1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright (c) 2010, Intel Corporation. 26 * All rights reserved. 27 */ 28 /* 29 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 30 */ 31 32 /* 33 * VM - Hardware Address Translation management for i386 and amd64 34 * 35 * Implementation of the interfaces described in <common/vm/hat.h> 36 * 37 * Nearly all the details of how the hardware is managed should not be 38 * visible outside this layer except for misc. machine specific functions 39 * that work in conjunction with this code. 40 * 41 * Routines used only inside of i86pc/vm start with hati_ for HAT Internal. 42 */ 43 44 #include <sys/machparam.h> 45 #include <sys/machsystm.h> 46 #include <sys/mman.h> 47 #include <sys/types.h> 48 #include <sys/systm.h> 49 #include <sys/cpuvar.h> 50 #include <sys/thread.h> 51 #include <sys/proc.h> 52 #include <sys/cpu.h> 53 #include <sys/kmem.h> 54 #include <sys/disp.h> 55 #include <sys/shm.h> 56 #include <sys/sysmacros.h> 57 #include <sys/machparam.h> 58 #include <sys/vmem.h> 59 #include <sys/vmsystm.h> 60 #include <sys/promif.h> 61 #include <sys/var.h> 62 #include <sys/x86_archext.h> 63 #include <sys/atomic.h> 64 #include <sys/bitmap.h> 65 #include <sys/controlregs.h> 66 #include <sys/bootconf.h> 67 #include <sys/bootsvcs.h> 68 #include <sys/bootinfo.h> 69 #include <sys/archsystm.h> 70 71 #include <vm/seg_kmem.h> 72 #include <vm/hat_i86.h> 73 #include <vm/as.h> 74 #include <vm/seg.h> 75 #include <vm/page.h> 76 #include <vm/seg_kp.h> 77 #include <vm/seg_kpm.h> 78 #include <vm/vm_dep.h> 79 #ifdef __xpv 80 #include <sys/hypervisor.h> 81 #endif 82 #include <vm/kboot_mmu.h> 83 #include <vm/seg_spt.h> 84 85 #include <sys/cmn_err.h> 86 87 /* 88 * Basic parameters for hat operation. 89 */ 90 struct hat_mmu_info mmu; 91 92 /* 93 * The page that is the kernel's top level pagetable. 94 * 95 * For 32 bit PAE support on i86pc, the kernel hat will use the 1st 4 entries 96 * on this 4K page for its top level page table. The remaining groups of 97 * 4 entries are used for per processor copies of user VLP pagetables for 98 * running threads. See hat_switch() and reload_pae32() for details. 99 * 100 * vlp_page[0..3] - level==2 PTEs for kernel HAT 101 * vlp_page[4..7] - level==2 PTEs for user thread on cpu 0 102 * vlp_page[8..11] - level==2 PTE for user thread on cpu 1 103 * etc... 104 */ 105 static x86pte_t *vlp_page; 106 107 /* 108 * forward declaration of internal utility routines 109 */ 110 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, 111 x86pte_t new); 112 113 /* 114 * The kernel address space exists in all HATs. To implement this the 115 * kernel reserves a fixed number of entries in the topmost level(s) of page 116 * tables. The values are setup during startup and then copied to every user 117 * hat created by hat_alloc(). This means that kernelbase must be: 118 * 119 * 4Meg aligned for 32 bit kernels 120 * 512Gig aligned for x86_64 64 bit kernel 121 * 122 * The hat_kernel_range_ts describe what needs to be copied from kernel hat 123 * to each user hat. 124 */ 125 typedef struct hat_kernel_range { 126 level_t hkr_level; 127 uintptr_t hkr_start_va; 128 uintptr_t hkr_end_va; /* zero means to end of memory */ 129 } hat_kernel_range_t; 130 #define NUM_KERNEL_RANGE 2 131 static hat_kernel_range_t kernel_ranges[NUM_KERNEL_RANGE]; 132 static int num_kernel_ranges; 133 134 uint_t use_boot_reserve = 1; /* cleared after early boot process */ 135 uint_t can_steal_post_boot = 0; /* set late in boot to enable stealing */ 136 137 /* 138 * enable_1gpg: controls 1g page support for user applications. 139 * By default, 1g pages are exported to user applications. enable_1gpg can 140 * be set to 0 to not export. 141 */ 142 int enable_1gpg = 1; 143 144 /* 145 * AMD shanghai processors provide better management of 1gb ptes in its tlb. 146 * By default, 1g page support will be disabled for pre-shanghai AMD 147 * processors that don't have optimal tlb support for the 1g page size. 148 * chk_optimal_1gtlb can be set to 0 to force 1g page support on sub-optimal 149 * processors. 150 */ 151 int chk_optimal_1gtlb = 1; 152 153 154 #ifdef DEBUG 155 uint_t map1gcnt; 156 #endif 157 158 159 /* 160 * A cpuset for all cpus. This is used for kernel address cross calls, since 161 * the kernel addresses apply to all cpus. 162 */ 163 cpuset_t khat_cpuset; 164 165 /* 166 * management stuff for hat structures 167 */ 168 kmutex_t hat_list_lock; 169 kcondvar_t hat_list_cv; 170 kmem_cache_t *hat_cache; 171 kmem_cache_t *hat_hash_cache; 172 kmem_cache_t *vlp_hash_cache; 173 174 /* 175 * Simple statistics 176 */ 177 struct hatstats hatstat; 178 179 /* 180 * Some earlier hypervisor versions do not emulate cmpxchg of PTEs 181 * correctly. For such hypervisors we must set PT_USER for kernel 182 * entries ourselves (normally the emulation would set PT_USER for 183 * kernel entries and PT_USER|PT_GLOBAL for user entries). pt_kern is 184 * thus set appropriately. Note that dboot/kbm is OK, as only the full 185 * HAT uses cmpxchg() and the other paths (hypercall etc.) were never 186 * incorrect. 187 */ 188 int pt_kern; 189 190 /* 191 * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's. 192 */ 193 extern void atomic_orb(uchar_t *addr, uchar_t val); 194 extern void atomic_andb(uchar_t *addr, uchar_t val); 195 196 #ifndef __xpv 197 extern pfn_t memseg_get_start(struct memseg *); 198 #endif 199 200 #define PP_GETRM(pp, rmmask) (pp->p_nrm & rmmask) 201 #define PP_ISMOD(pp) PP_GETRM(pp, P_MOD) 202 #define PP_ISREF(pp) PP_GETRM(pp, P_REF) 203 #define PP_ISRO(pp) PP_GETRM(pp, P_RO) 204 205 #define PP_SETRM(pp, rm) atomic_orb(&(pp->p_nrm), rm) 206 #define PP_SETMOD(pp) PP_SETRM(pp, P_MOD) 207 #define PP_SETREF(pp) PP_SETRM(pp, P_REF) 208 #define PP_SETRO(pp) PP_SETRM(pp, P_RO) 209 210 #define PP_CLRRM(pp, rm) atomic_andb(&(pp->p_nrm), ~(rm)) 211 #define PP_CLRMOD(pp) PP_CLRRM(pp, P_MOD) 212 #define PP_CLRREF(pp) PP_CLRRM(pp, P_REF) 213 #define PP_CLRRO(pp) PP_CLRRM(pp, P_RO) 214 #define PP_CLRALL(pp) PP_CLRRM(pp, P_MOD | P_REF | P_RO) 215 216 /* 217 * kmem cache constructor for struct hat 218 */ 219 /*ARGSUSED*/ 220 static int 221 hati_constructor(void *buf, void *handle, int kmflags) 222 { 223 hat_t *hat = buf; 224 225 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 226 bzero(hat->hat_pages_mapped, 227 sizeof (pgcnt_t) * (mmu.max_page_level + 1)); 228 hat->hat_ism_pgcnt = 0; 229 hat->hat_stats = 0; 230 hat->hat_flags = 0; 231 CPUSET_ZERO(hat->hat_cpus); 232 hat->hat_htable = NULL; 233 hat->hat_ht_hash = NULL; 234 return (0); 235 } 236 237 /* 238 * Allocate a hat structure for as. We also create the top level 239 * htable and initialize it to contain the kernel hat entries. 240 */ 241 hat_t * 242 hat_alloc(struct as *as) 243 { 244 hat_t *hat; 245 htable_t *ht; /* top level htable */ 246 uint_t use_vlp; 247 uint_t r; 248 hat_kernel_range_t *rp; 249 uintptr_t va; 250 uintptr_t eva; 251 uint_t start; 252 uint_t cnt; 253 htable_t *src; 254 255 /* 256 * Once we start creating user process HATs we can enable 257 * the htable_steal() code. 258 */ 259 if (can_steal_post_boot == 0) 260 can_steal_post_boot = 1; 261 262 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 263 hat = kmem_cache_alloc(hat_cache, KM_SLEEP); 264 hat->hat_as = as; 265 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 266 ASSERT(hat->hat_flags == 0); 267 268 #if defined(__xpv) 269 /* 270 * No VLP stuff on the hypervisor due to the 64-bit split top level 271 * page tables. On 32-bit it's not needed as the hypervisor takes 272 * care of copying the top level PTEs to a below 4Gig page. 273 */ 274 use_vlp = 0; 275 #else /* __xpv */ 276 /* 32 bit processes uses a VLP style hat when running with PAE */ 277 #if defined(__amd64) 278 use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32); 279 #elif defined(__i386) 280 use_vlp = mmu.pae_hat; 281 #endif 282 #endif /* __xpv */ 283 if (use_vlp) { 284 hat->hat_flags = HAT_VLP; 285 bzero(hat->hat_vlp_ptes, VLP_SIZE); 286 } 287 288 /* 289 * Allocate the htable hash 290 */ 291 if ((hat->hat_flags & HAT_VLP)) { 292 hat->hat_num_hash = mmu.vlp_hash_cnt; 293 hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP); 294 } else { 295 hat->hat_num_hash = mmu.hash_cnt; 296 hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP); 297 } 298 bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *)); 299 300 /* 301 * Initialize Kernel HAT entries at the top of the top level page 302 * tables for the new hat. 303 */ 304 hat->hat_htable = NULL; 305 hat->hat_ht_cached = NULL; 306 XPV_DISALLOW_MIGRATE(); 307 ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL); 308 hat->hat_htable = ht; 309 310 #if defined(__amd64) 311 if (hat->hat_flags & HAT_VLP) 312 goto init_done; 313 #endif 314 315 for (r = 0; r < num_kernel_ranges; ++r) { 316 rp = &kernel_ranges[r]; 317 for (va = rp->hkr_start_va; va != rp->hkr_end_va; 318 va += cnt * LEVEL_SIZE(rp->hkr_level)) { 319 320 if (rp->hkr_level == TOP_LEVEL(hat)) 321 ht = hat->hat_htable; 322 else 323 ht = htable_create(hat, va, rp->hkr_level, 324 NULL); 325 326 start = htable_va2entry(va, ht); 327 cnt = HTABLE_NUM_PTES(ht) - start; 328 eva = va + 329 ((uintptr_t)cnt << LEVEL_SHIFT(rp->hkr_level)); 330 if (rp->hkr_end_va != 0 && 331 (eva > rp->hkr_end_va || eva == 0)) 332 cnt = htable_va2entry(rp->hkr_end_va, ht) - 333 start; 334 335 #if defined(__i386) && !defined(__xpv) 336 if (ht->ht_flags & HTABLE_VLP) { 337 bcopy(&vlp_page[start], 338 &hat->hat_vlp_ptes[start], 339 cnt * sizeof (x86pte_t)); 340 continue; 341 } 342 #endif 343 src = htable_lookup(kas.a_hat, va, rp->hkr_level); 344 ASSERT(src != NULL); 345 x86pte_copy(src, ht, start, cnt); 346 htable_release(src); 347 } 348 } 349 350 init_done: 351 352 #if defined(__xpv) 353 /* 354 * Pin top level page tables after initializing them 355 */ 356 xen_pin(hat->hat_htable->ht_pfn, mmu.max_level); 357 #if defined(__amd64) 358 xen_pin(hat->hat_user_ptable, mmu.max_level); 359 #endif 360 #endif 361 XPV_ALLOW_MIGRATE(); 362 363 /* 364 * Put it at the start of the global list of all hats (used by stealing) 365 * 366 * kas.a_hat is not in the list but is instead used to find the 367 * first and last items in the list. 368 * 369 * - kas.a_hat->hat_next points to the start of the user hats. 370 * The list ends where hat->hat_next == NULL 371 * 372 * - kas.a_hat->hat_prev points to the last of the user hats. 373 * The list begins where hat->hat_prev == NULL 374 */ 375 mutex_enter(&hat_list_lock); 376 hat->hat_prev = NULL; 377 hat->hat_next = kas.a_hat->hat_next; 378 if (hat->hat_next) 379 hat->hat_next->hat_prev = hat; 380 else 381 kas.a_hat->hat_prev = hat; 382 kas.a_hat->hat_next = hat; 383 mutex_exit(&hat_list_lock); 384 385 return (hat); 386 } 387 388 /* 389 * process has finished executing but as has not been cleaned up yet. 390 */ 391 /*ARGSUSED*/ 392 void 393 hat_free_start(hat_t *hat) 394 { 395 ASSERT(AS_WRITE_HELD(hat->hat_as, &hat->hat_as->a_lock)); 396 397 /* 398 * If the hat is currently a stealing victim, wait for the stealing 399 * to finish. Once we mark it as HAT_FREEING, htable_steal() 400 * won't look at its pagetables anymore. 401 */ 402 mutex_enter(&hat_list_lock); 403 while (hat->hat_flags & HAT_VICTIM) 404 cv_wait(&hat_list_cv, &hat_list_lock); 405 hat->hat_flags |= HAT_FREEING; 406 mutex_exit(&hat_list_lock); 407 } 408 409 /* 410 * An address space is being destroyed, so we destroy the associated hat. 411 */ 412 void 413 hat_free_end(hat_t *hat) 414 { 415 kmem_cache_t *cache; 416 417 ASSERT(hat->hat_flags & HAT_FREEING); 418 419 /* 420 * must not be running on the given hat 421 */ 422 ASSERT(CPU->cpu_current_hat != hat); 423 424 /* 425 * Remove it from the list of HATs 426 */ 427 mutex_enter(&hat_list_lock); 428 if (hat->hat_prev) 429 hat->hat_prev->hat_next = hat->hat_next; 430 else 431 kas.a_hat->hat_next = hat->hat_next; 432 if (hat->hat_next) 433 hat->hat_next->hat_prev = hat->hat_prev; 434 else 435 kas.a_hat->hat_prev = hat->hat_prev; 436 mutex_exit(&hat_list_lock); 437 hat->hat_next = hat->hat_prev = NULL; 438 439 #if defined(__xpv) 440 /* 441 * On the hypervisor, unpin top level page table(s) 442 */ 443 xen_unpin(hat->hat_htable->ht_pfn); 444 #if defined(__amd64) 445 xen_unpin(hat->hat_user_ptable); 446 #endif 447 #endif 448 449 /* 450 * Make a pass through the htables freeing them all up. 451 */ 452 htable_purge_hat(hat); 453 454 /* 455 * Decide which kmem cache the hash table came from, then free it. 456 */ 457 if (hat->hat_flags & HAT_VLP) 458 cache = vlp_hash_cache; 459 else 460 cache = hat_hash_cache; 461 kmem_cache_free(cache, hat->hat_ht_hash); 462 hat->hat_ht_hash = NULL; 463 464 hat->hat_flags = 0; 465 kmem_cache_free(hat_cache, hat); 466 } 467 468 /* 469 * round kernelbase down to a supported value to use for _userlimit 470 * 471 * userlimit must be aligned down to an entry in the top level htable. 472 * The one exception is for 32 bit HAT's running PAE. 473 */ 474 uintptr_t 475 hat_kernelbase(uintptr_t va) 476 { 477 #if defined(__i386) 478 va &= LEVEL_MASK(1); 479 #endif 480 if (IN_VA_HOLE(va)) 481 panic("_userlimit %p will fall in VA hole\n", (void *)va); 482 return (va); 483 } 484 485 /* 486 * 487 */ 488 static void 489 set_max_page_level() 490 { 491 level_t lvl; 492 493 if (!kbm_largepage_support) { 494 lvl = 0; 495 } else { 496 if (is_x86_feature(x86_featureset, X86FSET_1GPG)) { 497 lvl = 2; 498 if (chk_optimal_1gtlb && 499 cpuid_opteron_erratum(CPU, 6671130)) { 500 lvl = 1; 501 } 502 if (plat_mnode_xcheck(LEVEL_SIZE(2) >> 503 LEVEL_SHIFT(0))) { 504 lvl = 1; 505 } 506 } else { 507 lvl = 1; 508 } 509 } 510 mmu.max_page_level = lvl; 511 512 if ((lvl == 2) && (enable_1gpg == 0)) 513 mmu.umax_page_level = 1; 514 else 515 mmu.umax_page_level = lvl; 516 } 517 518 /* 519 * Initialize hat data structures based on processor MMU information. 520 */ 521 void 522 mmu_init(void) 523 { 524 uint_t max_htables; 525 uint_t pa_bits; 526 uint_t va_bits; 527 int i; 528 529 /* 530 * If CPU enabled the page table global bit, use it for the kernel 531 * This is bit 7 in CR4 (PGE - Page Global Enable). 532 */ 533 if (is_x86_feature(x86_featureset, X86FSET_PGE) && 534 (getcr4() & CR4_PGE) != 0) 535 mmu.pt_global = PT_GLOBAL; 536 537 /* 538 * Detect NX and PAE usage. 539 */ 540 mmu.pae_hat = kbm_pae_support; 541 if (kbm_nx_support) 542 mmu.pt_nx = PT_NX; 543 else 544 mmu.pt_nx = 0; 545 546 /* 547 * Use CPU info to set various MMU parameters 548 */ 549 cpuid_get_addrsize(CPU, &pa_bits, &va_bits); 550 551 if (va_bits < sizeof (void *) * NBBY) { 552 mmu.hole_start = (1ul << (va_bits - 1)); 553 mmu.hole_end = 0ul - mmu.hole_start - 1; 554 } else { 555 mmu.hole_end = 0; 556 mmu.hole_start = mmu.hole_end - 1; 557 } 558 #if defined(OPTERON_ERRATUM_121) 559 /* 560 * If erratum 121 has already been detected at this time, hole_start 561 * contains the value to be subtracted from mmu.hole_start. 562 */ 563 ASSERT(hole_start == 0 || opteron_erratum_121 != 0); 564 hole_start = mmu.hole_start - hole_start; 565 #else 566 hole_start = mmu.hole_start; 567 #endif 568 hole_end = mmu.hole_end; 569 570 mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1); 571 if (mmu.pae_hat == 0 && pa_bits > 32) 572 mmu.highest_pfn = PFN_4G - 1; 573 574 if (mmu.pae_hat) { 575 mmu.pte_size = 8; /* 8 byte PTEs */ 576 mmu.pte_size_shift = 3; 577 } else { 578 mmu.pte_size = 4; /* 4 byte PTEs */ 579 mmu.pte_size_shift = 2; 580 } 581 582 if (mmu.pae_hat && !is_x86_feature(x86_featureset, X86FSET_PAE)) 583 panic("Processor does not support PAE"); 584 585 if (!is_x86_feature(x86_featureset, X86FSET_CX8)) 586 panic("Processor does not support cmpxchg8b instruction"); 587 588 #if defined(__amd64) 589 590 mmu.num_level = 4; 591 mmu.max_level = 3; 592 mmu.ptes_per_table = 512; 593 mmu.top_level_count = 512; 594 595 mmu.level_shift[0] = 12; 596 mmu.level_shift[1] = 21; 597 mmu.level_shift[2] = 30; 598 mmu.level_shift[3] = 39; 599 600 #elif defined(__i386) 601 602 if (mmu.pae_hat) { 603 mmu.num_level = 3; 604 mmu.max_level = 2; 605 mmu.ptes_per_table = 512; 606 mmu.top_level_count = 4; 607 608 mmu.level_shift[0] = 12; 609 mmu.level_shift[1] = 21; 610 mmu.level_shift[2] = 30; 611 612 } else { 613 mmu.num_level = 2; 614 mmu.max_level = 1; 615 mmu.ptes_per_table = 1024; 616 mmu.top_level_count = 1024; 617 618 mmu.level_shift[0] = 12; 619 mmu.level_shift[1] = 22; 620 } 621 622 #endif /* __i386 */ 623 624 for (i = 0; i < mmu.num_level; ++i) { 625 mmu.level_size[i] = 1UL << mmu.level_shift[i]; 626 mmu.level_offset[i] = mmu.level_size[i] - 1; 627 mmu.level_mask[i] = ~mmu.level_offset[i]; 628 } 629 630 set_max_page_level(); 631 632 mmu_page_sizes = mmu.max_page_level + 1; 633 mmu_exported_page_sizes = mmu.umax_page_level + 1; 634 635 /* restrict legacy applications from using pagesizes 1g and above */ 636 mmu_legacy_page_sizes = 637 (mmu_exported_page_sizes > 2) ? 2 : mmu_exported_page_sizes; 638 639 640 for (i = 0; i <= mmu.max_page_level; ++i) { 641 mmu.pte_bits[i] = PT_VALID | pt_kern; 642 if (i > 0) 643 mmu.pte_bits[i] |= PT_PAGESIZE; 644 } 645 646 /* 647 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level. 648 */ 649 for (i = 1; i < mmu.num_level; ++i) 650 mmu.ptp_bits[i] = PT_PTPBITS; 651 652 #if defined(__i386) 653 mmu.ptp_bits[2] = PT_VALID; 654 #endif 655 656 /* 657 * Compute how many hash table entries to have per process for htables. 658 * We start with 1 page's worth of entries. 659 * 660 * If physical memory is small, reduce the amount need to cover it. 661 */ 662 max_htables = physmax / mmu.ptes_per_table; 663 mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *); 664 while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables) 665 mmu.hash_cnt >>= 1; 666 mmu.vlp_hash_cnt = mmu.hash_cnt; 667 668 #if defined(__amd64) 669 /* 670 * If running in 64 bits and physical memory is large, 671 * increase the size of the cache to cover all of memory for 672 * a 64 bit process. 673 */ 674 #define HASH_MAX_LENGTH 4 675 while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables) 676 mmu.hash_cnt <<= 1; 677 #endif 678 } 679 680 681 /* 682 * initialize hat data structures 683 */ 684 void 685 hat_init() 686 { 687 #if defined(__i386) 688 /* 689 * _userlimit must be aligned correctly 690 */ 691 if ((_userlimit & LEVEL_MASK(1)) != _userlimit) { 692 prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n", 693 (void *)_userlimit, (void *)LEVEL_SIZE(1)); 694 halt("hat_init(): Unable to continue"); 695 } 696 #endif 697 698 cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL); 699 700 /* 701 * initialize kmem caches 702 */ 703 htable_init(); 704 hment_init(); 705 706 hat_cache = kmem_cache_create("hat_t", 707 sizeof (hat_t), 0, hati_constructor, NULL, NULL, 708 NULL, 0, 0); 709 710 hat_hash_cache = kmem_cache_create("HatHash", 711 mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 712 NULL, 0, 0); 713 714 /* 715 * VLP hats can use a smaller hash table size on large memroy machines 716 */ 717 if (mmu.hash_cnt == mmu.vlp_hash_cnt) { 718 vlp_hash_cache = hat_hash_cache; 719 } else { 720 vlp_hash_cache = kmem_cache_create("HatVlpHash", 721 mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 722 NULL, 0, 0); 723 } 724 725 /* 726 * Set up the kernel's hat 727 */ 728 AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER); 729 kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP); 730 mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 731 kas.a_hat->hat_as = &kas; 732 kas.a_hat->hat_flags = 0; 733 AS_LOCK_EXIT(&kas, &kas.a_lock); 734 735 CPUSET_ZERO(khat_cpuset); 736 CPUSET_ADD(khat_cpuset, CPU->cpu_id); 737 738 /* 739 * The kernel hat's next pointer serves as the head of the hat list . 740 * The kernel hat's prev pointer tracks the last hat on the list for 741 * htable_steal() to use. 742 */ 743 kas.a_hat->hat_next = NULL; 744 kas.a_hat->hat_prev = NULL; 745 746 /* 747 * Allocate an htable hash bucket for the kernel 748 * XX64 - tune for 64 bit procs 749 */ 750 kas.a_hat->hat_num_hash = mmu.hash_cnt; 751 kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP); 752 bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *)); 753 754 /* 755 * zero out the top level and cached htable pointers 756 */ 757 kas.a_hat->hat_ht_cached = NULL; 758 kas.a_hat->hat_htable = NULL; 759 760 /* 761 * Pre-allocate hrm_hashtab before enabling the collection of 762 * refmod statistics. Allocating on the fly would mean us 763 * running the risk of suffering recursive mutex enters or 764 * deadlocks. 765 */ 766 hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *), 767 KM_SLEEP); 768 } 769 770 /* 771 * Prepare CPU specific pagetables for VLP processes on 64 bit kernels. 772 * 773 * Each CPU has a set of 2 pagetables that are reused for any 32 bit 774 * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and 775 * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes. 776 */ 777 /*ARGSUSED*/ 778 static void 779 hat_vlp_setup(struct cpu *cpu) 780 { 781 #if defined(__amd64) && !defined(__xpv) 782 struct hat_cpu_info *hci = cpu->cpu_hat_info; 783 pfn_t pfn; 784 785 /* 786 * allocate the level==2 page table for the bottom most 787 * 512Gig of address space (this is where 32 bit apps live) 788 */ 789 ASSERT(hci != NULL); 790 hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 791 792 /* 793 * Allocate a top level pagetable and copy the kernel's 794 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry. 795 */ 796 hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 797 hci->hci_vlp_pfn = 798 hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes); 799 ASSERT(hci->hci_vlp_pfn != PFN_INVALID); 800 bcopy(vlp_page, hci->hci_vlp_l3ptes, MMU_PAGESIZE); 801 802 pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes); 803 ASSERT(pfn != PFN_INVALID); 804 hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2); 805 #endif /* __amd64 && !__xpv */ 806 } 807 808 /*ARGSUSED*/ 809 static void 810 hat_vlp_teardown(cpu_t *cpu) 811 { 812 #if defined(__amd64) && !defined(__xpv) 813 struct hat_cpu_info *hci; 814 815 if ((hci = cpu->cpu_hat_info) == NULL) 816 return; 817 if (hci->hci_vlp_l2ptes) 818 kmem_free(hci->hci_vlp_l2ptes, MMU_PAGESIZE); 819 if (hci->hci_vlp_l3ptes) 820 kmem_free(hci->hci_vlp_l3ptes, MMU_PAGESIZE); 821 #endif 822 } 823 824 #define NEXT_HKR(r, l, s, e) { \ 825 kernel_ranges[r].hkr_level = l; \ 826 kernel_ranges[r].hkr_start_va = s; \ 827 kernel_ranges[r].hkr_end_va = e; \ 828 ++r; \ 829 } 830 831 /* 832 * Finish filling in the kernel hat. 833 * Pre fill in all top level kernel page table entries for the kernel's 834 * part of the address range. From this point on we can't use any new 835 * kernel large pages if they need PTE's at max_level 836 * 837 * create the kmap mappings. 838 */ 839 void 840 hat_init_finish(void) 841 { 842 size_t size; 843 uint_t r = 0; 844 uintptr_t va; 845 hat_kernel_range_t *rp; 846 847 848 /* 849 * We are now effectively running on the kernel hat. 850 * Clearing use_boot_reserve shuts off using the pre-allocated boot 851 * reserve for all HAT allocations. From here on, the reserves are 852 * only used when avoiding recursion in kmem_alloc(). 853 */ 854 use_boot_reserve = 0; 855 htable_adjust_reserve(); 856 857 /* 858 * User HATs are initialized with copies of all kernel mappings in 859 * higher level page tables. Ensure that those entries exist. 860 */ 861 #if defined(__amd64) 862 863 NEXT_HKR(r, 3, kernelbase, 0); 864 #if defined(__xpv) 865 NEXT_HKR(r, 3, HYPERVISOR_VIRT_START, HYPERVISOR_VIRT_END); 866 #endif 867 868 #elif defined(__i386) 869 870 #if !defined(__xpv) 871 if (mmu.pae_hat) { 872 va = kernelbase; 873 if ((va & LEVEL_MASK(2)) != va) { 874 va = P2ROUNDUP(va, LEVEL_SIZE(2)); 875 NEXT_HKR(r, 1, kernelbase, va); 876 } 877 if (va != 0) 878 NEXT_HKR(r, 2, va, 0); 879 } else 880 #endif /* __xpv */ 881 NEXT_HKR(r, 1, kernelbase, 0); 882 883 #endif /* __i386 */ 884 885 num_kernel_ranges = r; 886 887 /* 888 * Create all the kernel pagetables that will have entries 889 * shared to user HATs. 890 */ 891 for (r = 0; r < num_kernel_ranges; ++r) { 892 rp = &kernel_ranges[r]; 893 for (va = rp->hkr_start_va; va != rp->hkr_end_va; 894 va += LEVEL_SIZE(rp->hkr_level)) { 895 htable_t *ht; 896 897 if (IN_HYPERVISOR_VA(va)) 898 continue; 899 900 /* can/must skip if a page mapping already exists */ 901 if (rp->hkr_level <= mmu.max_page_level && 902 (ht = htable_getpage(kas.a_hat, va, NULL)) != 903 NULL) { 904 htable_release(ht); 905 continue; 906 } 907 908 (void) htable_create(kas.a_hat, va, rp->hkr_level - 1, 909 NULL); 910 } 911 } 912 913 /* 914 * 32 bit PAE metal kernels use only 4 of the 512 entries in the 915 * page holding the top level pagetable. We use the remainder for 916 * the "per CPU" page tables for VLP processes. 917 * Map the top level kernel pagetable into the kernel to make 918 * it easy to use bcopy access these tables. 919 */ 920 if (mmu.pae_hat) { 921 vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP); 922 hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE, 923 kas.a_hat->hat_htable->ht_pfn, 924 #if !defined(__xpv) 925 PROT_WRITE | 926 #endif 927 PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK, 928 HAT_LOAD | HAT_LOAD_NOCONSIST); 929 } 930 hat_vlp_setup(CPU); 931 932 /* 933 * Create kmap (cached mappings of kernel PTEs) 934 * for 32 bit we map from segmap_start .. ekernelheap 935 * for 64 bit we map from segmap_start .. segmap_start + segmapsize; 936 */ 937 #if defined(__i386) 938 size = (uintptr_t)ekernelheap - segmap_start; 939 #elif defined(__amd64) 940 size = segmapsize; 941 #endif 942 hat_kmap_init((uintptr_t)segmap_start, size); 943 } 944 945 /* 946 * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references 947 * are 32 bit, so for safety we must use atomic_cas_64() to install these. 948 */ 949 #ifdef __i386 950 static void 951 reload_pae32(hat_t *hat, cpu_t *cpu) 952 { 953 x86pte_t *src; 954 x86pte_t *dest; 955 x86pte_t pte; 956 int i; 957 958 /* 959 * Load the 4 entries of the level 2 page table into this 960 * cpu's range of the vlp_page and point cr3 at them. 961 */ 962 ASSERT(mmu.pae_hat); 963 src = hat->hat_vlp_ptes; 964 dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES; 965 for (i = 0; i < VLP_NUM_PTES; ++i) { 966 for (;;) { 967 pte = dest[i]; 968 if (pte == src[i]) 969 break; 970 if (atomic_cas_64(dest + i, pte, src[i]) != src[i]) 971 break; 972 } 973 } 974 } 975 #endif 976 977 /* 978 * Switch to a new active hat, maintaining bit masks to track active CPUs. 979 * 980 * On the 32-bit PAE hypervisor, %cr3 is a 64-bit value, on metal it 981 * remains a 32-bit value. 982 */ 983 void 984 hat_switch(hat_t *hat) 985 { 986 uint64_t newcr3; 987 cpu_t *cpu = CPU; 988 hat_t *old = cpu->cpu_current_hat; 989 990 /* 991 * set up this information first, so we don't miss any cross calls 992 */ 993 if (old != NULL) { 994 if (old == hat) 995 return; 996 if (old != kas.a_hat) 997 CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id); 998 } 999 1000 /* 1001 * Add this CPU to the active set for this HAT. 1002 */ 1003 if (hat != kas.a_hat) { 1004 CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id); 1005 } 1006 cpu->cpu_current_hat = hat; 1007 1008 /* 1009 * now go ahead and load cr3 1010 */ 1011 if (hat->hat_flags & HAT_VLP) { 1012 #if defined(__amd64) 1013 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes; 1014 1015 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1016 newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn); 1017 #elif defined(__i386) 1018 reload_pae32(hat, cpu); 1019 newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) + 1020 (cpu->cpu_id + 1) * VLP_SIZE; 1021 #endif 1022 } else { 1023 newcr3 = MAKECR3((uint64_t)hat->hat_htable->ht_pfn); 1024 } 1025 #ifdef __xpv 1026 { 1027 struct mmuext_op t[2]; 1028 uint_t retcnt; 1029 uint_t opcnt = 1; 1030 1031 t[0].cmd = MMUEXT_NEW_BASEPTR; 1032 t[0].arg1.mfn = mmu_btop(pa_to_ma(newcr3)); 1033 #if defined(__amd64) 1034 /* 1035 * There's an interesting problem here, as to what to 1036 * actually specify when switching to the kernel hat. 1037 * For now we'll reuse the kernel hat again. 1038 */ 1039 t[1].cmd = MMUEXT_NEW_USER_BASEPTR; 1040 if (hat == kas.a_hat) 1041 t[1].arg1.mfn = mmu_btop(pa_to_ma(newcr3)); 1042 else 1043 t[1].arg1.mfn = pfn_to_mfn(hat->hat_user_ptable); 1044 ++opcnt; 1045 #endif /* __amd64 */ 1046 if (HYPERVISOR_mmuext_op(t, opcnt, &retcnt, DOMID_SELF) < 0) 1047 panic("HYPERVISOR_mmu_update() failed"); 1048 ASSERT(retcnt == opcnt); 1049 1050 } 1051 #else 1052 setcr3(newcr3); 1053 #endif 1054 ASSERT(cpu == CPU); 1055 } 1056 1057 /* 1058 * Utility to return a valid x86pte_t from protections, pfn, and level number 1059 */ 1060 static x86pte_t 1061 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags) 1062 { 1063 x86pte_t pte; 1064 uint_t cache_attr = attr & HAT_ORDER_MASK; 1065 1066 pte = MAKEPTE(pfn, level); 1067 1068 if (attr & PROT_WRITE) 1069 PTE_SET(pte, PT_WRITABLE); 1070 1071 if (attr & PROT_USER) 1072 PTE_SET(pte, PT_USER); 1073 1074 if (!(attr & PROT_EXEC)) 1075 PTE_SET(pte, mmu.pt_nx); 1076 1077 /* 1078 * Set the software bits used track ref/mod sync's and hments. 1079 * If not using REF/MOD, set them to avoid h/w rewriting PTEs. 1080 */ 1081 if (flags & HAT_LOAD_NOCONSIST) 1082 PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD); 1083 else if (attr & HAT_NOSYNC) 1084 PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD); 1085 1086 /* 1087 * Set the caching attributes in the PTE. The combination 1088 * of attributes are poorly defined, so we pay attention 1089 * to them in the given order. 1090 * 1091 * The test for HAT_STRICTORDER is different because it's defined 1092 * as "0" - which was a stupid thing to do, but is too late to change! 1093 */ 1094 if (cache_attr == HAT_STRICTORDER) { 1095 PTE_SET(pte, PT_NOCACHE); 1096 /*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */ 1097 } else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) { 1098 /* nothing to set */; 1099 } else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) { 1100 PTE_SET(pte, PT_NOCACHE); 1101 if (is_x86_feature(x86_featureset, X86FSET_PAT)) 1102 PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE); 1103 else 1104 PTE_SET(pte, PT_WRITETHRU); 1105 } else { 1106 panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr); 1107 } 1108 1109 return (pte); 1110 } 1111 1112 /* 1113 * Duplicate address translations of the parent to the child. 1114 * This function really isn't used anymore. 1115 */ 1116 /*ARGSUSED*/ 1117 int 1118 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag) 1119 { 1120 ASSERT((uintptr_t)addr < kernelbase); 1121 ASSERT(new != kas.a_hat); 1122 ASSERT(old != kas.a_hat); 1123 return (0); 1124 } 1125 1126 /* 1127 * Allocate any hat resources required for a process being swapped in. 1128 */ 1129 /*ARGSUSED*/ 1130 void 1131 hat_swapin(hat_t *hat) 1132 { 1133 /* do nothing - we let everything fault back in */ 1134 } 1135 1136 /* 1137 * Unload all translations associated with an address space of a process 1138 * that is being swapped out. 1139 */ 1140 void 1141 hat_swapout(hat_t *hat) 1142 { 1143 uintptr_t vaddr = (uintptr_t)0; 1144 uintptr_t eaddr = _userlimit; 1145 htable_t *ht = NULL; 1146 level_t l; 1147 1148 XPV_DISALLOW_MIGRATE(); 1149 /* 1150 * We can't just call hat_unload(hat, 0, _userlimit...) here, because 1151 * seg_spt and shared pagetables can't be swapped out. 1152 * Take a look at segspt_shmswapout() - it's a big no-op. 1153 * 1154 * Instead we'll walk through all the address space and unload 1155 * any mappings which we are sure are not shared, not locked. 1156 */ 1157 ASSERT(IS_PAGEALIGNED(vaddr)); 1158 ASSERT(IS_PAGEALIGNED(eaddr)); 1159 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1160 if ((uintptr_t)hat->hat_as->a_userlimit < eaddr) 1161 eaddr = (uintptr_t)hat->hat_as->a_userlimit; 1162 1163 while (vaddr < eaddr) { 1164 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1165 if (ht == NULL) 1166 break; 1167 1168 ASSERT(!IN_VA_HOLE(vaddr)); 1169 1170 /* 1171 * If the page table is shared skip its entire range. 1172 */ 1173 l = ht->ht_level; 1174 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1175 vaddr = ht->ht_vaddr + LEVEL_SIZE(l + 1); 1176 htable_release(ht); 1177 ht = NULL; 1178 continue; 1179 } 1180 1181 /* 1182 * If the page table has no locked entries, unload this one. 1183 */ 1184 if (ht->ht_lock_cnt == 0) 1185 hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l), 1186 HAT_UNLOAD_UNMAP); 1187 1188 /* 1189 * If we have a level 0 page table with locked entries, 1190 * skip the entire page table, otherwise skip just one entry. 1191 */ 1192 if (ht->ht_lock_cnt > 0 && l == 0) 1193 vaddr = ht->ht_vaddr + LEVEL_SIZE(1); 1194 else 1195 vaddr += LEVEL_SIZE(l); 1196 } 1197 if (ht) 1198 htable_release(ht); 1199 1200 /* 1201 * We're in swapout because the system is low on memory, so 1202 * go back and flush all the htables off the cached list. 1203 */ 1204 htable_purge_hat(hat); 1205 XPV_ALLOW_MIGRATE(); 1206 } 1207 1208 /* 1209 * returns number of bytes that have valid mappings in hat. 1210 */ 1211 size_t 1212 hat_get_mapped_size(hat_t *hat) 1213 { 1214 size_t total = 0; 1215 int l; 1216 1217 for (l = 0; l <= mmu.max_page_level; l++) 1218 total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l)); 1219 total += hat->hat_ism_pgcnt; 1220 1221 return (total); 1222 } 1223 1224 /* 1225 * enable/disable collection of stats for hat. 1226 */ 1227 int 1228 hat_stats_enable(hat_t *hat) 1229 { 1230 atomic_inc_32(&hat->hat_stats); 1231 return (1); 1232 } 1233 1234 void 1235 hat_stats_disable(hat_t *hat) 1236 { 1237 atomic_dec_32(&hat->hat_stats); 1238 } 1239 1240 /* 1241 * Utility to sync the ref/mod bits from a page table entry to the page_t 1242 * We must be holding the mapping list lock when this is called. 1243 */ 1244 static void 1245 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level) 1246 { 1247 uint_t rm = 0; 1248 pgcnt_t pgcnt; 1249 1250 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 1251 return; 1252 1253 if (PTE_GET(pte, PT_REF)) 1254 rm |= P_REF; 1255 1256 if (PTE_GET(pte, PT_MOD)) 1257 rm |= P_MOD; 1258 1259 if (rm == 0) 1260 return; 1261 1262 /* 1263 * sync to all constituent pages of a large page 1264 */ 1265 ASSERT(x86_hm_held(pp)); 1266 pgcnt = page_get_pagecnt(level); 1267 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 1268 for (; pgcnt > 0; --pgcnt) { 1269 /* 1270 * hat_page_demote() can't decrease 1271 * pszc below this mapping size 1272 * since this large mapping existed after we 1273 * took mlist lock. 1274 */ 1275 ASSERT(pp->p_szc >= level); 1276 hat_page_setattr(pp, rm); 1277 ++pp; 1278 } 1279 } 1280 1281 /* 1282 * This the set of PTE bits for PFN, permissions and caching 1283 * that are allowed to change on a HAT_LOAD_REMAP 1284 */ 1285 #define PT_REMAP_BITS \ 1286 (PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU | \ 1287 PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE | PT_IGNORE | PT_REF | PT_MOD) 1288 1289 #define REMAPASSERT(EX) if (!(EX)) panic("hati_pte_map: " #EX) 1290 /* 1291 * Do the low-level work to get a mapping entered into a HAT's pagetables 1292 * and in the mapping list of the associated page_t. 1293 */ 1294 static int 1295 hati_pte_map( 1296 htable_t *ht, 1297 uint_t entry, 1298 page_t *pp, 1299 x86pte_t pte, 1300 int flags, 1301 void *pte_ptr) 1302 { 1303 hat_t *hat = ht->ht_hat; 1304 x86pte_t old_pte; 1305 level_t l = ht->ht_level; 1306 hment_t *hm; 1307 uint_t is_consist; 1308 uint_t is_locked; 1309 int rv = 0; 1310 1311 /* 1312 * Is this a consistent (ie. need mapping list lock) mapping? 1313 */ 1314 is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0); 1315 1316 /* 1317 * Track locked mapping count in the htable. Do this first, 1318 * as we track locking even if there already is a mapping present. 1319 */ 1320 is_locked = (flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat; 1321 if (is_locked) 1322 HTABLE_LOCK_INC(ht); 1323 1324 /* 1325 * Acquire the page's mapping list lock and get an hment to use. 1326 * Note that hment_prepare() might return NULL. 1327 */ 1328 if (is_consist) { 1329 x86_hm_enter(pp); 1330 hm = hment_prepare(ht, entry, pp); 1331 } 1332 1333 /* 1334 * Set the new pte, retrieving the old one at the same time. 1335 */ 1336 old_pte = x86pte_set(ht, entry, pte, pte_ptr); 1337 1338 /* 1339 * Did we get a large page / page table collision? 1340 */ 1341 if (old_pte == LPAGE_ERROR) { 1342 if (is_locked) 1343 HTABLE_LOCK_DEC(ht); 1344 rv = -1; 1345 goto done; 1346 } 1347 1348 /* 1349 * If the mapping didn't change there is nothing more to do. 1350 */ 1351 if (PTE_EQUIV(pte, old_pte)) 1352 goto done; 1353 1354 /* 1355 * Install a new mapping in the page's mapping list 1356 */ 1357 if (!PTE_ISVALID(old_pte)) { 1358 if (is_consist) { 1359 hment_assign(ht, entry, pp, hm); 1360 x86_hm_exit(pp); 1361 } else { 1362 ASSERT(flags & HAT_LOAD_NOCONSIST); 1363 } 1364 #if defined(__amd64) 1365 if (ht->ht_flags & HTABLE_VLP) { 1366 cpu_t *cpu = CPU; 1367 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes; 1368 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1369 } 1370 #endif 1371 HTABLE_INC(ht->ht_valid_cnt); 1372 PGCNT_INC(hat, l); 1373 return (rv); 1374 } 1375 1376 /* 1377 * Remap's are more complicated: 1378 * - HAT_LOAD_REMAP must be specified if changing the pfn. 1379 * We also require that NOCONSIST be specified. 1380 * - Otherwise only permission or caching bits may change. 1381 */ 1382 if (!PTE_ISPAGE(old_pte, l)) 1383 panic("non-null/page mapping pte=" FMT_PTE, old_pte); 1384 1385 if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) { 1386 REMAPASSERT(flags & HAT_LOAD_REMAP); 1387 REMAPASSERT(flags & HAT_LOAD_NOCONSIST); 1388 REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 1389 REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) == 1390 pf_is_memory(PTE2PFN(pte, l))); 1391 REMAPASSERT(!is_consist); 1392 } 1393 1394 /* 1395 * We only let remaps change the certain bits in the PTE. 1396 */ 1397 if (PTE_GET(old_pte, ~PT_REMAP_BITS) != PTE_GET(pte, ~PT_REMAP_BITS)) 1398 panic("remap bits changed: old_pte="FMT_PTE", pte="FMT_PTE"\n", 1399 old_pte, pte); 1400 1401 /* 1402 * We don't create any mapping list entries on a remap, so release 1403 * any allocated hment after we drop the mapping list lock. 1404 */ 1405 done: 1406 if (is_consist) { 1407 x86_hm_exit(pp); 1408 if (hm != NULL) 1409 hment_free(hm); 1410 } 1411 return (rv); 1412 } 1413 1414 /* 1415 * Internal routine to load a single page table entry. This only fails if 1416 * we attempt to overwrite a page table link with a large page. 1417 */ 1418 static int 1419 hati_load_common( 1420 hat_t *hat, 1421 uintptr_t va, 1422 page_t *pp, 1423 uint_t attr, 1424 uint_t flags, 1425 level_t level, 1426 pfn_t pfn) 1427 { 1428 htable_t *ht; 1429 uint_t entry; 1430 x86pte_t pte; 1431 int rv = 0; 1432 1433 /* 1434 * The number 16 is arbitrary and here to catch a recursion problem 1435 * early before we blow out the kernel stack. 1436 */ 1437 ++curthread->t_hatdepth; 1438 ASSERT(curthread->t_hatdepth < 16); 1439 1440 ASSERT(hat == kas.a_hat || 1441 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1442 1443 if (flags & HAT_LOAD_SHARE) 1444 hat->hat_flags |= HAT_SHARED; 1445 1446 /* 1447 * Find the page table that maps this page if it already exists. 1448 */ 1449 ht = htable_lookup(hat, va, level); 1450 1451 /* 1452 * We must have HAT_LOAD_NOCONSIST if page_t is NULL. 1453 */ 1454 if (pp == NULL) 1455 flags |= HAT_LOAD_NOCONSIST; 1456 1457 if (ht == NULL) { 1458 ht = htable_create(hat, va, level, NULL); 1459 ASSERT(ht != NULL); 1460 } 1461 entry = htable_va2entry(va, ht); 1462 1463 /* 1464 * a bunch of paranoid error checking 1465 */ 1466 ASSERT(ht->ht_busy > 0); 1467 if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht)) 1468 panic("hati_load_common: bad htable %p, va %p", 1469 (void *)ht, (void *)va); 1470 ASSERT(ht->ht_level == level); 1471 1472 /* 1473 * construct the new PTE 1474 */ 1475 if (hat == kas.a_hat) 1476 attr &= ~PROT_USER; 1477 pte = hati_mkpte(pfn, attr, level, flags); 1478 if (hat == kas.a_hat && va >= kernelbase) 1479 PTE_SET(pte, mmu.pt_global); 1480 1481 /* 1482 * establish the mapping 1483 */ 1484 rv = hati_pte_map(ht, entry, pp, pte, flags, NULL); 1485 1486 /* 1487 * release the htable and any reserves 1488 */ 1489 htable_release(ht); 1490 --curthread->t_hatdepth; 1491 return (rv); 1492 } 1493 1494 /* 1495 * special case of hat_memload to deal with some kernel addrs for performance 1496 */ 1497 static void 1498 hat_kmap_load( 1499 caddr_t addr, 1500 page_t *pp, 1501 uint_t attr, 1502 uint_t flags) 1503 { 1504 uintptr_t va = (uintptr_t)addr; 1505 x86pte_t pte; 1506 pfn_t pfn = page_pptonum(pp); 1507 pgcnt_t pg_off = mmu_btop(va - mmu.kmap_addr); 1508 htable_t *ht; 1509 uint_t entry; 1510 void *pte_ptr; 1511 1512 /* 1513 * construct the requested PTE 1514 */ 1515 attr &= ~PROT_USER; 1516 attr |= HAT_STORECACHING_OK; 1517 pte = hati_mkpte(pfn, attr, 0, flags); 1518 PTE_SET(pte, mmu.pt_global); 1519 1520 /* 1521 * Figure out the pte_ptr and htable and use common code to finish up 1522 */ 1523 if (mmu.pae_hat) 1524 pte_ptr = mmu.kmap_ptes + pg_off; 1525 else 1526 pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off; 1527 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >> 1528 LEVEL_SHIFT(1)]; 1529 entry = htable_va2entry(va, ht); 1530 ++curthread->t_hatdepth; 1531 ASSERT(curthread->t_hatdepth < 16); 1532 (void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr); 1533 --curthread->t_hatdepth; 1534 } 1535 1536 /* 1537 * hat_memload() - load a translation to the given page struct 1538 * 1539 * Flags for hat_memload/hat_devload/hat_*attr. 1540 * 1541 * HAT_LOAD Default flags to load a translation to the page. 1542 * 1543 * HAT_LOAD_LOCK Lock down mapping resources; hat_map(), hat_memload(), 1544 * and hat_devload(). 1545 * 1546 * HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list. 1547 * sets PT_NOCONSIST 1548 * 1549 * HAT_LOAD_SHARE A flag to hat_memload() to indicate h/w page tables 1550 * that map some user pages (not kas) is shared by more 1551 * than one process (eg. ISM). 1552 * 1553 * HAT_LOAD_REMAP Reload a valid pte with a different page frame. 1554 * 1555 * HAT_NO_KALLOC Do not kmem_alloc while creating the mapping; at this 1556 * point, it's setting up mapping to allocate internal 1557 * hat layer data structures. This flag forces hat layer 1558 * to tap its reserves in order to prevent infinite 1559 * recursion. 1560 * 1561 * The following is a protection attribute (like PROT_READ, etc.) 1562 * 1563 * HAT_NOSYNC set PT_NOSYNC - this mapping's ref/mod bits 1564 * are never cleared. 1565 * 1566 * Installing new valid PTE's and creation of the mapping list 1567 * entry are controlled under the same lock. It's derived from the 1568 * page_t being mapped. 1569 */ 1570 static uint_t supported_memload_flags = 1571 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST | 1572 HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT; 1573 1574 void 1575 hat_memload( 1576 hat_t *hat, 1577 caddr_t addr, 1578 page_t *pp, 1579 uint_t attr, 1580 uint_t flags) 1581 { 1582 uintptr_t va = (uintptr_t)addr; 1583 level_t level = 0; 1584 pfn_t pfn = page_pptonum(pp); 1585 1586 XPV_DISALLOW_MIGRATE(); 1587 ASSERT(IS_PAGEALIGNED(va)); 1588 ASSERT(hat == kas.a_hat || va < _userlimit); 1589 ASSERT(hat == kas.a_hat || 1590 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1591 ASSERT((flags & supported_memload_flags) == flags); 1592 1593 ASSERT(!IN_VA_HOLE(va)); 1594 ASSERT(!PP_ISFREE(pp)); 1595 1596 /* 1597 * kernel address special case for performance. 1598 */ 1599 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 1600 ASSERT(hat == kas.a_hat); 1601 hat_kmap_load(addr, pp, attr, flags); 1602 XPV_ALLOW_MIGRATE(); 1603 return; 1604 } 1605 1606 /* 1607 * This is used for memory with normal caching enabled, so 1608 * always set HAT_STORECACHING_OK. 1609 */ 1610 attr |= HAT_STORECACHING_OK; 1611 if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0) 1612 panic("unexpected hati_load_common() failure"); 1613 XPV_ALLOW_MIGRATE(); 1614 } 1615 1616 /* ARGSUSED */ 1617 void 1618 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp, 1619 uint_t attr, uint_t flags, hat_region_cookie_t rcookie) 1620 { 1621 hat_memload(hat, addr, pp, attr, flags); 1622 } 1623 1624 /* 1625 * Load the given array of page structs using large pages when possible 1626 */ 1627 void 1628 hat_memload_array( 1629 hat_t *hat, 1630 caddr_t addr, 1631 size_t len, 1632 page_t **pages, 1633 uint_t attr, 1634 uint_t flags) 1635 { 1636 uintptr_t va = (uintptr_t)addr; 1637 uintptr_t eaddr = va + len; 1638 level_t level; 1639 size_t pgsize; 1640 pgcnt_t pgindx = 0; 1641 pfn_t pfn; 1642 pgcnt_t i; 1643 1644 XPV_DISALLOW_MIGRATE(); 1645 ASSERT(IS_PAGEALIGNED(va)); 1646 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 1647 ASSERT(hat == kas.a_hat || 1648 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1649 ASSERT((flags & supported_memload_flags) == flags); 1650 1651 /* 1652 * memload is used for memory with full caching enabled, so 1653 * set HAT_STORECACHING_OK. 1654 */ 1655 attr |= HAT_STORECACHING_OK; 1656 1657 /* 1658 * handle all pages using largest possible pagesize 1659 */ 1660 while (va < eaddr) { 1661 /* 1662 * decide what level mapping to use (ie. pagesize) 1663 */ 1664 pfn = page_pptonum(pages[pgindx]); 1665 for (level = mmu.max_page_level; ; --level) { 1666 pgsize = LEVEL_SIZE(level); 1667 if (level == 0) 1668 break; 1669 1670 if (!IS_P2ALIGNED(va, pgsize) || 1671 (eaddr - va) < pgsize || 1672 !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize)) 1673 continue; 1674 1675 /* 1676 * To use a large mapping of this size, all the 1677 * pages we are passed must be sequential subpages 1678 * of the large page. 1679 * hat_page_demote() can't change p_szc because 1680 * all pages are locked. 1681 */ 1682 if (pages[pgindx]->p_szc >= level) { 1683 for (i = 0; i < mmu_btop(pgsize); ++i) { 1684 if (pfn + i != 1685 page_pptonum(pages[pgindx + i])) 1686 break; 1687 ASSERT(pages[pgindx + i]->p_szc >= 1688 level); 1689 ASSERT(pages[pgindx] + i == 1690 pages[pgindx + i]); 1691 } 1692 if (i == mmu_btop(pgsize)) { 1693 #ifdef DEBUG 1694 if (level == 2) 1695 map1gcnt++; 1696 #endif 1697 break; 1698 } 1699 } 1700 } 1701 1702 /* 1703 * Load this page mapping. If the load fails, try a smaller 1704 * pagesize. 1705 */ 1706 ASSERT(!IN_VA_HOLE(va)); 1707 while (hati_load_common(hat, va, pages[pgindx], attr, 1708 flags, level, pfn) != 0) { 1709 if (level == 0) 1710 panic("unexpected hati_load_common() failure"); 1711 --level; 1712 pgsize = LEVEL_SIZE(level); 1713 } 1714 1715 /* 1716 * move to next page 1717 */ 1718 va += pgsize; 1719 pgindx += mmu_btop(pgsize); 1720 } 1721 XPV_ALLOW_MIGRATE(); 1722 } 1723 1724 /* ARGSUSED */ 1725 void 1726 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len, 1727 struct page **pps, uint_t attr, uint_t flags, 1728 hat_region_cookie_t rcookie) 1729 { 1730 hat_memload_array(hat, addr, len, pps, attr, flags); 1731 } 1732 1733 /* 1734 * void hat_devload(hat, addr, len, pf, attr, flags) 1735 * load/lock the given page frame number 1736 * 1737 * Advisory ordering attributes. Apply only to device mappings. 1738 * 1739 * HAT_STRICTORDER: the CPU must issue the references in order, as the 1740 * programmer specified. This is the default. 1741 * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds 1742 * of reordering; store or load with store or load). 1743 * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores 1744 * to consecutive locations (for example, turn two consecutive byte 1745 * stores into one halfword store), and it may batch individual loads 1746 * (for example, turn two consecutive byte loads into one halfword load). 1747 * This also implies re-ordering. 1748 * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it 1749 * until another store occurs. The default is to fetch new data 1750 * on every load. This also implies merging. 1751 * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to 1752 * the device (perhaps with other data) at a later time. The default is 1753 * to push the data right away. This also implies load caching. 1754 * 1755 * Equivalent of hat_memload(), but can be used for device memory where 1756 * there are no page_t's and we support additional flags (write merging, etc). 1757 * Note that we can have large page mappings with this interface. 1758 */ 1759 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK | 1760 HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK | 1761 HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK; 1762 1763 void 1764 hat_devload( 1765 hat_t *hat, 1766 caddr_t addr, 1767 size_t len, 1768 pfn_t pfn, 1769 uint_t attr, 1770 int flags) 1771 { 1772 uintptr_t va = ALIGN2PAGE(addr); 1773 uintptr_t eva = va + len; 1774 level_t level; 1775 size_t pgsize; 1776 page_t *pp; 1777 int f; /* per PTE copy of flags - maybe modified */ 1778 uint_t a; /* per PTE copy of attr */ 1779 1780 XPV_DISALLOW_MIGRATE(); 1781 ASSERT(IS_PAGEALIGNED(va)); 1782 ASSERT(hat == kas.a_hat || eva <= _userlimit); 1783 ASSERT(hat == kas.a_hat || 1784 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1785 ASSERT((flags & supported_devload_flags) == flags); 1786 1787 /* 1788 * handle all pages 1789 */ 1790 while (va < eva) { 1791 1792 /* 1793 * decide what level mapping to use (ie. pagesize) 1794 */ 1795 for (level = mmu.max_page_level; ; --level) { 1796 pgsize = LEVEL_SIZE(level); 1797 if (level == 0) 1798 break; 1799 if (IS_P2ALIGNED(va, pgsize) && 1800 (eva - va) >= pgsize && 1801 IS_P2ALIGNED(pfn, mmu_btop(pgsize))) { 1802 #ifdef DEBUG 1803 if (level == 2) 1804 map1gcnt++; 1805 #endif 1806 break; 1807 } 1808 } 1809 1810 /* 1811 * If this is just memory then allow caching (this happens 1812 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used 1813 * to override that. If we don't have a page_t then make sure 1814 * NOCONSIST is set. 1815 */ 1816 a = attr; 1817 f = flags; 1818 if (!pf_is_memory(pfn)) 1819 f |= HAT_LOAD_NOCONSIST; 1820 else if (!(a & HAT_PLAT_NOCACHE)) 1821 a |= HAT_STORECACHING_OK; 1822 1823 if (f & HAT_LOAD_NOCONSIST) 1824 pp = NULL; 1825 else 1826 pp = page_numtopp_nolock(pfn); 1827 1828 /* 1829 * Check to make sure we are really trying to map a valid 1830 * memory page. The caller wishing to intentionally map 1831 * free memory pages will have passed the HAT_LOAD_NOCONSIST 1832 * flag, then pp will be NULL. 1833 */ 1834 if (pp != NULL) { 1835 if (PP_ISFREE(pp)) { 1836 panic("hat_devload: loading " 1837 "a mapping to free page %p", (void *)pp); 1838 } 1839 1840 if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) { 1841 panic("hat_devload: loading a mapping " 1842 "to an unlocked page %p", 1843 (void *)pp); 1844 } 1845 } 1846 1847 /* 1848 * load this page mapping 1849 */ 1850 ASSERT(!IN_VA_HOLE(va)); 1851 while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) { 1852 if (level == 0) 1853 panic("unexpected hati_load_common() failure"); 1854 --level; 1855 pgsize = LEVEL_SIZE(level); 1856 } 1857 1858 /* 1859 * move to next page 1860 */ 1861 va += pgsize; 1862 pfn += mmu_btop(pgsize); 1863 } 1864 XPV_ALLOW_MIGRATE(); 1865 } 1866 1867 /* 1868 * void hat_unlock(hat, addr, len) 1869 * unlock the mappings to a given range of addresses 1870 * 1871 * Locks are tracked by ht_lock_cnt in the htable. 1872 */ 1873 void 1874 hat_unlock(hat_t *hat, caddr_t addr, size_t len) 1875 { 1876 uintptr_t vaddr = (uintptr_t)addr; 1877 uintptr_t eaddr = vaddr + len; 1878 htable_t *ht = NULL; 1879 1880 /* 1881 * kernel entries are always locked, we don't track lock counts 1882 */ 1883 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 1884 ASSERT(IS_PAGEALIGNED(vaddr)); 1885 ASSERT(IS_PAGEALIGNED(eaddr)); 1886 if (hat == kas.a_hat) 1887 return; 1888 if (eaddr > _userlimit) 1889 panic("hat_unlock() address out of range - above _userlimit"); 1890 1891 XPV_DISALLOW_MIGRATE(); 1892 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1893 while (vaddr < eaddr) { 1894 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1895 if (ht == NULL) 1896 break; 1897 1898 ASSERT(!IN_VA_HOLE(vaddr)); 1899 1900 if (ht->ht_lock_cnt < 1) 1901 panic("hat_unlock(): lock_cnt < 1, " 1902 "htable=%p, vaddr=%p\n", (void *)ht, (void *)vaddr); 1903 HTABLE_LOCK_DEC(ht); 1904 1905 vaddr += LEVEL_SIZE(ht->ht_level); 1906 } 1907 if (ht) 1908 htable_release(ht); 1909 XPV_ALLOW_MIGRATE(); 1910 } 1911 1912 /* ARGSUSED */ 1913 void 1914 hat_unlock_region(struct hat *hat, caddr_t addr, size_t len, 1915 hat_region_cookie_t rcookie) 1916 { 1917 panic("No shared region support on x86"); 1918 } 1919 1920 #if !defined(__xpv) 1921 /* 1922 * Cross call service routine to demap a virtual page on 1923 * the current CPU or flush all mappings in TLB. 1924 */ 1925 /*ARGSUSED*/ 1926 static int 1927 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3) 1928 { 1929 hat_t *hat = (hat_t *)a1; 1930 caddr_t addr = (caddr_t)a2; 1931 1932 /* 1933 * If the target hat isn't the kernel and this CPU isn't operating 1934 * in the target hat, we can ignore the cross call. 1935 */ 1936 if (hat != kas.a_hat && hat != CPU->cpu_current_hat) 1937 return (0); 1938 1939 /* 1940 * For a normal address, we just flush one page mapping 1941 */ 1942 if ((uintptr_t)addr != DEMAP_ALL_ADDR) { 1943 mmu_tlbflush_entry(addr); 1944 return (0); 1945 } 1946 1947 /* 1948 * Otherwise we reload cr3 to effect a complete TLB flush. 1949 * 1950 * A reload of cr3 on a VLP process also means we must also recopy in 1951 * the pte values from the struct hat 1952 */ 1953 if (hat->hat_flags & HAT_VLP) { 1954 #if defined(__amd64) 1955 x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes; 1956 1957 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1958 #elif defined(__i386) 1959 reload_pae32(hat, CPU); 1960 #endif 1961 } 1962 reload_cr3(); 1963 return (0); 1964 } 1965 1966 /* 1967 * Flush all TLB entries, including global (ie. kernel) ones. 1968 */ 1969 static void 1970 flush_all_tlb_entries(void) 1971 { 1972 ulong_t cr4 = getcr4(); 1973 1974 if (cr4 & CR4_PGE) { 1975 setcr4(cr4 & ~(ulong_t)CR4_PGE); 1976 setcr4(cr4); 1977 1978 /* 1979 * 32 bit PAE also needs to always reload_cr3() 1980 */ 1981 if (mmu.max_level == 2) 1982 reload_cr3(); 1983 } else { 1984 reload_cr3(); 1985 } 1986 } 1987 1988 #define TLB_CPU_HALTED (01ul) 1989 #define TLB_INVAL_ALL (02ul) 1990 #define CAS_TLB_INFO(cpu, old, new) \ 1991 atomic_cas_ulong((ulong_t *)&(cpu)->cpu_m.mcpu_tlb_info, (old), (new)) 1992 1993 /* 1994 * Record that a CPU is going idle 1995 */ 1996 void 1997 tlb_going_idle(void) 1998 { 1999 atomic_or_ulong((ulong_t *)&CPU->cpu_m.mcpu_tlb_info, TLB_CPU_HALTED); 2000 } 2001 2002 /* 2003 * Service a delayed TLB flush if coming out of being idle. 2004 * It will be called from cpu idle notification with interrupt disabled. 2005 */ 2006 void 2007 tlb_service(void) 2008 { 2009 ulong_t tlb_info; 2010 ulong_t found; 2011 2012 /* 2013 * We only have to do something if coming out of being idle. 2014 */ 2015 tlb_info = CPU->cpu_m.mcpu_tlb_info; 2016 if (tlb_info & TLB_CPU_HALTED) { 2017 ASSERT(CPU->cpu_current_hat == kas.a_hat); 2018 2019 /* 2020 * Atomic clear and fetch of old state. 2021 */ 2022 while ((found = CAS_TLB_INFO(CPU, tlb_info, 0)) != tlb_info) { 2023 ASSERT(found & TLB_CPU_HALTED); 2024 tlb_info = found; 2025 SMT_PAUSE(); 2026 } 2027 if (tlb_info & TLB_INVAL_ALL) 2028 flush_all_tlb_entries(); 2029 } 2030 } 2031 #endif /* !__xpv */ 2032 2033 /* 2034 * Internal routine to do cross calls to invalidate a range of pages on 2035 * all CPUs using a given hat. 2036 */ 2037 void 2038 hat_tlb_inval(hat_t *hat, uintptr_t va) 2039 { 2040 extern int flushes_require_xcalls; /* from mp_startup.c */ 2041 cpuset_t justme; 2042 cpuset_t cpus_to_shootdown; 2043 #ifndef __xpv 2044 cpuset_t check_cpus; 2045 cpu_t *cpup; 2046 int c; 2047 #endif 2048 2049 /* 2050 * If the hat is being destroyed, there are no more users, so 2051 * demap need not do anything. 2052 */ 2053 if (hat->hat_flags & HAT_FREEING) 2054 return; 2055 2056 /* 2057 * If demapping from a shared pagetable, we best demap the 2058 * entire set of user TLBs, since we don't know what addresses 2059 * these were shared at. 2060 */ 2061 if (hat->hat_flags & HAT_SHARED) { 2062 hat = kas.a_hat; 2063 va = DEMAP_ALL_ADDR; 2064 } 2065 2066 /* 2067 * if not running with multiple CPUs, don't use cross calls 2068 */ 2069 if (panicstr || !flushes_require_xcalls) { 2070 #ifdef __xpv 2071 if (va == DEMAP_ALL_ADDR) 2072 xen_flush_tlb(); 2073 else 2074 xen_flush_va((caddr_t)va); 2075 #else 2076 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL); 2077 #endif 2078 return; 2079 } 2080 2081 2082 /* 2083 * Determine CPUs to shootdown. Kernel changes always do all CPUs. 2084 * Otherwise it's just CPUs currently executing in this hat. 2085 */ 2086 kpreempt_disable(); 2087 CPUSET_ONLY(justme, CPU->cpu_id); 2088 if (hat == kas.a_hat) 2089 cpus_to_shootdown = khat_cpuset; 2090 else 2091 cpus_to_shootdown = hat->hat_cpus; 2092 2093 #ifndef __xpv 2094 /* 2095 * If any CPUs in the set are idle, just request a delayed flush 2096 * and avoid waking them up. 2097 */ 2098 check_cpus = cpus_to_shootdown; 2099 for (c = 0; c < NCPU && !CPUSET_ISNULL(check_cpus); ++c) { 2100 ulong_t tlb_info; 2101 2102 if (!CPU_IN_SET(check_cpus, c)) 2103 continue; 2104 CPUSET_DEL(check_cpus, c); 2105 cpup = cpu[c]; 2106 if (cpup == NULL) 2107 continue; 2108 2109 tlb_info = cpup->cpu_m.mcpu_tlb_info; 2110 while (tlb_info == TLB_CPU_HALTED) { 2111 (void) CAS_TLB_INFO(cpup, TLB_CPU_HALTED, 2112 TLB_CPU_HALTED | TLB_INVAL_ALL); 2113 SMT_PAUSE(); 2114 tlb_info = cpup->cpu_m.mcpu_tlb_info; 2115 } 2116 if (tlb_info == (TLB_CPU_HALTED | TLB_INVAL_ALL)) { 2117 HATSTAT_INC(hs_tlb_inval_delayed); 2118 CPUSET_DEL(cpus_to_shootdown, c); 2119 } 2120 } 2121 #endif 2122 2123 if (CPUSET_ISNULL(cpus_to_shootdown) || 2124 CPUSET_ISEQUAL(cpus_to_shootdown, justme)) { 2125 2126 #ifdef __xpv 2127 if (va == DEMAP_ALL_ADDR) 2128 xen_flush_tlb(); 2129 else 2130 xen_flush_va((caddr_t)va); 2131 #else 2132 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL); 2133 #endif 2134 2135 } else { 2136 2137 CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id); 2138 #ifdef __xpv 2139 if (va == DEMAP_ALL_ADDR) 2140 xen_gflush_tlb(cpus_to_shootdown); 2141 else 2142 xen_gflush_va((caddr_t)va, cpus_to_shootdown); 2143 #else 2144 xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL, 2145 CPUSET2BV(cpus_to_shootdown), hati_demap_func); 2146 #endif 2147 2148 } 2149 kpreempt_enable(); 2150 } 2151 2152 /* 2153 * Interior routine for HAT_UNLOADs from hat_unload_callback(), 2154 * hat_kmap_unload() OR from hat_steal() code. This routine doesn't 2155 * handle releasing of the htables. 2156 */ 2157 void 2158 hat_pte_unmap( 2159 htable_t *ht, 2160 uint_t entry, 2161 uint_t flags, 2162 x86pte_t old_pte, 2163 void *pte_ptr) 2164 { 2165 hat_t *hat = ht->ht_hat; 2166 hment_t *hm = NULL; 2167 page_t *pp = NULL; 2168 level_t l = ht->ht_level; 2169 pfn_t pfn; 2170 2171 /* 2172 * We always track the locking counts, even if nothing is unmapped 2173 */ 2174 if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) { 2175 ASSERT(ht->ht_lock_cnt > 0); 2176 HTABLE_LOCK_DEC(ht); 2177 } 2178 2179 /* 2180 * Figure out which page's mapping list lock to acquire using the PFN 2181 * passed in "old" PTE. We then attempt to invalidate the PTE. 2182 * If another thread, probably a hat_pageunload, has asynchronously 2183 * unmapped/remapped this address we'll loop here. 2184 */ 2185 ASSERT(ht->ht_busy > 0); 2186 while (PTE_ISVALID(old_pte)) { 2187 pfn = PTE2PFN(old_pte, l); 2188 if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) { 2189 pp = NULL; 2190 } else { 2191 #ifdef __xpv 2192 if (pfn == PFN_INVALID) 2193 panic("Invalid PFN, but not PT_NOCONSIST"); 2194 #endif 2195 pp = page_numtopp_nolock(pfn); 2196 if (pp == NULL) { 2197 panic("no page_t, not NOCONSIST: old_pte=" 2198 FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx", 2199 old_pte, (uintptr_t)ht, entry, 2200 (uintptr_t)pte_ptr); 2201 } 2202 x86_hm_enter(pp); 2203 } 2204 2205 old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr); 2206 2207 /* 2208 * If the page hadn't changed we've unmapped it and can proceed 2209 */ 2210 if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn) 2211 break; 2212 2213 /* 2214 * Otherwise, we'll have to retry with the current old_pte. 2215 * Drop the hment lock, since the pfn may have changed. 2216 */ 2217 if (pp != NULL) { 2218 x86_hm_exit(pp); 2219 pp = NULL; 2220 } else { 2221 ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 2222 } 2223 } 2224 2225 /* 2226 * If the old mapping wasn't valid, there's nothing more to do 2227 */ 2228 if (!PTE_ISVALID(old_pte)) { 2229 if (pp != NULL) 2230 x86_hm_exit(pp); 2231 return; 2232 } 2233 2234 /* 2235 * Take care of syncing any MOD/REF bits and removing the hment. 2236 */ 2237 if (pp != NULL) { 2238 if (!(flags & HAT_UNLOAD_NOSYNC)) 2239 hati_sync_pte_to_page(pp, old_pte, l); 2240 hm = hment_remove(pp, ht, entry); 2241 x86_hm_exit(pp); 2242 if (hm != NULL) 2243 hment_free(hm); 2244 } 2245 2246 /* 2247 * Handle book keeping in the htable and hat 2248 */ 2249 ASSERT(ht->ht_valid_cnt > 0); 2250 HTABLE_DEC(ht->ht_valid_cnt); 2251 PGCNT_DEC(hat, l); 2252 } 2253 2254 /* 2255 * very cheap unload implementation to special case some kernel addresses 2256 */ 2257 static void 2258 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags) 2259 { 2260 uintptr_t va = (uintptr_t)addr; 2261 uintptr_t eva = va + len; 2262 pgcnt_t pg_index; 2263 htable_t *ht; 2264 uint_t entry; 2265 x86pte_t *pte_ptr; 2266 x86pte_t old_pte; 2267 2268 for (; va < eva; va += MMU_PAGESIZE) { 2269 /* 2270 * Get the PTE 2271 */ 2272 pg_index = mmu_btop(va - mmu.kmap_addr); 2273 pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index); 2274 old_pte = GET_PTE(pte_ptr); 2275 2276 /* 2277 * get the htable / entry 2278 */ 2279 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) 2280 >> LEVEL_SHIFT(1)]; 2281 entry = htable_va2entry(va, ht); 2282 2283 /* 2284 * use mostly common code to unmap it. 2285 */ 2286 hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr); 2287 } 2288 } 2289 2290 2291 /* 2292 * unload a range of virtual address space (no callback) 2293 */ 2294 void 2295 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2296 { 2297 uintptr_t va = (uintptr_t)addr; 2298 2299 XPV_DISALLOW_MIGRATE(); 2300 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 2301 2302 /* 2303 * special case for performance. 2304 */ 2305 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 2306 ASSERT(hat == kas.a_hat); 2307 hat_kmap_unload(addr, len, flags); 2308 } else { 2309 hat_unload_callback(hat, addr, len, flags, NULL); 2310 } 2311 XPV_ALLOW_MIGRATE(); 2312 } 2313 2314 /* 2315 * Do the callbacks for ranges being unloaded. 2316 */ 2317 typedef struct range_info { 2318 uintptr_t rng_va; 2319 ulong_t rng_cnt; 2320 level_t rng_level; 2321 } range_info_t; 2322 2323 static void 2324 handle_ranges(hat_callback_t *cb, uint_t cnt, range_info_t *range) 2325 { 2326 /* 2327 * do callbacks to upper level VM system 2328 */ 2329 while (cb != NULL && cnt > 0) { 2330 --cnt; 2331 cb->hcb_start_addr = (caddr_t)range[cnt].rng_va; 2332 cb->hcb_end_addr = cb->hcb_start_addr; 2333 cb->hcb_end_addr += 2334 range[cnt].rng_cnt << LEVEL_SIZE(range[cnt].rng_level); 2335 cb->hcb_function(cb); 2336 } 2337 } 2338 2339 /* 2340 * Unload a given range of addresses (has optional callback) 2341 * 2342 * Flags: 2343 * define HAT_UNLOAD 0x00 2344 * define HAT_UNLOAD_NOSYNC 0x02 2345 * define HAT_UNLOAD_UNLOCK 0x04 2346 * define HAT_UNLOAD_OTHER 0x08 - not used 2347 * define HAT_UNLOAD_UNMAP 0x10 - same as HAT_UNLOAD 2348 */ 2349 #define MAX_UNLOAD_CNT (8) 2350 void 2351 hat_unload_callback( 2352 hat_t *hat, 2353 caddr_t addr, 2354 size_t len, 2355 uint_t flags, 2356 hat_callback_t *cb) 2357 { 2358 uintptr_t vaddr = (uintptr_t)addr; 2359 uintptr_t eaddr = vaddr + len; 2360 htable_t *ht = NULL; 2361 uint_t entry; 2362 uintptr_t contig_va = (uintptr_t)-1L; 2363 range_info_t r[MAX_UNLOAD_CNT]; 2364 uint_t r_cnt = 0; 2365 x86pte_t old_pte; 2366 2367 XPV_DISALLOW_MIGRATE(); 2368 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2369 ASSERT(IS_PAGEALIGNED(vaddr)); 2370 ASSERT(IS_PAGEALIGNED(eaddr)); 2371 2372 /* 2373 * Special case a single page being unloaded for speed. This happens 2374 * quite frequently, COW faults after a fork() for example. 2375 */ 2376 if (cb == NULL && len == MMU_PAGESIZE) { 2377 ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0); 2378 if (ht != NULL) { 2379 if (PTE_ISVALID(old_pte)) 2380 hat_pte_unmap(ht, entry, flags, old_pte, NULL); 2381 htable_release(ht); 2382 } 2383 XPV_ALLOW_MIGRATE(); 2384 return; 2385 } 2386 2387 while (vaddr < eaddr) { 2388 old_pte = htable_walk(hat, &ht, &vaddr, eaddr); 2389 if (ht == NULL) 2390 break; 2391 2392 ASSERT(!IN_VA_HOLE(vaddr)); 2393 2394 if (vaddr < (uintptr_t)addr) 2395 panic("hat_unload_callback(): unmap inside large page"); 2396 2397 /* 2398 * We'll do the call backs for contiguous ranges 2399 */ 2400 if (vaddr != contig_va || 2401 (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) { 2402 if (r_cnt == MAX_UNLOAD_CNT) { 2403 handle_ranges(cb, r_cnt, r); 2404 r_cnt = 0; 2405 } 2406 r[r_cnt].rng_va = vaddr; 2407 r[r_cnt].rng_cnt = 0; 2408 r[r_cnt].rng_level = ht->ht_level; 2409 ++r_cnt; 2410 } 2411 2412 /* 2413 * Unload one mapping from the page tables. 2414 */ 2415 entry = htable_va2entry(vaddr, ht); 2416 hat_pte_unmap(ht, entry, flags, old_pte, NULL); 2417 ASSERT(ht->ht_level <= mmu.max_page_level); 2418 vaddr += LEVEL_SIZE(ht->ht_level); 2419 contig_va = vaddr; 2420 ++r[r_cnt - 1].rng_cnt; 2421 } 2422 if (ht) 2423 htable_release(ht); 2424 2425 /* 2426 * handle last range for callbacks 2427 */ 2428 if (r_cnt > 0) 2429 handle_ranges(cb, r_cnt, r); 2430 XPV_ALLOW_MIGRATE(); 2431 } 2432 2433 /* 2434 * Invalidate a virtual address translation on a slave CPU during 2435 * panic() dumps. 2436 */ 2437 void 2438 hat_flush_range(hat_t *hat, caddr_t va, size_t size) 2439 { 2440 ssize_t sz; 2441 caddr_t endva = va + size; 2442 2443 while (va < endva) { 2444 sz = hat_getpagesize(hat, va); 2445 if (sz < 0) { 2446 #ifdef __xpv 2447 xen_flush_tlb(); 2448 #else 2449 flush_all_tlb_entries(); 2450 #endif 2451 break; 2452 } 2453 #ifdef __xpv 2454 xen_flush_va(va); 2455 #else 2456 mmu_tlbflush_entry(va); 2457 #endif 2458 va += sz; 2459 } 2460 } 2461 2462 /* 2463 * synchronize mapping with software data structures 2464 * 2465 * This interface is currently only used by the working set monitor 2466 * driver. 2467 */ 2468 /*ARGSUSED*/ 2469 void 2470 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2471 { 2472 uintptr_t vaddr = (uintptr_t)addr; 2473 uintptr_t eaddr = vaddr + len; 2474 htable_t *ht = NULL; 2475 uint_t entry; 2476 x86pte_t pte; 2477 x86pte_t save_pte; 2478 x86pte_t new; 2479 page_t *pp; 2480 2481 ASSERT(!IN_VA_HOLE(vaddr)); 2482 ASSERT(IS_PAGEALIGNED(vaddr)); 2483 ASSERT(IS_PAGEALIGNED(eaddr)); 2484 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2485 2486 XPV_DISALLOW_MIGRATE(); 2487 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2488 try_again: 2489 pte = htable_walk(hat, &ht, &vaddr, eaddr); 2490 if (ht == NULL) 2491 break; 2492 entry = htable_va2entry(vaddr, ht); 2493 2494 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 2495 PTE_GET(pte, PT_REF | PT_MOD) == 0) 2496 continue; 2497 2498 /* 2499 * We need to acquire the mapping list lock to protect 2500 * against hat_pageunload(), hat_unload(), etc. 2501 */ 2502 pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level)); 2503 if (pp == NULL) 2504 break; 2505 x86_hm_enter(pp); 2506 save_pte = pte; 2507 pte = x86pte_get(ht, entry); 2508 if (pte != save_pte) { 2509 x86_hm_exit(pp); 2510 goto try_again; 2511 } 2512 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 2513 PTE_GET(pte, PT_REF | PT_MOD) == 0) { 2514 x86_hm_exit(pp); 2515 continue; 2516 } 2517 2518 /* 2519 * Need to clear ref or mod bits. We may compete with 2520 * hardware updating the R/M bits and have to try again. 2521 */ 2522 if (flags == HAT_SYNC_ZERORM) { 2523 new = pte; 2524 PTE_CLR(new, PT_REF | PT_MOD); 2525 pte = hati_update_pte(ht, entry, pte, new); 2526 if (pte != 0) { 2527 x86_hm_exit(pp); 2528 goto try_again; 2529 } 2530 } else { 2531 /* 2532 * sync the PTE to the page_t 2533 */ 2534 hati_sync_pte_to_page(pp, save_pte, ht->ht_level); 2535 } 2536 x86_hm_exit(pp); 2537 } 2538 if (ht) 2539 htable_release(ht); 2540 XPV_ALLOW_MIGRATE(); 2541 } 2542 2543 /* 2544 * void hat_map(hat, addr, len, flags) 2545 */ 2546 /*ARGSUSED*/ 2547 void 2548 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2549 { 2550 /* does nothing */ 2551 } 2552 2553 /* 2554 * uint_t hat_getattr(hat, addr, *attr) 2555 * returns attr for <hat,addr> in *attr. returns 0 if there was a 2556 * mapping and *attr is valid, nonzero if there was no mapping and 2557 * *attr is not valid. 2558 */ 2559 uint_t 2560 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr) 2561 { 2562 uintptr_t vaddr = ALIGN2PAGE(addr); 2563 htable_t *ht = NULL; 2564 x86pte_t pte; 2565 2566 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2567 2568 if (IN_VA_HOLE(vaddr)) 2569 return ((uint_t)-1); 2570 2571 ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level); 2572 if (ht == NULL) 2573 return ((uint_t)-1); 2574 2575 if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) { 2576 htable_release(ht); 2577 return ((uint_t)-1); 2578 } 2579 2580 *attr = PROT_READ; 2581 if (PTE_GET(pte, PT_WRITABLE)) 2582 *attr |= PROT_WRITE; 2583 if (PTE_GET(pte, PT_USER)) 2584 *attr |= PROT_USER; 2585 if (!PTE_GET(pte, mmu.pt_nx)) 2586 *attr |= PROT_EXEC; 2587 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 2588 *attr |= HAT_NOSYNC; 2589 htable_release(ht); 2590 return (0); 2591 } 2592 2593 /* 2594 * hat_updateattr() applies the given attribute change to an existing mapping 2595 */ 2596 #define HAT_LOAD_ATTR 1 2597 #define HAT_SET_ATTR 2 2598 #define HAT_CLR_ATTR 3 2599 2600 static void 2601 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what) 2602 { 2603 uintptr_t vaddr = (uintptr_t)addr; 2604 uintptr_t eaddr = (uintptr_t)addr + len; 2605 htable_t *ht = NULL; 2606 uint_t entry; 2607 x86pte_t oldpte, newpte; 2608 page_t *pp; 2609 2610 XPV_DISALLOW_MIGRATE(); 2611 ASSERT(IS_PAGEALIGNED(vaddr)); 2612 ASSERT(IS_PAGEALIGNED(eaddr)); 2613 ASSERT(hat == kas.a_hat || 2614 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 2615 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2616 try_again: 2617 oldpte = htable_walk(hat, &ht, &vaddr, eaddr); 2618 if (ht == NULL) 2619 break; 2620 if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST) 2621 continue; 2622 2623 pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level)); 2624 if (pp == NULL) 2625 continue; 2626 x86_hm_enter(pp); 2627 2628 newpte = oldpte; 2629 /* 2630 * We found a page table entry in the desired range, 2631 * figure out the new attributes. 2632 */ 2633 if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) { 2634 if ((attr & PROT_WRITE) && 2635 !PTE_GET(oldpte, PT_WRITABLE)) 2636 newpte |= PT_WRITABLE; 2637 2638 if ((attr & HAT_NOSYNC) && 2639 PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC) 2640 newpte |= PT_NOSYNC; 2641 2642 if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx)) 2643 newpte &= ~mmu.pt_nx; 2644 } 2645 2646 if (what == HAT_LOAD_ATTR) { 2647 if (!(attr & PROT_WRITE) && 2648 PTE_GET(oldpte, PT_WRITABLE)) 2649 newpte &= ~PT_WRITABLE; 2650 2651 if (!(attr & HAT_NOSYNC) && 2652 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 2653 newpte &= ~PT_SOFTWARE; 2654 2655 if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2656 newpte |= mmu.pt_nx; 2657 } 2658 2659 if (what == HAT_CLR_ATTR) { 2660 if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE)) 2661 newpte &= ~PT_WRITABLE; 2662 2663 if ((attr & HAT_NOSYNC) && 2664 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 2665 newpte &= ~PT_SOFTWARE; 2666 2667 if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2668 newpte |= mmu.pt_nx; 2669 } 2670 2671 /* 2672 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set. 2673 * x86pte_set() depends on this. 2674 */ 2675 if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC) 2676 newpte |= PT_REF | PT_MOD; 2677 2678 /* 2679 * what about PROT_READ or others? this code only handles: 2680 * EXEC, WRITE, NOSYNC 2681 */ 2682 2683 /* 2684 * If new PTE really changed, update the table. 2685 */ 2686 if (newpte != oldpte) { 2687 entry = htable_va2entry(vaddr, ht); 2688 oldpte = hati_update_pte(ht, entry, oldpte, newpte); 2689 if (oldpte != 0) { 2690 x86_hm_exit(pp); 2691 goto try_again; 2692 } 2693 } 2694 x86_hm_exit(pp); 2695 } 2696 if (ht) 2697 htable_release(ht); 2698 XPV_ALLOW_MIGRATE(); 2699 } 2700 2701 /* 2702 * Various wrappers for hat_updateattr() 2703 */ 2704 void 2705 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2706 { 2707 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2708 hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR); 2709 } 2710 2711 void 2712 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2713 { 2714 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2715 hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR); 2716 } 2717 2718 void 2719 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2720 { 2721 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2722 hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR); 2723 } 2724 2725 void 2726 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot) 2727 { 2728 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2729 hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR); 2730 } 2731 2732 /* 2733 * size_t hat_getpagesize(hat, addr) 2734 * returns pagesize in bytes for <hat, addr>. returns -1 of there is 2735 * no mapping. This is an advisory call. 2736 */ 2737 ssize_t 2738 hat_getpagesize(hat_t *hat, caddr_t addr) 2739 { 2740 uintptr_t vaddr = ALIGN2PAGE(addr); 2741 htable_t *ht; 2742 size_t pagesize; 2743 2744 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2745 if (IN_VA_HOLE(vaddr)) 2746 return (-1); 2747 ht = htable_getpage(hat, vaddr, NULL); 2748 if (ht == NULL) 2749 return (-1); 2750 pagesize = LEVEL_SIZE(ht->ht_level); 2751 htable_release(ht); 2752 return (pagesize); 2753 } 2754 2755 2756 2757 /* 2758 * pfn_t hat_getpfnum(hat, addr) 2759 * returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid. 2760 */ 2761 pfn_t 2762 hat_getpfnum(hat_t *hat, caddr_t addr) 2763 { 2764 uintptr_t vaddr = ALIGN2PAGE(addr); 2765 htable_t *ht; 2766 uint_t entry; 2767 pfn_t pfn = PFN_INVALID; 2768 2769 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2770 if (khat_running == 0) 2771 return (PFN_INVALID); 2772 2773 if (IN_VA_HOLE(vaddr)) 2774 return (PFN_INVALID); 2775 2776 XPV_DISALLOW_MIGRATE(); 2777 /* 2778 * A very common use of hat_getpfnum() is from the DDI for kernel pages. 2779 * Use the kmap_ptes (which also covers the 32 bit heap) to speed 2780 * this up. 2781 */ 2782 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2783 x86pte_t pte; 2784 pgcnt_t pg_index; 2785 2786 pg_index = mmu_btop(vaddr - mmu.kmap_addr); 2787 pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index)); 2788 if (PTE_ISVALID(pte)) 2789 /*LINTED [use of constant 0 causes a lint warning] */ 2790 pfn = PTE2PFN(pte, 0); 2791 XPV_ALLOW_MIGRATE(); 2792 return (pfn); 2793 } 2794 2795 ht = htable_getpage(hat, vaddr, &entry); 2796 if (ht == NULL) { 2797 XPV_ALLOW_MIGRATE(); 2798 return (PFN_INVALID); 2799 } 2800 ASSERT(vaddr >= ht->ht_vaddr); 2801 ASSERT(vaddr <= HTABLE_LAST_PAGE(ht)); 2802 pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level); 2803 if (ht->ht_level > 0) 2804 pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level)); 2805 htable_release(ht); 2806 XPV_ALLOW_MIGRATE(); 2807 return (pfn); 2808 } 2809 2810 /* 2811 * int hat_probe(hat, addr) 2812 * return 0 if no valid mapping is present. Faster version 2813 * of hat_getattr in certain architectures. 2814 */ 2815 int 2816 hat_probe(hat_t *hat, caddr_t addr) 2817 { 2818 uintptr_t vaddr = ALIGN2PAGE(addr); 2819 uint_t entry; 2820 htable_t *ht; 2821 pgcnt_t pg_off; 2822 2823 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2824 ASSERT(hat == kas.a_hat || 2825 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 2826 if (IN_VA_HOLE(vaddr)) 2827 return (0); 2828 2829 /* 2830 * Most common use of hat_probe is from segmap. We special case it 2831 * for performance. 2832 */ 2833 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2834 pg_off = mmu_btop(vaddr - mmu.kmap_addr); 2835 if (mmu.pae_hat) 2836 return (PTE_ISVALID(mmu.kmap_ptes[pg_off])); 2837 else 2838 return (PTE_ISVALID( 2839 ((x86pte32_t *)mmu.kmap_ptes)[pg_off])); 2840 } 2841 2842 ht = htable_getpage(hat, vaddr, &entry); 2843 htable_release(ht); 2844 return (ht != NULL); 2845 } 2846 2847 /* 2848 * Find out if the segment for hat_share()/hat_unshare() is DISM or locked ISM. 2849 */ 2850 static int 2851 is_it_dism(hat_t *hat, caddr_t va) 2852 { 2853 struct seg *seg; 2854 struct shm_data *shmd; 2855 struct spt_data *sptd; 2856 2857 seg = as_findseg(hat->hat_as, va, 0); 2858 ASSERT(seg != NULL); 2859 ASSERT(seg->s_base <= va); 2860 shmd = (struct shm_data *)seg->s_data; 2861 ASSERT(shmd != NULL); 2862 sptd = (struct spt_data *)shmd->shm_sptseg->s_data; 2863 ASSERT(sptd != NULL); 2864 if (sptd->spt_flags & SHM_PAGEABLE) 2865 return (1); 2866 return (0); 2867 } 2868 2869 /* 2870 * Simple implementation of ISM. hat_share() is similar to hat_memload_array(), 2871 * except that we use the ism_hat's existing mappings to determine the pages 2872 * and protections to use for this hat. If we find a full properly aligned 2873 * and sized pagetable, we will attempt to share the pagetable itself. 2874 */ 2875 /*ARGSUSED*/ 2876 int 2877 hat_share( 2878 hat_t *hat, 2879 caddr_t addr, 2880 hat_t *ism_hat, 2881 caddr_t src_addr, 2882 size_t len, /* almost useless value, see below.. */ 2883 uint_t ismszc) 2884 { 2885 uintptr_t vaddr_start = (uintptr_t)addr; 2886 uintptr_t vaddr; 2887 uintptr_t eaddr = vaddr_start + len; 2888 uintptr_t ism_addr_start = (uintptr_t)src_addr; 2889 uintptr_t ism_addr = ism_addr_start; 2890 uintptr_t e_ism_addr = ism_addr + len; 2891 htable_t *ism_ht = NULL; 2892 htable_t *ht; 2893 x86pte_t pte; 2894 page_t *pp; 2895 pfn_t pfn; 2896 level_t l; 2897 pgcnt_t pgcnt; 2898 uint_t prot; 2899 int is_dism; 2900 int flags; 2901 2902 /* 2903 * We might be asked to share an empty DISM hat by as_dup() 2904 */ 2905 ASSERT(hat != kas.a_hat); 2906 ASSERT(eaddr <= _userlimit); 2907 if (!(ism_hat->hat_flags & HAT_SHARED)) { 2908 ASSERT(hat_get_mapped_size(ism_hat) == 0); 2909 return (0); 2910 } 2911 XPV_DISALLOW_MIGRATE(); 2912 2913 /* 2914 * The SPT segment driver often passes us a size larger than there are 2915 * valid mappings. That's because it rounds the segment size up to a 2916 * large pagesize, even if the actual memory mapped by ism_hat is less. 2917 */ 2918 ASSERT(IS_PAGEALIGNED(vaddr_start)); 2919 ASSERT(IS_PAGEALIGNED(ism_addr_start)); 2920 ASSERT(ism_hat->hat_flags & HAT_SHARED); 2921 is_dism = is_it_dism(hat, addr); 2922 while (ism_addr < e_ism_addr) { 2923 /* 2924 * use htable_walk to get the next valid ISM mapping 2925 */ 2926 pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr); 2927 if (ism_ht == NULL) 2928 break; 2929 2930 /* 2931 * First check to see if we already share the page table. 2932 */ 2933 l = ism_ht->ht_level; 2934 vaddr = vaddr_start + (ism_addr - ism_addr_start); 2935 ht = htable_lookup(hat, vaddr, l); 2936 if (ht != NULL) { 2937 if (ht->ht_flags & HTABLE_SHARED_PFN) 2938 goto shared; 2939 htable_release(ht); 2940 goto not_shared; 2941 } 2942 2943 /* 2944 * Can't ever share top table. 2945 */ 2946 if (l == mmu.max_level) 2947 goto not_shared; 2948 2949 /* 2950 * Avoid level mismatches later due to DISM faults. 2951 */ 2952 if (is_dism && l > 0) 2953 goto not_shared; 2954 2955 /* 2956 * addresses and lengths must align 2957 * table must be fully populated 2958 * no lower level page tables 2959 */ 2960 if (ism_addr != ism_ht->ht_vaddr || 2961 (vaddr & LEVEL_OFFSET(l + 1)) != 0) 2962 goto not_shared; 2963 2964 /* 2965 * The range of address space must cover a full table. 2966 */ 2967 if (e_ism_addr - ism_addr < LEVEL_SIZE(l + 1)) 2968 goto not_shared; 2969 2970 /* 2971 * All entries in the ISM page table must be leaf PTEs. 2972 */ 2973 if (l > 0) { 2974 int e; 2975 2976 /* 2977 * We know the 0th is from htable_walk() above. 2978 */ 2979 for (e = 1; e < HTABLE_NUM_PTES(ism_ht); ++e) { 2980 x86pte_t pte; 2981 pte = x86pte_get(ism_ht, e); 2982 if (!PTE_ISPAGE(pte, l)) 2983 goto not_shared; 2984 } 2985 } 2986 2987 /* 2988 * share the page table 2989 */ 2990 ht = htable_create(hat, vaddr, l, ism_ht); 2991 shared: 2992 ASSERT(ht->ht_flags & HTABLE_SHARED_PFN); 2993 ASSERT(ht->ht_shares == ism_ht); 2994 hat->hat_ism_pgcnt += 2995 (ism_ht->ht_valid_cnt - ht->ht_valid_cnt) << 2996 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT); 2997 ht->ht_valid_cnt = ism_ht->ht_valid_cnt; 2998 htable_release(ht); 2999 ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(l + 1); 3000 htable_release(ism_ht); 3001 ism_ht = NULL; 3002 continue; 3003 3004 not_shared: 3005 /* 3006 * Unable to share the page table. Instead we will 3007 * create new mappings from the values in the ISM mappings. 3008 * Figure out what level size mappings to use; 3009 */ 3010 for (l = ism_ht->ht_level; l > 0; --l) { 3011 if (LEVEL_SIZE(l) <= eaddr - vaddr && 3012 (vaddr & LEVEL_OFFSET(l)) == 0) 3013 break; 3014 } 3015 3016 /* 3017 * The ISM mapping might be larger than the share area, 3018 * be careful to truncate it if needed. 3019 */ 3020 if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) { 3021 pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level)); 3022 } else { 3023 pgcnt = mmu_btop(eaddr - vaddr); 3024 l = 0; 3025 } 3026 3027 pfn = PTE2PFN(pte, ism_ht->ht_level); 3028 ASSERT(pfn != PFN_INVALID); 3029 while (pgcnt > 0) { 3030 /* 3031 * Make a new pte for the PFN for this level. 3032 * Copy protections for the pte from the ISM pte. 3033 */ 3034 pp = page_numtopp_nolock(pfn); 3035 ASSERT(pp != NULL); 3036 3037 prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK; 3038 if (PTE_GET(pte, PT_WRITABLE)) 3039 prot |= PROT_WRITE; 3040 if (!PTE_GET(pte, PT_NX)) 3041 prot |= PROT_EXEC; 3042 3043 flags = HAT_LOAD; 3044 if (!is_dism) 3045 flags |= HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST; 3046 while (hati_load_common(hat, vaddr, pp, prot, flags, 3047 l, pfn) != 0) { 3048 if (l == 0) 3049 panic("hati_load_common() failure"); 3050 --l; 3051 } 3052 3053 vaddr += LEVEL_SIZE(l); 3054 ism_addr += LEVEL_SIZE(l); 3055 pfn += mmu_btop(LEVEL_SIZE(l)); 3056 pgcnt -= mmu_btop(LEVEL_SIZE(l)); 3057 } 3058 } 3059 if (ism_ht != NULL) 3060 htable_release(ism_ht); 3061 XPV_ALLOW_MIGRATE(); 3062 return (0); 3063 } 3064 3065 3066 /* 3067 * hat_unshare() is similar to hat_unload_callback(), but 3068 * we have to look for empty shared pagetables. Note that 3069 * hat_unshare() is always invoked against an entire segment. 3070 */ 3071 /*ARGSUSED*/ 3072 void 3073 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc) 3074 { 3075 uint64_t vaddr = (uintptr_t)addr; 3076 uintptr_t eaddr = vaddr + len; 3077 htable_t *ht = NULL; 3078 uint_t need_demaps = 0; 3079 int flags = HAT_UNLOAD_UNMAP; 3080 level_t l; 3081 3082 ASSERT(hat != kas.a_hat); 3083 ASSERT(eaddr <= _userlimit); 3084 ASSERT(IS_PAGEALIGNED(vaddr)); 3085 ASSERT(IS_PAGEALIGNED(eaddr)); 3086 XPV_DISALLOW_MIGRATE(); 3087 3088 /* 3089 * First go through and remove any shared pagetables. 3090 * 3091 * Note that it's ok to delay the TLB shootdown till the entire range is 3092 * finished, because if hat_pageunload() were to unload a shared 3093 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate. 3094 */ 3095 l = mmu.max_page_level; 3096 if (l == mmu.max_level) 3097 --l; 3098 for (; l >= 0; --l) { 3099 for (vaddr = (uintptr_t)addr; vaddr < eaddr; 3100 vaddr = (vaddr & LEVEL_MASK(l + 1)) + LEVEL_SIZE(l + 1)) { 3101 ASSERT(!IN_VA_HOLE(vaddr)); 3102 /* 3103 * find a pagetable that maps the current address 3104 */ 3105 ht = htable_lookup(hat, vaddr, l); 3106 if (ht == NULL) 3107 continue; 3108 if (ht->ht_flags & HTABLE_SHARED_PFN) { 3109 /* 3110 * clear page count, set valid_cnt to 0, 3111 * let htable_release() finish the job 3112 */ 3113 hat->hat_ism_pgcnt -= ht->ht_valid_cnt << 3114 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT); 3115 ht->ht_valid_cnt = 0; 3116 need_demaps = 1; 3117 } 3118 htable_release(ht); 3119 } 3120 } 3121 3122 /* 3123 * flush the TLBs - since we're probably dealing with MANY mappings 3124 * we do just one CR3 reload. 3125 */ 3126 if (!(hat->hat_flags & HAT_FREEING) && need_demaps) 3127 hat_tlb_inval(hat, DEMAP_ALL_ADDR); 3128 3129 /* 3130 * Now go back and clean up any unaligned mappings that 3131 * couldn't share pagetables. 3132 */ 3133 if (!is_it_dism(hat, addr)) 3134 flags |= HAT_UNLOAD_UNLOCK; 3135 hat_unload(hat, addr, len, flags); 3136 XPV_ALLOW_MIGRATE(); 3137 } 3138 3139 3140 /* 3141 * hat_reserve() does nothing 3142 */ 3143 /*ARGSUSED*/ 3144 void 3145 hat_reserve(struct as *as, caddr_t addr, size_t len) 3146 { 3147 } 3148 3149 3150 /* 3151 * Called when all mappings to a page should have write permission removed. 3152 * Mostly stolen from hat_pagesync() 3153 */ 3154 static void 3155 hati_page_clrwrt(struct page *pp) 3156 { 3157 hment_t *hm = NULL; 3158 htable_t *ht; 3159 uint_t entry; 3160 x86pte_t old; 3161 x86pte_t new; 3162 uint_t pszc = 0; 3163 3164 XPV_DISALLOW_MIGRATE(); 3165 next_size: 3166 /* 3167 * walk thru the mapping list clearing write permission 3168 */ 3169 x86_hm_enter(pp); 3170 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 3171 if (ht->ht_level < pszc) 3172 continue; 3173 old = x86pte_get(ht, entry); 3174 3175 for (;;) { 3176 /* 3177 * Is this mapping of interest? 3178 */ 3179 if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum || 3180 PTE_GET(old, PT_WRITABLE) == 0) 3181 break; 3182 3183 /* 3184 * Clear ref/mod writable bits. This requires cross 3185 * calls to ensure any executing TLBs see cleared bits. 3186 */ 3187 new = old; 3188 PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE); 3189 old = hati_update_pte(ht, entry, old, new); 3190 if (old != 0) 3191 continue; 3192 3193 break; 3194 } 3195 } 3196 x86_hm_exit(pp); 3197 while (pszc < pp->p_szc) { 3198 page_t *tpp; 3199 pszc++; 3200 tpp = PP_GROUPLEADER(pp, pszc); 3201 if (pp != tpp) { 3202 pp = tpp; 3203 goto next_size; 3204 } 3205 } 3206 XPV_ALLOW_MIGRATE(); 3207 } 3208 3209 /* 3210 * void hat_page_setattr(pp, flag) 3211 * void hat_page_clrattr(pp, flag) 3212 * used to set/clr ref/mod bits. 3213 */ 3214 void 3215 hat_page_setattr(struct page *pp, uint_t flag) 3216 { 3217 vnode_t *vp = pp->p_vnode; 3218 kmutex_t *vphm = NULL; 3219 page_t **listp; 3220 int noshuffle; 3221 3222 noshuffle = flag & P_NSH; 3223 flag &= ~P_NSH; 3224 3225 if (PP_GETRM(pp, flag) == flag) 3226 return; 3227 3228 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) && 3229 !noshuffle) { 3230 vphm = page_vnode_mutex(vp); 3231 mutex_enter(vphm); 3232 } 3233 3234 PP_SETRM(pp, flag); 3235 3236 if (vphm != NULL) { 3237 3238 /* 3239 * Some File Systems examine v_pages for NULL w/o 3240 * grabbing the vphm mutex. Must not let it become NULL when 3241 * pp is the only page on the list. 3242 */ 3243 if (pp->p_vpnext != pp) { 3244 page_vpsub(&vp->v_pages, pp); 3245 if (vp->v_pages != NULL) 3246 listp = &vp->v_pages->p_vpprev->p_vpnext; 3247 else 3248 listp = &vp->v_pages; 3249 page_vpadd(listp, pp); 3250 } 3251 mutex_exit(vphm); 3252 } 3253 } 3254 3255 void 3256 hat_page_clrattr(struct page *pp, uint_t flag) 3257 { 3258 vnode_t *vp = pp->p_vnode; 3259 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 3260 3261 /* 3262 * Caller is expected to hold page's io lock for VMODSORT to work 3263 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod 3264 * bit is cleared. 3265 * We don't have assert to avoid tripping some existing third party 3266 * code. The dirty page is moved back to top of the v_page list 3267 * after IO is done in pvn_write_done(). 3268 */ 3269 PP_CLRRM(pp, flag); 3270 3271 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 3272 3273 /* 3274 * VMODSORT works by removing write permissions and getting 3275 * a fault when a page is made dirty. At this point 3276 * we need to remove write permission from all mappings 3277 * to this page. 3278 */ 3279 hati_page_clrwrt(pp); 3280 } 3281 } 3282 3283 /* 3284 * If flag is specified, returns 0 if attribute is disabled 3285 * and non zero if enabled. If flag specifes multiple attributes 3286 * then returns 0 if ALL attributes are disabled. This is an advisory 3287 * call. 3288 */ 3289 uint_t 3290 hat_page_getattr(struct page *pp, uint_t flag) 3291 { 3292 return (PP_GETRM(pp, flag)); 3293 } 3294 3295 3296 /* 3297 * common code used by hat_pageunload() and hment_steal() 3298 */ 3299 hment_t * 3300 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry) 3301 { 3302 x86pte_t old_pte; 3303 pfn_t pfn = pp->p_pagenum; 3304 hment_t *hm; 3305 3306 /* 3307 * We need to acquire a hold on the htable in order to 3308 * do the invalidate. We know the htable must exist, since 3309 * unmap's don't release the htable until after removing any 3310 * hment. Having x86_hm_enter() keeps that from proceeding. 3311 */ 3312 htable_acquire(ht); 3313 3314 /* 3315 * Invalidate the PTE and remove the hment. 3316 */ 3317 old_pte = x86pte_inval(ht, entry, 0, NULL); 3318 if (PTE2PFN(old_pte, ht->ht_level) != pfn) { 3319 panic("x86pte_inval() failure found PTE = " FMT_PTE 3320 " pfn being unmapped is %lx ht=0x%lx entry=0x%x", 3321 old_pte, pfn, (uintptr_t)ht, entry); 3322 } 3323 3324 /* 3325 * Clean up all the htable information for this mapping 3326 */ 3327 ASSERT(ht->ht_valid_cnt > 0); 3328 HTABLE_DEC(ht->ht_valid_cnt); 3329 PGCNT_DEC(ht->ht_hat, ht->ht_level); 3330 3331 /* 3332 * sync ref/mod bits to the page_t 3333 */ 3334 if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC) 3335 hati_sync_pte_to_page(pp, old_pte, ht->ht_level); 3336 3337 /* 3338 * Remove the mapping list entry for this page. 3339 */ 3340 hm = hment_remove(pp, ht, entry); 3341 3342 /* 3343 * drop the mapping list lock so that we might free the 3344 * hment and htable. 3345 */ 3346 x86_hm_exit(pp); 3347 htable_release(ht); 3348 return (hm); 3349 } 3350 3351 extern int vpm_enable; 3352 /* 3353 * Unload all translations to a page. If the page is a subpage of a large 3354 * page, the large page mappings are also removed. 3355 * 3356 * The forceflags are unused. 3357 */ 3358 3359 /*ARGSUSED*/ 3360 static int 3361 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag) 3362 { 3363 page_t *cur_pp = pp; 3364 hment_t *hm; 3365 hment_t *prev; 3366 htable_t *ht; 3367 uint_t entry; 3368 level_t level; 3369 3370 XPV_DISALLOW_MIGRATE(); 3371 3372 /* 3373 * prevent recursion due to kmem_free() 3374 */ 3375 ++curthread->t_hatdepth; 3376 ASSERT(curthread->t_hatdepth < 16); 3377 3378 #if defined(__amd64) 3379 /* 3380 * clear the vpm ref. 3381 */ 3382 if (vpm_enable) { 3383 pp->p_vpmref = 0; 3384 } 3385 #endif 3386 /* 3387 * The loop with next_size handles pages with multiple pagesize mappings 3388 */ 3389 next_size: 3390 for (;;) { 3391 3392 /* 3393 * Get a mapping list entry 3394 */ 3395 x86_hm_enter(cur_pp); 3396 for (prev = NULL; ; prev = hm) { 3397 hm = hment_walk(cur_pp, &ht, &entry, prev); 3398 if (hm == NULL) { 3399 x86_hm_exit(cur_pp); 3400 3401 /* 3402 * If not part of a larger page, we're done. 3403 */ 3404 if (cur_pp->p_szc <= pg_szcd) { 3405 ASSERT(curthread->t_hatdepth > 0); 3406 --curthread->t_hatdepth; 3407 XPV_ALLOW_MIGRATE(); 3408 return (0); 3409 } 3410 3411 /* 3412 * Else check the next larger page size. 3413 * hat_page_demote() may decrease p_szc 3414 * but that's ok we'll just take an extra 3415 * trip discover there're no larger mappings 3416 * and return. 3417 */ 3418 ++pg_szcd; 3419 cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd); 3420 goto next_size; 3421 } 3422 3423 /* 3424 * If this mapping size matches, remove it. 3425 */ 3426 level = ht->ht_level; 3427 if (level == pg_szcd) 3428 break; 3429 } 3430 3431 /* 3432 * Remove the mapping list entry for this page. 3433 * Note this does the x86_hm_exit() for us. 3434 */ 3435 hm = hati_page_unmap(cur_pp, ht, entry); 3436 if (hm != NULL) 3437 hment_free(hm); 3438 } 3439 } 3440 3441 int 3442 hat_pageunload(struct page *pp, uint_t forceflag) 3443 { 3444 ASSERT(PAGE_EXCL(pp)); 3445 return (hati_pageunload(pp, 0, forceflag)); 3446 } 3447 3448 /* 3449 * Unload all large mappings to pp and reduce by 1 p_szc field of every large 3450 * page level that included pp. 3451 * 3452 * pp must be locked EXCL. Even though no other constituent pages are locked 3453 * it's legal to unload large mappings to pp because all constituent pages of 3454 * large locked mappings have to be locked SHARED. therefore if we have EXCL 3455 * lock on one of constituent pages none of the large mappings to pp are 3456 * locked. 3457 * 3458 * Change (always decrease) p_szc field starting from the last constituent 3459 * page and ending with root constituent page so that root's pszc always shows 3460 * the area where hat_page_demote() may be active. 3461 * 3462 * This mechanism is only used for file system pages where it's not always 3463 * possible to get EXCL locks on all constituent pages to demote the size code 3464 * (as is done for anonymous or kernel large pages). 3465 */ 3466 void 3467 hat_page_demote(page_t *pp) 3468 { 3469 uint_t pszc; 3470 uint_t rszc; 3471 uint_t szc; 3472 page_t *rootpp; 3473 page_t *firstpp; 3474 page_t *lastpp; 3475 pgcnt_t pgcnt; 3476 3477 ASSERT(PAGE_EXCL(pp)); 3478 ASSERT(!PP_ISFREE(pp)); 3479 ASSERT(page_szc_lock_assert(pp)); 3480 3481 if (pp->p_szc == 0) 3482 return; 3483 3484 rootpp = PP_GROUPLEADER(pp, 1); 3485 (void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD); 3486 3487 /* 3488 * all large mappings to pp are gone 3489 * and no new can be setup since pp is locked exclusively. 3490 * 3491 * Lock the root to make sure there's only one hat_page_demote() 3492 * outstanding within the area of this root's pszc. 3493 * 3494 * Second potential hat_page_demote() is already eliminated by upper 3495 * VM layer via page_szc_lock() but we don't rely on it and use our 3496 * own locking (so that upper layer locking can be changed without 3497 * assumptions that hat depends on upper layer VM to prevent multiple 3498 * hat_page_demote() to be issued simultaneously to the same large 3499 * page). 3500 */ 3501 again: 3502 pszc = pp->p_szc; 3503 if (pszc == 0) 3504 return; 3505 rootpp = PP_GROUPLEADER(pp, pszc); 3506 x86_hm_enter(rootpp); 3507 /* 3508 * If root's p_szc is different from pszc we raced with another 3509 * hat_page_demote(). Drop the lock and try to find the root again. 3510 * If root's p_szc is greater than pszc previous hat_page_demote() is 3511 * not done yet. Take and release mlist lock of root's root to wait 3512 * for previous hat_page_demote() to complete. 3513 */ 3514 if ((rszc = rootpp->p_szc) != pszc) { 3515 x86_hm_exit(rootpp); 3516 if (rszc > pszc) { 3517 /* p_szc of a locked non free page can't increase */ 3518 ASSERT(pp != rootpp); 3519 3520 rootpp = PP_GROUPLEADER(rootpp, rszc); 3521 x86_hm_enter(rootpp); 3522 x86_hm_exit(rootpp); 3523 } 3524 goto again; 3525 } 3526 ASSERT(pp->p_szc == pszc); 3527 3528 /* 3529 * Decrement by 1 p_szc of every constituent page of a region that 3530 * covered pp. For example if original szc is 3 it gets changed to 2 3531 * everywhere except in region 2 that covered pp. Region 2 that 3532 * covered pp gets demoted to 1 everywhere except in region 1 that 3533 * covered pp. The region 1 that covered pp is demoted to region 3534 * 0. It's done this way because from region 3 we removed level 3 3535 * mappings, from region 2 that covered pp we removed level 2 mappings 3536 * and from region 1 that covered pp we removed level 1 mappings. All 3537 * changes are done from from high pfn's to low pfn's so that roots 3538 * are changed last allowing one to know the largest region where 3539 * hat_page_demote() is stil active by only looking at the root page. 3540 * 3541 * This algorithm is implemented in 2 while loops. First loop changes 3542 * p_szc of pages to the right of pp's level 1 region and second 3543 * loop changes p_szc of pages of level 1 region that covers pp 3544 * and all pages to the left of level 1 region that covers pp. 3545 * In the first loop p_szc keeps dropping with every iteration 3546 * and in the second loop it keeps increasing with every iteration. 3547 * 3548 * First loop description: Demote pages to the right of pp outside of 3549 * level 1 region that covers pp. In every iteration of the while 3550 * loop below find the last page of szc region and the first page of 3551 * (szc - 1) region that is immediately to the right of (szc - 1) 3552 * region that covers pp. From last such page to first such page 3553 * change every page's szc to szc - 1. Decrement szc and continue 3554 * looping until szc is 1. If pp belongs to the last (szc - 1) region 3555 * of szc region skip to the next iteration. 3556 */ 3557 szc = pszc; 3558 while (szc > 1) { 3559 lastpp = PP_GROUPLEADER(pp, szc); 3560 pgcnt = page_get_pagecnt(szc); 3561 lastpp += pgcnt - 1; 3562 firstpp = PP_GROUPLEADER(pp, (szc - 1)); 3563 pgcnt = page_get_pagecnt(szc - 1); 3564 if (lastpp - firstpp < pgcnt) { 3565 szc--; 3566 continue; 3567 } 3568 firstpp += pgcnt; 3569 while (lastpp != firstpp) { 3570 ASSERT(lastpp->p_szc == pszc); 3571 lastpp->p_szc = szc - 1; 3572 lastpp--; 3573 } 3574 firstpp->p_szc = szc - 1; 3575 szc--; 3576 } 3577 3578 /* 3579 * Second loop description: 3580 * First iteration changes p_szc to 0 of every 3581 * page of level 1 region that covers pp. 3582 * Subsequent iterations find last page of szc region 3583 * immediately to the left of szc region that covered pp 3584 * and first page of (szc + 1) region that covers pp. 3585 * From last to first page change p_szc of every page to szc. 3586 * Increment szc and continue looping until szc is pszc. 3587 * If pp belongs to the fist szc region of (szc + 1) region 3588 * skip to the next iteration. 3589 * 3590 */ 3591 szc = 0; 3592 while (szc < pszc) { 3593 firstpp = PP_GROUPLEADER(pp, (szc + 1)); 3594 if (szc == 0) { 3595 pgcnt = page_get_pagecnt(1); 3596 lastpp = firstpp + (pgcnt - 1); 3597 } else { 3598 lastpp = PP_GROUPLEADER(pp, szc); 3599 if (firstpp == lastpp) { 3600 szc++; 3601 continue; 3602 } 3603 lastpp--; 3604 pgcnt = page_get_pagecnt(szc); 3605 } 3606 while (lastpp != firstpp) { 3607 ASSERT(lastpp->p_szc == pszc); 3608 lastpp->p_szc = szc; 3609 lastpp--; 3610 } 3611 firstpp->p_szc = szc; 3612 if (firstpp == rootpp) 3613 break; 3614 szc++; 3615 } 3616 x86_hm_exit(rootpp); 3617 } 3618 3619 /* 3620 * get hw stats from hardware into page struct and reset hw stats 3621 * returns attributes of page 3622 * Flags for hat_pagesync, hat_getstat, hat_sync 3623 * 3624 * define HAT_SYNC_ZERORM 0x01 3625 * 3626 * Additional flags for hat_pagesync 3627 * 3628 * define HAT_SYNC_STOPON_REF 0x02 3629 * define HAT_SYNC_STOPON_MOD 0x04 3630 * define HAT_SYNC_STOPON_RM 0x06 3631 * define HAT_SYNC_STOPON_SHARED 0x08 3632 */ 3633 uint_t 3634 hat_pagesync(struct page *pp, uint_t flags) 3635 { 3636 hment_t *hm = NULL; 3637 htable_t *ht; 3638 uint_t entry; 3639 x86pte_t old, save_old; 3640 x86pte_t new; 3641 uchar_t nrmbits = P_REF|P_MOD|P_RO; 3642 extern ulong_t po_share; 3643 page_t *save_pp = pp; 3644 uint_t pszc = 0; 3645 3646 ASSERT(PAGE_LOCKED(pp) || panicstr); 3647 3648 if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD)) 3649 return (pp->p_nrm & nrmbits); 3650 3651 if ((flags & HAT_SYNC_ZERORM) == 0) { 3652 3653 if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp)) 3654 return (pp->p_nrm & nrmbits); 3655 3656 if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp)) 3657 return (pp->p_nrm & nrmbits); 3658 3659 if ((flags & HAT_SYNC_STOPON_SHARED) != 0 && 3660 hat_page_getshare(pp) > po_share) { 3661 if (PP_ISRO(pp)) 3662 PP_SETREF(pp); 3663 return (pp->p_nrm & nrmbits); 3664 } 3665 } 3666 3667 XPV_DISALLOW_MIGRATE(); 3668 next_size: 3669 /* 3670 * walk thru the mapping list syncing (and clearing) ref/mod bits. 3671 */ 3672 x86_hm_enter(pp); 3673 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 3674 if (ht->ht_level < pszc) 3675 continue; 3676 old = x86pte_get(ht, entry); 3677 try_again: 3678 3679 ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum); 3680 3681 if (PTE_GET(old, PT_REF | PT_MOD) == 0) 3682 continue; 3683 3684 save_old = old; 3685 if ((flags & HAT_SYNC_ZERORM) != 0) { 3686 3687 /* 3688 * Need to clear ref or mod bits. Need to demap 3689 * to make sure any executing TLBs see cleared bits. 3690 */ 3691 new = old; 3692 PTE_CLR(new, PT_REF | PT_MOD); 3693 old = hati_update_pte(ht, entry, old, new); 3694 if (old != 0) 3695 goto try_again; 3696 3697 old = save_old; 3698 } 3699 3700 /* 3701 * Sync the PTE 3702 */ 3703 if (!(flags & HAT_SYNC_ZERORM) && 3704 PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC) 3705 hati_sync_pte_to_page(pp, old, ht->ht_level); 3706 3707 /* 3708 * can stop short if we found a ref'd or mod'd page 3709 */ 3710 if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) || 3711 (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) { 3712 x86_hm_exit(pp); 3713 goto done; 3714 } 3715 } 3716 x86_hm_exit(pp); 3717 while (pszc < pp->p_szc) { 3718 page_t *tpp; 3719 pszc++; 3720 tpp = PP_GROUPLEADER(pp, pszc); 3721 if (pp != tpp) { 3722 pp = tpp; 3723 goto next_size; 3724 } 3725 } 3726 done: 3727 XPV_ALLOW_MIGRATE(); 3728 return (save_pp->p_nrm & nrmbits); 3729 } 3730 3731 /* 3732 * returns approx number of mappings to this pp. A return of 0 implies 3733 * there are no mappings to the page. 3734 */ 3735 ulong_t 3736 hat_page_getshare(page_t *pp) 3737 { 3738 uint_t cnt; 3739 cnt = hment_mapcnt(pp); 3740 #if defined(__amd64) 3741 if (vpm_enable && pp->p_vpmref) { 3742 cnt += 1; 3743 } 3744 #endif 3745 return (cnt); 3746 } 3747 3748 /* 3749 * Return 1 the number of mappings exceeds sh_thresh. Return 0 3750 * otherwise. 3751 */ 3752 int 3753 hat_page_checkshare(page_t *pp, ulong_t sh_thresh) 3754 { 3755 return (hat_page_getshare(pp) > sh_thresh); 3756 } 3757 3758 /* 3759 * hat_softlock isn't supported anymore 3760 */ 3761 /*ARGSUSED*/ 3762 faultcode_t 3763 hat_softlock( 3764 hat_t *hat, 3765 caddr_t addr, 3766 size_t *len, 3767 struct page **page_array, 3768 uint_t flags) 3769 { 3770 return (FC_NOSUPPORT); 3771 } 3772 3773 3774 3775 /* 3776 * Routine to expose supported HAT features to platform independent code. 3777 */ 3778 /*ARGSUSED*/ 3779 int 3780 hat_supported(enum hat_features feature, void *arg) 3781 { 3782 switch (feature) { 3783 3784 case HAT_SHARED_PT: /* this is really ISM */ 3785 return (1); 3786 3787 case HAT_DYNAMIC_ISM_UNMAP: 3788 return (0); 3789 3790 case HAT_VMODSORT: 3791 return (1); 3792 3793 case HAT_SHARED_REGIONS: 3794 return (0); 3795 3796 default: 3797 panic("hat_supported() - unknown feature"); 3798 } 3799 return (0); 3800 } 3801 3802 /* 3803 * Called when a thread is exiting and has been switched to the kernel AS 3804 */ 3805 void 3806 hat_thread_exit(kthread_t *thd) 3807 { 3808 ASSERT(thd->t_procp->p_as == &kas); 3809 XPV_DISALLOW_MIGRATE(); 3810 hat_switch(thd->t_procp->p_as->a_hat); 3811 XPV_ALLOW_MIGRATE(); 3812 } 3813 3814 /* 3815 * Setup the given brand new hat structure as the new HAT on this cpu's mmu. 3816 */ 3817 /*ARGSUSED*/ 3818 void 3819 hat_setup(hat_t *hat, int flags) 3820 { 3821 XPV_DISALLOW_MIGRATE(); 3822 kpreempt_disable(); 3823 3824 hat_switch(hat); 3825 3826 kpreempt_enable(); 3827 XPV_ALLOW_MIGRATE(); 3828 } 3829 3830 /* 3831 * Prepare for a CPU private mapping for the given address. 3832 * 3833 * The address can only be used from a single CPU and can be remapped 3834 * using hat_mempte_remap(). Return the address of the PTE. 3835 * 3836 * We do the htable_create() if necessary and increment the valid count so 3837 * the htable can't disappear. We also hat_devload() the page table into 3838 * kernel so that the PTE is quickly accessed. 3839 */ 3840 hat_mempte_t 3841 hat_mempte_setup(caddr_t addr) 3842 { 3843 uintptr_t va = (uintptr_t)addr; 3844 htable_t *ht; 3845 uint_t entry; 3846 x86pte_t oldpte; 3847 hat_mempte_t p; 3848 3849 ASSERT(IS_PAGEALIGNED(va)); 3850 ASSERT(!IN_VA_HOLE(va)); 3851 ++curthread->t_hatdepth; 3852 XPV_DISALLOW_MIGRATE(); 3853 ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0); 3854 if (ht == NULL) { 3855 ht = htable_create(kas.a_hat, va, 0, NULL); 3856 entry = htable_va2entry(va, ht); 3857 ASSERT(ht->ht_level == 0); 3858 oldpte = x86pte_get(ht, entry); 3859 } 3860 if (PTE_ISVALID(oldpte)) 3861 panic("hat_mempte_setup(): address already mapped" 3862 "ht=%p, entry=%d, pte=" FMT_PTE, (void *)ht, entry, oldpte); 3863 3864 /* 3865 * increment ht_valid_cnt so that the pagetable can't disappear 3866 */ 3867 HTABLE_INC(ht->ht_valid_cnt); 3868 3869 /* 3870 * return the PTE physical address to the caller. 3871 */ 3872 htable_release(ht); 3873 XPV_ALLOW_MIGRATE(); 3874 p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry); 3875 --curthread->t_hatdepth; 3876 return (p); 3877 } 3878 3879 /* 3880 * Release a CPU private mapping for the given address. 3881 * We decrement the htable valid count so it might be destroyed. 3882 */ 3883 /*ARGSUSED1*/ 3884 void 3885 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa) 3886 { 3887 htable_t *ht; 3888 3889 XPV_DISALLOW_MIGRATE(); 3890 /* 3891 * invalidate any left over mapping and decrement the htable valid count 3892 */ 3893 #ifdef __xpv 3894 if (HYPERVISOR_update_va_mapping((uintptr_t)addr, 0, 3895 UVMF_INVLPG | UVMF_LOCAL)) 3896 panic("HYPERVISOR_update_va_mapping() failed"); 3897 #else 3898 { 3899 x86pte_t *pteptr; 3900 3901 pteptr = x86pte_mapin(mmu_btop(pte_pa), 3902 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 3903 if (mmu.pae_hat) 3904 *pteptr = 0; 3905 else 3906 *(x86pte32_t *)pteptr = 0; 3907 mmu_tlbflush_entry(addr); 3908 x86pte_mapout(); 3909 } 3910 #endif 3911 3912 ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0); 3913 if (ht == NULL) 3914 panic("hat_mempte_release(): invalid address"); 3915 ASSERT(ht->ht_level == 0); 3916 HTABLE_DEC(ht->ht_valid_cnt); 3917 htable_release(ht); 3918 XPV_ALLOW_MIGRATE(); 3919 } 3920 3921 /* 3922 * Apply a temporary CPU private mapping to a page. We flush the TLB only 3923 * on this CPU, so this ought to have been called with preemption disabled. 3924 */ 3925 void 3926 hat_mempte_remap( 3927 pfn_t pfn, 3928 caddr_t addr, 3929 hat_mempte_t pte_pa, 3930 uint_t attr, 3931 uint_t flags) 3932 { 3933 uintptr_t va = (uintptr_t)addr; 3934 x86pte_t pte; 3935 3936 /* 3937 * Remap the given PTE to the new page's PFN. Invalidate only 3938 * on this CPU. 3939 */ 3940 #ifdef DEBUG 3941 htable_t *ht; 3942 uint_t entry; 3943 3944 ASSERT(IS_PAGEALIGNED(va)); 3945 ASSERT(!IN_VA_HOLE(va)); 3946 ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0); 3947 ASSERT(ht != NULL); 3948 ASSERT(ht->ht_level == 0); 3949 ASSERT(ht->ht_valid_cnt > 0); 3950 ASSERT(ht->ht_pfn == mmu_btop(pte_pa)); 3951 htable_release(ht); 3952 #endif 3953 XPV_DISALLOW_MIGRATE(); 3954 pte = hati_mkpte(pfn, attr, 0, flags); 3955 #ifdef __xpv 3956 if (HYPERVISOR_update_va_mapping(va, pte, UVMF_INVLPG | UVMF_LOCAL)) 3957 panic("HYPERVISOR_update_va_mapping() failed"); 3958 #else 3959 { 3960 x86pte_t *pteptr; 3961 3962 pteptr = x86pte_mapin(mmu_btop(pte_pa), 3963 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 3964 if (mmu.pae_hat) 3965 *(x86pte_t *)pteptr = pte; 3966 else 3967 *(x86pte32_t *)pteptr = (x86pte32_t)pte; 3968 mmu_tlbflush_entry(addr); 3969 x86pte_mapout(); 3970 } 3971 #endif 3972 XPV_ALLOW_MIGRATE(); 3973 } 3974 3975 3976 3977 /* 3978 * Hat locking functions 3979 * XXX - these two functions are currently being used by hatstats 3980 * they can be removed by using a per-as mutex for hatstats. 3981 */ 3982 void 3983 hat_enter(hat_t *hat) 3984 { 3985 mutex_enter(&hat->hat_mutex); 3986 } 3987 3988 void 3989 hat_exit(hat_t *hat) 3990 { 3991 mutex_exit(&hat->hat_mutex); 3992 } 3993 3994 /* 3995 * HAT part of cpu initialization. 3996 */ 3997 void 3998 hat_cpu_online(struct cpu *cpup) 3999 { 4000 if (cpup != CPU) { 4001 x86pte_cpu_init(cpup); 4002 hat_vlp_setup(cpup); 4003 } 4004 CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id); 4005 } 4006 4007 /* 4008 * HAT part of cpu deletion. 4009 * (currently, we only call this after the cpu is safely passivated.) 4010 */ 4011 void 4012 hat_cpu_offline(struct cpu *cpup) 4013 { 4014 ASSERT(cpup != CPU); 4015 4016 CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id); 4017 hat_vlp_teardown(cpup); 4018 x86pte_cpu_fini(cpup); 4019 } 4020 4021 /* 4022 * Function called after all CPUs are brought online. 4023 * Used to remove low address boot mappings. 4024 */ 4025 void 4026 clear_boot_mappings(uintptr_t low, uintptr_t high) 4027 { 4028 uintptr_t vaddr = low; 4029 htable_t *ht = NULL; 4030 level_t level; 4031 uint_t entry; 4032 x86pte_t pte; 4033 4034 /* 4035 * On 1st CPU we can unload the prom mappings, basically we blow away 4036 * all virtual mappings under _userlimit. 4037 */ 4038 while (vaddr < high) { 4039 pte = htable_walk(kas.a_hat, &ht, &vaddr, high); 4040 if (ht == NULL) 4041 break; 4042 4043 level = ht->ht_level; 4044 entry = htable_va2entry(vaddr, ht); 4045 ASSERT(level <= mmu.max_page_level); 4046 ASSERT(PTE_ISPAGE(pte, level)); 4047 4048 /* 4049 * Unload the mapping from the page tables. 4050 */ 4051 (void) x86pte_inval(ht, entry, 0, NULL); 4052 ASSERT(ht->ht_valid_cnt > 0); 4053 HTABLE_DEC(ht->ht_valid_cnt); 4054 PGCNT_DEC(ht->ht_hat, ht->ht_level); 4055 4056 vaddr += LEVEL_SIZE(ht->ht_level); 4057 } 4058 if (ht) 4059 htable_release(ht); 4060 } 4061 4062 /* 4063 * Atomically update a new translation for a single page. If the 4064 * currently installed PTE doesn't match the value we expect to find, 4065 * it's not updated and we return the PTE we found. 4066 * 4067 * If activating nosync or NOWRITE and the page was modified we need to sync 4068 * with the page_t. Also sync with page_t if clearing ref/mod bits. 4069 */ 4070 static x86pte_t 4071 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new) 4072 { 4073 page_t *pp; 4074 uint_t rm = 0; 4075 x86pte_t replaced; 4076 4077 if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC && 4078 PTE_GET(expected, PT_MOD | PT_REF) && 4079 (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) || 4080 !PTE_GET(new, PT_MOD | PT_REF))) { 4081 4082 ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level))); 4083 pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level)); 4084 ASSERT(pp != NULL); 4085 if (PTE_GET(expected, PT_MOD)) 4086 rm |= P_MOD; 4087 if (PTE_GET(expected, PT_REF)) 4088 rm |= P_REF; 4089 PTE_CLR(new, PT_MOD | PT_REF); 4090 } 4091 4092 replaced = x86pte_update(ht, entry, expected, new); 4093 if (replaced != expected) 4094 return (replaced); 4095 4096 if (rm) { 4097 /* 4098 * sync to all constituent pages of a large page 4099 */ 4100 pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level); 4101 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 4102 while (pgcnt-- > 0) { 4103 /* 4104 * hat_page_demote() can't decrease 4105 * pszc below this mapping size 4106 * since large mapping existed after we 4107 * took mlist lock. 4108 */ 4109 ASSERT(pp->p_szc >= ht->ht_level); 4110 hat_page_setattr(pp, rm); 4111 ++pp; 4112 } 4113 } 4114 4115 return (0); 4116 } 4117 4118 /* ARGSUSED */ 4119 void 4120 hat_join_srd(struct hat *hat, vnode_t *evp) 4121 { 4122 } 4123 4124 /* ARGSUSED */ 4125 hat_region_cookie_t 4126 hat_join_region(struct hat *hat, 4127 caddr_t r_saddr, 4128 size_t r_size, 4129 void *r_obj, 4130 u_offset_t r_objoff, 4131 uchar_t r_perm, 4132 uchar_t r_pgszc, 4133 hat_rgn_cb_func_t r_cb_function, 4134 uint_t flags) 4135 { 4136 panic("No shared region support on x86"); 4137 return (HAT_INVALID_REGION_COOKIE); 4138 } 4139 4140 /* ARGSUSED */ 4141 void 4142 hat_leave_region(struct hat *hat, hat_region_cookie_t rcookie, uint_t flags) 4143 { 4144 panic("No shared region support on x86"); 4145 } 4146 4147 /* ARGSUSED */ 4148 void 4149 hat_dup_region(struct hat *hat, hat_region_cookie_t rcookie) 4150 { 4151 panic("No shared region support on x86"); 4152 } 4153 4154 4155 /* 4156 * Kernel Physical Mapping (kpm) facility 4157 * 4158 * Most of the routines needed to support segkpm are almost no-ops on the 4159 * x86 platform. We map in the entire segment when it is created and leave 4160 * it mapped in, so there is no additional work required to set up and tear 4161 * down individual mappings. All of these routines were created to support 4162 * SPARC platforms that have to avoid aliasing in their virtually indexed 4163 * caches. 4164 * 4165 * Most of the routines have sanity checks in them (e.g. verifying that the 4166 * passed-in page is locked). We don't actually care about most of these 4167 * checks on x86, but we leave them in place to identify problems in the 4168 * upper levels. 4169 */ 4170 4171 /* 4172 * Map in a locked page and return the vaddr. 4173 */ 4174 /*ARGSUSED*/ 4175 caddr_t 4176 hat_kpm_mapin(struct page *pp, struct kpme *kpme) 4177 { 4178 caddr_t vaddr; 4179 4180 #ifdef DEBUG 4181 if (kpm_enable == 0) { 4182 cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n"); 4183 return ((caddr_t)NULL); 4184 } 4185 4186 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 4187 cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n"); 4188 return ((caddr_t)NULL); 4189 } 4190 #endif 4191 4192 vaddr = hat_kpm_page2va(pp, 1); 4193 4194 return (vaddr); 4195 } 4196 4197 /* 4198 * Mapout a locked page. 4199 */ 4200 /*ARGSUSED*/ 4201 void 4202 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr) 4203 { 4204 #ifdef DEBUG 4205 if (kpm_enable == 0) { 4206 cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n"); 4207 return; 4208 } 4209 4210 if (IS_KPM_ADDR(vaddr) == 0) { 4211 cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n"); 4212 return; 4213 } 4214 4215 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 4216 cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n"); 4217 return; 4218 } 4219 #endif 4220 } 4221 4222 /* 4223 * hat_kpm_mapin_pfn is used to obtain a kpm mapping for physical 4224 * memory addresses that are not described by a page_t. It can 4225 * also be used for normal pages that are not locked, but beware 4226 * this is dangerous - no locking is performed, so the identity of 4227 * the page could change. hat_kpm_mapin_pfn is not supported when 4228 * vac_colors > 1, because the chosen va depends on the page identity, 4229 * which could change. 4230 * The caller must only pass pfn's for valid physical addresses; violation 4231 * of this rule will cause panic. 4232 */ 4233 caddr_t 4234 hat_kpm_mapin_pfn(pfn_t pfn) 4235 { 4236 caddr_t paddr, vaddr; 4237 4238 if (kpm_enable == 0) 4239 return ((caddr_t)NULL); 4240 4241 paddr = (caddr_t)ptob(pfn); 4242 vaddr = (uintptr_t)kpm_vbase + paddr; 4243 4244 return ((caddr_t)vaddr); 4245 } 4246 4247 /*ARGSUSED*/ 4248 void 4249 hat_kpm_mapout_pfn(pfn_t pfn) 4250 { 4251 /* empty */ 4252 } 4253 4254 /* 4255 * Return the kpm virtual address for a specific pfn 4256 */ 4257 caddr_t 4258 hat_kpm_pfn2va(pfn_t pfn) 4259 { 4260 uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn); 4261 4262 ASSERT(!pfn_is_foreign(pfn)); 4263 return ((caddr_t)vaddr); 4264 } 4265 4266 /* 4267 * Return the kpm virtual address for the page at pp. 4268 */ 4269 /*ARGSUSED*/ 4270 caddr_t 4271 hat_kpm_page2va(struct page *pp, int checkswap) 4272 { 4273 return (hat_kpm_pfn2va(pp->p_pagenum)); 4274 } 4275 4276 /* 4277 * Return the page frame number for the kpm virtual address vaddr. 4278 */ 4279 pfn_t 4280 hat_kpm_va2pfn(caddr_t vaddr) 4281 { 4282 pfn_t pfn; 4283 4284 ASSERT(IS_KPM_ADDR(vaddr)); 4285 4286 pfn = (pfn_t)btop(vaddr - kpm_vbase); 4287 4288 return (pfn); 4289 } 4290 4291 4292 /* 4293 * Return the page for the kpm virtual address vaddr. 4294 */ 4295 page_t * 4296 hat_kpm_vaddr2page(caddr_t vaddr) 4297 { 4298 pfn_t pfn; 4299 4300 ASSERT(IS_KPM_ADDR(vaddr)); 4301 4302 pfn = hat_kpm_va2pfn(vaddr); 4303 4304 return (page_numtopp_nolock(pfn)); 4305 } 4306 4307 /* 4308 * hat_kpm_fault is called from segkpm_fault when we take a page fault on a 4309 * KPM page. This should never happen on x86 4310 */ 4311 int 4312 hat_kpm_fault(hat_t *hat, caddr_t vaddr) 4313 { 4314 panic("pagefault in seg_kpm. hat: 0x%p vaddr: 0x%p", 4315 (void *)hat, (void *)vaddr); 4316 4317 return (0); 4318 } 4319 4320 /*ARGSUSED*/ 4321 void 4322 hat_kpm_mseghash_clear(int nentries) 4323 {} 4324 4325 /*ARGSUSED*/ 4326 void 4327 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp) 4328 {} 4329 4330 #ifndef __xpv 4331 void 4332 hat_kpm_addmem_mseg_update(struct memseg *msp, pgcnt_t nkpmpgs, 4333 offset_t kpm_pages_off) 4334 { 4335 _NOTE(ARGUNUSED(nkpmpgs, kpm_pages_off)); 4336 pfn_t base, end; 4337 4338 /* 4339 * kphysm_add_memory_dynamic() does not set nkpmpgs 4340 * when page_t memory is externally allocated. That 4341 * code must properly calculate nkpmpgs in all cases 4342 * if nkpmpgs needs to be used at some point. 4343 */ 4344 4345 /* 4346 * The meta (page_t) pages for dynamically added memory are allocated 4347 * either from the incoming memory itself or from existing memory. 4348 * In the former case the base of the incoming pages will be different 4349 * than the base of the dynamic segment so call memseg_get_start() to 4350 * get the actual base of the incoming memory for each case. 4351 */ 4352 4353 base = memseg_get_start(msp); 4354 end = msp->pages_end; 4355 4356 hat_devload(kas.a_hat, kpm_vbase + mmu_ptob(base), 4357 mmu_ptob(end - base), base, PROT_READ | PROT_WRITE, 4358 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 4359 } 4360 4361 void 4362 hat_kpm_addmem_mseg_insert(struct memseg *msp) 4363 { 4364 _NOTE(ARGUNUSED(msp)); 4365 } 4366 4367 void 4368 hat_kpm_addmem_memsegs_update(struct memseg *msp) 4369 { 4370 _NOTE(ARGUNUSED(msp)); 4371 } 4372 4373 /* 4374 * Return end of metadata for an already setup memseg. 4375 * X86 platforms don't need per-page meta data to support kpm. 4376 */ 4377 caddr_t 4378 hat_kpm_mseg_reuse(struct memseg *msp) 4379 { 4380 return ((caddr_t)msp->epages); 4381 } 4382 4383 void 4384 hat_kpm_delmem_mseg_update(struct memseg *msp, struct memseg **mspp) 4385 { 4386 _NOTE(ARGUNUSED(msp, mspp)); 4387 ASSERT(0); 4388 } 4389 4390 void 4391 hat_kpm_split_mseg_update(struct memseg *msp, struct memseg **mspp, 4392 struct memseg *lo, struct memseg *mid, struct memseg *hi) 4393 { 4394 _NOTE(ARGUNUSED(msp, mspp, lo, mid, hi)); 4395 ASSERT(0); 4396 } 4397 4398 /* 4399 * Walk the memsegs chain, applying func to each memseg span. 4400 */ 4401 void 4402 hat_kpm_walk(void (*func)(void *, void *, size_t), void *arg) 4403 { 4404 pfn_t pbase, pend; 4405 void *base; 4406 size_t size; 4407 struct memseg *msp; 4408 4409 for (msp = memsegs; msp; msp = msp->next) { 4410 pbase = msp->pages_base; 4411 pend = msp->pages_end; 4412 base = ptob(pbase) + kpm_vbase; 4413 size = ptob(pend - pbase); 4414 func(arg, base, size); 4415 } 4416 } 4417 4418 #else /* __xpv */ 4419 4420 /* 4421 * There are specific Hypervisor calls to establish and remove mappings 4422 * to grant table references and the privcmd driver. We have to ensure 4423 * that a page table actually exists. 4424 */ 4425 void 4426 hat_prepare_mapping(hat_t *hat, caddr_t addr, uint64_t *pte_ma) 4427 { 4428 maddr_t base_ma; 4429 htable_t *ht; 4430 uint_t entry; 4431 4432 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE)); 4433 XPV_DISALLOW_MIGRATE(); 4434 ht = htable_create(hat, (uintptr_t)addr, 0, NULL); 4435 4436 /* 4437 * if an address for pte_ma is passed in, return the MA of the pte 4438 * for this specific address. This address is only valid as long 4439 * as the htable stays locked. 4440 */ 4441 if (pte_ma != NULL) { 4442 entry = htable_va2entry((uintptr_t)addr, ht); 4443 base_ma = pa_to_ma(ptob(ht->ht_pfn)); 4444 *pte_ma = base_ma + (entry << mmu.pte_size_shift); 4445 } 4446 XPV_ALLOW_MIGRATE(); 4447 } 4448 4449 void 4450 hat_release_mapping(hat_t *hat, caddr_t addr) 4451 { 4452 htable_t *ht; 4453 4454 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE)); 4455 XPV_DISALLOW_MIGRATE(); 4456 ht = htable_lookup(hat, (uintptr_t)addr, 0); 4457 ASSERT(ht != NULL); 4458 ASSERT(ht->ht_busy >= 2); 4459 htable_release(ht); 4460 htable_release(ht); 4461 XPV_ALLOW_MIGRATE(); 4462 } 4463 #endif /* __xpv */ 4464