1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * VM - Hardware Address Translation management for i386 and amd64 30 * 31 * Implementation of the interfaces described in <common/vm/hat.h> 32 * 33 * Nearly all the details of how the hardware is managed should not be 34 * visible outside this layer except for misc. machine specific functions 35 * that work in conjunction with this code. 36 * 37 * Routines used only inside of i86pc/vm start with hati_ for HAT Internal. 38 */ 39 40 #include <sys/machparam.h> 41 #include <sys/machsystm.h> 42 #include <sys/mman.h> 43 #include <sys/types.h> 44 #include <sys/systm.h> 45 #include <sys/cpuvar.h> 46 #include <sys/thread.h> 47 #include <sys/proc.h> 48 #include <sys/cpu.h> 49 #include <sys/kmem.h> 50 #include <sys/disp.h> 51 #include <sys/shm.h> 52 #include <sys/sysmacros.h> 53 #include <sys/machparam.h> 54 #include <sys/vmem.h> 55 #include <sys/vmsystm.h> 56 #include <sys/promif.h> 57 #include <sys/var.h> 58 #include <sys/x86_archext.h> 59 #include <sys/atomic.h> 60 #include <sys/bitmap.h> 61 #include <sys/controlregs.h> 62 #include <sys/bootconf.h> 63 #include <sys/bootsvcs.h> 64 #include <sys/bootinfo.h> 65 #include <sys/archsystm.h> 66 67 #include <vm/seg_kmem.h> 68 #include <vm/hat_i86.h> 69 #include <vm/as.h> 70 #include <vm/seg.h> 71 #include <vm/page.h> 72 #include <vm/seg_kp.h> 73 #include <vm/seg_kpm.h> 74 #include <vm/vm_dep.h> 75 #include <vm/kboot_mmu.h> 76 #include <vm/seg_spt.h> 77 78 #include <sys/cmn_err.h> 79 80 /* 81 * Basic parameters for hat operation. 82 */ 83 struct hat_mmu_info mmu; 84 85 /* 86 * The page that is the kernel's top level pagetable. 87 * 88 * For 32 bit VLP support, the kernel hat will use the 1st 4 entries 89 * on this 4K page for its top level page table. The remaining groups of 90 * 4 entries are used for per processor copies of user VLP pagetables for 91 * running threads. See hat_switch() and reload_pae32() for details. 92 * 93 * vlp_page[0] - 0th level==2 PTE for kernel HAT (will be zero) 94 * vlp_page[1] - 1st level==2 PTE for kernel HAT (will be zero) 95 * vlp_page[2] - 2nd level==2 PTE for kernel HAT (zero for small memory) 96 * vlp_page[3] - 3rd level==2 PTE for kernel 97 * 98 * vlp_page[4] - 0th level==2 PTE for user thread on cpu 0 99 * vlp_page[5] - 1st level==2 PTE for user thread on cpu 0 100 * vlp_page[6] - 2nd level==2 PTE for user thread on cpu 0 101 * vlp_page[7] - probably copy of kernel PTE 102 * 103 * vlp_page[8] - 0th level==2 PTE for user thread on cpu 1 104 * vlp_page[9] - 1st level==2 PTE for user thread on cpu 1 105 * vlp_page[10] - 2nd level==2 PTE for user thread on cpu 1 106 * vlp_page[11] - probably copy of kernel PTE 107 * ... 108 * 109 * when / where the kernel PTE's are (entry 2 or 3 or none) depends 110 * on kernelbase. 111 */ 112 static x86pte_t *vlp_page; 113 114 /* 115 * forward declaration of internal utility routines 116 */ 117 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, 118 x86pte_t new); 119 120 /* 121 * The kernel address space exists in all HATs. To implement this the 122 * kernel reserves a fixed number of entries in every topmost level page 123 * table. The values are setup in hat_init() and then copied to every hat 124 * created by hat_alloc(). This means that kernelbase must be: 125 * 126 * 4Meg aligned for 32 bit kernels 127 * 512Gig aligned for x86_64 64 bit kernel 128 * 129 * The PAE 32 bit hat is handled as a special case. Otherwise requiring 1Gig 130 * alignment would use too much VA for the kernel. 131 * 132 */ 133 static uint_t khat_start; /* index of 1st entry in kernel's top ptable */ 134 static uint_t khat_entries; /* number of entries in kernel's top ptable */ 135 136 #if defined(__i386) 137 138 static htable_t *khat_pae32_htable = NULL; 139 static uint_t khat_pae32_start; 140 static uint_t khat_pae32_entries; 141 142 #endif 143 144 uint_t use_boot_reserve = 1; /* cleared after early boot process */ 145 uint_t can_steal_post_boot = 0; /* set late in boot to enable stealing */ 146 147 /* 148 * A cpuset for all cpus. This is used for kernel address cross calls, since 149 * the kernel addresses apply to all cpus. 150 */ 151 cpuset_t khat_cpuset; 152 153 /* 154 * management stuff for hat structures 155 */ 156 kmutex_t hat_list_lock; 157 kcondvar_t hat_list_cv; 158 kmem_cache_t *hat_cache; 159 kmem_cache_t *hat_hash_cache; 160 kmem_cache_t *vlp_hash_cache; 161 162 /* 163 * Simple statistics 164 */ 165 struct hatstats hatstat; 166 167 /* 168 * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's. 169 */ 170 extern void atomic_orb(uchar_t *addr, uchar_t val); 171 extern void atomic_andb(uchar_t *addr, uchar_t val); 172 173 #define PP_GETRM(pp, rmmask) (pp->p_nrm & rmmask) 174 #define PP_ISMOD(pp) PP_GETRM(pp, P_MOD) 175 #define PP_ISREF(pp) PP_GETRM(pp, P_REF) 176 #define PP_ISRO(pp) PP_GETRM(pp, P_RO) 177 178 #define PP_SETRM(pp, rm) atomic_orb(&(pp->p_nrm), rm) 179 #define PP_SETMOD(pp) PP_SETRM(pp, P_MOD) 180 #define PP_SETREF(pp) PP_SETRM(pp, P_REF) 181 #define PP_SETRO(pp) PP_SETRM(pp, P_RO) 182 183 #define PP_CLRRM(pp, rm) atomic_andb(&(pp->p_nrm), ~(rm)) 184 #define PP_CLRMOD(pp) PP_CLRRM(pp, P_MOD) 185 #define PP_CLRREF(pp) PP_CLRRM(pp, P_REF) 186 #define PP_CLRRO(pp) PP_CLRRM(pp, P_RO) 187 #define PP_CLRALL(pp) PP_CLRRM(pp, P_MOD | P_REF | P_RO) 188 189 /* 190 * kmem cache constructor for struct hat 191 */ 192 /*ARGSUSED*/ 193 static int 194 hati_constructor(void *buf, void *handle, int kmflags) 195 { 196 hat_t *hat = buf; 197 198 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 199 bzero(hat->hat_pages_mapped, 200 sizeof (pgcnt_t) * (mmu.max_page_level + 1)); 201 hat->hat_ism_pgcnt = 0; 202 hat->hat_stats = 0; 203 hat->hat_flags = 0; 204 CPUSET_ZERO(hat->hat_cpus); 205 hat->hat_htable = NULL; 206 hat->hat_ht_hash = NULL; 207 return (0); 208 } 209 210 /* 211 * Allocate a hat structure for as. We also create the top level 212 * htable and initialize it to contain the kernel hat entries. 213 */ 214 hat_t * 215 hat_alloc(struct as *as) 216 { 217 hat_t *hat; 218 htable_t *ht; /* top level htable */ 219 uint_t use_vlp; 220 221 /* 222 * Once we start creating user process HATs we can enable 223 * the htable_steal() code. 224 */ 225 if (can_steal_post_boot == 0) 226 can_steal_post_boot = 1; 227 228 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 229 hat = kmem_cache_alloc(hat_cache, KM_SLEEP); 230 hat->hat_as = as; 231 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 232 ASSERT(hat->hat_flags == 0); 233 234 /* 235 * a 32 bit process uses a VLP style hat when using PAE 236 */ 237 #if defined(__amd64) 238 use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32); 239 #elif defined(__i386) 240 use_vlp = mmu.pae_hat; 241 #endif 242 if (use_vlp) { 243 hat->hat_flags = HAT_VLP; 244 bzero(hat->hat_vlp_ptes, VLP_SIZE); 245 } 246 247 /* 248 * Allocate the htable hash 249 */ 250 if ((hat->hat_flags & HAT_VLP)) { 251 hat->hat_num_hash = mmu.vlp_hash_cnt; 252 hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP); 253 } else { 254 hat->hat_num_hash = mmu.hash_cnt; 255 hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP); 256 } 257 bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *)); 258 259 /* 260 * Initialize Kernel HAT entries at the top of the top level page 261 * table for the new hat. 262 * 263 * Note that we don't call htable_release() for the top level, that 264 * happens when the hat is destroyed in hat_free_end() 265 */ 266 hat->hat_htable = NULL; 267 hat->hat_ht_cached = NULL; 268 ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL); 269 270 if (!(hat->hat_flags & HAT_VLP)) 271 x86pte_copy(kas.a_hat->hat_htable, ht, khat_start, 272 khat_entries); 273 #if defined(__i386) 274 else if (khat_entries > 0) 275 bcopy(vlp_page + khat_start, hat->hat_vlp_ptes + khat_start, 276 khat_entries * sizeof (x86pte_t)); 277 #endif 278 hat->hat_htable = ht; 279 280 #if defined(__i386) 281 /* 282 * PAE32 HAT alignment is less restrictive than the others to keep 283 * the kernel from using too much VA. Because of this we may need 284 * one layer further down when kernelbase isn't 1Gig aligned. 285 * See hat_free_end() for the htable_release() that goes with this 286 * htable_create() 287 */ 288 if (khat_pae32_htable != NULL) { 289 ht = htable_create(hat, kernelbase, 290 khat_pae32_htable->ht_level, NULL); 291 x86pte_copy(khat_pae32_htable, ht, khat_pae32_start, 292 khat_pae32_entries); 293 ht->ht_valid_cnt = khat_pae32_entries; 294 } 295 #endif 296 297 /* 298 * Put it at the start of the global list of all hats (used by stealing) 299 * 300 * kas.a_hat is not in the list but is instead used to find the 301 * first and last items in the list. 302 * 303 * - kas.a_hat->hat_next points to the start of the user hats. 304 * The list ends where hat->hat_next == NULL 305 * 306 * - kas.a_hat->hat_prev points to the last of the user hats. 307 * The list begins where hat->hat_prev == NULL 308 */ 309 mutex_enter(&hat_list_lock); 310 hat->hat_prev = NULL; 311 hat->hat_next = kas.a_hat->hat_next; 312 if (hat->hat_next) 313 hat->hat_next->hat_prev = hat; 314 else 315 kas.a_hat->hat_prev = hat; 316 kas.a_hat->hat_next = hat; 317 mutex_exit(&hat_list_lock); 318 319 return (hat); 320 } 321 322 /* 323 * process has finished executing but as has not been cleaned up yet. 324 */ 325 /*ARGSUSED*/ 326 void 327 hat_free_start(hat_t *hat) 328 { 329 ASSERT(AS_WRITE_HELD(hat->hat_as, &hat->hat_as->a_lock)); 330 331 /* 332 * If the hat is currently a stealing victim, wait for the stealing 333 * to finish. Once we mark it as HAT_FREEING, htable_steal() 334 * won't look at its pagetables anymore. 335 */ 336 mutex_enter(&hat_list_lock); 337 while (hat->hat_flags & HAT_VICTIM) 338 cv_wait(&hat_list_cv, &hat_list_lock); 339 hat->hat_flags |= HAT_FREEING; 340 mutex_exit(&hat_list_lock); 341 } 342 343 /* 344 * An address space is being destroyed, so we destroy the associated hat. 345 */ 346 void 347 hat_free_end(hat_t *hat) 348 { 349 int i; 350 kmem_cache_t *cache; 351 352 #ifdef DEBUG 353 for (i = 0; i <= mmu.max_page_level; i++) 354 ASSERT(hat->hat_pages_mapped[i] == 0); 355 #endif 356 ASSERT(hat->hat_flags & HAT_FREEING); 357 358 /* 359 * must not be running on the given hat 360 */ 361 ASSERT(CPU->cpu_current_hat != hat); 362 363 /* 364 * Remove it from the list of HATs 365 */ 366 mutex_enter(&hat_list_lock); 367 if (hat->hat_prev) 368 hat->hat_prev->hat_next = hat->hat_next; 369 else 370 kas.a_hat->hat_next = hat->hat_next; 371 if (hat->hat_next) 372 hat->hat_next->hat_prev = hat->hat_prev; 373 else 374 kas.a_hat->hat_prev = hat->hat_prev; 375 mutex_exit(&hat_list_lock); 376 hat->hat_next = hat->hat_prev = NULL; 377 378 /* 379 * Make a pass through the htables freeing them all up. 380 */ 381 htable_purge_hat(hat); 382 383 /* 384 * Decide which kmem cache the hash table came from, then free it. 385 */ 386 if (hat->hat_flags & HAT_VLP) 387 cache = vlp_hash_cache; 388 else 389 cache = hat_hash_cache; 390 kmem_cache_free(cache, hat->hat_ht_hash); 391 hat->hat_ht_hash = NULL; 392 393 hat->hat_flags = 0; 394 kmem_cache_free(hat_cache, hat); 395 } 396 397 /* 398 * round kernelbase down to a supported value to use for _userlimit 399 * 400 * userlimit must be aligned down to an entry in the top level htable. 401 * The one exception is for 32 bit HAT's running PAE. 402 */ 403 uintptr_t 404 hat_kernelbase(uintptr_t va) 405 { 406 #if defined(__i386) 407 va &= LEVEL_MASK(1); 408 #endif 409 if (IN_VA_HOLE(va)) 410 panic("_userlimit %p will fall in VA hole\n", (void *)va); 411 return (va); 412 } 413 414 /* 415 * Initialize hat data structures based on processor MMU information. 416 */ 417 void 418 mmu_init(void) 419 { 420 uint_t max_htables; 421 uint_t pa_bits; 422 uint_t va_bits; 423 int i; 424 425 /* 426 * If CPU enabled the page table global bit, use it for the kernel 427 * This is bit 7 in CR4 (PGE - Page Global Enable). 428 */ 429 if ((x86_feature & X86_PGE) != 0 && (getcr4() & CR4_PGE) != 0) 430 mmu.pt_global = PT_GLOBAL; 431 432 /* 433 * Detect NX and PAE usage. 434 */ 435 mmu.pae_hat = kbm_pae_support; 436 if (kbm_nx_support) 437 mmu.pt_nx = PT_NX; 438 else 439 mmu.pt_nx = 0; 440 441 /* 442 * Intel CPUs allow speculative caching (in TLB-like h/w) of 443 * entries in upper page tables even though there may not be 444 * any valid entries in lower tables. This implies we have to 445 * re-INVLPG at every upper page table entry invalidation. 446 */ 447 if (cpuid_getvendor(CPU) == X86_VENDOR_Intel) 448 mmu.inval_nonleaf = 1; 449 else 450 mmu.inval_nonleaf = 0; 451 /* 452 * Use CPU info to set various MMU parameters 453 */ 454 cpuid_get_addrsize(CPU, &pa_bits, &va_bits); 455 456 if (va_bits < sizeof (void *) * NBBY) { 457 mmu.hole_start = (1ul << (va_bits - 1)); 458 mmu.hole_end = 0ul - mmu.hole_start - 1; 459 } else { 460 mmu.hole_end = 0; 461 mmu.hole_start = mmu.hole_end - 1; 462 } 463 #if defined(OPTERON_ERRATUM_121) 464 /* 465 * If erratum 121 has already been detected at this time, hole_start 466 * contains the value to be subtracted from mmu.hole_start. 467 */ 468 ASSERT(hole_start == 0 || opteron_erratum_121 != 0); 469 hole_start = mmu.hole_start - hole_start; 470 #else 471 hole_start = mmu.hole_start; 472 #endif 473 hole_end = mmu.hole_end; 474 475 mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1); 476 if (mmu.pae_hat == 0 && pa_bits > 32) 477 mmu.highest_pfn = PFN_4G - 1; 478 479 if (mmu.pae_hat) { 480 mmu.pte_size = 8; /* 8 byte PTEs */ 481 mmu.pte_size_shift = 3; 482 } else { 483 mmu.pte_size = 4; /* 4 byte PTEs */ 484 mmu.pte_size_shift = 2; 485 } 486 487 if (mmu.pae_hat && (x86_feature & X86_PAE) == 0) 488 panic("Processor does not support PAE"); 489 490 if ((x86_feature & X86_CX8) == 0) 491 panic("Processor does not support cmpxchg8b instruction"); 492 493 /* 494 * Initialize parameters based on the 64 or 32 bit kernels and 495 * for the 32 bit kernel decide if we should use PAE. 496 */ 497 if (kbm_largepage_support) 498 mmu.max_page_level = 1; 499 else 500 mmu.max_page_level = 0; 501 mmu_page_sizes = mmu.max_page_level + 1; 502 mmu_exported_page_sizes = mmu_page_sizes; 503 504 #if defined(__amd64) 505 506 mmu.num_level = 4; 507 mmu.max_level = 3; 508 mmu.ptes_per_table = 512; 509 mmu.top_level_count = 512; 510 511 mmu.level_shift[0] = 12; 512 mmu.level_shift[1] = 21; 513 mmu.level_shift[2] = 30; 514 mmu.level_shift[3] = 39; 515 516 #elif defined(__i386) 517 518 if (mmu.pae_hat) { 519 mmu.num_level = 3; 520 mmu.max_level = 2; 521 mmu.ptes_per_table = 512; 522 mmu.top_level_count = 4; 523 524 mmu.level_shift[0] = 12; 525 mmu.level_shift[1] = 21; 526 mmu.level_shift[2] = 30; 527 528 } else { 529 mmu.num_level = 2; 530 mmu.max_level = 1; 531 mmu.ptes_per_table = 1024; 532 mmu.top_level_count = 1024; 533 534 mmu.level_shift[0] = 12; 535 mmu.level_shift[1] = 22; 536 } 537 538 #endif /* __i386 */ 539 540 for (i = 0; i < mmu.num_level; ++i) { 541 mmu.level_size[i] = 1UL << mmu.level_shift[i]; 542 mmu.level_offset[i] = mmu.level_size[i] - 1; 543 mmu.level_mask[i] = ~mmu.level_offset[i]; 544 } 545 546 for (i = 0; i <= mmu.max_page_level; ++i) { 547 mmu.pte_bits[i] = PT_VALID; 548 if (i > 0) 549 mmu.pte_bits[i] |= PT_PAGESIZE; 550 } 551 552 /* 553 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level. 554 */ 555 for (i = 1; i < mmu.num_level; ++i) 556 mmu.ptp_bits[i] = PT_PTPBITS; 557 558 #if defined(__i386) 559 mmu.ptp_bits[2] = PT_VALID; 560 #endif 561 562 /* 563 * Compute how many hash table entries to have per process for htables. 564 * We start with 1 page's worth of entries. 565 * 566 * If physical memory is small, reduce the amount need to cover it. 567 */ 568 max_htables = physmax / mmu.ptes_per_table; 569 mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *); 570 while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables) 571 mmu.hash_cnt >>= 1; 572 mmu.vlp_hash_cnt = mmu.hash_cnt; 573 574 #if defined(__amd64) 575 /* 576 * If running in 64 bits and physical memory is large, 577 * increase the size of the cache to cover all of memory for 578 * a 64 bit process. 579 */ 580 #define HASH_MAX_LENGTH 4 581 while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables) 582 mmu.hash_cnt <<= 1; 583 #endif 584 } 585 586 587 /* 588 * initialize hat data structures 589 */ 590 void 591 hat_init() 592 { 593 #if defined(__i386) 594 /* 595 * _userlimit must be aligned correctly 596 */ 597 if ((_userlimit & LEVEL_MASK(1)) != _userlimit) { 598 prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n", 599 (void *)_userlimit, (void *)LEVEL_SIZE(1)); 600 halt("hat_init(): Unable to continue"); 601 } 602 #endif 603 604 cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL); 605 606 /* 607 * initialize kmem caches 608 */ 609 htable_init(); 610 hment_init(); 611 612 hat_cache = kmem_cache_create("hat_t", 613 sizeof (hat_t), 0, hati_constructor, NULL, NULL, 614 NULL, 0, 0); 615 616 hat_hash_cache = kmem_cache_create("HatHash", 617 mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 618 NULL, 0, 0); 619 620 /* 621 * VLP hats can use a smaller hash table size on large memroy machines 622 */ 623 if (mmu.hash_cnt == mmu.vlp_hash_cnt) { 624 vlp_hash_cache = hat_hash_cache; 625 } else { 626 vlp_hash_cache = kmem_cache_create("HatVlpHash", 627 mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 628 NULL, 0, 0); 629 } 630 631 /* 632 * Set up the kernel's hat 633 */ 634 AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER); 635 kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP); 636 mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 637 kas.a_hat->hat_as = &kas; 638 kas.a_hat->hat_flags = 0; 639 AS_LOCK_EXIT(&kas, &kas.a_lock); 640 641 CPUSET_ZERO(khat_cpuset); 642 CPUSET_ADD(khat_cpuset, CPU->cpu_id); 643 644 /* 645 * The kernel hat's next pointer serves as the head of the hat list . 646 * The kernel hat's prev pointer tracks the last hat on the list for 647 * htable_steal() to use. 648 */ 649 kas.a_hat->hat_next = NULL; 650 kas.a_hat->hat_prev = NULL; 651 652 /* 653 * Allocate an htable hash bucket for the kernel 654 * XX64 - tune for 64 bit procs 655 */ 656 kas.a_hat->hat_num_hash = mmu.hash_cnt; 657 kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP); 658 bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *)); 659 660 /* 661 * zero out the top level and cached htable pointers 662 */ 663 kas.a_hat->hat_ht_cached = NULL; 664 kas.a_hat->hat_htable = NULL; 665 666 /* 667 * Pre-allocate hrm_hashtab before enabling the collection of 668 * refmod statistics. Allocating on the fly would mean us 669 * running the risk of suffering recursive mutex enters or 670 * deadlocks. 671 */ 672 hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *), 673 KM_SLEEP); 674 } 675 676 /* 677 * Prepare CPU specific pagetables for VLP processes on 64 bit kernels. 678 * 679 * Each CPU has a set of 2 pagetables that are reused for any 32 bit 680 * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and 681 * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes. 682 */ 683 /*ARGSUSED*/ 684 static void 685 hat_vlp_setup(struct cpu *cpu) 686 { 687 #if defined(__amd64) 688 struct hat_cpu_info *hci = cpu->cpu_hat_info; 689 pfn_t pfn; 690 691 /* 692 * allocate the level==2 page table for the bottom most 693 * 512Gig of address space (this is where 32 bit apps live) 694 */ 695 ASSERT(hci != NULL); 696 hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 697 698 /* 699 * Allocate a top level pagetable and copy the kernel's 700 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry. 701 */ 702 hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 703 hci->hci_vlp_pfn = 704 hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes); 705 ASSERT(hci->hci_vlp_pfn != PFN_INVALID); 706 bcopy(vlp_page + khat_start, hci->hci_vlp_l3ptes + khat_start, 707 khat_entries * sizeof (x86pte_t)); 708 709 pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes); 710 ASSERT(pfn != PFN_INVALID); 711 hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2); 712 #endif /* __amd64 */ 713 } 714 715 /*ARGSUSED*/ 716 static void 717 hat_vlp_teardown(cpu_t *cpu) 718 { 719 #if defined(__amd64) 720 struct hat_cpu_info *hci; 721 722 if ((hci = cpu->cpu_hat_info) == NULL) 723 return; 724 if (hci->hci_vlp_l2ptes) 725 kmem_free(hci->hci_vlp_l2ptes, MMU_PAGESIZE); 726 if (hci->hci_vlp_l3ptes) 727 kmem_free(hci->hci_vlp_l3ptes, MMU_PAGESIZE); 728 #endif /* __amd64 */ 729 } 730 731 /* 732 * Finish filling in the kernel hat. 733 * Pre fill in all top level kernel page table entries for the kernel's 734 * part of the address range. From this point on we can't use any new 735 * kernel large pages if they need PTE's at max_level 736 * 737 * create the kmap mappings. 738 */ 739 void 740 hat_init_finish(void) 741 { 742 htable_t *top = kas.a_hat->hat_htable; 743 htable_t *ht; 744 uint_t e; 745 x86pte_t pte; 746 uintptr_t va = kernelbase; 747 size_t size; 748 749 750 #if defined(__i386) 751 ASSERT((va & LEVEL_MASK(1)) == va); 752 753 /* 754 * Deal with kernelbase not 1Gig aligned for 32 bit PAE hats. 755 */ 756 if (!mmu.pae_hat || (va & LEVEL_OFFSET(mmu.max_level)) == 0) { 757 khat_pae32_htable = NULL; 758 } else { 759 ASSERT(mmu.max_level == 2); 760 ASSERT((va & LEVEL_OFFSET(mmu.max_level - 1)) == 0); 761 khat_pae32_htable = 762 htable_create(kas.a_hat, va, mmu.max_level - 1, NULL); 763 khat_pae32_start = htable_va2entry(va, khat_pae32_htable); 764 khat_pae32_entries = mmu.ptes_per_table - khat_pae32_start; 765 for (e = khat_pae32_start; e < mmu.ptes_per_table; 766 ++e, va += LEVEL_SIZE(mmu.max_level - 1)) { 767 pte = x86pte_get(khat_pae32_htable, e); 768 if (PTE_ISVALID(pte)) 769 continue; 770 ht = htable_create(kas.a_hat, va, mmu.max_level - 2, 771 NULL); 772 ASSERT(ht != NULL); 773 } 774 } 775 #endif 776 777 /* 778 * The kernel hat will need fixed values in the highest level 779 * ptable for copying to all other hat's. This implies 780 * alignment restrictions on _userlimit. 781 * 782 * Note we don't htable_release() these htables. This keeps them 783 * from ever being stolen or free'd. 784 * 785 * top_level_count is used instead of ptes_per_table, since 786 * on 32-bit PAE we only have 4 usable entries at the top level ptable. 787 */ 788 if (va == 0) 789 khat_start = mmu.top_level_count; 790 else 791 khat_start = htable_va2entry(va, kas.a_hat->hat_htable); 792 khat_entries = mmu.top_level_count - khat_start; 793 for (e = khat_start; e < mmu.top_level_count; 794 ++e, va += LEVEL_SIZE(mmu.max_level)) { 795 if (IN_HYPERVISOR_VA(va)) 796 continue; 797 pte = x86pte_get(top, e); 798 if (PTE_ISVALID(pte)) 799 continue; 800 ht = htable_create(kas.a_hat, va, mmu.max_level - 1, NULL); 801 ASSERT(ht != NULL); 802 } 803 804 /* 805 * We are now effectively running on the kernel hat. 806 * Clearing use_boot_reserve shuts off using the pre-allocated boot 807 * reserve for all HAT allocations. From here on, the reserves are 808 * only used when mapping in memory for the hat's own allocations. 809 */ 810 use_boot_reserve = 0; 811 htable_adjust_reserve(); 812 813 /* 814 * 32 bit kernels use only 4 of the 512 entries in its top level 815 * pagetable. We'll use the remainder for the "per CPU" page tables 816 * for VLP processes. 817 * 818 * We also map the top level kernel pagetable into the kernel to make 819 * it easy to use bcopy to initialize new address spaces. 820 */ 821 if (mmu.pae_hat) { 822 vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP); 823 hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE, 824 kas.a_hat->hat_htable->ht_pfn, 825 PROT_WRITE | 826 PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK, 827 HAT_LOAD | HAT_LOAD_NOCONSIST); 828 } 829 hat_vlp_setup(CPU); 830 831 /* 832 * Create kmap (cached mappings of kernel PTEs) 833 * for 32 bit we map from segmap_start .. ekernelheap 834 * for 64 bit we map from segmap_start .. segmap_start + segmapsize; 835 */ 836 #if defined(__i386) 837 size = (uintptr_t)ekernelheap - segmap_start; 838 #elif defined(__amd64) 839 size = segmapsize; 840 #endif 841 hat_kmap_init((uintptr_t)segmap_start, size); 842 } 843 844 /* 845 * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references 846 * are 32 bit, so for safety we must use cas64() to install these. 847 */ 848 #ifdef __i386 849 static void 850 reload_pae32(hat_t *hat, cpu_t *cpu) 851 { 852 x86pte_t *src; 853 x86pte_t *dest; 854 x86pte_t pte; 855 int i; 856 857 /* 858 * Load the 4 entries of the level 2 page table into this 859 * cpu's range of the vlp_page and point cr3 at them. 860 */ 861 ASSERT(mmu.pae_hat); 862 src = hat->hat_vlp_ptes; 863 dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES; 864 for (i = 0; i < VLP_NUM_PTES; ++i) { 865 for (;;) { 866 pte = dest[i]; 867 if (pte == src[i]) 868 break; 869 if (cas64(dest + i, pte, src[i]) != src[i]) 870 break; 871 } 872 } 873 } 874 #endif 875 876 /* 877 * Switch to a new active hat, maintaining bit masks to track active CPUs. 878 */ 879 void 880 hat_switch(hat_t *hat) 881 { 882 uintptr_t newcr3; 883 cpu_t *cpu = CPU; 884 hat_t *old = cpu->cpu_current_hat; 885 886 /* 887 * set up this information first, so we don't miss any cross calls 888 */ 889 if (old != NULL) { 890 if (old == hat) 891 return; 892 if (old != kas.a_hat) 893 CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id); 894 } 895 896 /* 897 * Add this CPU to the active set for this HAT. 898 */ 899 if (hat != kas.a_hat) { 900 CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id); 901 } 902 cpu->cpu_current_hat = hat; 903 904 /* 905 * now go ahead and load cr3 906 */ 907 if (hat->hat_flags & HAT_VLP) { 908 #if defined(__amd64) 909 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes; 910 911 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 912 newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn); 913 #elif defined(__i386) 914 reload_pae32(hat, cpu); 915 newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) + 916 (cpu->cpu_id + 1) * VLP_SIZE; 917 #endif 918 } else { 919 newcr3 = MAKECR3(hat->hat_htable->ht_pfn); 920 } 921 setcr3(newcr3); 922 ASSERT(cpu == CPU); 923 } 924 925 /* 926 * Utility to return a valid x86pte_t from protections, pfn, and level number 927 */ 928 static x86pte_t 929 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags) 930 { 931 x86pte_t pte; 932 uint_t cache_attr = attr & HAT_ORDER_MASK; 933 934 pte = MAKEPTE(pfn, level); 935 936 if (attr & PROT_WRITE) 937 PTE_SET(pte, PT_WRITABLE); 938 939 if (attr & PROT_USER) 940 PTE_SET(pte, PT_USER); 941 942 if (!(attr & PROT_EXEC)) 943 PTE_SET(pte, mmu.pt_nx); 944 945 /* 946 * Set the software bits used track ref/mod sync's and hments. 947 * If not using REF/MOD, set them to avoid h/w rewriting PTEs. 948 */ 949 if (flags & HAT_LOAD_NOCONSIST) 950 PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD); 951 else if (attr & HAT_NOSYNC) 952 PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD); 953 954 /* 955 * Set the caching attributes in the PTE. The combination 956 * of attributes are poorly defined, so we pay attention 957 * to them in the given order. 958 * 959 * The test for HAT_STRICTORDER is different because it's defined 960 * as "0" - which was a stupid thing to do, but is too late to change! 961 */ 962 if (cache_attr == HAT_STRICTORDER) { 963 PTE_SET(pte, PT_NOCACHE); 964 /*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */ 965 } else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) { 966 /* nothing to set */; 967 } else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) { 968 PTE_SET(pte, PT_NOCACHE); 969 if (x86_feature & X86_PAT) 970 PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE); 971 else 972 PTE_SET(pte, PT_WRITETHRU); 973 } else { 974 panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr); 975 } 976 977 return (pte); 978 } 979 980 /* 981 * Duplicate address translations of the parent to the child. 982 * This function really isn't used anymore. 983 */ 984 /*ARGSUSED*/ 985 int 986 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag) 987 { 988 ASSERT((uintptr_t)addr < kernelbase); 989 ASSERT(new != kas.a_hat); 990 ASSERT(old != kas.a_hat); 991 return (0); 992 } 993 994 /* 995 * Allocate any hat resources required for a process being swapped in. 996 */ 997 /*ARGSUSED*/ 998 void 999 hat_swapin(hat_t *hat) 1000 { 1001 /* do nothing - we let everything fault back in */ 1002 } 1003 1004 /* 1005 * Unload all translations associated with an address space of a process 1006 * that is being swapped out. 1007 */ 1008 void 1009 hat_swapout(hat_t *hat) 1010 { 1011 uintptr_t vaddr = (uintptr_t)0; 1012 uintptr_t eaddr = _userlimit; 1013 htable_t *ht = NULL; 1014 level_t l; 1015 1016 /* 1017 * We can't just call hat_unload(hat, 0, _userlimit...) here, because 1018 * seg_spt and shared pagetables can't be swapped out. 1019 * Take a look at segspt_shmswapout() - it's a big no-op. 1020 * 1021 * Instead we'll walk through all the address space and unload 1022 * any mappings which we are sure are not shared, not locked. 1023 */ 1024 ASSERT(IS_PAGEALIGNED(vaddr)); 1025 ASSERT(IS_PAGEALIGNED(eaddr)); 1026 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1027 if ((uintptr_t)hat->hat_as->a_userlimit < eaddr) 1028 eaddr = (uintptr_t)hat->hat_as->a_userlimit; 1029 1030 while (vaddr < eaddr) { 1031 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1032 if (ht == NULL) 1033 break; 1034 1035 ASSERT(!IN_VA_HOLE(vaddr)); 1036 1037 /* 1038 * If the page table is shared skip its entire range. 1039 * This code knows that only level 0 page tables are shared 1040 */ 1041 l = ht->ht_level; 1042 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1043 ASSERT(l == 0); 1044 vaddr = ht->ht_vaddr + LEVEL_SIZE(1); 1045 htable_release(ht); 1046 ht = NULL; 1047 continue; 1048 } 1049 1050 /* 1051 * If the page table has no locked entries, unload this one. 1052 */ 1053 if (ht->ht_lock_cnt == 0) 1054 hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l), 1055 HAT_UNLOAD_UNMAP); 1056 1057 /* 1058 * If we have a level 0 page table with locked entries, 1059 * skip the entire page table, otherwise skip just one entry. 1060 */ 1061 if (ht->ht_lock_cnt > 0 && l == 0) 1062 vaddr = ht->ht_vaddr + LEVEL_SIZE(1); 1063 else 1064 vaddr += LEVEL_SIZE(l); 1065 } 1066 if (ht) 1067 htable_release(ht); 1068 1069 /* 1070 * We're in swapout because the system is low on memory, so 1071 * go back and flush all the htables off the cached list. 1072 */ 1073 htable_purge_hat(hat); 1074 } 1075 1076 /* 1077 * returns number of bytes that have valid mappings in hat. 1078 */ 1079 size_t 1080 hat_get_mapped_size(hat_t *hat) 1081 { 1082 size_t total = 0; 1083 int l; 1084 1085 for (l = 0; l <= mmu.max_page_level; l++) 1086 total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l)); 1087 total += hat->hat_ism_pgcnt; 1088 1089 return (total); 1090 } 1091 1092 /* 1093 * enable/disable collection of stats for hat. 1094 */ 1095 int 1096 hat_stats_enable(hat_t *hat) 1097 { 1098 atomic_add_32(&hat->hat_stats, 1); 1099 return (1); 1100 } 1101 1102 void 1103 hat_stats_disable(hat_t *hat) 1104 { 1105 atomic_add_32(&hat->hat_stats, -1); 1106 } 1107 1108 /* 1109 * Utility to sync the ref/mod bits from a page table entry to the page_t 1110 * We must be holding the mapping list lock when this is called. 1111 */ 1112 static void 1113 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level) 1114 { 1115 uint_t rm = 0; 1116 pgcnt_t pgcnt; 1117 1118 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 1119 return; 1120 1121 if (PTE_GET(pte, PT_REF)) 1122 rm |= P_REF; 1123 1124 if (PTE_GET(pte, PT_MOD)) 1125 rm |= P_MOD; 1126 1127 if (rm == 0) 1128 return; 1129 1130 /* 1131 * sync to all constituent pages of a large page 1132 */ 1133 ASSERT(x86_hm_held(pp)); 1134 pgcnt = page_get_pagecnt(level); 1135 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 1136 for (; pgcnt > 0; --pgcnt) { 1137 /* 1138 * hat_page_demote() can't decrease 1139 * pszc below this mapping size 1140 * since this large mapping existed after we 1141 * took mlist lock. 1142 */ 1143 ASSERT(pp->p_szc >= level); 1144 hat_page_setattr(pp, rm); 1145 ++pp; 1146 } 1147 } 1148 1149 /* 1150 * This the set of PTE bits for PFN, permissions and caching 1151 * that require a TLB flush (hat_tlb_inval) if changed on a HAT_LOAD_REMAP 1152 */ 1153 #define PT_REMAP_BITS \ 1154 (PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU | \ 1155 PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE) 1156 1157 #define REMAPASSERT(EX) if (!(EX)) panic("hati_pte_map: " #EX) 1158 /* 1159 * Do the low-level work to get a mapping entered into a HAT's pagetables 1160 * and in the mapping list of the associated page_t. 1161 */ 1162 static int 1163 hati_pte_map( 1164 htable_t *ht, 1165 uint_t entry, 1166 page_t *pp, 1167 x86pte_t pte, 1168 int flags, 1169 void *pte_ptr) 1170 { 1171 hat_t *hat = ht->ht_hat; 1172 x86pte_t old_pte; 1173 level_t l = ht->ht_level; 1174 hment_t *hm; 1175 uint_t is_consist; 1176 int rv = 0; 1177 1178 /* 1179 * Is this a consistant (ie. need mapping list lock) mapping? 1180 */ 1181 is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0); 1182 1183 /* 1184 * Track locked mapping count in the htable. Do this first, 1185 * as we track locking even if there already is a mapping present. 1186 */ 1187 if ((flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat) 1188 HTABLE_LOCK_INC(ht); 1189 1190 /* 1191 * Acquire the page's mapping list lock and get an hment to use. 1192 * Note that hment_prepare() might return NULL. 1193 */ 1194 if (is_consist) { 1195 x86_hm_enter(pp); 1196 hm = hment_prepare(ht, entry, pp); 1197 } 1198 1199 /* 1200 * Set the new pte, retrieving the old one at the same time. 1201 */ 1202 old_pte = x86pte_set(ht, entry, pte, pte_ptr); 1203 1204 /* 1205 * did we get a large page / page table collision? 1206 */ 1207 if (old_pte == LPAGE_ERROR) { 1208 rv = -1; 1209 goto done; 1210 } 1211 1212 /* 1213 * If the mapping didn't change there is nothing more to do. 1214 */ 1215 if (PTE_EQUIV(pte, old_pte)) 1216 goto done; 1217 1218 /* 1219 * Install a new mapping in the page's mapping list 1220 */ 1221 if (!PTE_ISVALID(old_pte)) { 1222 if (is_consist) { 1223 hment_assign(ht, entry, pp, hm); 1224 x86_hm_exit(pp); 1225 } else { 1226 ASSERT(flags & HAT_LOAD_NOCONSIST); 1227 } 1228 HTABLE_INC(ht->ht_valid_cnt); 1229 PGCNT_INC(hat, l); 1230 return (rv); 1231 } 1232 1233 /* 1234 * Remap's are more complicated: 1235 * - HAT_LOAD_REMAP must be specified if changing the pfn. 1236 * We also require that NOCONSIST be specified. 1237 * - Otherwise only permission or caching bits may change. 1238 */ 1239 if (!PTE_ISPAGE(old_pte, l)) 1240 panic("non-null/page mapping pte=" FMT_PTE, old_pte); 1241 1242 if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) { 1243 REMAPASSERT(flags & HAT_LOAD_REMAP); 1244 REMAPASSERT(flags & HAT_LOAD_NOCONSIST); 1245 REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 1246 REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) == 1247 pf_is_memory(PTE2PFN(pte, l))); 1248 REMAPASSERT(!is_consist); 1249 } 1250 1251 /* 1252 * We only let remaps change the bits for PFNs, permissions 1253 * or caching type. 1254 */ 1255 ASSERT(PTE_GET(old_pte, ~(PT_REMAP_BITS | PT_REF | PT_MOD)) == 1256 PTE_GET(pte, ~PT_REMAP_BITS)); 1257 1258 /* 1259 * We don't create any mapping list entries on a remap, so release 1260 * any allocated hment after we drop the mapping list lock. 1261 */ 1262 done: 1263 if (is_consist) { 1264 x86_hm_exit(pp); 1265 if (hm != NULL) 1266 hment_free(hm); 1267 } 1268 return (rv); 1269 } 1270 1271 /* 1272 * Internal routine to load a single page table entry. This only fails if 1273 * we attempt to overwrite a page table link with a large page. 1274 */ 1275 static int 1276 hati_load_common( 1277 hat_t *hat, 1278 uintptr_t va, 1279 page_t *pp, 1280 uint_t attr, 1281 uint_t flags, 1282 level_t level, 1283 pfn_t pfn) 1284 { 1285 htable_t *ht; 1286 uint_t entry; 1287 x86pte_t pte; 1288 int rv = 0; 1289 1290 /* 1291 * The number 16 is arbitrary and here to catch a recursion problem 1292 * early before we blow out the kernel stack. 1293 */ 1294 ++curthread->t_hatdepth; 1295 ASSERT(curthread->t_hatdepth < 16); 1296 1297 ASSERT(hat == kas.a_hat || 1298 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1299 1300 if (flags & HAT_LOAD_SHARE) 1301 hat->hat_flags |= HAT_SHARED; 1302 1303 /* 1304 * Find the page table that maps this page if it already exists. 1305 */ 1306 ht = htable_lookup(hat, va, level); 1307 1308 /* 1309 * We must have HAT_LOAD_NOCONSIST if page_t is NULL. 1310 */ 1311 if (pp == NULL) 1312 flags |= HAT_LOAD_NOCONSIST; 1313 1314 if (ht == NULL) { 1315 ht = htable_create(hat, va, level, NULL); 1316 ASSERT(ht != NULL); 1317 } 1318 entry = htable_va2entry(va, ht); 1319 1320 /* 1321 * a bunch of paranoid error checking 1322 */ 1323 ASSERT(ht->ht_busy > 0); 1324 if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht)) 1325 panic("hati_load_common: bad htable %p, va %p", ht, (void *)va); 1326 ASSERT(ht->ht_level == level); 1327 1328 /* 1329 * construct the new PTE 1330 */ 1331 if (hat == kas.a_hat) 1332 attr &= ~PROT_USER; 1333 pte = hati_mkpte(pfn, attr, level, flags); 1334 if (hat == kas.a_hat && va >= kernelbase) 1335 PTE_SET(pte, mmu.pt_global); 1336 1337 /* 1338 * establish the mapping 1339 */ 1340 rv = hati_pte_map(ht, entry, pp, pte, flags, NULL); 1341 1342 /* 1343 * release the htable and any reserves 1344 */ 1345 htable_release(ht); 1346 --curthread->t_hatdepth; 1347 return (rv); 1348 } 1349 1350 /* 1351 * special case of hat_memload to deal with some kernel addrs for performance 1352 */ 1353 static void 1354 hat_kmap_load( 1355 caddr_t addr, 1356 page_t *pp, 1357 uint_t attr, 1358 uint_t flags) 1359 { 1360 uintptr_t va = (uintptr_t)addr; 1361 x86pte_t pte; 1362 pfn_t pfn = page_pptonum(pp); 1363 pgcnt_t pg_off = mmu_btop(va - mmu.kmap_addr); 1364 htable_t *ht; 1365 uint_t entry; 1366 void *pte_ptr; 1367 1368 /* 1369 * construct the requested PTE 1370 */ 1371 attr &= ~PROT_USER; 1372 attr |= HAT_STORECACHING_OK; 1373 pte = hati_mkpte(pfn, attr, 0, flags); 1374 PTE_SET(pte, mmu.pt_global); 1375 1376 /* 1377 * Figure out the pte_ptr and htable and use common code to finish up 1378 */ 1379 if (mmu.pae_hat) 1380 pte_ptr = mmu.kmap_ptes + pg_off; 1381 else 1382 pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off; 1383 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >> 1384 LEVEL_SHIFT(1)]; 1385 entry = htable_va2entry(va, ht); 1386 ++curthread->t_hatdepth; 1387 ASSERT(curthread->t_hatdepth < 16); 1388 (void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr); 1389 --curthread->t_hatdepth; 1390 } 1391 1392 /* 1393 * hat_memload() - load a translation to the given page struct 1394 * 1395 * Flags for hat_memload/hat_devload/hat_*attr. 1396 * 1397 * HAT_LOAD Default flags to load a translation to the page. 1398 * 1399 * HAT_LOAD_LOCK Lock down mapping resources; hat_map(), hat_memload(), 1400 * and hat_devload(). 1401 * 1402 * HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list. 1403 * sets PT_NOCONSIST 1404 * 1405 * HAT_LOAD_SHARE A flag to hat_memload() to indicate h/w page tables 1406 * that map some user pages (not kas) is shared by more 1407 * than one process (eg. ISM). 1408 * 1409 * HAT_LOAD_REMAP Reload a valid pte with a different page frame. 1410 * 1411 * HAT_NO_KALLOC Do not kmem_alloc while creating the mapping; at this 1412 * point, it's setting up mapping to allocate internal 1413 * hat layer data structures. This flag forces hat layer 1414 * to tap its reserves in order to prevent infinite 1415 * recursion. 1416 * 1417 * The following is a protection attribute (like PROT_READ, etc.) 1418 * 1419 * HAT_NOSYNC set PT_NOSYNC - this mapping's ref/mod bits 1420 * are never cleared. 1421 * 1422 * Installing new valid PTE's and creation of the mapping list 1423 * entry are controlled under the same lock. It's derived from the 1424 * page_t being mapped. 1425 */ 1426 static uint_t supported_memload_flags = 1427 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST | 1428 HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT; 1429 1430 void 1431 hat_memload( 1432 hat_t *hat, 1433 caddr_t addr, 1434 page_t *pp, 1435 uint_t attr, 1436 uint_t flags) 1437 { 1438 uintptr_t va = (uintptr_t)addr; 1439 level_t level = 0; 1440 pfn_t pfn = page_pptonum(pp); 1441 1442 ASSERT(IS_PAGEALIGNED(va)); 1443 ASSERT(hat == kas.a_hat || va < _userlimit); 1444 ASSERT(hat == kas.a_hat || 1445 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1446 ASSERT((flags & supported_memload_flags) == flags); 1447 1448 ASSERT(!IN_VA_HOLE(va)); 1449 ASSERT(!PP_ISFREE(pp)); 1450 1451 /* 1452 * kernel address special case for performance. 1453 */ 1454 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 1455 ASSERT(hat == kas.a_hat); 1456 hat_kmap_load(addr, pp, attr, flags); 1457 return; 1458 } 1459 1460 /* 1461 * This is used for memory with normal caching enabled, so 1462 * always set HAT_STORECACHING_OK. 1463 */ 1464 attr |= HAT_STORECACHING_OK; 1465 if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0) 1466 panic("unexpected hati_load_common() failure"); 1467 } 1468 1469 /* ARGSUSED */ 1470 void 1471 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp, 1472 uint_t attr, uint_t flags, hat_region_cookie_t rcookie) 1473 { 1474 hat_memload(hat, addr, pp, attr, flags); 1475 } 1476 1477 /* 1478 * Load the given array of page structs using large pages when possible 1479 */ 1480 void 1481 hat_memload_array( 1482 hat_t *hat, 1483 caddr_t addr, 1484 size_t len, 1485 page_t **pages, 1486 uint_t attr, 1487 uint_t flags) 1488 { 1489 uintptr_t va = (uintptr_t)addr; 1490 uintptr_t eaddr = va + len; 1491 level_t level; 1492 size_t pgsize; 1493 pgcnt_t pgindx = 0; 1494 pfn_t pfn; 1495 pgcnt_t i; 1496 1497 ASSERT(IS_PAGEALIGNED(va)); 1498 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 1499 ASSERT(hat == kas.a_hat || 1500 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1501 ASSERT((flags & supported_memload_flags) == flags); 1502 1503 /* 1504 * memload is used for memory with full caching enabled, so 1505 * set HAT_STORECACHING_OK. 1506 */ 1507 attr |= HAT_STORECACHING_OK; 1508 1509 /* 1510 * handle all pages using largest possible pagesize 1511 */ 1512 while (va < eaddr) { 1513 /* 1514 * decide what level mapping to use (ie. pagesize) 1515 */ 1516 pfn = page_pptonum(pages[pgindx]); 1517 for (level = mmu.max_page_level; ; --level) { 1518 pgsize = LEVEL_SIZE(level); 1519 if (level == 0) 1520 break; 1521 1522 if (!IS_P2ALIGNED(va, pgsize) || 1523 (eaddr - va) < pgsize || 1524 !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize)) 1525 continue; 1526 1527 /* 1528 * To use a large mapping of this size, all the 1529 * pages we are passed must be sequential subpages 1530 * of the large page. 1531 * hat_page_demote() can't change p_szc because 1532 * all pages are locked. 1533 */ 1534 if (pages[pgindx]->p_szc >= level) { 1535 for (i = 0; i < mmu_btop(pgsize); ++i) { 1536 if (pfn + i != 1537 page_pptonum(pages[pgindx + i])) 1538 break; 1539 ASSERT(pages[pgindx + i]->p_szc >= 1540 level); 1541 ASSERT(pages[pgindx] + i == 1542 pages[pgindx + i]); 1543 } 1544 if (i == mmu_btop(pgsize)) 1545 break; 1546 } 1547 } 1548 1549 /* 1550 * Load this page mapping. If the load fails, try a smaller 1551 * pagesize. 1552 */ 1553 ASSERT(!IN_VA_HOLE(va)); 1554 while (hati_load_common(hat, va, pages[pgindx], attr, 1555 flags, level, pfn) != 0) { 1556 if (level == 0) 1557 panic("unexpected hati_load_common() failure"); 1558 --level; 1559 pgsize = LEVEL_SIZE(level); 1560 } 1561 1562 /* 1563 * move to next page 1564 */ 1565 va += pgsize; 1566 pgindx += mmu_btop(pgsize); 1567 } 1568 } 1569 1570 /* ARGSUSED */ 1571 void 1572 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len, 1573 struct page **pps, uint_t attr, uint_t flags, 1574 hat_region_cookie_t rcookie) 1575 { 1576 hat_memload_array(hat, addr, len, pps, attr, flags); 1577 } 1578 1579 /* 1580 * void hat_devload(hat, addr, len, pf, attr, flags) 1581 * load/lock the given page frame number 1582 * 1583 * Advisory ordering attributes. Apply only to device mappings. 1584 * 1585 * HAT_STRICTORDER: the CPU must issue the references in order, as the 1586 * programmer specified. This is the default. 1587 * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds 1588 * of reordering; store or load with store or load). 1589 * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores 1590 * to consecutive locations (for example, turn two consecutive byte 1591 * stores into one halfword store), and it may batch individual loads 1592 * (for example, turn two consecutive byte loads into one halfword load). 1593 * This also implies re-ordering. 1594 * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it 1595 * until another store occurs. The default is to fetch new data 1596 * on every load. This also implies merging. 1597 * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to 1598 * the device (perhaps with other data) at a later time. The default is 1599 * to push the data right away. This also implies load caching. 1600 * 1601 * Equivalent of hat_memload(), but can be used for device memory where 1602 * there are no page_t's and we support additional flags (write merging, etc). 1603 * Note that we can have large page mappings with this interface. 1604 */ 1605 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK | 1606 HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK | 1607 HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK; 1608 1609 void 1610 hat_devload( 1611 hat_t *hat, 1612 caddr_t addr, 1613 size_t len, 1614 pfn_t pfn, 1615 uint_t attr, 1616 int flags) 1617 { 1618 uintptr_t va = ALIGN2PAGE(addr); 1619 uintptr_t eva = va + len; 1620 level_t level; 1621 size_t pgsize; 1622 page_t *pp; 1623 int f; /* per PTE copy of flags - maybe modified */ 1624 uint_t a; /* per PTE copy of attr */ 1625 1626 ASSERT(IS_PAGEALIGNED(va)); 1627 ASSERT(hat == kas.a_hat || eva <= _userlimit); 1628 ASSERT(hat == kas.a_hat || 1629 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1630 ASSERT((flags & supported_devload_flags) == flags); 1631 1632 /* 1633 * handle all pages 1634 */ 1635 while (va < eva) { 1636 1637 /* 1638 * decide what level mapping to use (ie. pagesize) 1639 */ 1640 for (level = mmu.max_page_level; ; --level) { 1641 pgsize = LEVEL_SIZE(level); 1642 if (level == 0) 1643 break; 1644 if (IS_P2ALIGNED(va, pgsize) && 1645 (eva - va) >= pgsize && 1646 IS_P2ALIGNED(pfn, mmu_btop(pgsize))) 1647 break; 1648 } 1649 1650 /* 1651 * If this is just memory then allow caching (this happens 1652 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used 1653 * to override that. If we don't have a page_t then make sure 1654 * NOCONSIST is set. 1655 */ 1656 a = attr; 1657 f = flags; 1658 if (pf_is_memory(pfn)) { 1659 if (!(a & HAT_PLAT_NOCACHE)) 1660 a |= HAT_STORECACHING_OK; 1661 1662 if (f & HAT_LOAD_NOCONSIST) 1663 pp = NULL; 1664 else 1665 pp = page_numtopp_nolock(pfn); 1666 } else { 1667 pp = NULL; 1668 f |= HAT_LOAD_NOCONSIST; 1669 } 1670 1671 /* 1672 * load this page mapping 1673 */ 1674 ASSERT(!IN_VA_HOLE(va)); 1675 while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) { 1676 if (level == 0) 1677 panic("unexpected hati_load_common() failure"); 1678 --level; 1679 pgsize = LEVEL_SIZE(level); 1680 } 1681 1682 /* 1683 * move to next page 1684 */ 1685 va += pgsize; 1686 pfn += mmu_btop(pgsize); 1687 } 1688 } 1689 1690 /* 1691 * void hat_unlock(hat, addr, len) 1692 * unlock the mappings to a given range of addresses 1693 * 1694 * Locks are tracked by ht_lock_cnt in the htable. 1695 */ 1696 void 1697 hat_unlock(hat_t *hat, caddr_t addr, size_t len) 1698 { 1699 uintptr_t vaddr = (uintptr_t)addr; 1700 uintptr_t eaddr = vaddr + len; 1701 htable_t *ht = NULL; 1702 1703 /* 1704 * kernel entries are always locked, we don't track lock counts 1705 */ 1706 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 1707 ASSERT(IS_PAGEALIGNED(vaddr)); 1708 ASSERT(IS_PAGEALIGNED(eaddr)); 1709 if (hat == kas.a_hat) 1710 return; 1711 if (eaddr > _userlimit) 1712 panic("hat_unlock() address out of range - above _userlimit"); 1713 1714 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1715 while (vaddr < eaddr) { 1716 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1717 if (ht == NULL) 1718 break; 1719 1720 ASSERT(!IN_VA_HOLE(vaddr)); 1721 1722 if (ht->ht_lock_cnt < 1) 1723 panic("hat_unlock(): lock_cnt < 1, " 1724 "htable=%p, vaddr=%p\n", ht, (caddr_t)vaddr); 1725 HTABLE_LOCK_DEC(ht); 1726 1727 vaddr += LEVEL_SIZE(ht->ht_level); 1728 } 1729 if (ht) 1730 htable_release(ht); 1731 } 1732 1733 /* ARGSUSED */ 1734 void 1735 hat_unlock_region(struct hat *sfmmup, caddr_t addr, size_t len, 1736 hat_region_cookie_t rcookie) 1737 { 1738 panic("No shared region support on x86"); 1739 } 1740 1741 /* 1742 * Cross call service routine to demap a virtual page on 1743 * the current CPU or flush all mappings in TLB. 1744 */ 1745 /*ARGSUSED*/ 1746 static int 1747 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3) 1748 { 1749 hat_t *hat = (hat_t *)a1; 1750 caddr_t addr = (caddr_t)a2; 1751 1752 /* 1753 * If the target hat isn't the kernel and this CPU isn't operating 1754 * in the target hat, we can ignore the cross call. 1755 */ 1756 if (hat != kas.a_hat && hat != CPU->cpu_current_hat) 1757 return (0); 1758 1759 /* 1760 * For a normal address, we just flush one page mapping 1761 */ 1762 if ((uintptr_t)addr != DEMAP_ALL_ADDR) { 1763 mmu_tlbflush_entry(addr); 1764 return (0); 1765 } 1766 1767 /* 1768 * Otherwise we reload cr3 to effect a complete TLB flush. 1769 * 1770 * A reload of cr3 on a VLP process also means we must also recopy in 1771 * the pte values from the struct hat 1772 */ 1773 if (hat->hat_flags & HAT_VLP) { 1774 #if defined(__amd64) 1775 x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes; 1776 1777 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1778 #elif defined(__i386) 1779 reload_pae32(hat, CPU); 1780 #endif 1781 } 1782 reload_cr3(); 1783 return (0); 1784 } 1785 1786 /* 1787 * Flush all TLB entries, including global (ie. kernel) ones. 1788 */ 1789 static void 1790 flush_all_tlb_entries(void) 1791 { 1792 ulong_t cr4 = getcr4(); 1793 1794 if (cr4 & CR4_PGE) { 1795 setcr4(cr4 & ~(ulong_t)CR4_PGE); 1796 setcr4(cr4); 1797 1798 /* 1799 * 32 bit PAE also needs to always reload_cr3() 1800 */ 1801 if (mmu.max_level == 2) 1802 reload_cr3(); 1803 } else { 1804 reload_cr3(); 1805 } 1806 } 1807 1808 #define TLB_CPU_HALTED (01ul) 1809 #define TLB_INVAL_ALL (02ul) 1810 #define CAS_TLB_INFO(cpu, old, new) \ 1811 caslong((ulong_t *)&(cpu)->cpu_m.mcpu_tlb_info, (old), (new)) 1812 1813 /* 1814 * Record that a CPU is going idle 1815 */ 1816 void 1817 tlb_going_idle(void) 1818 { 1819 atomic_or_long((ulong_t *)&CPU->cpu_m.mcpu_tlb_info, TLB_CPU_HALTED); 1820 } 1821 1822 /* 1823 * Service a delayed TLB flush if coming out of being idle. 1824 */ 1825 void 1826 tlb_service(void) 1827 { 1828 ulong_t flags = getflags(); 1829 ulong_t tlb_info; 1830 ulong_t found; 1831 1832 /* 1833 * Be sure interrupts are off while doing this so that 1834 * higher level interrupts correctly wait for flushes to finish. 1835 */ 1836 if (flags & PS_IE) 1837 flags = intr_clear(); 1838 1839 /* 1840 * We only have to do something if coming out of being idle. 1841 */ 1842 tlb_info = CPU->cpu_m.mcpu_tlb_info; 1843 if (tlb_info & TLB_CPU_HALTED) { 1844 ASSERT(CPU->cpu_current_hat == kas.a_hat); 1845 1846 /* 1847 * Atomic clear and fetch of old state. 1848 */ 1849 while ((found = CAS_TLB_INFO(CPU, tlb_info, 0)) != tlb_info) { 1850 ASSERT(found & TLB_CPU_HALTED); 1851 tlb_info = found; 1852 SMT_PAUSE(); 1853 } 1854 if (tlb_info & TLB_INVAL_ALL) 1855 flush_all_tlb_entries(); 1856 } 1857 1858 /* 1859 * Restore interrupt enable control bit. 1860 */ 1861 if (flags & PS_IE) 1862 sti(); 1863 } 1864 1865 /* 1866 * Internal routine to do cross calls to invalidate a range of pages on 1867 * all CPUs using a given hat. 1868 */ 1869 void 1870 hat_tlb_inval(hat_t *hat, uintptr_t va) 1871 { 1872 extern int flushes_require_xcalls; /* from mp_startup.c */ 1873 cpuset_t justme; 1874 cpuset_t check_cpus; 1875 cpuset_t cpus_to_shootdown; 1876 cpu_t *cpup; 1877 int c; 1878 1879 /* 1880 * If the hat is being destroyed, there are no more users, so 1881 * demap need not do anything. 1882 */ 1883 if (hat->hat_flags & HAT_FREEING) 1884 return; 1885 1886 /* 1887 * If demapping from a shared pagetable, we best demap the 1888 * entire set of user TLBs, since we don't know what addresses 1889 * these were shared at. 1890 */ 1891 if (hat->hat_flags & HAT_SHARED) { 1892 hat = kas.a_hat; 1893 va = DEMAP_ALL_ADDR; 1894 } 1895 1896 /* 1897 * if not running with multiple CPUs, don't use cross calls 1898 */ 1899 if (panicstr || !flushes_require_xcalls) { 1900 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL); 1901 return; 1902 } 1903 1904 1905 /* 1906 * Determine CPUs to shootdown. Kernel changes always do all CPUs. 1907 * Otherwise it's just CPUs currently executing in this hat. 1908 */ 1909 kpreempt_disable(); 1910 CPUSET_ONLY(justme, CPU->cpu_id); 1911 if (hat == kas.a_hat) 1912 cpus_to_shootdown = khat_cpuset; 1913 else 1914 cpus_to_shootdown = hat->hat_cpus; 1915 1916 /* 1917 * If any CPUs in the set are idle, just request a delayed flush 1918 * and avoid waking them up. 1919 */ 1920 check_cpus = cpus_to_shootdown; 1921 for (c = 0; c < NCPU && !CPUSET_ISNULL(check_cpus); ++c) { 1922 ulong_t tlb_info; 1923 1924 if (!CPU_IN_SET(check_cpus, c)) 1925 continue; 1926 CPUSET_DEL(check_cpus, c); 1927 cpup = cpu[c]; 1928 if (cpup == NULL) 1929 continue; 1930 1931 tlb_info = cpup->cpu_m.mcpu_tlb_info; 1932 while (tlb_info == TLB_CPU_HALTED) { 1933 (void) CAS_TLB_INFO(cpup, TLB_CPU_HALTED, 1934 TLB_CPU_HALTED | TLB_INVAL_ALL); 1935 SMT_PAUSE(); 1936 tlb_info = cpup->cpu_m.mcpu_tlb_info; 1937 } 1938 if (tlb_info == (TLB_CPU_HALTED | TLB_INVAL_ALL)) { 1939 HATSTAT_INC(hs_tlb_inval_delayed); 1940 CPUSET_DEL(cpus_to_shootdown, c); 1941 } 1942 } 1943 1944 if (CPUSET_ISNULL(cpus_to_shootdown) || 1945 CPUSET_ISEQUAL(cpus_to_shootdown, justme)) { 1946 1947 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL); 1948 1949 } else { 1950 1951 CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id); 1952 xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL, X_CALL_HIPRI, 1953 cpus_to_shootdown, hati_demap_func); 1954 1955 } 1956 kpreempt_enable(); 1957 } 1958 1959 /* 1960 * Interior routine for HAT_UNLOADs from hat_unload_callback(), 1961 * hat_kmap_unload() OR from hat_steal() code. This routine doesn't 1962 * handle releasing of the htables. 1963 */ 1964 void 1965 hat_pte_unmap( 1966 htable_t *ht, 1967 uint_t entry, 1968 uint_t flags, 1969 x86pte_t old_pte, 1970 void *pte_ptr) 1971 { 1972 hat_t *hat = ht->ht_hat; 1973 hment_t *hm = NULL; 1974 page_t *pp = NULL; 1975 level_t l = ht->ht_level; 1976 pfn_t pfn; 1977 1978 /* 1979 * We always track the locking counts, even if nothing is unmapped 1980 */ 1981 if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) { 1982 ASSERT(ht->ht_lock_cnt > 0); 1983 HTABLE_LOCK_DEC(ht); 1984 } 1985 1986 /* 1987 * Figure out which page's mapping list lock to acquire using the PFN 1988 * passed in "old" PTE. We then attempt to invalidate the PTE. 1989 * If another thread, probably a hat_pageunload, has asynchronously 1990 * unmapped/remapped this address we'll loop here. 1991 */ 1992 ASSERT(ht->ht_busy > 0); 1993 while (PTE_ISVALID(old_pte)) { 1994 pfn = PTE2PFN(old_pte, l); 1995 if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) { 1996 pp = NULL; 1997 } else { 1998 pp = page_numtopp_nolock(pfn); 1999 if (pp == NULL) { 2000 panic("no page_t, not NOCONSIST: old_pte=" 2001 FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx", 2002 old_pte, (uintptr_t)ht, entry, 2003 (uintptr_t)pte_ptr); 2004 } 2005 x86_hm_enter(pp); 2006 } 2007 2008 /* 2009 * If freeing the address space, check that the PTE 2010 * hasn't changed, as the mappings are no longer in use by 2011 * any thread, invalidation is unnecessary. 2012 * If not freeing, do a full invalidate. 2013 */ 2014 if (hat->hat_flags & HAT_FREEING) 2015 old_pte = x86pte_get(ht, entry); 2016 else 2017 old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr); 2018 2019 /* 2020 * If the page hadn't changed we've unmapped it and can proceed 2021 */ 2022 if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn) 2023 break; 2024 2025 /* 2026 * Otherwise, we'll have to retry with the current old_pte. 2027 * Drop the hment lock, since the pfn may have changed. 2028 */ 2029 if (pp != NULL) { 2030 x86_hm_exit(pp); 2031 pp = NULL; 2032 } else { 2033 ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 2034 } 2035 } 2036 2037 /* 2038 * If the old mapping wasn't valid, there's nothing more to do 2039 */ 2040 if (!PTE_ISVALID(old_pte)) { 2041 if (pp != NULL) 2042 x86_hm_exit(pp); 2043 return; 2044 } 2045 2046 /* 2047 * Take care of syncing any MOD/REF bits and removing the hment. 2048 */ 2049 if (pp != NULL) { 2050 if (!(flags & HAT_UNLOAD_NOSYNC)) 2051 hati_sync_pte_to_page(pp, old_pte, l); 2052 hm = hment_remove(pp, ht, entry); 2053 x86_hm_exit(pp); 2054 if (hm != NULL) 2055 hment_free(hm); 2056 } 2057 2058 /* 2059 * Handle book keeping in the htable and hat 2060 */ 2061 ASSERT(ht->ht_valid_cnt > 0); 2062 HTABLE_DEC(ht->ht_valid_cnt); 2063 PGCNT_DEC(hat, l); 2064 } 2065 2066 /* 2067 * very cheap unload implementation to special case some kernel addresses 2068 */ 2069 static void 2070 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags) 2071 { 2072 uintptr_t va = (uintptr_t)addr; 2073 uintptr_t eva = va + len; 2074 pgcnt_t pg_index; 2075 htable_t *ht; 2076 uint_t entry; 2077 x86pte_t *pte_ptr; 2078 x86pte_t old_pte; 2079 2080 for (; va < eva; va += MMU_PAGESIZE) { 2081 /* 2082 * Get the PTE 2083 */ 2084 pg_index = mmu_btop(va - mmu.kmap_addr); 2085 pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index); 2086 old_pte = GET_PTE(pte_ptr); 2087 2088 /* 2089 * get the htable / entry 2090 */ 2091 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) 2092 >> LEVEL_SHIFT(1)]; 2093 entry = htable_va2entry(va, ht); 2094 2095 /* 2096 * use mostly common code to unmap it. 2097 */ 2098 hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr); 2099 } 2100 } 2101 2102 2103 /* 2104 * unload a range of virtual address space (no callback) 2105 */ 2106 void 2107 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2108 { 2109 uintptr_t va = (uintptr_t)addr; 2110 2111 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 2112 2113 /* 2114 * special case for performance. 2115 */ 2116 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 2117 ASSERT(hat == kas.a_hat); 2118 hat_kmap_unload(addr, len, flags); 2119 } else { 2120 hat_unload_callback(hat, addr, len, flags, NULL); 2121 } 2122 } 2123 2124 /* 2125 * Do the callbacks for ranges being unloaded. 2126 */ 2127 typedef struct range_info { 2128 uintptr_t rng_va; 2129 ulong_t rng_cnt; 2130 level_t rng_level; 2131 } range_info_t; 2132 2133 static void 2134 handle_ranges(hat_callback_t *cb, uint_t cnt, range_info_t *range) 2135 { 2136 /* 2137 * do callbacks to upper level VM system 2138 */ 2139 while (cb != NULL && cnt > 0) { 2140 --cnt; 2141 cb->hcb_start_addr = (caddr_t)range[cnt].rng_va; 2142 cb->hcb_end_addr = cb->hcb_start_addr; 2143 cb->hcb_end_addr += 2144 range[cnt].rng_cnt << LEVEL_SIZE(range[cnt].rng_level); 2145 cb->hcb_function(cb); 2146 } 2147 } 2148 2149 /* 2150 * Unload a given range of addresses (has optional callback) 2151 * 2152 * Flags: 2153 * define HAT_UNLOAD 0x00 2154 * define HAT_UNLOAD_NOSYNC 0x02 2155 * define HAT_UNLOAD_UNLOCK 0x04 2156 * define HAT_UNLOAD_OTHER 0x08 - not used 2157 * define HAT_UNLOAD_UNMAP 0x10 - same as HAT_UNLOAD 2158 */ 2159 #define MAX_UNLOAD_CNT (8) 2160 void 2161 hat_unload_callback( 2162 hat_t *hat, 2163 caddr_t addr, 2164 size_t len, 2165 uint_t flags, 2166 hat_callback_t *cb) 2167 { 2168 uintptr_t vaddr = (uintptr_t)addr; 2169 uintptr_t eaddr = vaddr + len; 2170 htable_t *ht = NULL; 2171 uint_t entry; 2172 uintptr_t contig_va = (uintptr_t)-1L; 2173 range_info_t r[MAX_UNLOAD_CNT]; 2174 uint_t r_cnt = 0; 2175 x86pte_t old_pte; 2176 2177 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2178 ASSERT(IS_PAGEALIGNED(vaddr)); 2179 ASSERT(IS_PAGEALIGNED(eaddr)); 2180 2181 /* 2182 * Special case a single page being unloaded for speed. This happens 2183 * quite frequently, COW faults after a fork() for example. 2184 */ 2185 if (cb == NULL && len == MMU_PAGESIZE) { 2186 ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0); 2187 if (ht != NULL) { 2188 if (PTE_ISVALID(old_pte)) 2189 hat_pte_unmap(ht, entry, flags, old_pte, NULL); 2190 htable_release(ht); 2191 } 2192 return; 2193 } 2194 2195 while (vaddr < eaddr) { 2196 old_pte = htable_walk(hat, &ht, &vaddr, eaddr); 2197 if (ht == NULL) 2198 break; 2199 2200 ASSERT(!IN_VA_HOLE(vaddr)); 2201 2202 if (vaddr < (uintptr_t)addr) 2203 panic("hat_unload_callback(): unmap inside large page"); 2204 2205 /* 2206 * We'll do the call backs for contiguous ranges 2207 */ 2208 if (vaddr != contig_va || 2209 (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) { 2210 if (r_cnt == MAX_UNLOAD_CNT) { 2211 handle_ranges(cb, r_cnt, r); 2212 r_cnt = 0; 2213 } 2214 r[r_cnt].rng_va = vaddr; 2215 r[r_cnt].rng_cnt = 0; 2216 r[r_cnt].rng_level = ht->ht_level; 2217 ++r_cnt; 2218 } 2219 2220 /* 2221 * Unload one mapping from the page tables. 2222 */ 2223 entry = htable_va2entry(vaddr, ht); 2224 hat_pte_unmap(ht, entry, flags, old_pte, NULL); 2225 ASSERT(ht->ht_level <= mmu.max_page_level); 2226 vaddr += LEVEL_SIZE(ht->ht_level); 2227 contig_va = vaddr; 2228 ++r[r_cnt - 1].rng_cnt; 2229 } 2230 if (ht) 2231 htable_release(ht); 2232 2233 /* 2234 * handle last range for callbacks 2235 */ 2236 if (r_cnt > 0) 2237 handle_ranges(cb, r_cnt, r); 2238 } 2239 2240 /* 2241 * synchronize mapping with software data structures 2242 * 2243 * This interface is currently only used by the working set monitor 2244 * driver. 2245 */ 2246 /*ARGSUSED*/ 2247 void 2248 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2249 { 2250 uintptr_t vaddr = (uintptr_t)addr; 2251 uintptr_t eaddr = vaddr + len; 2252 htable_t *ht = NULL; 2253 uint_t entry; 2254 x86pte_t pte; 2255 x86pte_t save_pte; 2256 x86pte_t new; 2257 page_t *pp; 2258 2259 ASSERT(!IN_VA_HOLE(vaddr)); 2260 ASSERT(IS_PAGEALIGNED(vaddr)); 2261 ASSERT(IS_PAGEALIGNED(eaddr)); 2262 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2263 2264 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2265 try_again: 2266 pte = htable_walk(hat, &ht, &vaddr, eaddr); 2267 if (ht == NULL) 2268 break; 2269 entry = htable_va2entry(vaddr, ht); 2270 2271 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 2272 PTE_GET(pte, PT_REF | PT_MOD) == 0) 2273 continue; 2274 2275 /* 2276 * We need to acquire the mapping list lock to protect 2277 * against hat_pageunload(), hat_unload(), etc. 2278 */ 2279 pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level)); 2280 if (pp == NULL) 2281 break; 2282 x86_hm_enter(pp); 2283 save_pte = pte; 2284 pte = x86pte_get(ht, entry); 2285 if (pte != save_pte) { 2286 x86_hm_exit(pp); 2287 goto try_again; 2288 } 2289 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 2290 PTE_GET(pte, PT_REF | PT_MOD) == 0) { 2291 x86_hm_exit(pp); 2292 continue; 2293 } 2294 2295 /* 2296 * Need to clear ref or mod bits. We may compete with 2297 * hardware updating the R/M bits and have to try again. 2298 */ 2299 if (flags == HAT_SYNC_ZERORM) { 2300 new = pte; 2301 PTE_CLR(new, PT_REF | PT_MOD); 2302 pte = hati_update_pte(ht, entry, pte, new); 2303 if (pte != 0) { 2304 x86_hm_exit(pp); 2305 goto try_again; 2306 } 2307 } else { 2308 /* 2309 * sync the PTE to the page_t 2310 */ 2311 hati_sync_pte_to_page(pp, save_pte, ht->ht_level); 2312 } 2313 x86_hm_exit(pp); 2314 } 2315 if (ht) 2316 htable_release(ht); 2317 } 2318 2319 /* 2320 * void hat_map(hat, addr, len, flags) 2321 */ 2322 /*ARGSUSED*/ 2323 void 2324 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2325 { 2326 /* does nothing */ 2327 } 2328 2329 /* 2330 * uint_t hat_getattr(hat, addr, *attr) 2331 * returns attr for <hat,addr> in *attr. returns 0 if there was a 2332 * mapping and *attr is valid, nonzero if there was no mapping and 2333 * *attr is not valid. 2334 */ 2335 uint_t 2336 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr) 2337 { 2338 uintptr_t vaddr = ALIGN2PAGE(addr); 2339 htable_t *ht = NULL; 2340 x86pte_t pte; 2341 2342 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2343 2344 if (IN_VA_HOLE(vaddr)) 2345 return ((uint_t)-1); 2346 2347 ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level); 2348 if (ht == NULL) 2349 return ((uint_t)-1); 2350 2351 if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) { 2352 htable_release(ht); 2353 return ((uint_t)-1); 2354 } 2355 2356 *attr = PROT_READ; 2357 if (PTE_GET(pte, PT_WRITABLE)) 2358 *attr |= PROT_WRITE; 2359 if (PTE_GET(pte, PT_USER)) 2360 *attr |= PROT_USER; 2361 if (!PTE_GET(pte, mmu.pt_nx)) 2362 *attr |= PROT_EXEC; 2363 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 2364 *attr |= HAT_NOSYNC; 2365 htable_release(ht); 2366 return (0); 2367 } 2368 2369 /* 2370 * hat_updateattr() applies the given attribute change to an existing mapping 2371 */ 2372 #define HAT_LOAD_ATTR 1 2373 #define HAT_SET_ATTR 2 2374 #define HAT_CLR_ATTR 3 2375 2376 static void 2377 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what) 2378 { 2379 uintptr_t vaddr = (uintptr_t)addr; 2380 uintptr_t eaddr = (uintptr_t)addr + len; 2381 htable_t *ht = NULL; 2382 uint_t entry; 2383 x86pte_t oldpte, newpte; 2384 page_t *pp; 2385 2386 ASSERT(IS_PAGEALIGNED(vaddr)); 2387 ASSERT(IS_PAGEALIGNED(eaddr)); 2388 ASSERT(hat == kas.a_hat || 2389 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 2390 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2391 try_again: 2392 oldpte = htable_walk(hat, &ht, &vaddr, eaddr); 2393 if (ht == NULL) 2394 break; 2395 if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST) 2396 continue; 2397 2398 pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level)); 2399 if (pp == NULL) 2400 continue; 2401 x86_hm_enter(pp); 2402 2403 newpte = oldpte; 2404 /* 2405 * We found a page table entry in the desired range, 2406 * figure out the new attributes. 2407 */ 2408 if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) { 2409 if ((attr & PROT_WRITE) && 2410 !PTE_GET(oldpte, PT_WRITABLE)) 2411 newpte |= PT_WRITABLE; 2412 2413 if ((attr & HAT_NOSYNC) && 2414 PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC) 2415 newpte |= PT_NOSYNC; 2416 2417 if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx)) 2418 newpte &= ~mmu.pt_nx; 2419 } 2420 2421 if (what == HAT_LOAD_ATTR) { 2422 if (!(attr & PROT_WRITE) && 2423 PTE_GET(oldpte, PT_WRITABLE)) 2424 newpte &= ~PT_WRITABLE; 2425 2426 if (!(attr & HAT_NOSYNC) && 2427 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 2428 newpte &= ~PT_SOFTWARE; 2429 2430 if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2431 newpte |= mmu.pt_nx; 2432 } 2433 2434 if (what == HAT_CLR_ATTR) { 2435 if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE)) 2436 newpte &= ~PT_WRITABLE; 2437 2438 if ((attr & HAT_NOSYNC) && 2439 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 2440 newpte &= ~PT_SOFTWARE; 2441 2442 if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2443 newpte |= mmu.pt_nx; 2444 } 2445 2446 /* 2447 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set. 2448 * x86pte_set() depends on this. 2449 */ 2450 if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC) 2451 newpte |= PT_REF | PT_MOD; 2452 2453 /* 2454 * what about PROT_READ or others? this code only handles: 2455 * EXEC, WRITE, NOSYNC 2456 */ 2457 2458 /* 2459 * If new PTE really changed, update the table. 2460 */ 2461 if (newpte != oldpte) { 2462 entry = htable_va2entry(vaddr, ht); 2463 oldpte = hati_update_pte(ht, entry, oldpte, newpte); 2464 if (oldpte != 0) { 2465 x86_hm_exit(pp); 2466 goto try_again; 2467 } 2468 } 2469 x86_hm_exit(pp); 2470 } 2471 if (ht) 2472 htable_release(ht); 2473 } 2474 2475 /* 2476 * Various wrappers for hat_updateattr() 2477 */ 2478 void 2479 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2480 { 2481 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2482 hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR); 2483 } 2484 2485 void 2486 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2487 { 2488 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2489 hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR); 2490 } 2491 2492 void 2493 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2494 { 2495 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2496 hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR); 2497 } 2498 2499 void 2500 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot) 2501 { 2502 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 2503 hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR); 2504 } 2505 2506 /* 2507 * size_t hat_getpagesize(hat, addr) 2508 * returns pagesize in bytes for <hat, addr>. returns -1 of there is 2509 * no mapping. This is an advisory call. 2510 */ 2511 ssize_t 2512 hat_getpagesize(hat_t *hat, caddr_t addr) 2513 { 2514 uintptr_t vaddr = ALIGN2PAGE(addr); 2515 htable_t *ht; 2516 size_t pagesize; 2517 2518 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2519 if (IN_VA_HOLE(vaddr)) 2520 return (-1); 2521 ht = htable_getpage(hat, vaddr, NULL); 2522 if (ht == NULL) 2523 return (-1); 2524 pagesize = LEVEL_SIZE(ht->ht_level); 2525 htable_release(ht); 2526 return (pagesize); 2527 } 2528 2529 2530 2531 /* 2532 * pfn_t hat_getpfnum(hat, addr) 2533 * returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid. 2534 */ 2535 pfn_t 2536 hat_getpfnum(hat_t *hat, caddr_t addr) 2537 { 2538 uintptr_t vaddr = ALIGN2PAGE(addr); 2539 htable_t *ht; 2540 uint_t entry; 2541 pfn_t pfn = PFN_INVALID; 2542 2543 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2544 if (khat_running == 0) 2545 return (PFN_INVALID); 2546 2547 if (IN_VA_HOLE(vaddr)) 2548 return (PFN_INVALID); 2549 2550 /* 2551 * A very common use of hat_getpfnum() is from the DDI for kernel pages. 2552 * Use the kmap_ptes (which also covers the 32 bit heap) to speed 2553 * this up. 2554 */ 2555 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2556 x86pte_t pte; 2557 pgcnt_t pg_index; 2558 2559 pg_index = mmu_btop(vaddr - mmu.kmap_addr); 2560 pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index)); 2561 if (!PTE_ISVALID(pte)) 2562 return (PFN_INVALID); 2563 /*LINTED [use of constant 0 causes a silly lint warning] */ 2564 return (PTE2PFN(pte, 0)); 2565 } 2566 2567 ht = htable_getpage(hat, vaddr, &entry); 2568 if (ht == NULL) 2569 return (PFN_INVALID); 2570 ASSERT(vaddr >= ht->ht_vaddr); 2571 ASSERT(vaddr <= HTABLE_LAST_PAGE(ht)); 2572 pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level); 2573 if (ht->ht_level > 0) 2574 pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level)); 2575 htable_release(ht); 2576 return (pfn); 2577 } 2578 2579 /* 2580 * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged. 2581 * Use hat_getpfnum(kas.a_hat, ...) instead. 2582 * 2583 * We'd like to return PFN_INVALID if the mappings have underlying page_t's 2584 * but can't right now due to the fact that some software has grown to use 2585 * this interface incorrectly. So for now when the interface is misused, 2586 * return a warning to the user that in the future it won't work in the 2587 * way they're abusing it, and carry on. 2588 * 2589 * Note that hat_getkpfnum() is never supported on amd64. 2590 */ 2591 #if !defined(__amd64) 2592 pfn_t 2593 hat_getkpfnum(caddr_t addr) 2594 { 2595 pfn_t pfn; 2596 int badcaller = 0; 2597 2598 if (khat_running == 0) 2599 panic("hat_getkpfnum(): called too early\n"); 2600 if ((uintptr_t)addr < kernelbase) 2601 return (PFN_INVALID); 2602 2603 2604 if (segkpm && IS_KPM_ADDR(addr)) { 2605 badcaller = 1; 2606 pfn = hat_kpm_va2pfn(addr); 2607 } else { 2608 pfn = hat_getpfnum(kas.a_hat, addr); 2609 badcaller = pf_is_memory(pfn); 2610 } 2611 2612 if (badcaller) 2613 hat_getkpfnum_badcall(caller()); 2614 return (pfn); 2615 } 2616 #endif /* __amd64 */ 2617 2618 /* 2619 * int hat_probe(hat, addr) 2620 * return 0 if no valid mapping is present. Faster version 2621 * of hat_getattr in certain architectures. 2622 */ 2623 int 2624 hat_probe(hat_t *hat, caddr_t addr) 2625 { 2626 uintptr_t vaddr = ALIGN2PAGE(addr); 2627 uint_t entry; 2628 htable_t *ht; 2629 pgcnt_t pg_off; 2630 2631 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 2632 ASSERT(hat == kas.a_hat || 2633 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 2634 if (IN_VA_HOLE(vaddr)) 2635 return (0); 2636 2637 /* 2638 * Most common use of hat_probe is from segmap. We special case it 2639 * for performance. 2640 */ 2641 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2642 pg_off = mmu_btop(vaddr - mmu.kmap_addr); 2643 if (mmu.pae_hat) 2644 return (PTE_ISVALID(mmu.kmap_ptes[pg_off])); 2645 else 2646 return (PTE_ISVALID( 2647 ((x86pte32_t *)mmu.kmap_ptes)[pg_off])); 2648 } 2649 2650 ht = htable_getpage(hat, vaddr, &entry); 2651 if (ht == NULL) 2652 return (0); 2653 htable_release(ht); 2654 return (1); 2655 } 2656 2657 /* 2658 * Find out if the segment for hat_share()/hat_unshare() is DISM or locked ISM. 2659 */ 2660 static int 2661 is_it_dism(hat_t *hat, caddr_t va) 2662 { 2663 struct seg *seg; 2664 struct shm_data *shmd; 2665 struct spt_data *sptd; 2666 2667 seg = as_findseg(hat->hat_as, va, 0); 2668 ASSERT(seg != NULL); 2669 ASSERT(seg->s_base <= va); 2670 shmd = (struct shm_data *)seg->s_data; 2671 ASSERT(shmd != NULL); 2672 sptd = (struct spt_data *)shmd->shm_sptseg->s_data; 2673 ASSERT(sptd != NULL); 2674 if (sptd->spt_flags & SHM_PAGEABLE) 2675 return (1); 2676 return (0); 2677 } 2678 2679 /* 2680 * Simple implementation of ISM. hat_share() is similar to hat_memload_array(), 2681 * except that we use the ism_hat's existing mappings to determine the pages 2682 * and protections to use for this hat. If we find a full properly aligned 2683 * and sized pagetable, we will attempt to share the pagetable itself. 2684 */ 2685 /*ARGSUSED*/ 2686 int 2687 hat_share( 2688 hat_t *hat, 2689 caddr_t addr, 2690 hat_t *ism_hat, 2691 caddr_t src_addr, 2692 size_t len, /* almost useless value, see below.. */ 2693 uint_t ismszc) 2694 { 2695 uintptr_t vaddr_start = (uintptr_t)addr; 2696 uintptr_t vaddr; 2697 uintptr_t eaddr = vaddr_start + len; 2698 uintptr_t ism_addr_start = (uintptr_t)src_addr; 2699 uintptr_t ism_addr = ism_addr_start; 2700 uintptr_t e_ism_addr = ism_addr + len; 2701 htable_t *ism_ht = NULL; 2702 htable_t *ht; 2703 x86pte_t pte; 2704 page_t *pp; 2705 pfn_t pfn; 2706 level_t l; 2707 pgcnt_t pgcnt; 2708 uint_t prot; 2709 int is_dism; 2710 int flags; 2711 2712 /* 2713 * We might be asked to share an empty DISM hat by as_dup() 2714 */ 2715 ASSERT(hat != kas.a_hat); 2716 ASSERT(eaddr <= _userlimit); 2717 if (!(ism_hat->hat_flags & HAT_SHARED)) { 2718 ASSERT(hat_get_mapped_size(ism_hat) == 0); 2719 return (0); 2720 } 2721 2722 /* 2723 * The SPT segment driver often passes us a size larger than there are 2724 * valid mappings. That's because it rounds the segment size up to a 2725 * large pagesize, even if the actual memory mapped by ism_hat is less. 2726 */ 2727 ASSERT(IS_PAGEALIGNED(vaddr_start)); 2728 ASSERT(IS_PAGEALIGNED(ism_addr_start)); 2729 ASSERT(ism_hat->hat_flags & HAT_SHARED); 2730 is_dism = is_it_dism(hat, addr); 2731 while (ism_addr < e_ism_addr) { 2732 /* 2733 * use htable_walk to get the next valid ISM mapping 2734 */ 2735 pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr); 2736 if (ism_ht == NULL) 2737 break; 2738 2739 /* 2740 * First check to see if we already share the page table. 2741 */ 2742 l = ism_ht->ht_level; 2743 vaddr = vaddr_start + (ism_addr - ism_addr_start); 2744 ht = htable_lookup(hat, vaddr, l); 2745 if (ht != NULL) { 2746 if (ht->ht_flags & HTABLE_SHARED_PFN) 2747 goto shared; 2748 htable_release(ht); 2749 goto not_shared; 2750 } 2751 2752 /* 2753 * Can't ever share top table. 2754 */ 2755 if (l == mmu.max_level) 2756 goto not_shared; 2757 2758 /* 2759 * Avoid level mismatches later due to DISM faults. 2760 */ 2761 if (is_dism && l > 0) 2762 goto not_shared; 2763 2764 /* 2765 * addresses and lengths must align 2766 * table must be fully populated 2767 * no lower level page tables 2768 */ 2769 if (ism_addr != ism_ht->ht_vaddr || 2770 (vaddr & LEVEL_OFFSET(l + 1)) != 0) 2771 goto not_shared; 2772 2773 /* 2774 * The range of address space must cover a full table. 2775 */ 2776 if (e_ism_addr - ism_addr < LEVEL_SIZE(1 + 1)) 2777 goto not_shared; 2778 2779 /* 2780 * All entries in the ISM page table must be leaf PTEs. 2781 */ 2782 if (l > 0) { 2783 int e; 2784 2785 /* 2786 * We know the 0th is from htable_walk() above. 2787 */ 2788 for (e = 1; e < HTABLE_NUM_PTES(ism_ht); ++e) { 2789 x86pte_t pte; 2790 pte = x86pte_get(ism_ht, e); 2791 if (!PTE_ISPAGE(pte, l)) 2792 goto not_shared; 2793 } 2794 } 2795 2796 /* 2797 * share the page table 2798 */ 2799 ht = htable_create(hat, vaddr, l, ism_ht); 2800 shared: 2801 ASSERT(ht->ht_flags & HTABLE_SHARED_PFN); 2802 ASSERT(ht->ht_shares == ism_ht); 2803 hat->hat_ism_pgcnt += 2804 (ism_ht->ht_valid_cnt - ht->ht_valid_cnt) << 2805 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT); 2806 ht->ht_valid_cnt = ism_ht->ht_valid_cnt; 2807 htable_release(ht); 2808 ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(l + 1); 2809 htable_release(ism_ht); 2810 ism_ht = NULL; 2811 continue; 2812 2813 not_shared: 2814 /* 2815 * Unable to share the page table. Instead we will 2816 * create new mappings from the values in the ISM mappings. 2817 * Figure out what level size mappings to use; 2818 */ 2819 for (l = ism_ht->ht_level; l > 0; --l) { 2820 if (LEVEL_SIZE(l) <= eaddr - vaddr && 2821 (vaddr & LEVEL_OFFSET(l)) == 0) 2822 break; 2823 } 2824 2825 /* 2826 * The ISM mapping might be larger than the share area, 2827 * be careful to truncate it if needed. 2828 */ 2829 if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) { 2830 pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level)); 2831 } else { 2832 pgcnt = mmu_btop(eaddr - vaddr); 2833 l = 0; 2834 } 2835 2836 pfn = PTE2PFN(pte, ism_ht->ht_level); 2837 ASSERT(pfn != PFN_INVALID); 2838 while (pgcnt > 0) { 2839 /* 2840 * Make a new pte for the PFN for this level. 2841 * Copy protections for the pte from the ISM pte. 2842 */ 2843 pp = page_numtopp_nolock(pfn); 2844 ASSERT(pp != NULL); 2845 2846 prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK; 2847 if (PTE_GET(pte, PT_WRITABLE)) 2848 prot |= PROT_WRITE; 2849 if (!PTE_GET(pte, PT_NX)) 2850 prot |= PROT_EXEC; 2851 2852 flags = HAT_LOAD; 2853 if (!is_dism) 2854 flags |= HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST; 2855 while (hati_load_common(hat, vaddr, pp, prot, flags, 2856 l, pfn) != 0) { 2857 if (l == 0) 2858 panic("hati_load_common() failure"); 2859 --l; 2860 } 2861 2862 vaddr += LEVEL_SIZE(l); 2863 ism_addr += LEVEL_SIZE(l); 2864 pfn += mmu_btop(LEVEL_SIZE(l)); 2865 pgcnt -= mmu_btop(LEVEL_SIZE(l)); 2866 } 2867 } 2868 if (ism_ht != NULL) 2869 htable_release(ism_ht); 2870 return (0); 2871 } 2872 2873 2874 /* 2875 * hat_unshare() is similar to hat_unload_callback(), but 2876 * we have to look for empty shared pagetables. Note that 2877 * hat_unshare() is always invoked against an entire segment. 2878 */ 2879 /*ARGSUSED*/ 2880 void 2881 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc) 2882 { 2883 uintptr_t vaddr = (uintptr_t)addr; 2884 uintptr_t eaddr = vaddr + len; 2885 htable_t *ht = NULL; 2886 uint_t need_demaps = 0; 2887 int flags = HAT_UNLOAD_UNMAP; 2888 level_t l; 2889 2890 ASSERT(hat != kas.a_hat); 2891 ASSERT(eaddr <= _userlimit); 2892 ASSERT(IS_PAGEALIGNED(vaddr)); 2893 ASSERT(IS_PAGEALIGNED(eaddr)); 2894 2895 /* 2896 * First go through and remove any shared pagetables. 2897 * 2898 * Note that it's ok to delay the TLB shootdown till the entire range is 2899 * finished, because if hat_pageunload() were to unload a shared 2900 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate. 2901 */ 2902 l = mmu.max_page_level; 2903 if (l == mmu.max_level) 2904 --l; 2905 for (; l >= 0; --l) { 2906 for (vaddr = (uintptr_t)addr; vaddr < eaddr; 2907 vaddr = (vaddr & LEVEL_MASK(l + 1)) + LEVEL_SIZE(l + 1)) { 2908 ASSERT(!IN_VA_HOLE(vaddr)); 2909 /* 2910 * find a pagetable that maps the current address 2911 */ 2912 ht = htable_lookup(hat, vaddr, l); 2913 if (ht == NULL) 2914 continue; 2915 if (ht->ht_flags & HTABLE_SHARED_PFN) { 2916 /* 2917 * clear page count, set valid_cnt to 0, 2918 * let htable_release() finish the job 2919 */ 2920 hat->hat_ism_pgcnt -= ht->ht_valid_cnt << 2921 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT); 2922 ht->ht_valid_cnt = 0; 2923 need_demaps = 1; 2924 } 2925 htable_release(ht); 2926 } 2927 } 2928 2929 /* 2930 * flush the TLBs - since we're probably dealing with MANY mappings 2931 * we do just one CR3 reload. 2932 */ 2933 if (!(hat->hat_flags & HAT_FREEING) && need_demaps) 2934 hat_tlb_inval(hat, DEMAP_ALL_ADDR); 2935 2936 /* 2937 * Now go back and clean up any unaligned mappings that 2938 * couldn't share pagetables. 2939 */ 2940 if (!is_it_dism(hat, addr)) 2941 flags |= HAT_UNLOAD_UNLOCK; 2942 hat_unload(hat, addr, len, flags); 2943 } 2944 2945 2946 /* 2947 * hat_reserve() does nothing 2948 */ 2949 /*ARGSUSED*/ 2950 void 2951 hat_reserve(struct as *as, caddr_t addr, size_t len) 2952 { 2953 } 2954 2955 2956 /* 2957 * Called when all mappings to a page should have write permission removed. 2958 * Mostly stolem from hat_pagesync() 2959 */ 2960 static void 2961 hati_page_clrwrt(struct page *pp) 2962 { 2963 hment_t *hm = NULL; 2964 htable_t *ht; 2965 uint_t entry; 2966 x86pte_t old; 2967 x86pte_t new; 2968 uint_t pszc = 0; 2969 2970 next_size: 2971 /* 2972 * walk thru the mapping list clearing write permission 2973 */ 2974 x86_hm_enter(pp); 2975 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 2976 if (ht->ht_level < pszc) 2977 continue; 2978 old = x86pte_get(ht, entry); 2979 2980 for (;;) { 2981 /* 2982 * Is this mapping of interest? 2983 */ 2984 if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum || 2985 PTE_GET(old, PT_WRITABLE) == 0) 2986 break; 2987 2988 /* 2989 * Clear ref/mod writable bits. This requires cross 2990 * calls to ensure any executing TLBs see cleared bits. 2991 */ 2992 new = old; 2993 PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE); 2994 old = hati_update_pte(ht, entry, old, new); 2995 if (old != 0) 2996 continue; 2997 2998 break; 2999 } 3000 } 3001 x86_hm_exit(pp); 3002 while (pszc < pp->p_szc) { 3003 page_t *tpp; 3004 pszc++; 3005 tpp = PP_GROUPLEADER(pp, pszc); 3006 if (pp != tpp) { 3007 pp = tpp; 3008 goto next_size; 3009 } 3010 } 3011 } 3012 3013 /* 3014 * void hat_page_setattr(pp, flag) 3015 * void hat_page_clrattr(pp, flag) 3016 * used to set/clr ref/mod bits. 3017 */ 3018 void 3019 hat_page_setattr(struct page *pp, uint_t flag) 3020 { 3021 vnode_t *vp = pp->p_vnode; 3022 kmutex_t *vphm = NULL; 3023 page_t **listp; 3024 int noshuffle; 3025 3026 noshuffle = flag & P_NSH; 3027 flag &= ~P_NSH; 3028 3029 if (PP_GETRM(pp, flag) == flag) 3030 return; 3031 3032 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) && 3033 !noshuffle) { 3034 vphm = page_vnode_mutex(vp); 3035 mutex_enter(vphm); 3036 } 3037 3038 PP_SETRM(pp, flag); 3039 3040 if (vphm != NULL) { 3041 3042 /* 3043 * Some File Systems examine v_pages for NULL w/o 3044 * grabbing the vphm mutex. Must not let it become NULL when 3045 * pp is the only page on the list. 3046 */ 3047 if (pp->p_vpnext != pp) { 3048 page_vpsub(&vp->v_pages, pp); 3049 if (vp->v_pages != NULL) 3050 listp = &vp->v_pages->p_vpprev->p_vpnext; 3051 else 3052 listp = &vp->v_pages; 3053 page_vpadd(listp, pp); 3054 } 3055 mutex_exit(vphm); 3056 } 3057 } 3058 3059 void 3060 hat_page_clrattr(struct page *pp, uint_t flag) 3061 { 3062 vnode_t *vp = pp->p_vnode; 3063 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 3064 3065 /* 3066 * Caller is expected to hold page's io lock for VMODSORT to work 3067 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod 3068 * bit is cleared. 3069 * We don't have assert to avoid tripping some existing third party 3070 * code. The dirty page is moved back to top of the v_page list 3071 * after IO is done in pvn_write_done(). 3072 */ 3073 PP_CLRRM(pp, flag); 3074 3075 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 3076 3077 /* 3078 * VMODSORT works by removing write permissions and getting 3079 * a fault when a page is made dirty. At this point 3080 * we need to remove write permission from all mappings 3081 * to this page. 3082 */ 3083 hati_page_clrwrt(pp); 3084 } 3085 } 3086 3087 /* 3088 * If flag is specified, returns 0 if attribute is disabled 3089 * and non zero if enabled. If flag specifes multiple attributs 3090 * then returns 0 if ALL atriibutes are disabled. This is an advisory 3091 * call. 3092 */ 3093 uint_t 3094 hat_page_getattr(struct page *pp, uint_t flag) 3095 { 3096 return (PP_GETRM(pp, flag)); 3097 } 3098 3099 3100 /* 3101 * common code used by hat_pageunload() and hment_steal() 3102 */ 3103 hment_t * 3104 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry) 3105 { 3106 x86pte_t old_pte; 3107 pfn_t pfn = pp->p_pagenum; 3108 hment_t *hm; 3109 3110 /* 3111 * We need to acquire a hold on the htable in order to 3112 * do the invalidate. We know the htable must exist, since 3113 * unmap's don't release the htable until after removing any 3114 * hment. Having x86_hm_enter() keeps that from proceeding. 3115 */ 3116 htable_acquire(ht); 3117 3118 /* 3119 * Invalidate the PTE and remove the hment. 3120 */ 3121 old_pte = x86pte_inval(ht, entry, 0, NULL); 3122 if (PTE2PFN(old_pte, ht->ht_level) != pfn) { 3123 panic("x86pte_inval() failure found PTE = " FMT_PTE 3124 " pfn being unmapped is %lx ht=0x%lx entry=0x%x", 3125 old_pte, pfn, (uintptr_t)ht, entry); 3126 } 3127 3128 /* 3129 * Clean up all the htable information for this mapping 3130 */ 3131 ASSERT(ht->ht_valid_cnt > 0); 3132 HTABLE_DEC(ht->ht_valid_cnt); 3133 PGCNT_DEC(ht->ht_hat, ht->ht_level); 3134 3135 /* 3136 * sync ref/mod bits to the page_t 3137 */ 3138 if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC) 3139 hati_sync_pte_to_page(pp, old_pte, ht->ht_level); 3140 3141 /* 3142 * Remove the mapping list entry for this page. 3143 */ 3144 hm = hment_remove(pp, ht, entry); 3145 3146 /* 3147 * drop the mapping list lock so that we might free the 3148 * hment and htable. 3149 */ 3150 x86_hm_exit(pp); 3151 htable_release(ht); 3152 return (hm); 3153 } 3154 3155 extern int vpm_enable; 3156 /* 3157 * Unload all translations to a page. If the page is a subpage of a large 3158 * page, the large page mappings are also removed. 3159 * 3160 * The forceflags are unused. 3161 */ 3162 3163 /*ARGSUSED*/ 3164 static int 3165 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag) 3166 { 3167 page_t *cur_pp = pp; 3168 hment_t *hm; 3169 hment_t *prev; 3170 htable_t *ht; 3171 uint_t entry; 3172 level_t level; 3173 3174 #if defined(__amd64) 3175 /* 3176 * clear the vpm ref. 3177 */ 3178 if (vpm_enable) { 3179 pp->p_vpmref = 0; 3180 } 3181 #endif 3182 /* 3183 * The loop with next_size handles pages with multiple pagesize mappings 3184 */ 3185 next_size: 3186 for (;;) { 3187 3188 /* 3189 * Get a mapping list entry 3190 */ 3191 x86_hm_enter(cur_pp); 3192 for (prev = NULL; ; prev = hm) { 3193 hm = hment_walk(cur_pp, &ht, &entry, prev); 3194 if (hm == NULL) { 3195 x86_hm_exit(cur_pp); 3196 3197 /* 3198 * If not part of a larger page, we're done. 3199 */ 3200 if (cur_pp->p_szc <= pg_szcd) { 3201 return (0); 3202 } 3203 3204 /* 3205 * Else check the next larger page size. 3206 * hat_page_demote() may decrease p_szc 3207 * but that's ok we'll just take an extra 3208 * trip discover there're no larger mappings 3209 * and return. 3210 */ 3211 ++pg_szcd; 3212 cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd); 3213 goto next_size; 3214 } 3215 3216 /* 3217 * If this mapping size matches, remove it. 3218 */ 3219 level = ht->ht_level; 3220 if (level == pg_szcd) 3221 break; 3222 } 3223 3224 /* 3225 * Remove the mapping list entry for this page. 3226 * Note this does the x86_hm_exit() for us. 3227 */ 3228 hm = hati_page_unmap(cur_pp, ht, entry); 3229 if (hm != NULL) 3230 hment_free(hm); 3231 } 3232 } 3233 3234 int 3235 hat_pageunload(struct page *pp, uint_t forceflag) 3236 { 3237 ASSERT(PAGE_EXCL(pp)); 3238 return (hati_pageunload(pp, 0, forceflag)); 3239 } 3240 3241 /* 3242 * Unload all large mappings to pp and reduce by 1 p_szc field of every large 3243 * page level that included pp. 3244 * 3245 * pp must be locked EXCL. Even though no other constituent pages are locked 3246 * it's legal to unload large mappings to pp because all constituent pages of 3247 * large locked mappings have to be locked SHARED. therefore if we have EXCL 3248 * lock on one of constituent pages none of the large mappings to pp are 3249 * locked. 3250 * 3251 * Change (always decrease) p_szc field starting from the last constituent 3252 * page and ending with root constituent page so that root's pszc always shows 3253 * the area where hat_page_demote() may be active. 3254 * 3255 * This mechanism is only used for file system pages where it's not always 3256 * possible to get EXCL locks on all constituent pages to demote the size code 3257 * (as is done for anonymous or kernel large pages). 3258 */ 3259 void 3260 hat_page_demote(page_t *pp) 3261 { 3262 uint_t pszc; 3263 uint_t rszc; 3264 uint_t szc; 3265 page_t *rootpp; 3266 page_t *firstpp; 3267 page_t *lastpp; 3268 pgcnt_t pgcnt; 3269 3270 ASSERT(PAGE_EXCL(pp)); 3271 ASSERT(!PP_ISFREE(pp)); 3272 ASSERT(page_szc_lock_assert(pp)); 3273 3274 if (pp->p_szc == 0) 3275 return; 3276 3277 rootpp = PP_GROUPLEADER(pp, 1); 3278 (void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD); 3279 3280 /* 3281 * all large mappings to pp are gone 3282 * and no new can be setup since pp is locked exclusively. 3283 * 3284 * Lock the root to make sure there's only one hat_page_demote() 3285 * outstanding within the area of this root's pszc. 3286 * 3287 * Second potential hat_page_demote() is already eliminated by upper 3288 * VM layer via page_szc_lock() but we don't rely on it and use our 3289 * own locking (so that upper layer locking can be changed without 3290 * assumptions that hat depends on upper layer VM to prevent multiple 3291 * hat_page_demote() to be issued simultaneously to the same large 3292 * page). 3293 */ 3294 again: 3295 pszc = pp->p_szc; 3296 if (pszc == 0) 3297 return; 3298 rootpp = PP_GROUPLEADER(pp, pszc); 3299 x86_hm_enter(rootpp); 3300 /* 3301 * If root's p_szc is different from pszc we raced with another 3302 * hat_page_demote(). Drop the lock and try to find the root again. 3303 * If root's p_szc is greater than pszc previous hat_page_demote() is 3304 * not done yet. Take and release mlist lock of root's root to wait 3305 * for previous hat_page_demote() to complete. 3306 */ 3307 if ((rszc = rootpp->p_szc) != pszc) { 3308 x86_hm_exit(rootpp); 3309 if (rszc > pszc) { 3310 /* p_szc of a locked non free page can't increase */ 3311 ASSERT(pp != rootpp); 3312 3313 rootpp = PP_GROUPLEADER(rootpp, rszc); 3314 x86_hm_enter(rootpp); 3315 x86_hm_exit(rootpp); 3316 } 3317 goto again; 3318 } 3319 ASSERT(pp->p_szc == pszc); 3320 3321 /* 3322 * Decrement by 1 p_szc of every constituent page of a region that 3323 * covered pp. For example if original szc is 3 it gets changed to 2 3324 * everywhere except in region 2 that covered pp. Region 2 that 3325 * covered pp gets demoted to 1 everywhere except in region 1 that 3326 * covered pp. The region 1 that covered pp is demoted to region 3327 * 0. It's done this way because from region 3 we removed level 3 3328 * mappings, from region 2 that covered pp we removed level 2 mappings 3329 * and from region 1 that covered pp we removed level 1 mappings. All 3330 * changes are done from from high pfn's to low pfn's so that roots 3331 * are changed last allowing one to know the largest region where 3332 * hat_page_demote() is stil active by only looking at the root page. 3333 * 3334 * This algorithm is implemented in 2 while loops. First loop changes 3335 * p_szc of pages to the right of pp's level 1 region and second 3336 * loop changes p_szc of pages of level 1 region that covers pp 3337 * and all pages to the left of level 1 region that covers pp. 3338 * In the first loop p_szc keeps dropping with every iteration 3339 * and in the second loop it keeps increasing with every iteration. 3340 * 3341 * First loop description: Demote pages to the right of pp outside of 3342 * level 1 region that covers pp. In every iteration of the while 3343 * loop below find the last page of szc region and the first page of 3344 * (szc - 1) region that is immediately to the right of (szc - 1) 3345 * region that covers pp. From last such page to first such page 3346 * change every page's szc to szc - 1. Decrement szc and continue 3347 * looping until szc is 1. If pp belongs to the last (szc - 1) region 3348 * of szc region skip to the next iteration. 3349 */ 3350 szc = pszc; 3351 while (szc > 1) { 3352 lastpp = PP_GROUPLEADER(pp, szc); 3353 pgcnt = page_get_pagecnt(szc); 3354 lastpp += pgcnt - 1; 3355 firstpp = PP_GROUPLEADER(pp, (szc - 1)); 3356 pgcnt = page_get_pagecnt(szc - 1); 3357 if (lastpp - firstpp < pgcnt) { 3358 szc--; 3359 continue; 3360 } 3361 firstpp += pgcnt; 3362 while (lastpp != firstpp) { 3363 ASSERT(lastpp->p_szc == pszc); 3364 lastpp->p_szc = szc - 1; 3365 lastpp--; 3366 } 3367 firstpp->p_szc = szc - 1; 3368 szc--; 3369 } 3370 3371 /* 3372 * Second loop description: 3373 * First iteration changes p_szc to 0 of every 3374 * page of level 1 region that covers pp. 3375 * Subsequent iterations find last page of szc region 3376 * immediately to the left of szc region that covered pp 3377 * and first page of (szc + 1) region that covers pp. 3378 * From last to first page change p_szc of every page to szc. 3379 * Increment szc and continue looping until szc is pszc. 3380 * If pp belongs to the fist szc region of (szc + 1) region 3381 * skip to the next iteration. 3382 * 3383 */ 3384 szc = 0; 3385 while (szc < pszc) { 3386 firstpp = PP_GROUPLEADER(pp, (szc + 1)); 3387 if (szc == 0) { 3388 pgcnt = page_get_pagecnt(1); 3389 lastpp = firstpp + (pgcnt - 1); 3390 } else { 3391 lastpp = PP_GROUPLEADER(pp, szc); 3392 if (firstpp == lastpp) { 3393 szc++; 3394 continue; 3395 } 3396 lastpp--; 3397 pgcnt = page_get_pagecnt(szc); 3398 } 3399 while (lastpp != firstpp) { 3400 ASSERT(lastpp->p_szc == pszc); 3401 lastpp->p_szc = szc; 3402 lastpp--; 3403 } 3404 firstpp->p_szc = szc; 3405 if (firstpp == rootpp) 3406 break; 3407 szc++; 3408 } 3409 x86_hm_exit(rootpp); 3410 } 3411 3412 /* 3413 * get hw stats from hardware into page struct and reset hw stats 3414 * returns attributes of page 3415 * Flags for hat_pagesync, hat_getstat, hat_sync 3416 * 3417 * define HAT_SYNC_ZERORM 0x01 3418 * 3419 * Additional flags for hat_pagesync 3420 * 3421 * define HAT_SYNC_STOPON_REF 0x02 3422 * define HAT_SYNC_STOPON_MOD 0x04 3423 * define HAT_SYNC_STOPON_RM 0x06 3424 * define HAT_SYNC_STOPON_SHARED 0x08 3425 */ 3426 uint_t 3427 hat_pagesync(struct page *pp, uint_t flags) 3428 { 3429 hment_t *hm = NULL; 3430 htable_t *ht; 3431 uint_t entry; 3432 x86pte_t old, save_old; 3433 x86pte_t new; 3434 uchar_t nrmbits = P_REF|P_MOD|P_RO; 3435 extern ulong_t po_share; 3436 page_t *save_pp = pp; 3437 uint_t pszc = 0; 3438 3439 ASSERT(PAGE_LOCKED(pp) || panicstr); 3440 3441 if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD)) 3442 return (pp->p_nrm & nrmbits); 3443 3444 if ((flags & HAT_SYNC_ZERORM) == 0) { 3445 3446 if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp)) 3447 return (pp->p_nrm & nrmbits); 3448 3449 if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp)) 3450 return (pp->p_nrm & nrmbits); 3451 3452 if ((flags & HAT_SYNC_STOPON_SHARED) != 0 && 3453 hat_page_getshare(pp) > po_share) { 3454 if (PP_ISRO(pp)) 3455 PP_SETREF(pp); 3456 return (pp->p_nrm & nrmbits); 3457 } 3458 } 3459 3460 next_size: 3461 /* 3462 * walk thru the mapping list syncing (and clearing) ref/mod bits. 3463 */ 3464 x86_hm_enter(pp); 3465 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 3466 if (ht->ht_level < pszc) 3467 continue; 3468 old = x86pte_get(ht, entry); 3469 try_again: 3470 3471 ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum); 3472 3473 if (PTE_GET(old, PT_REF | PT_MOD) == 0) 3474 continue; 3475 3476 save_old = old; 3477 if ((flags & HAT_SYNC_ZERORM) != 0) { 3478 3479 /* 3480 * Need to clear ref or mod bits. Need to demap 3481 * to make sure any executing TLBs see cleared bits. 3482 */ 3483 new = old; 3484 PTE_CLR(new, PT_REF | PT_MOD); 3485 old = hati_update_pte(ht, entry, old, new); 3486 if (old != 0) 3487 goto try_again; 3488 3489 old = save_old; 3490 } 3491 3492 /* 3493 * Sync the PTE 3494 */ 3495 if (!(flags & HAT_SYNC_ZERORM) && 3496 PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC) 3497 hati_sync_pte_to_page(pp, old, ht->ht_level); 3498 3499 /* 3500 * can stop short if we found a ref'd or mod'd page 3501 */ 3502 if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) || 3503 (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) { 3504 x86_hm_exit(pp); 3505 goto done; 3506 } 3507 } 3508 x86_hm_exit(pp); 3509 while (pszc < pp->p_szc) { 3510 page_t *tpp; 3511 pszc++; 3512 tpp = PP_GROUPLEADER(pp, pszc); 3513 if (pp != tpp) { 3514 pp = tpp; 3515 goto next_size; 3516 } 3517 } 3518 done: 3519 return (save_pp->p_nrm & nrmbits); 3520 } 3521 3522 /* 3523 * returns approx number of mappings to this pp. A return of 0 implies 3524 * there are no mappings to the page. 3525 */ 3526 ulong_t 3527 hat_page_getshare(page_t *pp) 3528 { 3529 uint_t cnt; 3530 cnt = hment_mapcnt(pp); 3531 #if defined(__amd64) 3532 if (vpm_enable && pp->p_vpmref) { 3533 cnt += 1; 3534 } 3535 #endif 3536 return (cnt); 3537 } 3538 3539 /* 3540 * Return 1 the number of mappings exceeds sh_thresh. Return 0 3541 * otherwise. 3542 */ 3543 int 3544 hat_page_checkshare(page_t *pp, ulong_t sh_thresh) 3545 { 3546 return (hat_page_getshare(pp) > sh_thresh); 3547 } 3548 3549 /* 3550 * hat_softlock isn't supported anymore 3551 */ 3552 /*ARGSUSED*/ 3553 faultcode_t 3554 hat_softlock( 3555 hat_t *hat, 3556 caddr_t addr, 3557 size_t *len, 3558 struct page **page_array, 3559 uint_t flags) 3560 { 3561 return (FC_NOSUPPORT); 3562 } 3563 3564 3565 3566 /* 3567 * Routine to expose supported HAT features to platform independent code. 3568 */ 3569 /*ARGSUSED*/ 3570 int 3571 hat_supported(enum hat_features feature, void *arg) 3572 { 3573 switch (feature) { 3574 3575 case HAT_SHARED_PT: /* this is really ISM */ 3576 return (1); 3577 3578 case HAT_DYNAMIC_ISM_UNMAP: 3579 return (0); 3580 3581 case HAT_VMODSORT: 3582 return (1); 3583 3584 case HAT_SHARED_REGIONS: 3585 return (0); 3586 3587 default: 3588 panic("hat_supported() - unknown feature"); 3589 } 3590 return (0); 3591 } 3592 3593 /* 3594 * Called when a thread is exiting and has been switched to the kernel AS 3595 */ 3596 void 3597 hat_thread_exit(kthread_t *thd) 3598 { 3599 ASSERT(thd->t_procp->p_as == &kas); 3600 hat_switch(thd->t_procp->p_as->a_hat); 3601 } 3602 3603 /* 3604 * Setup the given brand new hat structure as the new HAT on this cpu's mmu. 3605 */ 3606 /*ARGSUSED*/ 3607 void 3608 hat_setup(hat_t *hat, int flags) 3609 { 3610 kpreempt_disable(); 3611 3612 hat_switch(hat); 3613 3614 kpreempt_enable(); 3615 } 3616 3617 /* 3618 * Prepare for a CPU private mapping for the given address. 3619 * 3620 * The address can only be used from a single CPU and can be remapped 3621 * using hat_mempte_remap(). Return the address of the PTE. 3622 * 3623 * We do the htable_create() if necessary and increment the valid count so 3624 * the htable can't disappear. We also hat_devload() the page table into 3625 * kernel so that the PTE is quickly accessed. 3626 */ 3627 hat_mempte_t 3628 hat_mempte_setup(caddr_t addr) 3629 { 3630 uintptr_t va = (uintptr_t)addr; 3631 htable_t *ht; 3632 uint_t entry; 3633 x86pte_t oldpte; 3634 hat_mempte_t p; 3635 3636 ASSERT(IS_PAGEALIGNED(va)); 3637 ASSERT(!IN_VA_HOLE(va)); 3638 ++curthread->t_hatdepth; 3639 ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0); 3640 if (ht == NULL) { 3641 ht = htable_create(kas.a_hat, va, 0, NULL); 3642 entry = htable_va2entry(va, ht); 3643 ASSERT(ht->ht_level == 0); 3644 oldpte = x86pte_get(ht, entry); 3645 } 3646 if (PTE_ISVALID(oldpte)) 3647 panic("hat_mempte_setup(): address already mapped" 3648 "ht=%p, entry=%d, pte=" FMT_PTE, ht, entry, oldpte); 3649 3650 /* 3651 * increment ht_valid_cnt so that the pagetable can't disappear 3652 */ 3653 HTABLE_INC(ht->ht_valid_cnt); 3654 3655 /* 3656 * return the PTE physical address to the caller. 3657 */ 3658 htable_release(ht); 3659 p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry); 3660 --curthread->t_hatdepth; 3661 return (p); 3662 } 3663 3664 /* 3665 * Release a CPU private mapping for the given address. 3666 * We decrement the htable valid count so it might be destroyed. 3667 */ 3668 /*ARGSUSED1*/ 3669 void 3670 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa) 3671 { 3672 htable_t *ht; 3673 3674 /* 3675 * invalidate any left over mapping and decrement the htable valid count 3676 */ 3677 { 3678 x86pte_t *pteptr; 3679 3680 pteptr = x86pte_mapin(mmu_btop(pte_pa), 3681 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 3682 if (mmu.pae_hat) 3683 *pteptr = 0; 3684 else 3685 *(x86pte32_t *)pteptr = 0; 3686 mmu_tlbflush_entry(addr); 3687 x86pte_mapout(); 3688 } 3689 3690 ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0); 3691 if (ht == NULL) 3692 panic("hat_mempte_release(): invalid address"); 3693 ASSERT(ht->ht_level == 0); 3694 HTABLE_DEC(ht->ht_valid_cnt); 3695 htable_release(ht); 3696 } 3697 3698 /* 3699 * Apply a temporary CPU private mapping to a page. We flush the TLB only 3700 * on this CPU, so this ought to have been called with preemption disabled. 3701 */ 3702 void 3703 hat_mempte_remap( 3704 pfn_t pfn, 3705 caddr_t addr, 3706 hat_mempte_t pte_pa, 3707 uint_t attr, 3708 uint_t flags) 3709 { 3710 uintptr_t va = (uintptr_t)addr; 3711 x86pte_t pte; 3712 3713 /* 3714 * Remap the given PTE to the new page's PFN. Invalidate only 3715 * on this CPU. 3716 */ 3717 #ifdef DEBUG 3718 htable_t *ht; 3719 uint_t entry; 3720 3721 ASSERT(IS_PAGEALIGNED(va)); 3722 ASSERT(!IN_VA_HOLE(va)); 3723 ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0); 3724 ASSERT(ht != NULL); 3725 ASSERT(ht->ht_level == 0); 3726 ASSERT(ht->ht_valid_cnt > 0); 3727 ASSERT(ht->ht_pfn == mmu_btop(pte_pa)); 3728 htable_release(ht); 3729 #endif 3730 pte = hati_mkpte(pfn, attr, 0, flags); 3731 { 3732 x86pte_t *pteptr; 3733 3734 pteptr = x86pte_mapin(mmu_btop(pte_pa), 3735 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 3736 if (mmu.pae_hat) 3737 *(x86pte_t *)pteptr = pte; 3738 else 3739 *(x86pte32_t *)pteptr = (x86pte32_t)pte; 3740 mmu_tlbflush_entry(addr); 3741 x86pte_mapout(); 3742 } 3743 } 3744 3745 3746 3747 /* 3748 * Hat locking functions 3749 * XXX - these two functions are currently being used by hatstats 3750 * they can be removed by using a per-as mutex for hatstats. 3751 */ 3752 void 3753 hat_enter(hat_t *hat) 3754 { 3755 mutex_enter(&hat->hat_mutex); 3756 } 3757 3758 void 3759 hat_exit(hat_t *hat) 3760 { 3761 mutex_exit(&hat->hat_mutex); 3762 } 3763 3764 /* 3765 * HAT part of cpu initialization. 3766 */ 3767 void 3768 hat_cpu_online(struct cpu *cpup) 3769 { 3770 if (cpup != CPU) { 3771 x86pte_cpu_init(cpup); 3772 hat_vlp_setup(cpup); 3773 } 3774 CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id); 3775 } 3776 3777 /* 3778 * HAT part of cpu deletion. 3779 * (currently, we only call this after the cpu is safely passivated.) 3780 */ 3781 void 3782 hat_cpu_offline(struct cpu *cpup) 3783 { 3784 ASSERT(cpup != CPU); 3785 3786 CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id); 3787 x86pte_cpu_fini(cpup); 3788 hat_vlp_teardown(cpup); 3789 } 3790 3791 /* 3792 * Function called after all CPUs are brought online. 3793 * Used to remove low address boot mappings. 3794 */ 3795 void 3796 clear_boot_mappings(uintptr_t low, uintptr_t high) 3797 { 3798 uintptr_t vaddr = low; 3799 htable_t *ht = NULL; 3800 level_t level; 3801 uint_t entry; 3802 x86pte_t pte; 3803 3804 /* 3805 * On 1st CPU we can unload the prom mappings, basically we blow away 3806 * all virtual mappings under _userlimit. 3807 */ 3808 while (vaddr < high) { 3809 pte = htable_walk(kas.a_hat, &ht, &vaddr, high); 3810 if (ht == NULL) 3811 break; 3812 3813 level = ht->ht_level; 3814 entry = htable_va2entry(vaddr, ht); 3815 ASSERT(level <= mmu.max_page_level); 3816 ASSERT(PTE_ISPAGE(pte, level)); 3817 3818 /* 3819 * Unload the mapping from the page tables. 3820 */ 3821 (void) x86pte_inval(ht, entry, 0, NULL); 3822 ASSERT(ht->ht_valid_cnt > 0); 3823 HTABLE_DEC(ht->ht_valid_cnt); 3824 PGCNT_DEC(ht->ht_hat, ht->ht_level); 3825 3826 vaddr += LEVEL_SIZE(ht->ht_level); 3827 } 3828 if (ht) 3829 htable_release(ht); 3830 } 3831 3832 /* 3833 * Atomically update a new translation for a single page. If the 3834 * currently installed PTE doesn't match the value we expect to find, 3835 * it's not updated and we return the PTE we found. 3836 * 3837 * If activating nosync or NOWRITE and the page was modified we need to sync 3838 * with the page_t. Also sync with page_t if clearing ref/mod bits. 3839 */ 3840 static x86pte_t 3841 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new) 3842 { 3843 page_t *pp; 3844 uint_t rm = 0; 3845 x86pte_t replaced; 3846 3847 if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC && 3848 PTE_GET(expected, PT_MOD | PT_REF) && 3849 (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) || 3850 !PTE_GET(new, PT_MOD | PT_REF))) { 3851 3852 ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level))); 3853 pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level)); 3854 ASSERT(pp != NULL); 3855 if (PTE_GET(expected, PT_MOD)) 3856 rm |= P_MOD; 3857 if (PTE_GET(expected, PT_REF)) 3858 rm |= P_REF; 3859 PTE_CLR(new, PT_MOD | PT_REF); 3860 } 3861 3862 replaced = x86pte_update(ht, entry, expected, new); 3863 if (replaced != expected) 3864 return (replaced); 3865 3866 if (rm) { 3867 /* 3868 * sync to all constituent pages of a large page 3869 */ 3870 pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level); 3871 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 3872 while (pgcnt-- > 0) { 3873 /* 3874 * hat_page_demote() can't decrease 3875 * pszc below this mapping size 3876 * since large mapping existed after we 3877 * took mlist lock. 3878 */ 3879 ASSERT(pp->p_szc >= ht->ht_level); 3880 hat_page_setattr(pp, rm); 3881 ++pp; 3882 } 3883 } 3884 3885 return (0); 3886 } 3887 3888 /* ARGSUSED */ 3889 void 3890 hat_join_srd(struct hat *sfmmup, vnode_t *evp) 3891 { 3892 } 3893 3894 /* ARGSUSED */ 3895 hat_region_cookie_t 3896 hat_join_region(struct hat *sfmmup, 3897 caddr_t r_saddr, 3898 size_t r_size, 3899 void *r_obj, 3900 u_offset_t r_objoff, 3901 uchar_t r_perm, 3902 uchar_t r_pgszc, 3903 hat_rgn_cb_func_t r_cb_function, 3904 uint_t flags) 3905 { 3906 panic("No shared region support on x86"); 3907 return (HAT_INVALID_REGION_COOKIE); 3908 } 3909 3910 /* ARGSUSED */ 3911 void 3912 hat_leave_region(struct hat *sfmmup, hat_region_cookie_t rcookie, uint_t flags) 3913 { 3914 panic("No shared region support on x86"); 3915 } 3916 3917 /* ARGSUSED */ 3918 void 3919 hat_dup_region(struct hat *sfmmup, hat_region_cookie_t rcookie) 3920 { 3921 panic("No shared region support on x86"); 3922 } 3923 3924 3925 /* 3926 * Kernel Physical Mapping (kpm) facility 3927 * 3928 * Most of the routines needed to support segkpm are almost no-ops on the 3929 * x86 platform. We map in the entire segment when it is created and leave 3930 * it mapped in, so there is no additional work required to set up and tear 3931 * down individual mappings. All of these routines were created to support 3932 * SPARC platforms that have to avoid aliasing in their virtually indexed 3933 * caches. 3934 * 3935 * Most of the routines have sanity checks in them (e.g. verifying that the 3936 * passed-in page is locked). We don't actually care about most of these 3937 * checks on x86, but we leave them in place to identify problems in the 3938 * upper levels. 3939 */ 3940 3941 /* 3942 * Map in a locked page and return the vaddr. 3943 */ 3944 /*ARGSUSED*/ 3945 caddr_t 3946 hat_kpm_mapin(struct page *pp, struct kpme *kpme) 3947 { 3948 caddr_t vaddr; 3949 3950 #ifdef DEBUG 3951 if (kpm_enable == 0) { 3952 cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n"); 3953 return ((caddr_t)NULL); 3954 } 3955 3956 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 3957 cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n"); 3958 return ((caddr_t)NULL); 3959 } 3960 #endif 3961 3962 vaddr = hat_kpm_page2va(pp, 1); 3963 3964 return (vaddr); 3965 } 3966 3967 /* 3968 * Mapout a locked page. 3969 */ 3970 /*ARGSUSED*/ 3971 void 3972 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr) 3973 { 3974 #ifdef DEBUG 3975 if (kpm_enable == 0) { 3976 cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n"); 3977 return; 3978 } 3979 3980 if (IS_KPM_ADDR(vaddr) == 0) { 3981 cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n"); 3982 return; 3983 } 3984 3985 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 3986 cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n"); 3987 return; 3988 } 3989 #endif 3990 } 3991 3992 /* 3993 * Return the kpm virtual address for a specific pfn 3994 */ 3995 caddr_t 3996 hat_kpm_pfn2va(pfn_t pfn) 3997 { 3998 uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn); 3999 4000 return ((caddr_t)vaddr); 4001 } 4002 4003 /* 4004 * Return the kpm virtual address for the page at pp. 4005 */ 4006 /*ARGSUSED*/ 4007 caddr_t 4008 hat_kpm_page2va(struct page *pp, int checkswap) 4009 { 4010 return (hat_kpm_pfn2va(pp->p_pagenum)); 4011 } 4012 4013 /* 4014 * Return the page frame number for the kpm virtual address vaddr. 4015 */ 4016 pfn_t 4017 hat_kpm_va2pfn(caddr_t vaddr) 4018 { 4019 pfn_t pfn; 4020 4021 ASSERT(IS_KPM_ADDR(vaddr)); 4022 4023 pfn = (pfn_t)btop(vaddr - kpm_vbase); 4024 4025 return (pfn); 4026 } 4027 4028 4029 /* 4030 * Return the page for the kpm virtual address vaddr. 4031 */ 4032 page_t * 4033 hat_kpm_vaddr2page(caddr_t vaddr) 4034 { 4035 pfn_t pfn; 4036 4037 ASSERT(IS_KPM_ADDR(vaddr)); 4038 4039 pfn = hat_kpm_va2pfn(vaddr); 4040 4041 return (page_numtopp_nolock(pfn)); 4042 } 4043 4044 /* 4045 * hat_kpm_fault is called from segkpm_fault when we take a page fault on a 4046 * KPM page. This should never happen on x86 4047 */ 4048 int 4049 hat_kpm_fault(hat_t *hat, caddr_t vaddr) 4050 { 4051 panic("pagefault in seg_kpm. hat: 0x%p vaddr: 0x%p", hat, vaddr); 4052 4053 return (0); 4054 } 4055 4056 /*ARGSUSED*/ 4057 void 4058 hat_kpm_mseghash_clear(int nentries) 4059 {} 4060 4061 /*ARGSUSED*/ 4062 void 4063 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp) 4064 {} 4065