po_share; 3687 page_t *save_pp = pp; 3688 uint_t pszc = 0; 3689 3690 ASSERT(PAGE_LOCKED(pp) || panicstr); 3691 3692 if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD)) 3693 return (pp->p_nrm & nrmbits); 3694 3695 if ((flags & HAT_SYNC_ZERORM) == 0) { 3696 3697 if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp)) 3698 return (pp->p_nrm & nrmbits); 3699 3700 if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp)) 3701 return (pp->p_nrm & nrmbits); 3702 3703 if ((flags & HAT_SYNC_STOPON_SHARED) != 0 && 3704 hat_page_getshare(pp) > po_share) { 3705 if (PP_ISRO(pp)) 3706 PP_SETREF(pp); 3707 return (pp->p_nrm & nrmbits); 3708 } 3709 } 3710 3711 XPV_DISALLOW_MIGRATE(); 3712 next_size: 3713 /* 3714 * walk thru the mapping list syncing (and clearing) ref/mod bits. 3715 */ 3716 x86_hm_enter(pp); 3717 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 3718 if (ht->ht_level < pszc) 3719 continue; 3720 old = x86pte_get(ht, entry); 3721 try_again: 3722 3723 ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum); 3724 3725 if (PTE_GET(old, PT_REF | PT_MOD) == 0) 3726 continue; 3727 3728 save_old = old; 3729 if ((flags & HAT_SYNC_ZERORM) != 0) { 3730 3731 /* 3732 * Need to clear ref or mod bits. Need to demap 3733 * to make sure any executing TLBs see cleared bits. 3734 */ 3735 new = old; 3736 PTE_CLR(new, PT_REF | PT_MOD); 3737 old = hati_update_pte(ht, entry, old, new); 3738 if (old != 0) 3739 goto try_again; 3740 3741 old = save_old; 3742 } 3743 3744 /* 3745 * Sync the PTE 3746 */ 3747 if (!(flags & HAT_SYNC_ZERORM) && 3748 PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC) 3749 hati_sync_pte_to_page(pp, old, ht->ht_level); 3750 3751 /* 3752 * can stop short if we found a ref'd or mod'd page 3753 */ 3754 if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) || 3755 (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) { 3756 x86_hm_exit(pp); 3757 goto done; 3758 } 3759 } 3760 x86_hm_exit(pp); 3761 while (pszc < pp->p_szc) { 3762 page_t *tpp; 3763 pszc++; 3764 tpp = PP_GROUPLEADER(pp, pszc); 3765 if (pp != tpp) { 3766 pp = tpp; 3767 goto next_size; 3768 } 3769 } 3770 done: 3771 XPV_ALLOW_MIGRATE(); 3772 return (save_pp->p_nrm & nrmbits); 3773 } 3774 3775 /* 3776 * returns approx number of mappings to this pp. A return of 0 implies 3777 * there are no mappings to the page. 3778 */ 3779 ulong_t 3780 hat_page_getshare(page_t *pp) 3781 { 3782 uint_t cnt; 3783 cnt = hment_mapcnt(pp); 3784 #if defined(__amd64) 3785 if (vpm_enable && pp->p_vpmref) { 3786 cnt += 1; 3787 } 3788 #endif 3789 return (cnt); 3790 } 3791 3792 /* 3793 * Return 1 the number of mappings exceeds sh_thresh. Return 0 3794 * otherwise. 3795 */ 3796 int 3797 hat_page_checkshare(page_t *pp, ulong_t sh_thresh) 3798 { 3799 return (hat_page_getshare(pp) > sh_thresh); 3800 } 3801 3802 /* 3803 * hat_softlock isn't supported anymore 3804 */ 3805 /*ARGSUSED*/ 3806 faultcode_t 3807 hat_softlock( 3808 hat_t *hat, 3809 caddr_t addr, 3810 size_t *len, 3811 struct page **page_array, 3812 uint_t flags) 3813 { 3814 return (FC_NOSUPPORT); 3815 } 3816 3817 3818 3819 /* 3820 * Routine to expose supported HAT features to platform independent code. 3821 */ 3822 /*ARGSUSED*/ 3823 int 3824 hat_supported(enum hat_features feature, void *arg) 3825 { 3826 switch (feature) { 3827 3828 case HAT_SHARED_PT: /* this is really ISM */ 3829 return (1); 3830 3831 case HAT_DYNAMIC_ISM_UNMAP: 3832 return (0); 3833 3834 case HAT_VMODSORT: 3835 return (1); 3836 3837 case HAT_SHARED_REGIONS: 3838 return (0); 3839 3840 default: 3841 panic("hat_supported() - unknown feature"); 3842 } 3843 return (0); 3844 } 3845 3846 /* 3847 * Called when a thread is exiting and has been switched to the kernel AS 3848 */ 3849 void 3850 hat_thread_exit(kthread_t *thd) 3851 { 3852 ASSERT(thd->t_procp->p_as == &kas); 3853 XPV_DISALLOW_MIGRATE(); 3854 hat_switch(thd->t_procp->p_as->a_hat); 3855 XPV_ALLOW_MIGRATE(); 3856 } 3857 3858 /* 3859 * Setup the given brand new hat structure as the new HAT on this cpu's mmu. 3860 */ 3861 /*ARGSUSED*/ 3862 void 3863 hat_setup(hat_t *hat, int flags) 3864 { 3865 XPV_DISALLOW_MIGRATE(); 3866 kpreempt_disable(); 3867 3868 hat_switch(hat); 3869 3870 kpreempt_enable(); 3871 XPV_ALLOW_MIGRATE(); 3872 } 3873 3874 /* 3875 * Prepare for a CPU private mapping for the given address. 3876 * 3877 * The address can only be used from a single CPU and can be remapped 3878 * using hat_mempte_remap(). Return the address of the PTE. 3879 * 3880 * We do the htable_create() if necessary and increment the valid count so 3881 * the htable can't disappear. We also hat_devload() the page table into 3882 * kernel so that the PTE is quickly accessed. 3883 */ 3884 hat_mempte_t 3885 hat_mempte_setup(caddr_t addr) 3886 { 3887 uintptr_t va = (uintptr_t)addr; 3888 htable_t *ht; 3889 uint_t entry; 3890 x86pte_t oldpte; 3891 hat_mempte_t p; 3892 3893 ASSERT(IS_PAGEALIGNED(va)); 3894 ASSERT(!IN_VA_HOLE(va)); 3895 ++curthread->t_hatdepth; 3896 XPV_DISALLOW_MIGRATE(); 3897 ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0); 3898 if (ht == NULL) { 3899 ht = htable_create(kas.a_hat, va, 0, NULL); 3900 entry = htable_va2entry(va, ht); 3901 ASSERT(ht->ht_level == 0); 3902 oldpte = x86pte_get(ht, entry); 3903 } 3904 if (PTE_ISVALID(oldpte)) 3905 panic("hat_mempte_setup(): address already mapped" 3906 "ht=%p, entry=%d, pte=" FMT_PTE, (void *)ht, entry, oldpte); 3907 3908 /* 3909 * increment ht_valid_cnt so that the pagetable can't disappear 3910 */ 3911 HTABLE_INC(ht->ht_valid_cnt); 3912 3913 /* 3914 * return the PTE physical address to the caller. 3915 */ 3916 htable_release(ht); 3917 XPV_ALLOW_MIGRATE(); 3918 p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry); 3919 --curthread->t_hatdepth; 3920 return (p); 3921 } 3922 3923 /* 3924 * Release a CPU private mapping for the given address. 3925 * We decrement the htable valid count so it might be destroyed. 3926 */ 3927 /*ARGSUSED1*/ 3928 void 3929 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa) 3930 { 3931 htable_t *ht; 3932 3933 XPV_DISALLOW_MIGRATE(); 3934 /* 3935 * invalidate any left over mapping and decrement the htable valid count 3936 */ 3937 #ifdef __xpv 3938 if (HYPERVISOR_update_va_mapping((uintptr_t)addr, 0, 3939 UVMF_INVLPG | UVMF_LOCAL)) 3940 panic("HYPERVISOR_update_va_mapping() failed"); 3941 #else 3942 { 3943 x86pte_t *pteptr; 3944 3945 pteptr = x86pte_mapin(mmu_btop(pte_pa), 3946 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 3947 if (mmu.pae_hat) 3948 *pteptr = 0; 3949 else 3950 *(x86pte32_t *)pteptr = 0; 3951 mmu_tlbflush_entry(addr); 3952 x86pte_mapout(); 3953 } 3954 #endif 3955 3956 ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0); 3957 if (ht == NULL) 3958 panic("hat_mempte_release(): invalid address"); 3959 ASSERT(ht->ht_level == 0); 3960 HTABLE_DEC(ht->ht_valid_cnt); 3961 htable_release(ht); 3962 XPV_ALLOW_MIGRATE(); 3963 } 3964 3965 /* 3966 * Apply a temporary CPU private mapping to a page. We flush the TLB only 3967 * on this CPU, so this ought to have been called with preemption disabled. 3968 */ 3969 void 3970 hat_mempte_remap( 3971 pfn_t pfn, 3972 caddr_t addr, 3973 hat_mempte_t pte_pa, 3974 uint_t attr, 3975 uint_t flags) 3976 { 3977 uintptr_t va = (uintptr_t)addr; 3978 x86pte_t pte; 3979 3980 /* 3981 * Remap the given PTE to the new page's PFN. Invalidate only 3982 * on this CPU. 3983 */ 3984 #ifdef DEBUG 3985 htable_t *ht; 3986 uint_t entry; 3987 3988 ASSERT(IS_PAGEALIGNED(va)); 3989 ASSERT(!IN_VA_HOLE(va)); 3990 ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0); 3991 ASSERT(ht != NULL); 3992 ASSERT(ht->ht_level == 0); 3993 ASSERT(ht->ht_valid_cnt > 0); 3994 ASSERT(ht->ht_pfn == mmu_btop(pte_pa)); 3995 htable_release(ht); 3996 #endif 3997 XPV_DISALLOW_MIGRATE(); 3998 pte = hati_mkpte(pfn, attr, 0, flags); 3999 #ifdef __xpv 4000 if (HYPERVISOR_update_va_mapping(va, pte, UVMF_INVLPG | UVMF_LOCAL)) 4001 panic("HYPERVISOR_update_va_mapping() failed"); 4002 #else 4003 { 4004 x86pte_t *pteptr; 4005 4006 pteptr = x86pte_mapin(mmu_btop(pte_pa), 4007 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 4008 if (mmu.pae_hat) 4009 *(x86pte_t *)pteptr = pte; 4010 else 4011 *(x86pte32_t *)pteptr = (x86pte32_t)pte; 4012 mmu_tlbflush_entry(addr); 4013 x86pte_mapout(); 4014 } 4015 #endif 4016 XPV_ALLOW_MIGRATE(); 4017 } 4018 4019 4020 4021 /* 4022 * Hat locking functions 4023 * XXX - these two functions are currently being used by hatstats 4024 * they can be removed by using a per-as mutex for hatstats. 4025 */ 4026 void 4027 hat_enter(hat_t *hat) 4028 { 4029 mutex_enter(&hat->hat_mutex); 4030 } 4031 4032 void 4033 hat_exit(hat_t *hat) 4034 { 4035 mutex_exit(&hat->hat_mutex); 4036 } 4037 4038 /* 4039 * HAT part of cpu initialization. 4040 */ 4041 void 4042 hat_cpu_online(struct cpu *cpup) 4043 { 4044 if (cpup != CPU) { 4045 x86pte_cpu_init(cpup); 4046 hat_vlp_setup(cpup); 4047 } 4048 CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id); 4049 } 4050 4051 /* 4052 * HAT part of cpu deletion. 4053 * (currently, we only call this after the cpu is safely passivated.) 4054 */ 4055 void 4056 hat_cpu_offline(struct cpu *cpup) 4057 { 4058 ASSERT(cpup != CPU); 4059 4060 CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id); 4061 hat_vlp_teardown(cpup); 4062 x86pte_cpu_fini(cpup); 4063 } 4064 4065 /* 4066 * Function called after all CPUs are brought online. 4067 * Used to remove low address boot mappings. 4068 */ 4069 void 4070 clear_boot_mappings(uintptr_t low, uintptr_t high) 4071 { 4072 uintptr_t vaddr = low; 4073 htable_t *ht = NULL; 4074 level_t level; 4075 uint_t entry; 4076 x86pte_t pte; 4077 4078 /* 4079 * On 1st CPU we can unload the prom mappings, basically we blow away 4080 * all virtual mappings under _userlimit. 4081 */ 4082 while (vaddr < high) { 4083 pte = htable_walk(kas.a_hat, &ht, &vaddr, high); 4084 if (ht == NULL) 4085 break; 4086 4087 level = ht->ht_level; 4088 entry = htable_va2entry(vaddr, ht); 4089 ASSERT(level <= mmu.max_page_level); 4090 ASSERT(PTE_ISPAGE(pte, level)); 4091 4092 /* 4093 * Unload the mapping from the page tables. 4094 */ 4095 (void) x86pte_inval(ht, entry, 0, NULL); 4096 ASSERT(ht->ht_valid_cnt > 0); 4097 HTABLE_DEC(ht->ht_valid_cnt); 4098 PGCNT_DEC(ht->ht_hat, ht->ht_level); 4099 4100 vaddr += LEVEL_SIZE(ht->ht_level); 4101 } 4102 if (ht) 4103 htable_release(ht); 4104 } 4105 4106 /* 4107 * Atomically update a new translation for a single page. If the 4108 * currently installed PTE doesn't match the value we expect to find, 4109 * it's not updated and we return the PTE we found. 4110 * 4111 * If activating nosync or NOWRITE and the page was modified we need to sync 4112 * with the page_t. Also sync with page_t if clearing ref/mod bits. 4113 */ 4114 static x86pte_t 4115 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new) 4116 { 4117 page_t *pp; 4118 uint_t rm = 0; 4119 x86pte_t replaced; 4120 4121 if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC && 4122 PTE_GET(expected, PT_MOD | PT_REF) && 4123 (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) || 4124 !PTE_GET(new, PT_MOD | PT_REF))) { 4125 4126 ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level))); 4127 pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level)); 4128 ASSERT(pp != NULL); 4129 if (PTE_GET(expected, PT_MOD)) 4130 rm |= P_MOD; 4131 if (PTE_GET(expected, PT_REF)) 4132 rm |= P_REF; 4133 PTE_CLR(new, PT_MOD | PT_REF); 4134 } 4135 4136 replaced = x86pte_update(ht, entry, expected, new); 4137 if (replaced != expected) 4138 return (replaced); 4139 4140 if (rm) { 4141 /* 4142 * sync to all constituent pages of a large page 4143 */ 4144 pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level); 4145 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 4146 while (pgcnt-- > 0) { 4147 /* 4148 * hat_page_demote() can't decrease 4149 * pszc below this mapping size 4150 * since large mapping existed after we 4151 * took mlist lock. 4152 */ 4153 ASSERT(pp->p_szc >= ht->ht_level); 4154 hat_page_setattr(pp, rm); 4155 ++pp; 4156 } 4157 } 4158 4159 return (0); 4160 } 4161 4162 /* ARGSUSED */ 4163 void 4164 hat_join_srd(struct hat *hat, vnode_t *evp) 4165 { 4166 } 4167 4168 /* ARGSUSED */ 4169 hat_region_cookie_t 4170 hat_join_region(struct hat *hat, 4171 caddr_t r_saddr, 4172 size_t r_size, 4173 void *r_obj, 4174 u_offset_t r_objoff, 4175 uchar_t r_perm, 4176 uchar_t r_pgszc, 4177 hat_rgn_cb_func_t r_cb_function, 4178 uint_t flags) 4179 { 4180 panic("No shared region support on x86"); 4181 return (HAT_INVALID_REGION_COOKIE); 4182 } 4183 4184 /* ARGSUSED */ 4185 void 4186 hat_leave_region(struct hat *hat, hat_region_cookie_t rcookie, uint_t flags) 4187 { 4188 panic("No shared region support on x86"); 4189 } 4190 4191 /* ARGSUSED */ 4192 void 4193 hat_dup_region(struct hat *hat, hat_region_cookie_t rcookie) 4194 { 4195 panic("No shared region support on x86"); 4196 } 4197 4198 4199 /* 4200 * Kernel Physical Mapping (kpm) facility 4201 * 4202 * Most of the routines needed to support segkpm are almost no-ops on the 4203 * x86 platform. We map in the entire segment when it is created and leave 4204 * it mapped in, so there is no additional work required to set up and tear 4205 * down individual mappings. All of these routines were created to support 4206 * SPARC platforms that have to avoid aliasing in their virtually indexed 4207 * caches. 4208 * 4209 * Most of the routines have sanity checks in them (e.g. verifying that the 4210 * passed-in page is locked). We don't actually care about most of these 4211 * checks on x86, but we leave them in place to identify problems in the 4212 * upper levels. 4213 */ 4214 4215 /* 4216 * Map in a locked page and return the vaddr. 4217 */ 4218 /*ARGSUSED*/ 4219 caddr_t 4220 hat_kpm_mapin(struct page *pp, struct kpme *kpme) 4221 { 4222 caddr_t vaddr; 4223 4224 #ifdef DEBUG 4225 if (kpm_enable == 0) { 4226 cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n"); 4227 return ((caddr_t)NULL); 4228 } 4229 4230 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 4231 cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n"); 4232 return ((caddr_t)NULL); 4233 } 4234 #endif 4235 4236 vaddr = hat_kpm_page2va(pp, 1); 4237 4238 return (vaddr); 4239 } 4240 4241 /* 4242 * Mapout a locked page. 4243 */ 4244 /*ARGSUSED*/ 4245 void 4246 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr) 4247 { 4248 #ifdef DEBUG 4249 if (kpm_enable == 0) { 4250 cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n"); 4251 return; 4252 } 4253 4254 if (IS_KPM_ADDR(vaddr) == 0) { 4255 cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n"); 4256 return; 4257 } 4258 4259 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 4260 cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n"); 4261 return; 4262 } 4263 #endif 4264 } 4265 4266 /* 4267 * hat_kpm_mapin_pfn is used to obtain a kpm mapping for physical 4268 * memory addresses that are not described by a page_t. It can 4269 * also be used for normal pages that are not locked, but beware 4270 * this is dangerous - no locking is performed, so the identity of 4271 * the page could change. hat_kpm_mapin_pfn is not supported when 4272 * vac_colors > 1, because the chosen va depends on the page identity, 4273 * which could change. 4274 * The caller must only pass pfn's for valid physical addresses; violation 4275 * of this rule will cause panic. 4276 */ 4277 caddr_t 4278 hat_kpm_mapin_pfn(pfn_t pfn) 4279 { 4280 caddr_t paddr, vaddr; 4281 4282 if (kpm_enable == 0) 4283 return ((caddr_t)NULL); 4284 4285 paddr = (caddr_t)ptob(pfn); 4286 vaddr = (uintptr_t)kpm_vbase + paddr; 4287 4288 return ((caddr_t)vaddr); 4289 } 4290 4291 /*ARGSUSED*/ 4292 void 4293 hat_kpm_mapout_pfn(pfn_t pfn) 4294 { 4295 /* empty */ 4296 } 4297 4298 /* 4299 * Return the kpm virtual address for a specific pfn 4300 */ 4301 caddr_t 4302 hat_kpm_pfn2va(pfn_t pfn) 4303 { 4304 uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn); 4305 4306 ASSERT(!pfn_is_foreign(pfn)); 4307 return ((caddr_t)vaddr); 4308 } 4309 4310 /* 4311 * Return the kpm virtual address for the page at pp. 4312 */ 4313 /*ARGSUSED*/ 4314 caddr_t 4315 hat_kpm_page2va(struct page *pp, int checkswap) 4316 { 4317 return (hat_kpm_pfn2va(pp->p_pagenum)); 4318 } 4319 4320 /* 4321 * Return the page frame number for the kpm virtual address vaddr. 4322 */ 4323 pfn_t 4324 hat_kpm_va2pfn(caddr_t vaddr) 4325 { 4326 pfn_t pfn; 4327 4328 ASSERT(IS_KPM_ADDR(vaddr)); 4329 4330 pfn = (pfn_t)btop(vaddr - kpm_vbase); 4331 4332 return (pfn); 4333 } 4334 4335 4336 /* 4337 * Return the page for the kpm virtual address vaddr. 4338 */ 4339 page_t * 4340 hat_kpm_vaddr2page(caddr_t vaddr) 4341 { 4342 pfn_t pfn; 4343 4344 ASSERT(IS_KPM_ADDR(vaddr)); 4345 4346 pfn = hat_kpm_va2pfn(vaddr); 4347 4348 return (page_numtopp_nolock(pfn)); 4349 } 4350 4351 /* 4352 * hat_kpm_fault is called from segkpm_fault when we take a page fault on a 4353 * KPM page. This should never happen on x86 4354 */ 4355 int 4356 hat_kpm_fault(hat_t *hat, caddr_t vaddr) 4357 { 4358 panic("pagefault in seg_kpm. hat: 0x%p vaddr: 0x%p", 4359 (void *)hat, (void *)vaddr); 4360 4361 return (0); 4362 } 4363 4364 /*ARGSUSED*/ 4365 void 4366 hat_kpm_mseghash_clear(int nentries) 4367 {} 4368 4369 /*ARGSUSED*/ 4370 void 4371 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp) 4372 {} 4373 4374 #ifndef __xpv 4375 void 4376 hat_kpm_addmem_mseg_update(struct memseg *msp, pgcnt_t nkpmpgs, 4377 offset_t kpm_pages_off) 4378 { 4379 _NOTE(ARGUNUSED(nkpmpgs, kpm_pages_off)); 4380 pfn_t base, end; 4381 4382 /* 4383 * kphysm_add_memory_dynamic() does not set nkpmpgs 4384 * when page_t memory is externally allocated. That 4385 * code must properly calculate nkpmpgs in all cases 4386 * if nkpmpgs needs to be used at some point. 4387 */ 4388 4389 /* 4390 * The meta (page_t) pages for dynamically added memory are allocated 4391 * either from the incoming memory itself or from existing memory. 4392 * In the former case the base of the incoming pages will be different 4393 * than the base of the dynamic segment so call memseg_get_start() to 4394 * get the actual base of the incoming memory for each case. 4395 */ 4396 4397 base = memseg_get_start(msp); 4398 end = msp->pages_end; 4399 4400 hat_devload(kas.a_hat, kpm_vbase + mmu_ptob(base), 4401 mmu_ptob(end - base), base, PROT_READ | PROT_WRITE, 4402 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 4403 } 4404 4405 void 4406 hat_kpm_addmem_mseg_insert(struct memseg *msp) 4407 { 4408 _NOTE(ARGUNUSED(msp)); 4409 } 4410 4411 void 4412 hat_kpm_addmem_memsegs_update(struct memseg *msp) 4413 { 4414 _NOTE(ARGUNUSED(msp)); 4415 } 4416 4417 /* 4418 * Return end of metadata for an already setup memseg. 4419 * X86 platforms don't need per-page meta data to support kpm. 4420 */ 4421 caddr_t 4422 hat_kpm_mseg_reuse(struct memseg *msp) 4423 { 4424 return ((caddr_t)msp->epages); 4425 } 4426 4427 void 4428 hat_kpm_delmem_mseg_update(struct memseg *msp, struct memseg **mspp) 4429 { 4430 _NOTE(ARGUNUSED(msp, mspp)); 4431 ASSERT(0); 4432 } 4433 4434 void 4435 hat_kpm_split_mseg_update(struct memseg *msp, struct memseg **mspp, 4436 struct memseg *lo, struct memseg *mid, struct memseg *hi) 4437 { 4438 _NOTE(ARGUNUSED(msp, mspp, lo, mid, hi)); 4439 ASSERT(0); 4440 } 4441 4442 /* 4443 * Walk the memsegs chain, applying func to each memseg span. 4444 */ 4445 void 4446 hat_kpm_walk(void (*func)(void *, void *, size_t), void *arg) 4447 { 4448 pfn_t pbase, pend; 4449 void *base; 4450 size_t size; 4451 struct memseg *msp; 4452 4453 for (msp = memsegs; msp; msp = msp->next) { 4454 pbase = msp->pages_base; 4455 pend = msp->pages_end; 4456 base = ptob(pbase) + kpm_vbase; 4457 size = ptob(pend - pbase); 4458 func(arg, base, size); 4459 } 4460 } 4461 4462 #else /* __xpv */ 4463 4464 /* 4465 * There are specific Hypervisor calls to establish and remove mappings 4466 * to grant table references and the privcmd driver. We have to ensure 4467 * that a page table actually exists. 4468 */ 4469 void 4470 hat_prepare_mapping(hat_t *hat, caddr_t addr, uint64_t *pte_ma) 4471 { 4472 maddr_t base_ma; 4473 htable_t *ht; 4474 uint_t entry; 4475 4476 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE)); 4477 XPV_DISALLOW_MIGRATE(); 4478 ht = htable_create(hat, (uintptr_t)addr, 0, NULL); 4479 4480 /* 4481 * if an address for pte_ma is passed in, return the MA of the pte 4482 * for this specific address. This address is only valid as long 4483 * as the htable stays locked. 4484 */ 4485 if (pte_ma != NULL) { 4486 entry = htable_va2entry((uintptr_t)addr, ht); 4487 base_ma = pa_to_ma(ptob(ht->ht_pfn)); 4488 *pte_ma = base_ma + (entry << mmu.pte_size_shift); 4489 } 4490 XPV_ALLOW_MIGRATE(); 4491 } 4492 4493 void 4494 hat_release_mapping(hat_t *hat, caddr_t addr) 4495 { 4496 htable_t *ht; 4497 4498 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE)); 4499 XPV_DISALLOW_MIGRATE(); 4500 ht = htable_lookup(hat, (uintptr_t)addr, 0); 4501 ASSERT(ht != NULL); 4502 ASSERT(ht->ht_busy >= 2); 4503 htable_release(ht); 4504 htable_release(ht); 4505 XPV_ALLOW_MIGRATE(); 4506 } 4507 #endif /* __xpv */ 4508