1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * VM - Hardware Address Translation management for i386 and amd64 31 * 32 * Implementation of the interfaces described in <common/vm/hat.h> 33 * 34 * Nearly all the details of how the hardware is managed should not be 35 * visible outside this layer except for misc. machine specific functions 36 * that work in conjunction with this code. 37 * 38 * Routines used only inside of i86pc/vm start with hati_ for HAT Internal. 39 */ 40 41 #include <sys/machparam.h> 42 #include <sys/machsystm.h> 43 #include <sys/mman.h> 44 #include <sys/types.h> 45 #include <sys/systm.h> 46 #include <sys/cpuvar.h> 47 #include <sys/thread.h> 48 #include <sys/proc.h> 49 #include <sys/cpu.h> 50 #include <sys/kmem.h> 51 #include <sys/disp.h> 52 #include <sys/shm.h> 53 #include <sys/sysmacros.h> 54 #include <sys/machparam.h> 55 #include <sys/vmem.h> 56 #include <sys/vmsystm.h> 57 #include <sys/promif.h> 58 #include <sys/var.h> 59 #include <sys/x86_archext.h> 60 #include <sys/atomic.h> 61 #include <sys/bitmap.h> 62 63 #include <vm/seg_kmem.h> 64 #include <vm/hat_i86.h> 65 #include <vm/as.h> 66 #include <vm/seg.h> 67 #include <vm/page.h> 68 #include <vm/seg_kp.h> 69 #include <vm/seg_kpm.h> 70 #include <vm/vm_dep.h> 71 72 #include <sys/cmn_err.h> 73 74 75 /* 76 * Basic parameters for hat operation. 77 */ 78 struct hat_mmu_info mmu; 79 uint_t force_pae_off = 0; /* for testing, change with kernel debugger */ 80 uint_t force_pae_on = 0; /* for testing, change with kernel debugger */ 81 82 /* 83 * The page that is the kernel's top level pagetable. 84 * 85 * For 32 bit VLP support, the kernel hat will use the 1st 4 entries 86 * on this 4K page for its top level page table. The remaining groups of 87 * 4 entries are used for per processor copies of user VLP pagetables for 88 * running threads. See hat_switch() and reload_pae32() for details. 89 * 90 * vlp_page[0] - 0th level==2 PTE for kernel HAT (will be zero) 91 * vlp_page[1] - 1st level==2 PTE for kernel HAT (will be zero) 92 * vlp_page[2] - 2nd level==2 PTE for kernel HAT (zero for small memory) 93 * vlp_page[3] - 3rd level==2 PTE for kernel 94 * 95 * vlp_page[4] - 0th level==2 PTE for user thread on cpu 0 96 * vlp_page[5] - 1st level==2 PTE for user thread on cpu 0 97 * vlp_page[6] - 2nd level==2 PTE for user thread on cpu 0 98 * vlp_page[7] - probably copy of kernel PTE 99 * 100 * vlp_page[8] - 0th level==2 PTE for user thread on cpu 1 101 * vlp_page[9] - 1st level==2 PTE for user thread on cpu 1 102 * vlp_page[10] - 2nd level==2 PTE for user thread on cpu 1 103 * vlp_page[11] - probably copy of kernel PTE 104 * ... 105 * 106 * when / where the kernel PTE's are (entry 2 or 3 or none) depends 107 * on kernelbase. 108 */ 109 static x86pte_t *vlp_page; 110 111 /* 112 * forward declaration of internal utility routines 113 */ 114 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, 115 x86pte_t new); 116 117 /* 118 * The kernel address space exists in all HATs. To implement this the 119 * kernel reserves a fixed number of entries in every topmost level page 120 * table. The values are setup in hat_init() and then copied to every hat 121 * created by hat_alloc(). This means that kernelbase must be: 122 * 123 * 4Meg aligned for 32 bit kernels 124 * 512Gig aligned for x86_64 64 bit kernel 125 * 126 * The PAE 32 bit hat is handled as a special case. Otherwise requiring 1Gig 127 * alignment would use too much VA for the kernel. 128 * 129 */ 130 static uint_t khat_start; /* index of 1st entry in kernel's top ptable */ 131 static uint_t khat_entries; /* number of entries in kernel's top ptable */ 132 133 #if defined(__i386) 134 135 static htable_t *khat_pae32_htable = NULL; 136 static uint_t khat_pae32_start; 137 static uint_t khat_pae32_entries; 138 139 #endif 140 141 /* 142 * Locks, etc. to control use of the hat reserves when recursively 143 * allocating pagetables for the hat data structures. 144 */ 145 static kmutex_t hat_reserves_lock; 146 static kcondvar_t hat_reserves_cv; 147 kthread_t *hat_reserves_thread; 148 uint_t use_boot_reserve = 1; /* cleared after early boot process */ 149 uint_t can_steal_post_boot = 0; /* set late in boot to enable stealing */ 150 151 /* 152 * A cpuset for all cpus. This is used for kernel address cross calls, since 153 * the kernel addresses apply to all cpus. 154 */ 155 cpuset_t khat_cpuset; 156 157 /* 158 * management stuff for hat structures 159 */ 160 kmutex_t hat_list_lock; 161 kcondvar_t hat_list_cv; 162 kmem_cache_t *hat_cache; 163 kmem_cache_t *hat_hash_cache; 164 kmem_cache_t *vlp_hash_cache; 165 166 /* 167 * Simple statistics 168 */ 169 struct hatstats hatstat; 170 171 /* 172 * macros to detect addresses in use by kernel only during boot 173 */ 174 #if defined(__amd64) 175 176 #define BOOT_VA(va) ((va) < kernelbase || \ 177 ((va) >= BOOT_DOUBLEMAP_BASE && \ 178 (va) < BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE)) 179 180 #elif defined(__i386) 181 182 #define BOOT_VA(va) ((va) < kernelbase) 183 184 #endif /* __i386 */ 185 186 /* 187 * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's. 188 */ 189 extern void atomic_orb(uchar_t *addr, uchar_t val); 190 extern void atomic_andb(uchar_t *addr, uchar_t val); 191 192 #define PP_GETRM(pp, rmmask) (pp->p_nrm & rmmask) 193 #define PP_ISMOD(pp) PP_GETRM(pp, P_MOD) 194 #define PP_ISREF(pp) PP_GETRM(pp, P_REF) 195 #define PP_ISRO(pp) PP_GETRM(pp, P_RO) 196 197 #define PP_SETRM(pp, rm) atomic_orb(&(pp->p_nrm), rm) 198 #define PP_SETMOD(pp) PP_SETRM(pp, P_MOD) 199 #define PP_SETREF(pp) PP_SETRM(pp, P_REF) 200 #define PP_SETRO(pp) PP_SETRM(pp, P_RO) 201 202 #define PP_CLRRM(pp, rm) atomic_andb(&(pp->p_nrm), ~(rm)) 203 #define PP_CLRMOD(pp) PP_CLRRM(pp, P_MOD) 204 #define PP_CLRREF(pp) PP_CLRRM(pp, P_REF) 205 #define PP_CLRRO(pp) PP_CLRRM(pp, P_RO) 206 #define PP_CLRALL(pp) PP_CLRRM(pp, P_MOD | P_REF | P_RO) 207 208 /* 209 * some useful tracing macros 210 */ 211 212 int hattrace = 0; 213 #ifdef DEBUG 214 215 #define HATIN(r, h, a, l) \ 216 if (hattrace) prom_printf("->%s hat=%p, adr=%p, len=%lx\n", #r, h, a, l) 217 218 #define HATOUT(r, h, a) \ 219 if (hattrace) prom_printf("<-%s hat=%p, adr=%p\n", #r, h, a) 220 #else 221 222 #define HATIN(r, h, a, l) 223 #define HATOUT(r, h, a) 224 225 #endif 226 227 228 /* 229 * kmem cache constructor for struct hat 230 */ 231 /*ARGSUSED*/ 232 static int 233 hati_constructor(void *buf, void *handle, int kmflags) 234 { 235 hat_t *hat = buf; 236 237 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 238 bzero(hat->hat_pages_mapped, 239 sizeof (pgcnt_t) * (mmu.max_page_level + 1)); 240 hat->hat_stats = 0; 241 hat->hat_flags = 0; 242 mutex_init(&hat->hat_switch_mutex, NULL, MUTEX_DRIVER, 243 (void *)ipltospl(DISP_LEVEL)); 244 CPUSET_ZERO(hat->hat_cpus); 245 hat->hat_htable = NULL; 246 hat->hat_ht_hash = NULL; 247 return (0); 248 } 249 250 /* 251 * Allocate a hat structure for as. We also create the top level 252 * htable and initialize it to contain the kernel hat entries. 253 */ 254 hat_t * 255 hat_alloc(struct as *as) 256 { 257 hat_t *hat; 258 htable_t *ht; /* top level htable */ 259 uint_t use_vlp; 260 261 /* 262 * Once we start creating user process HATs we can enable 263 * the htable_steal() code. 264 */ 265 if (can_steal_post_boot == 0) 266 can_steal_post_boot = 1; 267 268 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 269 hat = kmem_cache_alloc(hat_cache, KM_SLEEP); 270 hat->hat_as = as; 271 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 272 ASSERT(hat->hat_flags == 0); 273 274 /* 275 * a 32 bit process uses a VLP style hat when using PAE 276 */ 277 #if defined(__amd64) 278 use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32); 279 #elif defined(__i386) 280 use_vlp = mmu.pae_hat; 281 #endif 282 if (use_vlp) { 283 hat->hat_flags = HAT_VLP; 284 bzero(hat->hat_vlp_ptes, VLP_SIZE); 285 } 286 287 /* 288 * Allocate the htable hash 289 */ 290 if ((hat->hat_flags & HAT_VLP)) { 291 hat->hat_num_hash = mmu.vlp_hash_cnt; 292 hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP); 293 } else { 294 hat->hat_num_hash = mmu.hash_cnt; 295 hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP); 296 } 297 bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *)); 298 299 /* 300 * Initialize Kernel HAT entries at the top of the top level page 301 * table for the new hat. 302 * 303 * Note that we don't call htable_release() for the top level, that 304 * happens when the hat is destroyed in hat_free_end() 305 */ 306 hat->hat_htable = NULL; 307 hat->hat_ht_cached = NULL; 308 ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL); 309 if (!(hat->hat_flags & HAT_VLP)) 310 x86pte_copy(kas.a_hat->hat_htable, ht, khat_start, 311 khat_entries); 312 #if defined(__i386) 313 else if (khat_entries > 0) 314 bcopy(vlp_page + khat_start, hat->hat_vlp_ptes + khat_start, 315 khat_entries * sizeof (x86pte_t)); 316 #endif 317 hat->hat_htable = ht; 318 319 #if defined(__i386) 320 /* 321 * PAE32 HAT alignment is less restrictive than the others to keep 322 * the kernel from using too much VA. Because of this we may need 323 * one layer further down when kernelbase isn't 1Gig aligned. 324 * See hat_free_end() for the htable_release() that goes with this 325 * htable_create() 326 */ 327 if (khat_pae32_htable != NULL) { 328 ht = htable_create(hat, kernelbase, 329 khat_pae32_htable->ht_level, NULL); 330 x86pte_copy(khat_pae32_htable, ht, khat_pae32_start, 331 khat_pae32_entries); 332 ht->ht_valid_cnt = khat_pae32_entries; 333 } 334 #endif 335 336 /* 337 * Put it in the global list of all hats (used by stealing, etc.) 338 */ 339 mutex_enter(&hat_list_lock); 340 if (kas.a_hat->hat_next != NULL) { 341 hat->hat_next = kas.a_hat->hat_next; 342 hat->hat_prev = kas.a_hat->hat_next->hat_prev; 343 kas.a_hat->hat_next->hat_prev->hat_next = hat; 344 kas.a_hat->hat_next->hat_prev = hat; 345 } else { 346 hat->hat_next = hat; 347 hat->hat_prev = hat; 348 } 349 kas.a_hat->hat_next = hat; 350 mutex_exit(&hat_list_lock); 351 352 353 return (hat); 354 } 355 356 /* 357 * process has finished executing but as has not been cleaned up yet. 358 */ 359 /*ARGSUSED*/ 360 void 361 hat_free_start(hat_t *hat) 362 { 363 ASSERT(AS_WRITE_HELD(hat->hat_as, &hat->hat_as->a_lock)); 364 mutex_enter(&hat_list_lock); 365 hat->hat_flags |= HAT_FREEING; 366 mutex_exit(&hat_list_lock); 367 } 368 369 /* 370 * An address space is being destroyed, so we destroy the associated hat. 371 */ 372 void 373 hat_free_end(hat_t *hat) 374 { 375 int i; 376 kmem_cache_t *cache; 377 378 #ifdef DEBUG 379 for (i = 0; i <= mmu.max_page_level; i++) 380 ASSERT(hat->hat_pages_mapped[i] == 0); 381 #endif 382 ASSERT(hat->hat_flags & HAT_FREEING); 383 384 /* 385 * must not be running on the given hat 386 */ 387 ASSERT(CPU->cpu_current_hat != hat); 388 389 /* 390 * If the hat is currently a stealing victim, wait for the stealing 391 * to finish. Once we've removed it from the list, nobody can 392 * find these htables anymore. 393 */ 394 mutex_enter(&hat_list_lock); 395 while (hat->hat_flags & HAT_VICTIM) 396 cv_wait(&hat_list_cv, &hat_list_lock); 397 hat->hat_next->hat_prev = hat->hat_prev; 398 hat->hat_prev->hat_next = hat->hat_next; 399 if (kas.a_hat->hat_next == hat) { 400 kas.a_hat->hat_next = hat->hat_next; 401 if (kas.a_hat->hat_next == hat) 402 kas.a_hat->hat_next = NULL; 403 } 404 mutex_exit(&hat_list_lock); 405 406 /* 407 * Make a pass through the htables freeing them all up. 408 */ 409 htable_purge_hat(hat); 410 411 /* 412 * Decide which kmem cache the hash table came from, then free it. 413 */ 414 if (hat->hat_flags & HAT_VLP) 415 cache = vlp_hash_cache; 416 else 417 cache = hat_hash_cache; 418 kmem_cache_free(cache, hat->hat_ht_hash); 419 hat->hat_ht_hash = NULL; 420 421 hat->hat_flags = 0; 422 kmem_cache_free(hat_cache, hat); 423 } 424 425 /* 426 * round kernelbase down to a supported value to use for _userlimit 427 * 428 * userlimit must be aligned down to an entry in the top level htable. 429 * The one exception is for 32 bit HAT's running PAE. 430 */ 431 uintptr_t 432 hat_kernelbase(uintptr_t va) 433 { 434 #if defined(__i386) 435 va &= LEVEL_MASK(1); 436 #endif 437 if (IN_VA_HOLE(va)) 438 panic("_userlimit %p will fall in VA hole\n", (void *)va); 439 return (va); 440 } 441 442 /* 443 * Initialize hat data structures based on processor MMU information. 444 */ 445 void 446 mmu_init(void) 447 { 448 uint_t max_htables; 449 uint_t pa_bits; 450 uint_t va_bits; 451 int i; 452 453 /* 454 * if CPU enabled the page table global bit, use it for the kernel 455 * This is bit 7 in CR4 (PGE - Page Global Enable) 456 */ 457 if ((x86_feature & X86_PGE) != 0 && (getcr4() & 0x80) != 0) 458 mmu.pt_global = PT_GLOBAL; 459 460 /* 461 * We use PAE except when we aren't on an AMD64 and this is 462 * a 32 bit kernel with all physical addresses less than 4 Gig. 463 */ 464 mmu.pae_hat = 1; 465 if (x86_feature & X86_NX) { 466 mmu.pt_nx = PT_NX; 467 } else { 468 mmu.pt_nx = 0; 469 #if defined(__i386) 470 if (!PFN_ABOVE4G(physmax)) 471 mmu.pae_hat = 0; 472 #endif 473 } 474 475 #if defined(__i386) 476 /* 477 * Setting one of these two lets you force testing of the different 478 * hat modes for 32 bit, regardless of the hardware setup. 479 */ 480 if (force_pae_on) { 481 mmu.pae_hat = 1; 482 } else if (force_pae_off) { 483 mmu.pae_hat = 0; 484 mmu.pt_nx = 0; 485 } 486 #endif 487 488 /* 489 * Use CPU info to set various MMU parameters 490 */ 491 cpuid_get_addrsize(CPU, &pa_bits, &va_bits); 492 493 if (va_bits < sizeof (void *) * NBBY) { 494 mmu.hole_start = (1ul << (va_bits - 1)); 495 mmu.hole_end = 0ul - mmu.hole_start - 1; 496 } else { 497 mmu.hole_end = 0; 498 mmu.hole_start = mmu.hole_end - 1; 499 } 500 #if defined(OPTERON_ERRATUM_121) 501 /* 502 * If erratum 121 has already been detected at this time, hole_start 503 * contains the value to be subtracted from mmu.hole_start. 504 */ 505 ASSERT(hole_start == 0 || opteron_erratum_121 != 0); 506 hole_start = mmu.hole_start - hole_start; 507 #else 508 hole_start = mmu.hole_start; 509 #endif 510 hole_end = mmu.hole_end; 511 512 mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1); 513 if (mmu.pae_hat == 0 && pa_bits > 32) 514 mmu.highest_pfn = PFN_4G - 1; 515 516 if (mmu.pae_hat) { 517 mmu.pte_size = 8; /* 8 byte PTEs */ 518 mmu.pte_size_shift = 3; 519 } else { 520 mmu.pte_size = 4; /* 4 byte PTEs */ 521 mmu.pte_size_shift = 2; 522 } 523 524 if (mmu.pae_hat && (x86_feature & X86_PAE) == 0) 525 panic("Processor does not support PAE"); 526 527 if ((x86_feature & X86_CX8) == 0) 528 panic("Processor does not support cmpxchg8b instruction"); 529 530 /* 531 * Initialize parameters based on the 64 or 32 bit kernels and 532 * for the 32 bit kernel decide if we should use PAE. 533 */ 534 if (x86_feature & X86_LARGEPAGE) 535 mmu.max_page_level = 1; 536 else 537 mmu.max_page_level = 0; 538 mmu_page_sizes = mmu.max_page_level + 1; 539 mmu_exported_page_sizes = mmu_page_sizes; 540 541 #if defined(__amd64) 542 543 mmu.num_level = 4; 544 mmu.max_level = 3; 545 mmu.ptes_per_table = 512; 546 mmu.top_level_count = 512; 547 548 mmu.level_shift[0] = 12; 549 mmu.level_shift[1] = 21; 550 mmu.level_shift[2] = 30; 551 mmu.level_shift[3] = 39; 552 553 #elif defined(__i386) 554 555 if (mmu.pae_hat) { 556 mmu.num_level = 3; 557 mmu.max_level = 2; 558 mmu.ptes_per_table = 512; 559 mmu.top_level_count = 4; 560 561 mmu.level_shift[0] = 12; 562 mmu.level_shift[1] = 21; 563 mmu.level_shift[2] = 30; 564 565 } else { 566 mmu.num_level = 2; 567 mmu.max_level = 1; 568 mmu.ptes_per_table = 1024; 569 mmu.top_level_count = 1024; 570 571 mmu.level_shift[0] = 12; 572 mmu.level_shift[1] = 22; 573 } 574 575 #endif /* __i386 */ 576 577 for (i = 0; i < mmu.num_level; ++i) { 578 mmu.level_size[i] = 1UL << mmu.level_shift[i]; 579 mmu.level_offset[i] = mmu.level_size[i] - 1; 580 mmu.level_mask[i] = ~mmu.level_offset[i]; 581 } 582 583 mmu.pte_bits[0] = PT_VALID; 584 for (i = 1; i <= mmu.max_page_level; ++i) 585 mmu.pte_bits[i] = PT_VALID | PT_PAGESIZE; 586 587 /* 588 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level. 589 */ 590 for (i = 1; i < mmu.num_level; ++i) 591 mmu.ptp_bits[i] = PT_PTPBITS; 592 #if defined(__i386) 593 mmu.ptp_bits[2] = PT_VALID; 594 #endif 595 596 /* 597 * Compute how many hash table entries to have per process for htables. 598 * We start with 1 page's worth of entries. 599 * 600 * If physical memory is small, reduce the amount need to cover it. 601 */ 602 max_htables = physmax / mmu.ptes_per_table; 603 mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *); 604 while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables) 605 mmu.hash_cnt >>= 1; 606 mmu.vlp_hash_cnt = mmu.hash_cnt; 607 608 #if defined(__amd64) 609 /* 610 * If running in 64 bits and physical memory is large, 611 * increase the size of the cache to cover all of memory for 612 * a 64 bit process. 613 */ 614 #define HASH_MAX_LENGTH 4 615 while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables) 616 mmu.hash_cnt <<= 1; 617 #endif 618 619 /* 620 * This code knows that there are only 2 pagesizes. 621 * We ignore 4MB (non-PAE) for now. The value is only used 622 * for optimizing demaps across large ranges. 623 * These return zero if no information is known. 624 */ 625 mmu.tlb_entries[0] = cpuid_get_dtlb_nent(NULL, MMU_PAGESIZE); 626 mmu.tlb_entries[1] = cpuid_get_dtlb_nent(NULL, 2 * 1024 * 1024); 627 } 628 629 630 /* 631 * initialize hat data structures 632 */ 633 void 634 hat_init() 635 { 636 #if defined(__i386) 637 /* 638 * _userlimit must be aligned correctly 639 */ 640 if ((_userlimit & LEVEL_MASK(1)) != _userlimit) { 641 prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n", 642 (void *)_userlimit, (void *)LEVEL_SIZE(1)); 643 halt("hat_init(): Unable to continue"); 644 } 645 #endif 646 647 cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL); 648 649 /* 650 * initialize kmem caches 651 */ 652 htable_init(); 653 hment_init(); 654 655 hat_cache = kmem_cache_create("hat_t", 656 sizeof (hat_t), 0, hati_constructor, NULL, NULL, 657 NULL, 0, 0); 658 659 hat_hash_cache = kmem_cache_create("HatHash", 660 mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 661 NULL, 0, 0); 662 663 /* 664 * VLP hats can use a smaller hash table size on large memroy machines 665 */ 666 if (mmu.hash_cnt == mmu.vlp_hash_cnt) { 667 vlp_hash_cache = hat_hash_cache; 668 } else { 669 vlp_hash_cache = kmem_cache_create("HatVlpHash", 670 mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 671 NULL, 0, 0); 672 } 673 674 /* 675 * Set up the kernel's hat 676 */ 677 AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER); 678 kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP); 679 mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 680 kas.a_hat->hat_as = &kas; 681 kas.a_hat->hat_flags = 0; 682 AS_LOCK_EXIT(&kas, &kas.a_lock); 683 684 CPUSET_ZERO(khat_cpuset); 685 CPUSET_ADD(khat_cpuset, CPU->cpu_id); 686 687 /* 688 * The kernel hat's next pointer serves as the head of the hat list . 689 */ 690 kas.a_hat->hat_next = NULL; 691 692 /* 693 * Allocate an htable hash bucket for the kernel 694 * XX64 - tune for 64 bit procs 695 */ 696 kas.a_hat->hat_num_hash = mmu.hash_cnt; 697 kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP); 698 bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *)); 699 700 /* 701 * zero out the top level and cached htable pointers 702 */ 703 kas.a_hat->hat_ht_cached = NULL; 704 kas.a_hat->hat_htable = NULL; 705 } 706 707 /* 708 * Prepare CPU specific pagetables for VLP processes on 64 bit kernels. 709 * 710 * Each CPU has a set of 2 pagetables that are reused for any 32 bit 711 * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and 712 * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes. 713 */ 714 /*ARGSUSED*/ 715 static void 716 hat_vlp_setup(struct cpu *cpu) 717 { 718 #if defined(__amd64) 719 struct hat_cpu_info *hci = cpu->cpu_hat_info; 720 pfn_t pfn; 721 722 /* 723 * allocate the level==2 page table for the bottom most 724 * 512Gig of address space (this is where 32 bit apps live) 725 */ 726 ASSERT(hci != NULL); 727 hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 728 729 /* 730 * Allocate a top level pagetable and copy the kernel's 731 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry. 732 */ 733 hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 734 hci->hci_vlp_pfn = 735 hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes); 736 ASSERT(hci->hci_vlp_pfn != PFN_INVALID); 737 bcopy(vlp_page + khat_start, hci->hci_vlp_l3ptes + khat_start, 738 khat_entries * sizeof (x86pte_t)); 739 740 pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes); 741 ASSERT(pfn != PFN_INVALID); 742 hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2); 743 #endif /* __amd64 */ 744 } 745 746 /* 747 * Finish filling in the kernel hat. 748 * Pre fill in all top level kernel page table entries for the kernel's 749 * part of the address range. From this point on we can't use any new 750 * kernel large pages if they need PTE's at max_level 751 */ 752 void 753 hat_init_finish(void) 754 { 755 htable_t *top = kas.a_hat->hat_htable; 756 htable_t *ht; 757 uint_t e; 758 x86pte_t pte; 759 uintptr_t va = kernelbase; 760 761 762 #if defined(__i386) 763 ASSERT((va & LEVEL_MASK(1)) == va); 764 765 /* 766 * Deal with kernelbase not 1Gig aligned for 32 bit PAE hats. 767 */ 768 if (!mmu.pae_hat || (va & LEVEL_OFFSET(mmu.max_level)) == 0) { 769 khat_pae32_htable = NULL; 770 } else { 771 ASSERT(mmu.max_level == 2); 772 ASSERT((va & LEVEL_OFFSET(mmu.max_level - 1)) == 0); 773 khat_pae32_htable = 774 htable_create(kas.a_hat, va, mmu.max_level - 1, NULL); 775 khat_pae32_start = htable_va2entry(va, khat_pae32_htable); 776 khat_pae32_entries = mmu.ptes_per_table - khat_pae32_start; 777 for (e = khat_pae32_start; e < mmu.ptes_per_table; 778 ++e, va += LEVEL_SIZE(mmu.max_level - 1)) { 779 pte = x86pte_get(khat_pae32_htable, e); 780 if (PTE_ISVALID(pte)) 781 continue; 782 ht = htable_create(kas.a_hat, va, mmu.max_level - 2, 783 NULL); 784 ASSERT(ht != NULL); 785 } 786 } 787 #endif 788 789 /* 790 * The kernel hat will need fixed values in the highest level 791 * ptable for copying to all other hat's. This implies 792 * alignment restrictions on _userlimit. 793 * 794 * Note we don't htable_release() these htables. This keeps them 795 * from ever being stolen or free'd. 796 * 797 * top_level_count is used instead of ptes_per_table, since 798 * on 32-bit PAE we only have 4 usable entries at the top level ptable. 799 */ 800 if (va == 0) 801 khat_start = mmu.top_level_count; 802 else 803 khat_start = htable_va2entry(va, kas.a_hat->hat_htable); 804 khat_entries = mmu.top_level_count - khat_start; 805 for (e = khat_start; e < mmu.top_level_count; 806 ++e, va += LEVEL_SIZE(mmu.max_level)) { 807 pte = x86pte_get(top, e); 808 if (PTE_ISVALID(pte)) 809 continue; 810 ht = htable_create(kas.a_hat, va, mmu.max_level - 1, NULL); 811 ASSERT(ht != NULL); 812 } 813 814 /* 815 * We are now effectively running on the kernel hat. 816 * Clearing use_boot_reserve shuts off using the pre-allocated boot 817 * reserve for all HAT allocations. From here on, the reserves are 818 * only used when mapping in memory for the hat's own allocations. 819 */ 820 use_boot_reserve = 0; 821 htable_adjust_reserve(); 822 823 /* 824 * 32 bit kernels use only 4 of the 512 entries in its top level 825 * pagetable. We'll use the remainder for the "per CPU" page tables 826 * for VLP processes. 827 * 828 * We map the top level kernel pagetable into the kernel's AS to make 829 * it easy to use bcopy for kernel entry PTEs. 830 * 831 * We were guaranteed to get a physical address < 4Gig, since the 32 bit 832 * boot loader uses non-PAE page tables. 833 */ 834 if (mmu.pae_hat) { 835 vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP); 836 hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE, 837 kas.a_hat->hat_htable->ht_pfn, 838 PROT_READ | PROT_WRITE | HAT_NOSYNC | HAT_UNORDERED_OK, 839 HAT_LOAD | HAT_LOAD_NOCONSIST); 840 } 841 hat_vlp_setup(CPU); 842 } 843 844 /* 845 * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references 846 * are 32 bit, so for safety we must use cas64() to install these. 847 */ 848 #ifdef __i386 849 static void 850 reload_pae32(hat_t *hat, cpu_t *cpu) 851 { 852 x86pte_t *src; 853 x86pte_t *dest; 854 x86pte_t pte; 855 int i; 856 857 /* 858 * Load the 4 entries of the level 2 page table into this 859 * cpu's range of the vlp_page and point cr3 at them. 860 */ 861 ASSERT(mmu.pae_hat); 862 src = hat->hat_vlp_ptes; 863 dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES; 864 for (i = 0; i < VLP_NUM_PTES; ++i) { 865 for (;;) { 866 pte = dest[i]; 867 if (pte == src[i]) 868 break; 869 if (cas64(dest + i, pte, src[i]) != src[i]) 870 break; 871 } 872 } 873 } 874 #endif 875 876 /* 877 * Switch to a new active hat, maintaining bit masks to track active CPUs. 878 */ 879 void 880 hat_switch(hat_t *hat) 881 { 882 uintptr_t newcr3; 883 cpu_t *cpu = CPU; 884 hat_t *old = cpu->cpu_current_hat; 885 886 /* 887 * set up this information first, so we don't miss any cross calls 888 */ 889 if (old != NULL) { 890 if (old == hat) 891 return; 892 if (old != kas.a_hat) 893 CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id); 894 } 895 896 /* 897 * Wait for any in flight pagetable invalidates on this hat to finish. 898 * This is a spin lock at DISP_LEVEL 899 */ 900 if (hat != kas.a_hat) { 901 mutex_enter(&hat->hat_switch_mutex); 902 CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id); 903 mutex_exit(&hat->hat_switch_mutex); 904 } 905 cpu->cpu_current_hat = hat; 906 907 /* 908 * now go ahead and load cr3 909 */ 910 if (hat->hat_flags & HAT_VLP) { 911 #if defined(__amd64) 912 x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes; 913 914 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 915 newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn); 916 #elif defined(__i386) 917 reload_pae32(hat, cpu); 918 newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) + 919 (cpu->cpu_id + 1) * VLP_SIZE; 920 #endif 921 } else { 922 newcr3 = MAKECR3(hat->hat_htable->ht_pfn); 923 } 924 setcr3(newcr3); 925 ASSERT(cpu == CPU); 926 } 927 928 /* 929 * Utility to return a valid x86pte_t from protections, pfn, and level number 930 */ 931 static x86pte_t 932 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags) 933 { 934 x86pte_t pte; 935 uint_t cache_attr = attr & HAT_ORDER_MASK; 936 937 pte = MAKEPTE(pfn, level); 938 939 if (attr & PROT_WRITE) 940 PTE_SET(pte, PT_WRITABLE); 941 942 if (attr & PROT_USER) 943 PTE_SET(pte, PT_USER); 944 945 if (!(attr & PROT_EXEC)) 946 PTE_SET(pte, mmu.pt_nx); 947 948 /* 949 * set the software bits used track ref/mod sync's and hments 950 */ 951 if (attr & HAT_NOSYNC) 952 PTE_SET(pte, PT_NOSYNC); 953 if (flags & HAT_LOAD_NOCONSIST) 954 PTE_SET(pte, PT_NOCONSIST | PT_NOSYNC); 955 956 /* 957 * Set the caching attributes in the PTE. The combination 958 * of attributes are poorly defined, so we pay attention 959 * to them in the given order. 960 * 961 * The test for HAT_STRICTORDER is different because it's defined 962 * as "0" - which was a stupid thing to do, but is too late to change! 963 */ 964 if (cache_attr == HAT_STRICTORDER) { 965 PTE_SET(pte, PT_NOCACHE); 966 /*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */ 967 } else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) { 968 /* nothing to set */; 969 } else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) { 970 PTE_SET(pte, PT_NOCACHE); 971 if (x86_feature & X86_PAT) 972 PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE); 973 else 974 PTE_SET(pte, PT_WRITETHRU); 975 } else { 976 panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr); 977 } 978 979 return (pte); 980 } 981 982 /* 983 * Duplicate address translations of the parent to the child. 984 * This function really isn't used anymore. 985 */ 986 /*ARGSUSED*/ 987 int 988 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag) 989 { 990 ASSERT((uintptr_t)addr < kernelbase); 991 ASSERT(new != kas.a_hat); 992 ASSERT(old != kas.a_hat); 993 return (0); 994 } 995 996 /* 997 * Allocate any hat resources required for a process being swapped in. 998 */ 999 /*ARGSUSED*/ 1000 void 1001 hat_swapin(hat_t *hat) 1002 { 1003 /* do nothing - we let everything fault back in */ 1004 } 1005 1006 /* 1007 * Unload all translations associated with an address space of a process 1008 * that is being swapped out. 1009 */ 1010 void 1011 hat_swapout(hat_t *hat) 1012 { 1013 uintptr_t vaddr = (uintptr_t)0; 1014 uintptr_t eaddr = _userlimit; 1015 htable_t *ht = NULL; 1016 level_t l; 1017 1018 /* 1019 * We can't just call hat_unload(hat, 0, _userlimit...) here, because 1020 * seg_spt and shared pagetables can't be swapped out. 1021 * Take a look at segspt_shmswapout() - it's a big no-op. 1022 * 1023 * Instead we'll walk through all the address space and unload 1024 * any mappings which we are sure are not shared, not locked. 1025 */ 1026 ASSERT(IS_PAGEALIGNED(vaddr)); 1027 ASSERT(IS_PAGEALIGNED(eaddr)); 1028 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1029 if ((uintptr_t)hat->hat_as->a_userlimit < eaddr) 1030 eaddr = (uintptr_t)hat->hat_as->a_userlimit; 1031 1032 while (vaddr < eaddr) { 1033 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1034 if (ht == NULL) 1035 break; 1036 1037 ASSERT(!IN_VA_HOLE(vaddr)); 1038 1039 /* 1040 * If the page table is shared skip its entire range. 1041 * This code knows that only level 0 page tables are shared 1042 */ 1043 l = ht->ht_level; 1044 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1045 ASSERT(l == 0); 1046 vaddr = ht->ht_vaddr + LEVEL_SIZE(1); 1047 htable_release(ht); 1048 ht = NULL; 1049 continue; 1050 } 1051 1052 /* 1053 * If the page table has no locked entries, unload this one. 1054 */ 1055 if (ht->ht_lock_cnt == 0) 1056 hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l), 1057 HAT_UNLOAD_UNMAP); 1058 1059 /* 1060 * If we have a level 0 page table with locked entries, 1061 * skip the entire page table, otherwise skip just one entry. 1062 */ 1063 if (ht->ht_lock_cnt > 0 && l == 0) 1064 vaddr = ht->ht_vaddr + LEVEL_SIZE(1); 1065 else 1066 vaddr += LEVEL_SIZE(l); 1067 } 1068 if (ht) 1069 htable_release(ht); 1070 1071 /* 1072 * We're in swapout because the system is low on memory, so 1073 * go back and flush all the htables off the cached list. 1074 */ 1075 htable_purge_hat(hat); 1076 } 1077 1078 /* 1079 * returns number of bytes that have valid mappings in hat. 1080 */ 1081 size_t 1082 hat_get_mapped_size(hat_t *hat) 1083 { 1084 size_t total = 0; 1085 int l; 1086 1087 for (l = 0; l <= mmu.max_page_level; l++) 1088 total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l)); 1089 1090 return (total); 1091 } 1092 1093 /* 1094 * enable/disable collection of stats for hat. 1095 */ 1096 int 1097 hat_stats_enable(hat_t *hat) 1098 { 1099 atomic_add_32(&hat->hat_stats, 1); 1100 return (1); 1101 } 1102 1103 void 1104 hat_stats_disable(hat_t *hat) 1105 { 1106 atomic_add_32(&hat->hat_stats, -1); 1107 } 1108 1109 /* 1110 * Utility to sync the ref/mod bits from a page table entry to the page_t 1111 * We must be holding the mapping list lock when this is called. 1112 */ 1113 static void 1114 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level) 1115 { 1116 uint_t rm = 0; 1117 pgcnt_t pgcnt; 1118 1119 if (PTE_GET(pte, PT_NOSYNC)) 1120 return; 1121 1122 if (PTE_GET(pte, PT_REF)) 1123 rm |= P_REF; 1124 1125 if (PTE_GET(pte, PT_MOD)) 1126 rm |= P_MOD; 1127 1128 if (rm == 0) 1129 return; 1130 1131 /* 1132 * sync to all constituent pages of a large page 1133 */ 1134 ASSERT(x86_hm_held(pp)); 1135 pgcnt = page_get_pagecnt(level); 1136 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 1137 for (; pgcnt > 0; --pgcnt) { 1138 /* 1139 * hat_page_demote() can't decrease 1140 * pszc below this mapping size 1141 * since this large mapping existed after we 1142 * took mlist lock. 1143 */ 1144 ASSERT(pp->p_szc >= level); 1145 hat_page_setattr(pp, rm); 1146 ++pp; 1147 } 1148 } 1149 1150 /* 1151 * This the set of PTE bits for PFN, permissions and caching 1152 * that require a TLB flush (hat_demap) if changed on a HAT_LOAD_REMAP 1153 */ 1154 #define PT_REMAP_BITS \ 1155 (PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU | \ 1156 PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE) 1157 1158 #define REMAPASSERT(EX) if (!(EX)) panic("hati_pte_map: " #EX) 1159 /* 1160 * Do the low-level work to get a mapping entered into a HAT's pagetables 1161 * and in the mapping list of the associated page_t. 1162 */ 1163 static void 1164 hati_pte_map( 1165 htable_t *ht, 1166 uint_t entry, 1167 page_t *pp, 1168 x86pte_t pte, 1169 int flags, 1170 void *pte_ptr) 1171 { 1172 hat_t *hat = ht->ht_hat; 1173 x86pte_t old_pte; 1174 level_t l = ht->ht_level; 1175 hment_t *hm; 1176 uint_t is_consist; 1177 1178 /* 1179 * Is this a consistant (ie. need mapping list lock) mapping? 1180 */ 1181 is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0); 1182 1183 /* 1184 * Track locked mapping count in the htable. Do this first, 1185 * as we track locking even if there already is a mapping present. 1186 */ 1187 if ((flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat) 1188 HTABLE_LOCK_INC(ht); 1189 1190 /* 1191 * Acquire the page's mapping list lock and get an hment to use. 1192 * Note that hment_prepare() might return NULL. 1193 */ 1194 if (is_consist) { 1195 x86_hm_enter(pp); 1196 hm = hment_prepare(ht, entry, pp); 1197 } 1198 1199 /* 1200 * Set the new pte, retrieving the old one at the same time. 1201 */ 1202 old_pte = x86pte_set(ht, entry, pte, pte_ptr); 1203 1204 /* 1205 * If the mapping didn't change there is nothing more to do. 1206 */ 1207 if (PTE_EQUIV(pte, old_pte)) { 1208 if (is_consist) { 1209 x86_hm_exit(pp); 1210 if (hm != NULL) 1211 hment_free(hm); 1212 } 1213 return; 1214 } 1215 1216 /* 1217 * Install a new mapping in the page's mapping list 1218 */ 1219 if (!PTE_ISVALID(old_pte)) { 1220 if (is_consist) { 1221 hment_assign(ht, entry, pp, hm); 1222 x86_hm_exit(pp); 1223 } else { 1224 ASSERT(flags & HAT_LOAD_NOCONSIST); 1225 } 1226 HTABLE_INC(ht->ht_valid_cnt); 1227 PGCNT_INC(hat, l); 1228 return; 1229 } 1230 1231 /* 1232 * Remap's are more complicated: 1233 * - HAT_LOAD_REMAP must be specified if changing the pfn. 1234 * We also require that NOCONSIST be specified. 1235 * - Otherwise only permission or caching bits may change. 1236 */ 1237 if (!PTE_ISPAGE(old_pte, l)) 1238 panic("non-null/page mapping pte=" FMT_PTE, old_pte); 1239 1240 if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) { 1241 REMAPASSERT(flags & HAT_LOAD_REMAP); 1242 REMAPASSERT(flags & HAT_LOAD_NOCONSIST); 1243 REMAPASSERT(PTE_GET(old_pte, PT_NOCONSIST)); 1244 REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) == 1245 pf_is_memory(PTE2PFN(pte, l))); 1246 REMAPASSERT(!is_consist); 1247 } 1248 1249 /* 1250 * We only let remaps change the bits for PFNs, permissions 1251 * or caching type. 1252 */ 1253 ASSERT(PTE_GET(old_pte, ~(PT_REMAP_BITS | PT_REF | PT_MOD)) == 1254 PTE_GET(pte, ~PT_REMAP_BITS)); 1255 1256 /* 1257 * A remap requires invalidating the TLBs, since remapping the 1258 * same PFN requires NOCONSIST, we don't have to sync R/M bits. 1259 */ 1260 hat_demap(hat, htable_e2va(ht, entry)); 1261 1262 /* 1263 * We don't create any mapping list entries on a remap, so release 1264 * any allocated hment after we drop the mapping list lock. 1265 */ 1266 if (is_consist) { 1267 x86_hm_exit(pp); 1268 if (hm != NULL) 1269 hment_free(hm); 1270 } 1271 } 1272 1273 /* 1274 * The t_hatdepth field is an 8-bit counter. We use the lower seven bits 1275 * to track exactly how deep we are in the memload->kmem_alloc recursion. 1276 * If the depth is greater than 1, that indicates that we are performing a 1277 * hat operation to satisfy another hat operation. To prevent infinite 1278 * recursion, we switch over to using pre-allocated "reserves" of htables 1279 * and hments. 1280 * 1281 * The uppermost bit is used to indicate that we are transitioning away 1282 * from being the reserves thread. See hati_reserves_exit() for the 1283 * details. 1284 */ 1285 #define EXITING_FLAG (1 << 7) 1286 #define DEPTH_MASK (~EXITING_FLAG) 1287 #define HAT_DEPTH(t) ((t)->t_hatdepth & DEPTH_MASK) 1288 #define EXITING_RESERVES(t) ((t)->t_hatdepth & EXITING_FLAG) 1289 1290 /* 1291 * Access to reserves for HAT_NO_KALLOC is single threaded. 1292 * If someone else is in the reserves, we'll politely wait for them 1293 * to finish. This keeps normal hat_memload()s from eating up 1294 * the mappings needed to replenish the reserve. 1295 */ 1296 static void 1297 hati_reserves_enter(uint_t kmem_for_hat) 1298 { 1299 /* 1300 * 64 is an arbitrary number to catch serious problems. I'm not 1301 * sure what the absolute maximum depth is, but it should be 1302 * substantially less than this. 1303 */ 1304 ASSERT(HAT_DEPTH(curthread) < 64); 1305 1306 /* 1307 * If we are doing a memload to satisfy a kmem operation, we enter 1308 * the reserves immediately; we don't wait to recurse to a second 1309 * level of memload. 1310 */ 1311 ASSERT(kmem_for_hat < 2); 1312 curthread->t_hatdepth += (1 + kmem_for_hat); 1313 1314 if (hat_reserves_thread == curthread || use_boot_reserve) 1315 return; 1316 1317 if (HAT_DEPTH(curthread) > 1 || hat_reserves_thread != NULL) { 1318 mutex_enter(&hat_reserves_lock); 1319 while (hat_reserves_thread != NULL) 1320 cv_wait(&hat_reserves_cv, &hat_reserves_lock); 1321 1322 if (HAT_DEPTH(curthread) > 1) 1323 hat_reserves_thread = curthread; 1324 1325 mutex_exit(&hat_reserves_lock); 1326 } 1327 } 1328 1329 /* 1330 * If we are the reserves_thread and we've finally finished with all our 1331 * memloads (ie. no longer doing hat slabs), we can release our use of the 1332 * reserve. 1333 */ 1334 static void 1335 hati_reserves_exit(uint_t kmem_for_hat) 1336 { 1337 ASSERT(kmem_for_hat < 2); 1338 curthread->t_hatdepth -= (1 + kmem_for_hat); 1339 1340 /* 1341 * Simple case: either we are not the reserves thread, or we are 1342 * the reserves thread and we are nested deeply enough that we 1343 * should still be the reserves thread. 1344 * 1345 * Note: we may not become the reserves thread after we recursively 1346 * enter our second HAT routine, but we don't stop being the 1347 * reserves thread until we exit the toplevel HAT routine. This is 1348 * to work around vmem's inability to determine when an allocation 1349 * should be satisfied from the hat_memload arena, which can lead 1350 * to an infinite loop of memload->vmem_populate->memload->. 1351 */ 1352 if (curthread != hat_reserves_thread || HAT_DEPTH(curthread) > 0 || 1353 use_boot_reserve) 1354 return; 1355 1356 mutex_enter(&hat_reserves_lock); 1357 ASSERT(hat_reserves_thread == curthread); 1358 hat_reserves_thread = NULL; 1359 cv_broadcast(&hat_reserves_cv); 1360 mutex_exit(&hat_reserves_lock); 1361 1362 /* 1363 * As we leave the reserves, we want to be sure the reserve lists 1364 * aren't overstocked. Freeing excess reserves requires that we 1365 * call kmem_free(), which may require additional allocations, 1366 * causing us to re-enter the reserves. To avoid infinite 1367 * recursion, we only try to adjust reserves at the very top level. 1368 */ 1369 if (!kmem_for_hat && !EXITING_RESERVES(curthread)) { 1370 curthread->t_hatdepth |= EXITING_FLAG; 1371 htable_adjust_reserve(); 1372 hment_adjust_reserve(); 1373 curthread->t_hatdepth &= (~EXITING_FLAG); 1374 } 1375 1376 /* 1377 * just in case something went wrong in doing adjust reserves 1378 */ 1379 ASSERT(hat_reserves_thread != curthread); 1380 } 1381 1382 /* 1383 * Internal routine to load a single page table entry. 1384 */ 1385 static void 1386 hati_load_common( 1387 hat_t *hat, 1388 uintptr_t va, 1389 page_t *pp, 1390 uint_t attr, 1391 uint_t flags, 1392 level_t level, 1393 pfn_t pfn) 1394 { 1395 htable_t *ht; 1396 uint_t entry; 1397 x86pte_t pte; 1398 uint_t kmem_for_hat = (flags & HAT_NO_KALLOC) ? 1 : 0; 1399 1400 ASSERT(hat == kas.a_hat || 1401 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1402 1403 if (flags & HAT_LOAD_SHARE) 1404 hat->hat_flags |= HAT_SHARED; 1405 1406 /* 1407 * Find the page table that maps this page if it already exists. 1408 */ 1409 ht = htable_lookup(hat, va, level); 1410 1411 /* 1412 * All threads go through hati_reserves_enter() to at least wait 1413 * for any existing reserves user to finish. This helps reduce 1414 * pressure on the reserves. In addition, if this thread needs 1415 * to become the new reserve user it will. 1416 */ 1417 hati_reserves_enter(kmem_for_hat); 1418 1419 ASSERT(HAT_DEPTH(curthread) == 1 || va >= kernelbase); 1420 1421 /* 1422 * Kernel memloads for HAT data should never use hments! 1423 * If it did that would seriously complicate the reserves system, since 1424 * hment_alloc() would need to know about HAT_NO_KALLOC. 1425 * 1426 * We also must have HAT_LOAD_NOCONSIST if page_t is NULL. 1427 */ 1428 if (HAT_DEPTH(curthread) > 1 || pp == NULL) 1429 flags |= HAT_LOAD_NOCONSIST; 1430 1431 if (ht == NULL) { 1432 ht = htable_create(hat, va, level, NULL); 1433 ASSERT(ht != NULL); 1434 } 1435 entry = htable_va2entry(va, ht); 1436 1437 /* 1438 * a bunch of paranoid error checking 1439 */ 1440 ASSERT(ht->ht_busy > 0); 1441 if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht)) 1442 panic("hati_load_common: bad htable %p, va %p", ht, (void *)va); 1443 ASSERT(ht->ht_level == level); 1444 1445 /* 1446 * construct the new PTE 1447 */ 1448 if (hat == kas.a_hat) 1449 attr &= ~PROT_USER; 1450 pte = hati_mkpte(pfn, attr, level, flags); 1451 if (hat == kas.a_hat && va >= kernelbase) 1452 PTE_SET(pte, mmu.pt_global); 1453 1454 /* 1455 * establish the mapping 1456 */ 1457 hati_pte_map(ht, entry, pp, pte, flags, NULL); 1458 1459 /* 1460 * release the htable and any reserves 1461 */ 1462 htable_release(ht); 1463 hati_reserves_exit(kmem_for_hat); 1464 } 1465 1466 /* 1467 * special case of hat_memload to deal with some kernel addrs for performance 1468 */ 1469 static void 1470 hat_kmap_load( 1471 caddr_t addr, 1472 page_t *pp, 1473 uint_t attr, 1474 uint_t flags) 1475 { 1476 uintptr_t va = (uintptr_t)addr; 1477 x86pte_t pte; 1478 pfn_t pfn = page_pptonum(pp); 1479 pgcnt_t pg_off = mmu_btop(va - mmu.kmap_addr); 1480 htable_t *ht; 1481 uint_t entry; 1482 void *pte_ptr; 1483 1484 /* 1485 * construct the requested PTE 1486 */ 1487 attr &= ~PROT_USER; 1488 attr |= HAT_STORECACHING_OK; 1489 pte = hati_mkpte(pfn, attr, 0, flags); 1490 PTE_SET(pte, mmu.pt_global); 1491 1492 /* 1493 * Figure out the pte_ptr and htable and use common code to finish up 1494 */ 1495 if (mmu.pae_hat) 1496 pte_ptr = mmu.kmap_ptes + pg_off; 1497 else 1498 pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off; 1499 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >> 1500 LEVEL_SHIFT(1)]; 1501 entry = htable_va2entry(va, ht); 1502 hati_pte_map(ht, entry, pp, pte, flags, pte_ptr); 1503 } 1504 1505 /* 1506 * hat_memload() - load a translation to the given page struct 1507 * 1508 * Flags for hat_memload/hat_devload/hat_*attr. 1509 * 1510 * HAT_LOAD Default flags to load a translation to the page. 1511 * 1512 * HAT_LOAD_LOCK Lock down mapping resources; hat_map(), hat_memload(), 1513 * and hat_devload(). 1514 * 1515 * HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list. 1516 * sets PT_NOCONSIST (soft bit) 1517 * 1518 * HAT_LOAD_SHARE A flag to hat_memload() to indicate h/w page tables 1519 * that map some user pages (not kas) is shared by more 1520 * than one process (eg. ISM). 1521 * 1522 * HAT_LOAD_REMAP Reload a valid pte with a different page frame. 1523 * 1524 * HAT_NO_KALLOC Do not kmem_alloc while creating the mapping; at this 1525 * point, it's setting up mapping to allocate internal 1526 * hat layer data structures. This flag forces hat layer 1527 * to tap its reserves in order to prevent infinite 1528 * recursion. 1529 * 1530 * The following is a protection attribute (like PROT_READ, etc.) 1531 * 1532 * HAT_NOSYNC set PT_NOSYNC (soft bit) - this mapping's ref/mod bits 1533 * are never cleared. 1534 * 1535 * Installing new valid PTE's and creation of the mapping list 1536 * entry are controlled under the same lock. It's derived from the 1537 * page_t being mapped. 1538 */ 1539 static uint_t supported_memload_flags = 1540 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST | 1541 HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT; 1542 1543 void 1544 hat_memload( 1545 hat_t *hat, 1546 caddr_t addr, 1547 page_t *pp, 1548 uint_t attr, 1549 uint_t flags) 1550 { 1551 uintptr_t va = (uintptr_t)addr; 1552 level_t level = 0; 1553 pfn_t pfn = page_pptonum(pp); 1554 1555 HATIN(hat_memload, hat, addr, (size_t)MMU_PAGESIZE); 1556 ASSERT(IS_PAGEALIGNED(va)); 1557 ASSERT(hat == kas.a_hat || va <= kernelbase); 1558 ASSERT(hat == kas.a_hat || 1559 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1560 ASSERT((flags & supported_memload_flags) == flags); 1561 1562 ASSERT(!IN_VA_HOLE(va)); 1563 ASSERT(!PP_ISFREE(pp)); 1564 1565 /* 1566 * kernel address special case for performance. 1567 */ 1568 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 1569 ASSERT(hat == kas.a_hat); 1570 hat_kmap_load(addr, pp, attr, flags); 1571 return; 1572 } 1573 1574 /* 1575 * This is used for memory with normal caching enabled, so 1576 * always set HAT_STORECACHING_OK. 1577 */ 1578 attr |= HAT_STORECACHING_OK; 1579 hati_load_common(hat, va, pp, attr, flags, level, pfn); 1580 HATOUT(hat_memload, hat, addr); 1581 } 1582 1583 /* 1584 * Load the given array of page structs using large pages when possible 1585 */ 1586 void 1587 hat_memload_array( 1588 hat_t *hat, 1589 caddr_t addr, 1590 size_t len, 1591 page_t **pages, 1592 uint_t attr, 1593 uint_t flags) 1594 { 1595 uintptr_t va = (uintptr_t)addr; 1596 uintptr_t eaddr = va + len; 1597 level_t level; 1598 size_t pgsize; 1599 pgcnt_t pgindx = 0; 1600 pfn_t pfn; 1601 pgcnt_t i; 1602 1603 HATIN(hat_memload_array, hat, addr, len); 1604 ASSERT(IS_PAGEALIGNED(va)); 1605 ASSERT(hat == kas.a_hat || va + len <= kernelbase); 1606 ASSERT(hat == kas.a_hat || 1607 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1608 ASSERT((flags & supported_memload_flags) == flags); 1609 1610 /* 1611 * memload is used for memory with full caching enabled, so 1612 * set HAT_STORECACHING_OK. 1613 */ 1614 attr |= HAT_STORECACHING_OK; 1615 1616 /* 1617 * handle all pages using largest possible pagesize 1618 */ 1619 while (va < eaddr) { 1620 /* 1621 * decide what level mapping to use (ie. pagesize) 1622 */ 1623 pfn = page_pptonum(pages[pgindx]); 1624 for (level = mmu.max_page_level; ; --level) { 1625 pgsize = LEVEL_SIZE(level); 1626 if (level == 0) 1627 break; 1628 if (!IS_P2ALIGNED(va, pgsize) || 1629 (eaddr - va) < pgsize || 1630 !IS_P2ALIGNED(pfn << MMU_PAGESHIFT, pgsize)) 1631 continue; 1632 1633 /* 1634 * To use a large mapping of this size, all the 1635 * pages we are passed must be sequential subpages 1636 * of the large page. 1637 * hat_page_demote() can't change p_szc because 1638 * all pages are locked. 1639 */ 1640 if (pages[pgindx]->p_szc >= level) { 1641 for (i = 0; i < mmu_btop(pgsize); ++i) { 1642 if (pfn + i != 1643 page_pptonum(pages[pgindx + i])) 1644 break; 1645 ASSERT(pages[pgindx + i]->p_szc >= 1646 level); 1647 ASSERT(pages[pgindx] + i == 1648 pages[pgindx + i]); 1649 } 1650 if (i == mmu_btop(pgsize)) 1651 break; 1652 } 1653 } 1654 1655 /* 1656 * Shared page tables for DISM might have a pre-existing 1657 * level 0 page table that wasn't unlinked from all the 1658 * sharing hats. If we hit this for a large page, back off 1659 * to using level 0 pages. 1660 * 1661 * This can't be made better (ie. use large pages) until we 1662 * track all the htable's sharing and rewrite hat_pageunload(). 1663 * Note that would cost a pointer in htable_t for a rare case. 1664 * 1665 * Since the 32 bit kernel caches empty page tables, check 1666 * the kernel too. 1667 */ 1668 if ((hat == kas.a_hat || (hat->hat_flags & HAT_SHARED)) && 1669 level > 0) { 1670 htable_t *lower; 1671 1672 lower = htable_getpte(hat, va, NULL, NULL, level - 1); 1673 if (lower != NULL) { 1674 level = 0; 1675 pgsize = LEVEL_SIZE(0); 1676 htable_release(lower); 1677 } 1678 } 1679 1680 /* 1681 * load this page mapping 1682 */ 1683 ASSERT(!IN_VA_HOLE(va)); 1684 hati_load_common(hat, va, pages[pgindx], attr, flags, 1685 level, pfn); 1686 1687 /* 1688 * move to next page 1689 */ 1690 va += pgsize; 1691 pgindx += mmu_btop(pgsize); 1692 } 1693 HATOUT(hat_memload_array, hat, addr); 1694 } 1695 1696 /* 1697 * void hat_devload(hat, addr, len, pf, attr, flags) 1698 * load/lock the given page frame number 1699 * 1700 * Advisory ordering attributes. Apply only to device mappings. 1701 * 1702 * HAT_STRICTORDER: the CPU must issue the references in order, as the 1703 * programmer specified. This is the default. 1704 * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds 1705 * of reordering; store or load with store or load). 1706 * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores 1707 * to consecutive locations (for example, turn two consecutive byte 1708 * stores into one halfword store), and it may batch individual loads 1709 * (for example, turn two consecutive byte loads into one halfword load). 1710 * This also implies re-ordering. 1711 * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it 1712 * until another store occurs. The default is to fetch new data 1713 * on every load. This also implies merging. 1714 * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to 1715 * the device (perhaps with other data) at a later time. The default is 1716 * to push the data right away. This also implies load caching. 1717 * 1718 * Equivalent of hat_memload(), but can be used for device memory where 1719 * there are no page_t's and we support additional flags (write merging, etc). 1720 * Note that we can have large page mappings with this interface. 1721 */ 1722 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK | 1723 HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK | 1724 HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK; 1725 1726 void 1727 hat_devload( 1728 hat_t *hat, 1729 caddr_t addr, 1730 size_t len, 1731 pfn_t pfn, 1732 uint_t attr, 1733 int flags) 1734 { 1735 uintptr_t va = ALIGN2PAGE(addr); 1736 uintptr_t eva = va + len; 1737 level_t level; 1738 size_t pgsize; 1739 page_t *pp; 1740 int f; /* per PTE copy of flags - maybe modified */ 1741 uint_t a; /* per PTE copy of attr */ 1742 1743 HATIN(hat_devload, hat, addr, len); 1744 ASSERT(IS_PAGEALIGNED(va)); 1745 ASSERT(hat == kas.a_hat || eva <= kernelbase); 1746 ASSERT(hat == kas.a_hat || 1747 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1748 ASSERT((flags & supported_devload_flags) == flags); 1749 1750 /* 1751 * handle all pages 1752 */ 1753 while (va < eva) { 1754 1755 /* 1756 * decide what level mapping to use (ie. pagesize) 1757 */ 1758 for (level = mmu.max_page_level; ; --level) { 1759 pgsize = LEVEL_SIZE(level); 1760 if (level == 0) 1761 break; 1762 if (IS_P2ALIGNED(va, pgsize) && 1763 (eva - va) >= pgsize && 1764 IS_P2ALIGNED(pfn, mmu_btop(pgsize))) 1765 break; 1766 } 1767 1768 /* 1769 * Some kernel addresses have permanently existing page tables, 1770 * so be sure to use a compatible pagesize. 1771 */ 1772 if (hat == kas.a_hat && level > 0) { 1773 htable_t *lower; 1774 1775 lower = htable_getpte(hat, va, NULL, NULL, level - 1); 1776 if (lower != NULL) { 1777 level = 0; 1778 pgsize = LEVEL_SIZE(0); 1779 htable_release(lower); 1780 } 1781 } 1782 1783 /* 1784 * If it is memory get page_t and allow caching (this happens 1785 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used 1786 * to override that. If we don't have a page_t, make sure 1787 * NOCONSIST is set. 1788 */ 1789 a = attr; 1790 f = flags; 1791 if (pf_is_memory(pfn)) { 1792 if (!(a & HAT_PLAT_NOCACHE)) 1793 a |= HAT_STORECACHING_OK; 1794 1795 if (f & HAT_LOAD_NOCONSIST) 1796 pp = NULL; 1797 else 1798 pp = page_numtopp_nolock(pfn); 1799 } else { 1800 pp = NULL; 1801 f |= HAT_LOAD_NOCONSIST; 1802 } 1803 1804 /* 1805 * load this page mapping 1806 */ 1807 ASSERT(!IN_VA_HOLE(va)); 1808 hati_load_common(hat, va, pp, a, f, level, pfn); 1809 1810 /* 1811 * move to next page 1812 */ 1813 va += pgsize; 1814 pfn += mmu_btop(pgsize); 1815 } 1816 HATOUT(hat_devload, hat, addr); 1817 } 1818 1819 /* 1820 * void hat_unlock(hat, addr, len) 1821 * unlock the mappings to a given range of addresses 1822 * 1823 * Locks are tracked by ht_lock_cnt in the htable. 1824 */ 1825 void 1826 hat_unlock(hat_t *hat, caddr_t addr, size_t len) 1827 { 1828 uintptr_t vaddr = (uintptr_t)addr; 1829 uintptr_t eaddr = vaddr + len; 1830 htable_t *ht = NULL; 1831 1832 /* 1833 * kernel entries are always locked, we don't track lock counts 1834 */ 1835 ASSERT(hat == kas.a_hat || eaddr <= kernelbase); 1836 ASSERT(IS_PAGEALIGNED(vaddr)); 1837 ASSERT(IS_PAGEALIGNED(eaddr)); 1838 if (hat == kas.a_hat) 1839 return; 1840 if (eaddr > _userlimit) 1841 panic("hat_unlock() address out of range - above _userlimit"); 1842 1843 ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 1844 while (vaddr < eaddr) { 1845 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1846 if (ht == NULL) 1847 break; 1848 1849 ASSERT(!IN_VA_HOLE(vaddr)); 1850 1851 if (ht->ht_lock_cnt < 1) 1852 panic("hat_unlock(): lock_cnt < 1, " 1853 "htable=%p, vaddr=%p\n", ht, (caddr_t)vaddr); 1854 HTABLE_LOCK_DEC(ht); 1855 1856 vaddr += LEVEL_SIZE(ht->ht_level); 1857 } 1858 if (ht) 1859 htable_release(ht); 1860 } 1861 1862 /* 1863 * Cross call service routine to demap a virtual page on 1864 * the current CPU or flush all mappings in TLB. 1865 */ 1866 /*ARGSUSED*/ 1867 static int 1868 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3) 1869 { 1870 hat_t *hat = (hat_t *)a1; 1871 caddr_t addr = (caddr_t)a2; 1872 1873 /* 1874 * If the target hat isn't the kernel and this CPU isn't operating 1875 * in the target hat, we can ignore the cross call. 1876 */ 1877 if (hat != kas.a_hat && hat != CPU->cpu_current_hat) 1878 return (0); 1879 1880 /* 1881 * For a normal address, we just flush one page mapping 1882 */ 1883 if ((uintptr_t)addr != DEMAP_ALL_ADDR) { 1884 mmu_tlbflush_entry((caddr_t)addr); 1885 return (0); 1886 } 1887 1888 /* 1889 * Otherwise we reload cr3 to effect a complete TLB flush. 1890 * 1891 * A reload of cr3 on a VLP process also means we must also recopy in 1892 * the pte values from the struct hat 1893 */ 1894 if (hat->hat_flags & HAT_VLP) { 1895 #if defined(__amd64) 1896 x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes; 1897 1898 VLP_COPY(hat->hat_vlp_ptes, vlpptep); 1899 #elif defined(__i386) 1900 reload_pae32(hat, CPU); 1901 #endif 1902 } 1903 reload_cr3(); 1904 return (0); 1905 } 1906 1907 /* 1908 * Internal routine to do cross calls to invalidate a range of pages on 1909 * all CPUs using a given hat. 1910 */ 1911 void 1912 hat_demap(hat_t *hat, uintptr_t va) 1913 { 1914 extern int flushes_require_xcalls; /* from mp_startup.c */ 1915 cpuset_t justme; 1916 1917 /* 1918 * If the hat is being destroyed, there are no more users, so 1919 * demap need not do anything. 1920 */ 1921 if (hat->hat_flags & HAT_FREEING) 1922 return; 1923 1924 /* 1925 * If demapping from a shared pagetable, we best demap the 1926 * entire set of user TLBs, since we don't know what addresses 1927 * these were shared at. 1928 */ 1929 if (hat->hat_flags & HAT_SHARED) { 1930 hat = kas.a_hat; 1931 va = DEMAP_ALL_ADDR; 1932 } 1933 1934 /* 1935 * if not running with multiple CPUs, don't use cross calls 1936 */ 1937 if (panicstr || !flushes_require_xcalls) { 1938 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL); 1939 return; 1940 } 1941 1942 1943 /* 1944 * All CPUs must see kernel hat changes. 1945 */ 1946 if (hat == kas.a_hat) { 1947 kpreempt_disable(); 1948 xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL, 1949 X_CALL_HIPRI, khat_cpuset, hati_demap_func); 1950 kpreempt_enable(); 1951 return; 1952 } 1953 1954 /* 1955 * Otherwise we notify CPUs currently running in this HAT 1956 */ 1957 hat_enter(hat); 1958 kpreempt_disable(); 1959 CPUSET_ONLY(justme, CPU->cpu_id); 1960 if (CPUSET_ISEQUAL(hat->hat_cpus, justme)) 1961 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL); 1962 else 1963 xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL, 1964 X_CALL_HIPRI, hat->hat_cpus, hati_demap_func); 1965 kpreempt_enable(); 1966 hat_exit(hat); 1967 } 1968 1969 /* 1970 * Interior routine for HAT_UNLOADs from hat_unload_callback(), 1971 * hat_kmap_unload() OR from hat_steal() code. This routine doesn't 1972 * handle releasing of the htables. 1973 */ 1974 void 1975 hat_pte_unmap( 1976 htable_t *ht, 1977 uint_t entry, 1978 uint_t flags, 1979 x86pte_t old_pte, 1980 void *pte_ptr) 1981 { 1982 hat_t *hat = ht->ht_hat; 1983 hment_t *hm = NULL; 1984 page_t *pp = NULL; 1985 level_t l = ht->ht_level; 1986 pfn_t pfn; 1987 1988 /* 1989 * We always track the locking counts, even if nothing is unmapped 1990 */ 1991 if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) { 1992 ASSERT(ht->ht_lock_cnt > 0); 1993 HTABLE_LOCK_DEC(ht); 1994 } 1995 1996 /* 1997 * Figure out which page's mapping list lock to acquire using the PFN 1998 * passed in "old" PTE. We then attempt to invalidate the PTE. 1999 * If another thread, probably a hat_pageunload, has asynchronously 2000 * unmapped/remapped this address we'll loop here. 2001 */ 2002 ASSERT(ht->ht_busy > 0); 2003 while (PTE_ISVALID(old_pte)) { 2004 pfn = PTE2PFN(old_pte, l); 2005 if (PTE_GET(old_pte, PT_NOCONSIST)) { 2006 pp = NULL; 2007 } else { 2008 pp = page_numtopp_nolock(pfn); 2009 if (pp == NULL) { 2010 panic("no page_t, not NOCONSIST: old_pte=" 2011 FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx", 2012 old_pte, (uintptr_t)ht, entry, 2013 (uintptr_t)pte_ptr); 2014 } 2015 x86_hm_enter(pp); 2016 } 2017 2018 /* 2019 * If freeing the address space, check that the PTE 2020 * hasn't changed, as the mappings are no longer in use by 2021 * any thread, invalidation is unnecessary. 2022 * If not freeing, do a full invalidate. 2023 */ 2024 if (hat->hat_flags & HAT_FREEING) 2025 old_pte = x86pte_get(ht, entry); 2026 else 2027 old_pte = 2028 x86pte_invalidate_pfn(ht, entry, pfn, pte_ptr); 2029 2030 /* 2031 * If the page hadn't changed we've unmapped it and can proceed 2032 */ 2033 if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn) 2034 break; 2035 2036 /* 2037 * Otherwise, we'll have to retry with the current old_pte. 2038 * Drop the hment lock, since the pfn may have changed. 2039 */ 2040 if (pp != NULL) { 2041 x86_hm_exit(pp); 2042 pp = NULL; 2043 } else { 2044 ASSERT(PTE_GET(old_pte, PT_NOCONSIST)); 2045 } 2046 } 2047 2048 /* 2049 * If the old mapping wasn't valid, there's nothing more to do 2050 */ 2051 if (!PTE_ISVALID(old_pte)) { 2052 if (pp != NULL) 2053 x86_hm_exit(pp); 2054 return; 2055 } 2056 2057 /* 2058 * Take care of syncing any MOD/REF bits and removing the hment. 2059 */ 2060 if (pp != NULL) { 2061 if (!(flags & HAT_UNLOAD_NOSYNC)) 2062 hati_sync_pte_to_page(pp, old_pte, l); 2063 hm = hment_remove(pp, ht, entry); 2064 x86_hm_exit(pp); 2065 if (hm != NULL) 2066 hment_free(hm); 2067 } 2068 2069 /* 2070 * Handle book keeping in the htable and hat 2071 */ 2072 ASSERT(ht->ht_valid_cnt > 0); 2073 HTABLE_DEC(ht->ht_valid_cnt); 2074 PGCNT_DEC(hat, l); 2075 } 2076 2077 /* 2078 * very cheap unload implementation to special case some kernel addresses 2079 */ 2080 static void 2081 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags) 2082 { 2083 uintptr_t va = (uintptr_t)addr; 2084 uintptr_t eva = va + len; 2085 pgcnt_t pg_off; 2086 htable_t *ht; 2087 uint_t entry; 2088 void *pte_ptr; 2089 x86pte_t old_pte; 2090 2091 for (; va < eva; va += MMU_PAGESIZE) { 2092 /* 2093 * Get the PTE 2094 */ 2095 pg_off = mmu_btop(va - mmu.kmap_addr); 2096 if (mmu.pae_hat) { 2097 pte_ptr = mmu.kmap_ptes + pg_off; 2098 ATOMIC_LOAD64((x86pte_t *)pte_ptr, old_pte); 2099 } else { 2100 pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off; 2101 old_pte = *(x86pte32_t *)pte_ptr; 2102 } 2103 2104 /* 2105 * get the htable / entry 2106 */ 2107 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) 2108 >> LEVEL_SHIFT(1)]; 2109 entry = htable_va2entry(va, ht); 2110 2111 /* 2112 * use mostly common code to unmap it. 2113 */ 2114 hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr); 2115 } 2116 } 2117 2118 2119 /* 2120 * unload a range of virtual address space (no callback) 2121 */ 2122 void 2123 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2124 { 2125 uintptr_t va = (uintptr_t)addr; 2126 ASSERT(hat == kas.a_hat || va + len <= kernelbase); 2127 2128 /* 2129 * special case for performance. 2130 */ 2131 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 2132 ASSERT(hat == kas.a_hat); 2133 hat_kmap_unload(addr, len, flags); 2134 return; 2135 } 2136 hat_unload_callback(hat, addr, len, flags, NULL); 2137 } 2138 2139 /* 2140 * Do the callbacks for ranges being unloaded. 2141 */ 2142 typedef struct range_info { 2143 uintptr_t rng_va; 2144 ulong_t rng_cnt; 2145 level_t rng_level; 2146 } range_info_t; 2147 2148 static void 2149 handle_ranges(hat_callback_t *cb, uint_t cnt, range_info_t *range) 2150 { 2151 /* 2152 * do callbacks to upper level VM system 2153 */ 2154 while (cb != NULL && cnt > 0) { 2155 --cnt; 2156 cb->hcb_start_addr = (caddr_t)range[cnt].rng_va; 2157 cb->hcb_end_addr = cb->hcb_start_addr; 2158 cb->hcb_end_addr += 2159 range[cnt].rng_cnt << LEVEL_SIZE(range[cnt].rng_level); 2160 cb->hcb_function(cb); 2161 } 2162 } 2163 2164 /* 2165 * Unload a given range of addresses (has optional callback) 2166 * 2167 * Flags: 2168 * define HAT_UNLOAD 0x00 2169 * define HAT_UNLOAD_NOSYNC 0x02 2170 * define HAT_UNLOAD_UNLOCK 0x04 2171 * define HAT_UNLOAD_OTHER 0x08 - not used 2172 * define HAT_UNLOAD_UNMAP 0x10 - same as HAT_UNLOAD 2173 */ 2174 #define MAX_UNLOAD_CNT (8) 2175 void 2176 hat_unload_callback( 2177 hat_t *hat, 2178 caddr_t addr, 2179 size_t len, 2180 uint_t flags, 2181 hat_callback_t *cb) 2182 { 2183 uintptr_t vaddr = (uintptr_t)addr; 2184 uintptr_t eaddr = vaddr + len; 2185 htable_t *ht = NULL; 2186 uint_t entry; 2187 uintptr_t contig_va = (uintptr_t)-1L; 2188 range_info_t r[MAX_UNLOAD_CNT]; 2189 uint_t r_cnt = 0; 2190 x86pte_t old_pte; 2191 2192 HATIN(hat_unload_callback, hat, addr, len); 2193 ASSERT(hat == kas.a_hat || eaddr <= kernelbase); 2194 ASSERT(IS_PAGEALIGNED(vaddr)); 2195 ASSERT(IS_PAGEALIGNED(eaddr)); 2196 2197 while (vaddr < eaddr) { 2198 old_pte = htable_walk(hat, &ht, &vaddr, eaddr); 2199 if (ht == NULL) 2200 break; 2201 2202 ASSERT(!IN_VA_HOLE(vaddr)); 2203 2204 if (vaddr < (uintptr_t)addr) 2205 panic("hat_unload_callback(): unmap inside large page"); 2206 2207 /* 2208 * We'll do the call backs for contiguous ranges 2209 */ 2210 if (vaddr != contig_va || 2211 (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) { 2212 if (r_cnt == MAX_UNLOAD_CNT) { 2213 handle_ranges(cb, r_cnt, r); 2214 r_cnt = 0; 2215 } 2216 r[r_cnt].rng_va = vaddr; 2217 r[r_cnt].rng_cnt = 0; 2218 r[r_cnt].rng_level = ht->ht_level; 2219 ++r_cnt; 2220 } 2221 2222 /* 2223 * Unload one mapping from the page tables. 2224 */ 2225 entry = htable_va2entry(vaddr, ht); 2226 hat_pte_unmap(ht, entry, flags, old_pte, NULL); 2227 2228 ASSERT(ht->ht_level <= mmu.max_page_level); 2229 vaddr += LEVEL_SIZE(ht->ht_level); 2230 contig_va = vaddr; 2231 ++r[r_cnt - 1].rng_cnt; 2232 } 2233 if (ht) 2234 htable_release(ht); 2235 2236 /* 2237 * handle last range for callbacks 2238 */ 2239 if (r_cnt > 0) 2240 handle_ranges(cb, r_cnt, r); 2241 2242 HATOUT(hat_unload_callback, hat, addr); 2243 } 2244 2245 /* 2246 * synchronize mapping with software data structures 2247 * 2248 * This interface is currently only used by the working set monitor 2249 * driver. 2250 */ 2251 /*ARGSUSED*/ 2252 void 2253 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2254 { 2255 uintptr_t vaddr = (uintptr_t)addr; 2256 uintptr_t eaddr = vaddr + len; 2257 htable_t *ht = NULL; 2258 uint_t entry; 2259 x86pte_t pte; 2260 x86pte_t save_pte; 2261 x86pte_t new; 2262 page_t *pp; 2263 2264 ASSERT(!IN_VA_HOLE(vaddr)); 2265 ASSERT(IS_PAGEALIGNED(vaddr)); 2266 ASSERT(IS_PAGEALIGNED(eaddr)); 2267 ASSERT(hat == kas.a_hat || eaddr <= kernelbase); 2268 2269 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2270 try_again: 2271 pte = htable_walk(hat, &ht, &vaddr, eaddr); 2272 if (ht == NULL) 2273 break; 2274 entry = htable_va2entry(vaddr, ht); 2275 2276 if (PTE_GET(pte, PT_NOSYNC) || 2277 PTE_GET(pte, PT_REF | PT_MOD) == 0) 2278 continue; 2279 2280 /* 2281 * We need to acquire the mapping list lock to protect 2282 * against hat_pageunload(), hat_unload(), etc. 2283 */ 2284 pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level)); 2285 if (pp == NULL) 2286 break; 2287 x86_hm_enter(pp); 2288 save_pte = pte; 2289 pte = x86pte_get(ht, entry); 2290 if (pte != save_pte) { 2291 x86_hm_exit(pp); 2292 goto try_again; 2293 } 2294 if (PTE_GET(pte, PT_NOSYNC) || 2295 PTE_GET(pte, PT_REF | PT_MOD) == 0) { 2296 x86_hm_exit(pp); 2297 continue; 2298 } 2299 2300 /* 2301 * Need to clear ref or mod bits. We may compete with 2302 * hardware updating the R/M bits and have to try again. 2303 */ 2304 if (flags == HAT_SYNC_ZERORM) { 2305 new = pte; 2306 PTE_CLR(new, PT_REF | PT_MOD); 2307 pte = hati_update_pte(ht, entry, pte, new); 2308 if (pte != 0) { 2309 x86_hm_exit(pp); 2310 goto try_again; 2311 } 2312 } else { 2313 /* 2314 * sync the PTE to the page_t 2315 */ 2316 hati_sync_pte_to_page(pp, save_pte, ht->ht_level); 2317 } 2318 x86_hm_exit(pp); 2319 } 2320 if (ht) 2321 htable_release(ht); 2322 } 2323 2324 /* 2325 * void hat_map(hat, addr, len, flags) 2326 */ 2327 /*ARGSUSED*/ 2328 void 2329 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2330 { 2331 /* does nothing */ 2332 } 2333 2334 /* 2335 * uint_t hat_getattr(hat, addr, *attr) 2336 * returns attr for <hat,addr> in *attr. returns 0 if there was a 2337 * mapping and *attr is valid, nonzero if there was no mapping and 2338 * *attr is not valid. 2339 */ 2340 uint_t 2341 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr) 2342 { 2343 uintptr_t vaddr = ALIGN2PAGE(addr); 2344 htable_t *ht = NULL; 2345 x86pte_t pte; 2346 2347 ASSERT(hat == kas.a_hat || vaddr < kernelbase); 2348 2349 if (IN_VA_HOLE(vaddr)) 2350 return ((uint_t)-1); 2351 2352 ht = htable_getpte(hat, vaddr, NULL, &pte, MAX_PAGE_LEVEL); 2353 if (ht == NULL) 2354 return ((uint_t)-1); 2355 2356 if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) { 2357 htable_release(ht); 2358 return ((uint_t)-1); 2359 } 2360 2361 *attr = PROT_READ; 2362 if (PTE_GET(pte, PT_WRITABLE)) 2363 *attr |= PROT_WRITE; 2364 if (PTE_GET(pte, PT_USER)) 2365 *attr |= PROT_USER; 2366 if (!PTE_GET(pte, mmu.pt_nx)) 2367 *attr |= PROT_EXEC; 2368 if (PTE_GET(pte, PT_NOSYNC)) 2369 *attr |= HAT_NOSYNC; 2370 htable_release(ht); 2371 return (0); 2372 } 2373 2374 /* 2375 * hat_updateattr() applies the given attribute change to an existing mapping 2376 */ 2377 #define HAT_LOAD_ATTR 1 2378 #define HAT_SET_ATTR 2 2379 #define HAT_CLR_ATTR 3 2380 2381 static void 2382 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what) 2383 { 2384 uintptr_t vaddr = (uintptr_t)addr; 2385 uintptr_t eaddr = (uintptr_t)addr + len; 2386 htable_t *ht = NULL; 2387 uint_t entry; 2388 x86pte_t oldpte, newpte; 2389 page_t *pp; 2390 2391 ASSERT(IS_PAGEALIGNED(vaddr)); 2392 ASSERT(IS_PAGEALIGNED(eaddr)); 2393 ASSERT(hat == kas.a_hat || 2394 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 2395 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 2396 try_again: 2397 oldpte = htable_walk(hat, &ht, &vaddr, eaddr); 2398 if (ht == NULL) 2399 break; 2400 if (PTE_GET(oldpte, PT_NOCONSIST)) 2401 continue; 2402 2403 pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level)); 2404 if (pp == NULL) 2405 continue; 2406 x86_hm_enter(pp); 2407 2408 newpte = oldpte; 2409 /* 2410 * We found a page table entry in the desired range, 2411 * figure out the new attributes. 2412 */ 2413 if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) { 2414 if ((attr & PROT_WRITE) && 2415 !PTE_GET(oldpte, PT_WRITABLE)) 2416 newpte |= PT_WRITABLE; 2417 2418 if ((attr & HAT_NOSYNC) && !PTE_GET(oldpte, PT_NOSYNC)) 2419 newpte |= PT_NOSYNC; 2420 2421 if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx)) 2422 newpte &= ~mmu.pt_nx; 2423 } 2424 2425 if (what == HAT_LOAD_ATTR) { 2426 if (!(attr & PROT_WRITE) && 2427 PTE_GET(oldpte, PT_WRITABLE)) 2428 newpte &= ~PT_WRITABLE; 2429 2430 if (!(attr & HAT_NOSYNC) && PTE_GET(oldpte, PT_NOSYNC)) 2431 newpte &= ~PT_NOSYNC; 2432 2433 if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2434 newpte |= mmu.pt_nx; 2435 } 2436 2437 if (what == HAT_CLR_ATTR) { 2438 if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE)) 2439 newpte &= ~PT_WRITABLE; 2440 2441 if ((attr & HAT_NOSYNC) && PTE_GET(oldpte, PT_NOSYNC)) 2442 newpte &= ~PT_NOSYNC; 2443 2444 if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 2445 newpte |= mmu.pt_nx; 2446 } 2447 2448 /* 2449 * what about PROT_READ or others? this code only handles: 2450 * EXEC, WRITE, NOSYNC 2451 */ 2452 2453 /* 2454 * If new PTE really changed, update the table. 2455 */ 2456 if (newpte != oldpte) { 2457 entry = htable_va2entry(vaddr, ht); 2458 oldpte = hati_update_pte(ht, entry, oldpte, newpte); 2459 if (oldpte != 0) { 2460 x86_hm_exit(pp); 2461 goto try_again; 2462 } 2463 } 2464 x86_hm_exit(pp); 2465 } 2466 if (ht) 2467 htable_release(ht); 2468 } 2469 2470 /* 2471 * Various wrappers for hat_updateattr() 2472 */ 2473 void 2474 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2475 { 2476 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= kernelbase); 2477 hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR); 2478 } 2479 2480 void 2481 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2482 { 2483 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= kernelbase); 2484 hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR); 2485 } 2486 2487 void 2488 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2489 { 2490 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= kernelbase); 2491 hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR); 2492 } 2493 2494 void 2495 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot) 2496 { 2497 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= kernelbase); 2498 hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR); 2499 } 2500 2501 /*ARGSUSED*/ 2502 void 2503 hat_chgattr_pagedir(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 2504 { 2505 panic("hat_chgattr_pgdir() not supported - used by 80387 emulation"); 2506 } 2507 2508 /* 2509 * size_t hat_getpagesize(hat, addr) 2510 * returns pagesize in bytes for <hat, addr>. returns -1 of there is 2511 * no mapping. This is an advisory call. 2512 */ 2513 ssize_t 2514 hat_getpagesize(hat_t *hat, caddr_t addr) 2515 { 2516 uintptr_t vaddr = ALIGN2PAGE(addr); 2517 htable_t *ht; 2518 size_t pagesize; 2519 2520 ASSERT(hat == kas.a_hat || vaddr < kernelbase); 2521 if (IN_VA_HOLE(vaddr)) 2522 return (-1); 2523 ht = htable_getpage(hat, vaddr, NULL); 2524 if (ht == NULL) 2525 return (-1); 2526 pagesize = LEVEL_SIZE(ht->ht_level); 2527 htable_release(ht); 2528 return (pagesize); 2529 } 2530 2531 2532 2533 /* 2534 * pfn_t hat_getpfnum(hat, addr) 2535 * returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid. 2536 */ 2537 pfn_t 2538 hat_getpfnum(hat_t *hat, caddr_t addr) 2539 { 2540 uintptr_t vaddr = ALIGN2PAGE(addr); 2541 htable_t *ht; 2542 uint_t entry; 2543 pfn_t pfn = PFN_INVALID; 2544 2545 ASSERT(hat == kas.a_hat || vaddr < kernelbase); 2546 if (khat_running == 0) 2547 panic("hat_getpfnum(): called too early\n"); 2548 2549 if (IN_VA_HOLE(vaddr)) 2550 return (PFN_INVALID); 2551 2552 /* 2553 * A very common use of hat_getpfnum() is from the DDI for kernel pages. 2554 * Use the kmap_ptes (which also covers the 32 bit heap) to speed 2555 * this up. 2556 */ 2557 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2558 x86pte_t pte; 2559 pgcnt_t pg_off; 2560 2561 pg_off = mmu_btop(vaddr - mmu.kmap_addr); 2562 if (mmu.pae_hat) { 2563 ATOMIC_LOAD64(mmu.kmap_ptes + pg_off, pte); 2564 } else { 2565 pte = ((x86pte32_t *)mmu.kmap_ptes)[pg_off]; 2566 } 2567 if (!PTE_ISVALID(pte)) 2568 return (PFN_INVALID); 2569 /*LINTED [use of constant 0 causes a silly lint warning] */ 2570 return (PTE2PFN(pte, 0)); 2571 } 2572 2573 ht = htable_getpage(hat, vaddr, &entry); 2574 if (ht == NULL) 2575 return (PFN_INVALID); 2576 ASSERT(vaddr >= ht->ht_vaddr); 2577 ASSERT(vaddr <= HTABLE_LAST_PAGE(ht)); 2578 pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level); 2579 if (ht->ht_level > 0) 2580 pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level)); 2581 htable_release(ht); 2582 return (pfn); 2583 } 2584 2585 /* 2586 * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged. 2587 * Use hat_getpfnum(kas.a_hat, ...) instead. 2588 * 2589 * We'd like to return PFN_INVALID if the mappings have underlying page_t's 2590 * but can't right now due to the fact that some software has grown to use 2591 * this interface incorrectly. So for now when the interface is misused, 2592 * return a warning to the user that in the future it won't work in the 2593 * way they're abusing it, and carry on. 2594 * 2595 * Note that hat_getkpfnum() is never supported on amd64. 2596 */ 2597 #if !defined(__amd64) 2598 pfn_t 2599 hat_getkpfnum(caddr_t addr) 2600 { 2601 pfn_t pfn; 2602 int badcaller = 0; 2603 2604 2605 if (khat_running == 0) 2606 panic("hat_getkpfnum(): called too early\n"); 2607 if ((uintptr_t)addr < kernelbase) 2608 return (PFN_INVALID); 2609 2610 2611 if (segkpm && IS_KPM_ADDR(addr)) { 2612 badcaller = 1; 2613 pfn = hat_kpm_va2pfn(addr); 2614 } else { 2615 pfn = hat_getpfnum(kas.a_hat, addr); 2616 badcaller = pf_is_memory(pfn); 2617 } 2618 2619 if (badcaller) 2620 hat_getkpfnum_badcall(caller()); 2621 return (pfn); 2622 } 2623 #endif /* __amd64 */ 2624 2625 /* 2626 * int hat_probe(hat, addr) 2627 * return 0 if no valid mapping is present. Faster version 2628 * of hat_getattr in certain architectures. 2629 */ 2630 int 2631 hat_probe(hat_t *hat, caddr_t addr) 2632 { 2633 uintptr_t vaddr = ALIGN2PAGE(addr); 2634 uint_t entry; 2635 htable_t *ht; 2636 pgcnt_t pg_off; 2637 2638 ASSERT(hat == kas.a_hat || vaddr < kernelbase); 2639 ASSERT(hat == kas.a_hat || 2640 AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); 2641 if (IN_VA_HOLE(vaddr)) 2642 return (0); 2643 2644 /* 2645 * Most common use of hat_probe is from segmap. We special case it 2646 * for performance. 2647 */ 2648 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 2649 pg_off = mmu_btop(vaddr - mmu.kmap_addr); 2650 if (mmu.pae_hat) 2651 return (PTE_ISVALID(mmu.kmap_ptes[pg_off])); 2652 else 2653 return (PTE_ISVALID( 2654 ((x86pte32_t *)mmu.kmap_ptes)[pg_off])); 2655 } 2656 2657 ht = htable_getpage(hat, vaddr, &entry); 2658 if (ht == NULL) 2659 return (0); 2660 htable_release(ht); 2661 return (1); 2662 } 2663 2664 /* 2665 * Simple implementation of ISM. hat_share() is just like hat_memload_array(), 2666 * except that we use the ism_hat's existing mappings to determine the pages 2667 * and protections to use for this hat. In case we find a properly aligned 2668 * and sized pagetable of 4K mappings, we will attempt to share the pagetable 2669 * itself. 2670 */ 2671 /*ARGSUSED*/ 2672 int 2673 hat_share( 2674 hat_t *hat, 2675 caddr_t addr, 2676 hat_t *ism_hat, 2677 caddr_t src_addr, 2678 size_t len, /* almost useless value, see below.. */ 2679 uint_t ismszc) 2680 { 2681 uintptr_t vaddr_start = (uintptr_t)addr; 2682 uintptr_t vaddr; 2683 uintptr_t pt_vaddr; 2684 uintptr_t eaddr = vaddr_start + len; 2685 uintptr_t ism_addr_start = (uintptr_t)src_addr; 2686 uintptr_t ism_addr = ism_addr_start; 2687 uintptr_t e_ism_addr = ism_addr + len; 2688 htable_t *ism_ht = NULL; 2689 htable_t *ht; 2690 x86pte_t pte; 2691 page_t *pp; 2692 pfn_t pfn; 2693 level_t l; 2694 pgcnt_t pgcnt; 2695 uint_t prot; 2696 uint_t valid_cnt; 2697 2698 /* 2699 * We might be asked to share an empty DISM hat by as_dup() 2700 */ 2701 ASSERT(hat != kas.a_hat); 2702 ASSERT(eaddr <= kernelbase); 2703 if (!(ism_hat->hat_flags & HAT_SHARED)) { 2704 ASSERT(hat_get_mapped_size(ism_hat) == 0); 2705 return (0); 2706 } 2707 2708 /* 2709 * The SPT segment driver often passes us a size larger than there are 2710 * valid mappings. That's because it rounds the segment size up to a 2711 * large pagesize, even if the actual memory mapped by ism_hat is less. 2712 */ 2713 HATIN(hat_share, hat, addr, len); 2714 ASSERT(IS_PAGEALIGNED(vaddr_start)); 2715 ASSERT(IS_PAGEALIGNED(ism_addr_start)); 2716 ASSERT(ism_hat->hat_flags & HAT_SHARED); 2717 while (ism_addr < e_ism_addr) { 2718 /* 2719 * use htable_walk to get the next valid ISM mapping 2720 */ 2721 pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr); 2722 if (ism_ht == NULL) 2723 break; 2724 2725 /* 2726 * Find the largest page size we can use, based on the 2727 * ISM mapping size, our address alignment and the remaining 2728 * map length. 2729 */ 2730 vaddr = vaddr_start + (ism_addr - ism_addr_start); 2731 for (l = ism_ht->ht_level; l > 0; --l) { 2732 if (LEVEL_SIZE(l) <= eaddr - vaddr && 2733 (vaddr & LEVEL_OFFSET(l)) == 0) 2734 break; 2735 } 2736 2737 /* 2738 * attempt to share the pagetable 2739 * 2740 * - only 4K pagetables are shared (ie. level == 0) 2741 * - the hat_share() length must cover the whole pagetable 2742 * - the shared address must align at level 1 2743 * - a shared PTE for this address already exists OR 2744 * - no page table for this address exists yet 2745 */ 2746 pt_vaddr = 2747 vaddr_start + (ism_ht->ht_vaddr - ism_addr_start); 2748 if (ism_ht->ht_level == 0 && 2749 ism_ht->ht_vaddr + LEVEL_SIZE(1) <= e_ism_addr && 2750 (pt_vaddr & LEVEL_OFFSET(1)) == 0) { 2751 2752 ht = htable_lookup(hat, pt_vaddr, 0); 2753 if (ht == NULL) 2754 ht = htable_create(hat, pt_vaddr, 0, ism_ht); 2755 2756 if (ht->ht_level > 0 || 2757 !(ht->ht_flags & HTABLE_SHARED_PFN)) { 2758 2759 htable_release(ht); 2760 2761 } else { 2762 2763 /* 2764 * share the page table 2765 */ 2766 ASSERT(ht->ht_level == 0); 2767 ASSERT(ht->ht_shares == ism_ht); 2768 valid_cnt = ism_ht->ht_valid_cnt; 2769 atomic_add_long(&hat->hat_pages_mapped[0], 2770 valid_cnt - ht->ht_valid_cnt); 2771 ht->ht_valid_cnt = valid_cnt; 2772 htable_release(ht); 2773 ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(1); 2774 htable_release(ism_ht); 2775 ism_ht = NULL; 2776 continue; 2777 } 2778 } 2779 2780 /* 2781 * Unable to share the page table. Instead we will 2782 * create new mappings from the values in the ISM mappings. 2783 * 2784 * The ISM mapping might be larger than the share area, 2785 * be careful to trunctate it if needed. 2786 */ 2787 if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) { 2788 pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level)); 2789 } else { 2790 pgcnt = mmu_btop(eaddr - vaddr); 2791 l = 0; 2792 } 2793 2794 pfn = PTE2PFN(pte, ism_ht->ht_level); 2795 ASSERT(pfn != PFN_INVALID); 2796 while (pgcnt > 0) { 2797 /* 2798 * Make a new pte for the PFN for this level. 2799 * Copy protections for the pte from the ISM pte. 2800 */ 2801 pp = page_numtopp_nolock(pfn); 2802 ASSERT(pp != NULL); 2803 2804 prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK; 2805 if (PTE_GET(pte, PT_WRITABLE)) 2806 prot |= PROT_WRITE; 2807 if (!PTE_GET(pte, PT_NX)) 2808 prot |= PROT_EXEC; 2809 2810 /* 2811 * XX64 -- can shm ever be written to swap? 2812 * if not we could use HAT_NOSYNC here. 2813 */ 2814 hati_load_common(hat, vaddr, pp, prot, 2815 HAT_LOAD, l, pfn); 2816 2817 vaddr += LEVEL_SIZE(l); 2818 ism_addr += LEVEL_SIZE(l); 2819 pfn += mmu_btop(LEVEL_SIZE(l)); 2820 pgcnt -= mmu_btop(LEVEL_SIZE(l)); 2821 } 2822 } 2823 if (ism_ht != NULL) 2824 htable_release(ism_ht); 2825 2826 HATOUT(hat_share, hat, addr); 2827 return (0); 2828 } 2829 2830 2831 /* 2832 * hat_unshare() is similar to hat_unload_callback(), but 2833 * we have to look for empty shared pagetables. Note that 2834 * hat_unshare() is always invoked against an entire segment. 2835 */ 2836 /*ARGSUSED*/ 2837 void 2838 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc) 2839 { 2840 uintptr_t vaddr = (uintptr_t)addr; 2841 uintptr_t eaddr = vaddr + len; 2842 htable_t *ht = NULL; 2843 uint_t need_demaps = 0; 2844 2845 ASSERT(hat != kas.a_hat); 2846 ASSERT(eaddr <= kernelbase); 2847 HATIN(hat_unshare, hat, addr, len); 2848 ASSERT(IS_PAGEALIGNED(vaddr)); 2849 ASSERT(IS_PAGEALIGNED(eaddr)); 2850 2851 /* 2852 * First go through and remove any shared pagetables. 2853 * 2854 * Note that it's ok to delay the demap until the entire range is 2855 * finished, because if hat_pageunload() were to unload a shared 2856 * pagetable page, its hat_demap() will do a global user TLB invalidate. 2857 */ 2858 while (vaddr < eaddr) { 2859 ASSERT(!IN_VA_HOLE(vaddr)); 2860 /* 2861 * find the pagetable that would map the current address 2862 */ 2863 ht = htable_lookup(hat, vaddr, 0); 2864 if (ht != NULL) { 2865 if (ht->ht_flags & HTABLE_SHARED_PFN) { 2866 /* 2867 * clear mapped pages count, set valid_cnt to 0 2868 * and let htable_release() finish the job 2869 */ 2870 atomic_add_long(&hat->hat_pages_mapped[0], 2871 -ht->ht_valid_cnt); 2872 ht->ht_valid_cnt = 0; 2873 need_demaps = 1; 2874 } 2875 htable_release(ht); 2876 } 2877 vaddr = (vaddr & LEVEL_MASK(1)) + LEVEL_SIZE(1); 2878 } 2879 2880 /* 2881 * flush the TLBs - since we're probably dealing with MANY mappings 2882 * we do just one CR3 reload. 2883 */ 2884 if (!(hat->hat_flags & HAT_FREEING) && need_demaps) 2885 hat_demap(hat, DEMAP_ALL_ADDR); 2886 2887 /* 2888 * Now go back and clean up any unaligned mappings that 2889 * couldn't share pagetables. 2890 */ 2891 hat_unload(hat, addr, len, HAT_UNLOAD_UNMAP); 2892 2893 HATOUT(hat_unshare, hat, addr); 2894 } 2895 2896 2897 /* 2898 * hat_reserve() does nothing 2899 */ 2900 /*ARGSUSED*/ 2901 void 2902 hat_reserve(struct as *as, caddr_t addr, size_t len) 2903 { 2904 } 2905 2906 2907 /* 2908 * Called when all mappings to a page should have write permission removed. 2909 * Mostly stolem from hat_pagesync() 2910 */ 2911 static void 2912 hati_page_clrwrt(struct page *pp) 2913 { 2914 hment_t *hm = NULL; 2915 htable_t *ht; 2916 uint_t entry; 2917 x86pte_t old; 2918 x86pte_t new; 2919 uint_t pszc = 0; 2920 2921 next_size: 2922 /* 2923 * walk thru the mapping list clearing write permission 2924 */ 2925 x86_hm_enter(pp); 2926 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 2927 if (ht->ht_level < pszc) 2928 continue; 2929 old = x86pte_get(ht, entry); 2930 2931 for (;;) { 2932 /* 2933 * Is this mapping of interest? 2934 */ 2935 if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum || 2936 PTE_GET(old, PT_WRITABLE) == 0) 2937 break; 2938 2939 /* 2940 * Clear ref/mod writable bits. This requires cross 2941 * calls to ensure any executing TLBs see cleared bits. 2942 */ 2943 new = old; 2944 PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE); 2945 old = hati_update_pte(ht, entry, old, new); 2946 if (old != 0) 2947 continue; 2948 2949 break; 2950 } 2951 } 2952 x86_hm_exit(pp); 2953 while (pszc < pp->p_szc) { 2954 page_t *tpp; 2955 pszc++; 2956 tpp = PP_GROUPLEADER(pp, pszc); 2957 if (pp != tpp) { 2958 pp = tpp; 2959 goto next_size; 2960 } 2961 } 2962 } 2963 2964 /* 2965 * void hat_page_setattr(pp, flag) 2966 * void hat_page_clrattr(pp, flag) 2967 * used to set/clr ref/mod bits. 2968 */ 2969 void 2970 hat_page_setattr(struct page *pp, uint_t flag) 2971 { 2972 vnode_t *vp = pp->p_vnode; 2973 kmutex_t *vphm = NULL; 2974 page_t **listp; 2975 2976 if (PP_GETRM(pp, flag) == flag) 2977 return; 2978 2979 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 2980 vphm = page_vnode_mutex(vp); 2981 mutex_enter(vphm); 2982 } 2983 2984 PP_SETRM(pp, flag); 2985 2986 if (vphm != NULL) { 2987 2988 /* 2989 * Some File Systems examine v_pages for NULL w/o 2990 * grabbing the vphm mutex. Must not let it become NULL when 2991 * pp is the only page on the list. 2992 */ 2993 if (pp->p_vpnext != pp) { 2994 page_vpsub(&vp->v_pages, pp); 2995 if (vp->v_pages != NULL) 2996 listp = &vp->v_pages->p_vpprev->p_vpnext; 2997 else 2998 listp = &vp->v_pages; 2999 page_vpadd(listp, pp); 3000 } 3001 mutex_exit(vphm); 3002 } 3003 } 3004 3005 void 3006 hat_page_clrattr(struct page *pp, uint_t flag) 3007 { 3008 vnode_t *vp = pp->p_vnode; 3009 kmutex_t *vphm = NULL; 3010 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 3011 3012 /* 3013 * for vnode with a sorted v_pages list, we need to change 3014 * the attributes and the v_pages list together under page_vnode_mutex. 3015 */ 3016 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 3017 vphm = page_vnode_mutex(vp); 3018 mutex_enter(vphm); 3019 } 3020 3021 PP_CLRRM(pp, flag); 3022 3023 if (vphm != NULL) { 3024 3025 /* 3026 * Some File Systems examine v_pages for NULL w/o 3027 * grabbing the vphm mutex. Must not let it become NULL when 3028 * pp is the only page on the list. 3029 */ 3030 if (pp->p_vpnext != pp) { 3031 page_vpsub(&vp->v_pages, pp); 3032 page_vpadd(&vp->v_pages, pp); 3033 } 3034 mutex_exit(vphm); 3035 3036 /* 3037 * VMODSORT works by removing write permissions and getting 3038 * a fault when a page is made dirty. At this point 3039 * we need to remove write permission from all mappings 3040 * to this page. 3041 */ 3042 hati_page_clrwrt(pp); 3043 } 3044 } 3045 3046 /* 3047 * If flag is specified, returns 0 if attribute is disabled 3048 * and non zero if enabled. If flag specifes multiple attributs 3049 * then returns 0 if ALL atriibutes are disabled. This is an advisory 3050 * call. 3051 */ 3052 uint_t 3053 hat_page_getattr(struct page *pp, uint_t flag) 3054 { 3055 return (PP_GETRM(pp, flag)); 3056 } 3057 3058 3059 /* 3060 * common code used by hat_pageunload() and hment_steal() 3061 */ 3062 hment_t * 3063 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry) 3064 { 3065 x86pte_t old_pte; 3066 pfn_t pfn = pp->p_pagenum; 3067 hment_t *hm; 3068 3069 /* 3070 * We need to acquire a hold on the htable in order to 3071 * do the invalidate. We know the htable must exist, since 3072 * unmap's don't release the htable until after removing any 3073 * hment. Having x86_hm_enter() keeps that from proceeding. 3074 */ 3075 htable_acquire(ht); 3076 3077 /* 3078 * Invalidate the PTE and remove the hment. 3079 */ 3080 old_pte = x86pte_invalidate_pfn(ht, entry, pfn, NULL); 3081 if (PTE2PFN(old_pte, ht->ht_level) != pfn) { 3082 panic("x86pte_invalidate_pfn() failure found PTE = " FMT_PTE 3083 " pfn being unmapped is %lx ht=0x%lx entry=0x%x", 3084 old_pte, pfn, (uintptr_t)ht, entry); 3085 } 3086 3087 /* 3088 * Clean up all the htable information for this mapping 3089 */ 3090 ASSERT(ht->ht_valid_cnt > 0); 3091 HTABLE_DEC(ht->ht_valid_cnt); 3092 PGCNT_DEC(ht->ht_hat, ht->ht_level); 3093 3094 /* 3095 * sync ref/mod bits to the page_t 3096 */ 3097 if (PTE_GET(old_pte, PT_NOSYNC) == 0) 3098 hati_sync_pte_to_page(pp, old_pte, ht->ht_level); 3099 3100 /* 3101 * Remove the mapping list entry for this page. 3102 */ 3103 hm = hment_remove(pp, ht, entry); 3104 3105 /* 3106 * drop the mapping list lock so that we might free the 3107 * hment and htable. 3108 */ 3109 x86_hm_exit(pp); 3110 htable_release(ht); 3111 return (hm); 3112 } 3113 3114 /* 3115 * Unload all translations to a page. If the page is a subpage of a large 3116 * page, the large page mappings are also removed. 3117 * 3118 * The forceflags are unused. 3119 */ 3120 3121 /*ARGSUSED*/ 3122 static int 3123 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag) 3124 { 3125 page_t *cur_pp = pp; 3126 hment_t *hm; 3127 hment_t *prev; 3128 htable_t *ht; 3129 uint_t entry; 3130 level_t level; 3131 3132 /* 3133 * The loop with next_size handles pages with multiple pagesize mappings 3134 */ 3135 next_size: 3136 for (;;) { 3137 3138 /* 3139 * Get a mapping list entry 3140 */ 3141 x86_hm_enter(cur_pp); 3142 for (prev = NULL; ; prev = hm) { 3143 hm = hment_walk(cur_pp, &ht, &entry, prev); 3144 if (hm == NULL) { 3145 x86_hm_exit(cur_pp); 3146 3147 /* 3148 * If not part of a larger page, we're done. 3149 */ 3150 if (cur_pp->p_szc <= pg_szcd) 3151 return (0); 3152 3153 /* 3154 * Else check the next larger page size. 3155 * hat_page_demote() may decrease p_szc 3156 * but that's ok we'll just take an extra 3157 * trip discover there're no larger mappings 3158 * and return. 3159 */ 3160 ++pg_szcd; 3161 cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd); 3162 goto next_size; 3163 } 3164 3165 /* 3166 * If this mapping size matches, remove it. 3167 */ 3168 level = ht->ht_level; 3169 if (level == pg_szcd) 3170 break; 3171 } 3172 3173 /* 3174 * Remove the mapping list entry for this page. 3175 * Note this does the x86_hm_exit() for us. 3176 */ 3177 hm = hati_page_unmap(cur_pp, ht, entry); 3178 if (hm != NULL) 3179 hment_free(hm); 3180 } 3181 } 3182 3183 int 3184 hat_pageunload(struct page *pp, uint_t forceflag) 3185 { 3186 ASSERT(PAGE_EXCL(pp)); 3187 return (hati_pageunload(pp, 0, forceflag)); 3188 } 3189 3190 /* 3191 * Unload all large mappings to pp and reduce by 1 p_szc field of every large 3192 * page level that included pp. 3193 * 3194 * pp must be locked EXCL. Even though no other constituent pages are locked 3195 * it's legal to unload large mappings to pp because all constituent pages of 3196 * large locked mappings have to be locked SHARED. therefore if we have EXCL 3197 * lock on one of constituent pages none of the large mappings to pp are 3198 * locked. 3199 * 3200 * Change (always decrease) p_szc field starting from the last constituent 3201 * page and ending with root constituent page so that root's pszc always shows 3202 * the area where hat_page_demote() may be active. 3203 * 3204 * This mechanism is only used for file system pages where it's not always 3205 * possible to get EXCL locks on all constituent pages to demote the size code 3206 * (as is done for anonymous or kernel large pages). 3207 */ 3208 void 3209 hat_page_demote(page_t *pp) 3210 { 3211 uint_t pszc; 3212 uint_t rszc; 3213 uint_t szc; 3214 page_t *rootpp; 3215 page_t *firstpp; 3216 page_t *lastpp; 3217 pgcnt_t pgcnt; 3218 3219 ASSERT(PAGE_EXCL(pp)); 3220 ASSERT(!PP_ISFREE(pp)); 3221 ASSERT(page_szc_lock_assert(pp)); 3222 3223 if (pp->p_szc == 0) 3224 return; 3225 3226 rootpp = PP_GROUPLEADER(pp, 1); 3227 (void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD); 3228 3229 /* 3230 * all large mappings to pp are gone 3231 * and no new can be setup since pp is locked exclusively. 3232 * 3233 * Lock the root to make sure there's only one hat_page_demote() 3234 * outstanding within the area of this root's pszc. 3235 * 3236 * Second potential hat_page_demote() is already eliminated by upper 3237 * VM layer via page_szc_lock() but we don't rely on it and use our 3238 * own locking (so that upper layer locking can be changed without 3239 * assumptions that hat depends on upper layer VM to prevent multiple 3240 * hat_page_demote() to be issued simultaneously to the same large 3241 * page). 3242 */ 3243 again: 3244 pszc = pp->p_szc; 3245 if (pszc == 0) 3246 return; 3247 rootpp = PP_GROUPLEADER(pp, pszc); 3248 x86_hm_enter(rootpp); 3249 /* 3250 * If root's p_szc is different from pszc we raced with another 3251 * hat_page_demote(). Drop the lock and try to find the root again. 3252 * If root's p_szc is greater than pszc previous hat_page_demote() is 3253 * not done yet. Take and release mlist lock of root's root to wait 3254 * for previous hat_page_demote() to complete. 3255 */ 3256 if ((rszc = rootpp->p_szc) != pszc) { 3257 x86_hm_exit(rootpp); 3258 if (rszc > pszc) { 3259 /* p_szc of a locked non free page can't increase */ 3260 ASSERT(pp != rootpp); 3261 3262 rootpp = PP_GROUPLEADER(rootpp, rszc); 3263 x86_hm_enter(rootpp); 3264 x86_hm_exit(rootpp); 3265 } 3266 goto again; 3267 } 3268 ASSERT(pp->p_szc == pszc); 3269 3270 /* 3271 * Decrement by 1 p_szc of every constituent page of a region that 3272 * covered pp. For example if original szc is 3 it gets changed to 2 3273 * everywhere except in region 2 that covered pp. Region 2 that 3274 * covered pp gets demoted to 1 everywhere except in region 1 that 3275 * covered pp. The region 1 that covered pp is demoted to region 3276 * 0. It's done this way because from region 3 we removed level 3 3277 * mappings, from region 2 that covered pp we removed level 2 mappings 3278 * and from region 1 that covered pp we removed level 1 mappings. All 3279 * changes are done from from high pfn's to low pfn's so that roots 3280 * are changed last allowing one to know the largest region where 3281 * hat_page_demote() is stil active by only looking at the root page. 3282 * 3283 * This algorithm is implemented in 2 while loops. First loop changes 3284 * p_szc of pages to the right of pp's level 1 region and second 3285 * loop changes p_szc of pages of level 1 region that covers pp 3286 * and all pages to the left of level 1 region that covers pp. 3287 * In the first loop p_szc keeps dropping with every iteration 3288 * and in the second loop it keeps increasing with every iteration. 3289 * 3290 * First loop description: Demote pages to the right of pp outside of 3291 * level 1 region that covers pp. In every iteration of the while 3292 * loop below find the last page of szc region and the first page of 3293 * (szc - 1) region that is immediately to the right of (szc - 1) 3294 * region that covers pp. From last such page to first such page 3295 * change every page's szc to szc - 1. Decrement szc and continue 3296 * looping until szc is 1. If pp belongs to the last (szc - 1) region 3297 * of szc region skip to the next iteration. 3298 */ 3299 szc = pszc; 3300 while (szc > 1) { 3301 lastpp = PP_GROUPLEADER(pp, szc); 3302 pgcnt = page_get_pagecnt(szc); 3303 lastpp += pgcnt - 1; 3304 firstpp = PP_GROUPLEADER(pp, (szc - 1)); 3305 pgcnt = page_get_pagecnt(szc - 1); 3306 if (lastpp - firstpp < pgcnt) { 3307 szc--; 3308 continue; 3309 } 3310 firstpp += pgcnt; 3311 while (lastpp != firstpp) { 3312 ASSERT(lastpp->p_szc == pszc); 3313 lastpp->p_szc = szc - 1; 3314 lastpp--; 3315 } 3316 firstpp->p_szc = szc - 1; 3317 szc--; 3318 } 3319 3320 /* 3321 * Second loop description: 3322 * First iteration changes p_szc to 0 of every 3323 * page of level 1 region that covers pp. 3324 * Subsequent iterations find last page of szc region 3325 * immediately to the left of szc region that covered pp 3326 * and first page of (szc + 1) region that covers pp. 3327 * From last to first page change p_szc of every page to szc. 3328 * Increment szc and continue looping until szc is pszc. 3329 * If pp belongs to the fist szc region of (szc + 1) region 3330 * skip to the next iteration. 3331 * 3332 */ 3333 szc = 0; 3334 while (szc < pszc) { 3335 firstpp = PP_GROUPLEADER(pp, (szc + 1)); 3336 if (szc == 0) { 3337 pgcnt = page_get_pagecnt(1); 3338 lastpp = firstpp + (pgcnt - 1); 3339 } else { 3340 lastpp = PP_GROUPLEADER(pp, szc); 3341 if (firstpp == lastpp) { 3342 szc++; 3343 continue; 3344 } 3345 lastpp--; 3346 pgcnt = page_get_pagecnt(szc); 3347 } 3348 while (lastpp != firstpp) { 3349 ASSERT(lastpp->p_szc == pszc); 3350 lastpp->p_szc = szc; 3351 lastpp--; 3352 } 3353 firstpp->p_szc = szc; 3354 if (firstpp == rootpp) 3355 break; 3356 szc++; 3357 } 3358 x86_hm_exit(rootpp); 3359 } 3360 3361 /* 3362 * get hw stats from hardware into page struct and reset hw stats 3363 * returns attributes of page 3364 * Flags for hat_pagesync, hat_getstat, hat_sync 3365 * 3366 * define HAT_SYNC_ZERORM 0x01 3367 * 3368 * Additional flags for hat_pagesync 3369 * 3370 * define HAT_SYNC_STOPON_REF 0x02 3371 * define HAT_SYNC_STOPON_MOD 0x04 3372 * define HAT_SYNC_STOPON_RM 0x06 3373 * define HAT_SYNC_STOPON_SHARED 0x08 3374 */ 3375 uint_t 3376 hat_pagesync(struct page *pp, uint_t flags) 3377 { 3378 hment_t *hm = NULL; 3379 htable_t *ht; 3380 uint_t entry; 3381 x86pte_t old, save_old; 3382 x86pte_t new; 3383 uchar_t nrmbits = P_REF|P_MOD|P_RO; 3384 extern ulong_t po_share; 3385 page_t *save_pp = pp; 3386 uint_t pszc = 0; 3387 3388 ASSERT(PAGE_LOCKED(pp) || panicstr); 3389 3390 if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD)) 3391 return (pp->p_nrm & nrmbits); 3392 3393 if ((flags & HAT_SYNC_ZERORM) == 0) { 3394 3395 if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp)) 3396 return (pp->p_nrm & nrmbits); 3397 3398 if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp)) 3399 return (pp->p_nrm & nrmbits); 3400 3401 if ((flags & HAT_SYNC_STOPON_SHARED) != 0 && 3402 hat_page_getshare(pp) > po_share) { 3403 if (PP_ISRO(pp)) 3404 PP_SETREF(pp); 3405 return (pp->p_nrm & nrmbits); 3406 } 3407 } 3408 3409 next_size: 3410 /* 3411 * walk thru the mapping list syncing (and clearing) ref/mod bits. 3412 */ 3413 x86_hm_enter(pp); 3414 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 3415 if (ht->ht_level < pszc) 3416 continue; 3417 old = x86pte_get(ht, entry); 3418 try_again: 3419 3420 ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum); 3421 3422 if (PTE_GET(old, PT_REF | PT_MOD) == 0) 3423 continue; 3424 3425 save_old = old; 3426 if ((flags & HAT_SYNC_ZERORM) != 0) { 3427 3428 /* 3429 * Need to clear ref or mod bits. Need to demap 3430 * to make sure any executing TLBs see cleared bits. 3431 */ 3432 new = old; 3433 PTE_CLR(new, PT_REF | PT_MOD); 3434 old = hati_update_pte(ht, entry, old, new); 3435 if (old != 0) 3436 goto try_again; 3437 3438 old = save_old; 3439 } 3440 3441 /* 3442 * Sync the PTE 3443 */ 3444 if (!(flags & HAT_SYNC_ZERORM) && PTE_GET(old, PT_NOSYNC) == 0) 3445 hati_sync_pte_to_page(pp, old, ht->ht_level); 3446 3447 /* 3448 * can stop short if we found a ref'd or mod'd page 3449 */ 3450 if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) || 3451 (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) { 3452 x86_hm_exit(pp); 3453 return (save_pp->p_nrm & nrmbits); 3454 } 3455 } 3456 x86_hm_exit(pp); 3457 while (pszc < pp->p_szc) { 3458 page_t *tpp; 3459 pszc++; 3460 tpp = PP_GROUPLEADER(pp, pszc); 3461 if (pp != tpp) { 3462 pp = tpp; 3463 goto next_size; 3464 } 3465 } 3466 return (save_pp->p_nrm & nrmbits); 3467 } 3468 3469 /* 3470 * returns approx number of mappings to this pp. A return of 0 implies 3471 * there are no mappings to the page. 3472 */ 3473 ulong_t 3474 hat_page_getshare(page_t *pp) 3475 { 3476 uint_t cnt; 3477 cnt = hment_mapcnt(pp); 3478 return (cnt); 3479 } 3480 3481 /* 3482 * hat_softlock isn't supported anymore 3483 */ 3484 /*ARGSUSED*/ 3485 faultcode_t 3486 hat_softlock( 3487 hat_t *hat, 3488 caddr_t addr, 3489 size_t *len, 3490 struct page **page_array, 3491 uint_t flags) 3492 { 3493 return (FC_NOSUPPORT); 3494 } 3495 3496 3497 3498 /* 3499 * Routine to expose supported HAT features to platform independent code. 3500 */ 3501 /*ARGSUSED*/ 3502 int 3503 hat_supported(enum hat_features feature, void *arg) 3504 { 3505 switch (feature) { 3506 3507 case HAT_SHARED_PT: /* this is really ISM */ 3508 return (1); 3509 3510 case HAT_DYNAMIC_ISM_UNMAP: 3511 return (0); 3512 3513 case HAT_VMODSORT: 3514 return (1); 3515 3516 default: 3517 panic("hat_supported() - unknown feature"); 3518 } 3519 return (0); 3520 } 3521 3522 /* 3523 * Called when a thread is exiting and has been switched to the kernel AS 3524 */ 3525 void 3526 hat_thread_exit(kthread_t *thd) 3527 { 3528 ASSERT(thd->t_procp->p_as == &kas); 3529 hat_switch(thd->t_procp->p_as->a_hat); 3530 } 3531 3532 /* 3533 * Setup the given brand new hat structure as the new HAT on this cpu's mmu. 3534 */ 3535 /*ARGSUSED*/ 3536 void 3537 hat_setup(hat_t *hat, int flags) 3538 { 3539 kpreempt_disable(); 3540 3541 hat_switch(hat); 3542 3543 kpreempt_enable(); 3544 } 3545 3546 /* 3547 * Prepare for a CPU private mapping for the given address. 3548 * 3549 * The address can only be used from a single CPU and can be remapped 3550 * using hat_mempte_remap(). Return the address of the PTE. 3551 * 3552 * We do the htable_create() if necessary and increment the valid count so 3553 * the htable can't disappear. We also hat_devload() the page table into 3554 * kernel so that the PTE is quickly accessed. 3555 */ 3556 void * 3557 hat_mempte_kern_setup(caddr_t addr, void *pt) 3558 { 3559 uintptr_t va = (uintptr_t)addr; 3560 htable_t *ht; 3561 uint_t entry; 3562 x86pte_t oldpte; 3563 caddr_t p = (caddr_t)pt; 3564 3565 ASSERT(IS_PAGEALIGNED(va)); 3566 ASSERT(!IN_VA_HOLE(va)); 3567 ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0); 3568 if (ht == NULL) { 3569 /* 3570 * Note that we don't need a hat_reserves_exit() check 3571 * for this htable_create(), since that'll be done by the 3572 * hat_devload() just below. 3573 */ 3574 ht = htable_create(kas.a_hat, va, 0, NULL); 3575 entry = htable_va2entry(va, ht); 3576 ASSERT(ht->ht_level == 0); 3577 oldpte = x86pte_get(ht, entry); 3578 } 3579 if (PTE_ISVALID(oldpte)) 3580 panic("hat_mempte_setup(): address already mapped" 3581 "ht=%p, entry=%d, pte=" FMT_PTE, ht, entry, oldpte); 3582 3583 /* 3584 * increment ht_valid_cnt so that the pagetable can't disappear 3585 */ 3586 HTABLE_INC(ht->ht_valid_cnt); 3587 3588 /* 3589 * now we need to map the page holding the pagetable for va into 3590 * the kernel's address space. 3591 */ 3592 hat_devload(kas.a_hat, p, MMU_PAGESIZE, ht->ht_pfn, 3593 PROT_READ | PROT_WRITE | HAT_NOSYNC | HAT_UNORDERED_OK, 3594 HAT_LOAD | HAT_LOAD_NOCONSIST); 3595 3596 /* 3597 * return the PTE address to the caller. 3598 */ 3599 htable_release(ht); 3600 p += entry << mmu.pte_size_shift; 3601 return ((void *)p); 3602 } 3603 3604 /* 3605 * Prepare for a CPU private mapping for the given address. 3606 */ 3607 void * 3608 hat_mempte_setup(caddr_t addr) 3609 { 3610 x86pte_t *p; 3611 3612 p = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP); 3613 return (hat_mempte_kern_setup(addr, p)); 3614 } 3615 3616 /* 3617 * Release a CPU private mapping for the given address. 3618 * We decrement the htable valid count so it might be destroyed. 3619 */ 3620 void 3621 hat_mempte_release(caddr_t addr, void *pteptr) 3622 { 3623 htable_t *ht; 3624 uintptr_t va = ALIGN2PAGE(pteptr); 3625 3626 /* 3627 * first invalidate any left over mapping and decrement the 3628 * htable's mapping count 3629 */ 3630 if (mmu.pae_hat) 3631 *(x86pte_t *)pteptr = 0; 3632 else 3633 *(x86pte32_t *)pteptr = 0; 3634 mmu_tlbflush_entry(addr); 3635 ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0); 3636 if (ht == NULL) 3637 panic("hat_mempte_release(): invalid address"); 3638 ASSERT(ht->ht_level == 0); 3639 HTABLE_DEC(ht->ht_valid_cnt); 3640 htable_release(ht); 3641 3642 /* 3643 * now blow away the kernel mapping to the page table page 3644 * XX64 -- see comment in hat_mempte_setup() 3645 */ 3646 hat_unload_callback(kas.a_hat, (caddr_t)va, MMU_PAGESIZE, 3647 HAT_UNLOAD, NULL); 3648 } 3649 3650 /* 3651 * Apply a temporary CPU private mapping to a page. We flush the TLB only 3652 * on this CPU, so this ought to have been called with preemption disabled. 3653 */ 3654 void 3655 hat_mempte_remap( 3656 pfn_t pfn, 3657 caddr_t addr, 3658 void *pteptr, 3659 uint_t attr, 3660 uint_t flags) 3661 { 3662 uintptr_t va = (uintptr_t)addr; 3663 x86pte_t pte; 3664 3665 /* 3666 * Remap the given PTE to the new page's PFN. Invalidate only 3667 * on this CPU. 3668 */ 3669 #ifdef DEBUG 3670 htable_t *ht; 3671 uint_t entry; 3672 3673 ASSERT(IS_PAGEALIGNED(va)); 3674 ASSERT(!IN_VA_HOLE(va)); 3675 ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0); 3676 ASSERT(ht != NULL); 3677 ASSERT(ht->ht_level == 0); 3678 ASSERT(ht->ht_valid_cnt > 0); 3679 htable_release(ht); 3680 #endif 3681 pte = hati_mkpte(pfn, attr, 0, flags); 3682 if (mmu.pae_hat) 3683 *(x86pte_t *)pteptr = pte; 3684 else 3685 *(x86pte32_t *)pteptr = (x86pte32_t)pte; 3686 mmu_tlbflush_entry(addr); 3687 } 3688 3689 3690 3691 /* 3692 * Hat locking functions 3693 * XXX - these two functions are currently being used by hatstats 3694 * they can be removed by using a per-as mutex for hatstats. 3695 */ 3696 void 3697 hat_enter(hat_t *hat) 3698 { 3699 mutex_enter(&hat->hat_mutex); 3700 } 3701 3702 void 3703 hat_exit(hat_t *hat) 3704 { 3705 mutex_exit(&hat->hat_mutex); 3706 } 3707 3708 3709 /* 3710 * Used by hat_kern_setup() to create initial kernel HAT mappings from 3711 * the boot loader's mappings. 3712 * 3713 * - size is either PAGESIZE or some multiple of a level one pagesize 3714 * - there may not be page_t's for every pfn. (ie. the nucleus pages) 3715 * - pfn's are continguous for the given va range (va to va + size * cnt) 3716 */ 3717 void 3718 hati_kern_setup_load( 3719 uintptr_t va, /* starting va of range to map */ 3720 size_t size, /* either PAGESIZE or multiple of large page size */ 3721 pfn_t pfn, /* starting PFN */ 3722 pgcnt_t cnt, /* number of mappings, (cnt * size) == total size */ 3723 uint_t prot) /* protections (PROT_READ, PROT_WRITE, PROT_EXEC) */ 3724 { 3725 level_t level = (size == MMU_PAGESIZE ? 0 : 1); 3726 size_t bytes = size * cnt; 3727 size_t pgsize = LEVEL_SIZE(level); 3728 page_t *pp; 3729 uint_t flags = HAT_LOAD; 3730 3731 /* 3732 * We're only going to throw away mappings below kernelbase or in 3733 * boot's special double-mapping region, so set noconsist to avoid 3734 * using hments 3735 */ 3736 if (BOOT_VA(va)) 3737 flags |= HAT_LOAD_NOCONSIST; 3738 3739 prot |= HAT_STORECACHING_OK; 3740 while (bytes != 0) { 3741 ASSERT(bytes >= pgsize); 3742 3743 pp = NULL; 3744 if (pf_is_memory(pfn) && !BOOT_VA(va) && level == 0) 3745 pp = page_numtopp_nolock(pfn); 3746 3747 hati_load_common(kas.a_hat, va, pp, prot, flags, level, pfn); 3748 3749 va += pgsize; 3750 pfn += mmu_btop(pgsize); 3751 bytes -= pgsize; 3752 } 3753 } 3754 3755 /* 3756 * HAT part of cpu intialization. 3757 */ 3758 void 3759 hat_cpu_online(struct cpu *cpup) 3760 { 3761 if (cpup != CPU) { 3762 x86pte_cpu_init(cpup, NULL); 3763 hat_vlp_setup(cpup); 3764 } 3765 CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id); 3766 } 3767 3768 /* 3769 * Function called after all CPUs are brought online. 3770 * Used to remove low address boot mappings. 3771 */ 3772 void 3773 clear_boot_mappings(uintptr_t low, uintptr_t high) 3774 { 3775 uintptr_t vaddr = low; 3776 htable_t *ht = NULL; 3777 level_t level; 3778 uint_t entry; 3779 x86pte_t pte; 3780 3781 /* 3782 * On 1st CPU we can unload the prom mappings, basically we blow away 3783 * all virtual mappings under kernelbase. 3784 */ 3785 while (vaddr < high) { 3786 pte = htable_walk(kas.a_hat, &ht, &vaddr, high); 3787 if (ht == NULL) 3788 break; 3789 3790 level = ht->ht_level; 3791 entry = htable_va2entry(vaddr, ht); 3792 ASSERT(level <= mmu.max_page_level); 3793 ASSERT(PTE_ISPAGE(pte, level)); 3794 3795 /* 3796 * Unload the mapping from the page tables. 3797 */ 3798 (void) x86pte_set(ht, entry, 0, NULL); 3799 ASSERT(ht->ht_valid_cnt > 0); 3800 HTABLE_DEC(ht->ht_valid_cnt); 3801 PGCNT_DEC(ht->ht_hat, ht->ht_level); 3802 3803 vaddr += LEVEL_SIZE(ht->ht_level); 3804 } 3805 if (ht) 3806 htable_release(ht); 3807 3808 /* 3809 * cross call for a complete invalidate. 3810 */ 3811 hat_demap(kas.a_hat, DEMAP_ALL_ADDR); 3812 } 3813 3814 /* 3815 * Initialize a special area in the kernel that always holds some PTEs for 3816 * faster performance. This always holds segmap's PTEs. 3817 * In the 32 bit kernel this maps the kernel heap too. 3818 */ 3819 void 3820 hat_kmap_init(uintptr_t base, size_t len) 3821 { 3822 uintptr_t map_addr; /* base rounded down to large page size */ 3823 uintptr_t map_eaddr; /* base + len rounded up */ 3824 size_t map_len; 3825 caddr_t ptes; /* mapping area in kernel as for ptes */ 3826 size_t window_size; /* size of mapping area for ptes */ 3827 ulong_t htable_cnt; /* # of page tables to cover map_len */ 3828 ulong_t i; 3829 htable_t *ht; 3830 3831 /* 3832 * we have to map in an area that matches an entire page table 3833 */ 3834 map_addr = base & LEVEL_MASK(1); 3835 map_eaddr = (base + len + LEVEL_SIZE(1) - 1) & LEVEL_MASK(1); 3836 map_len = map_eaddr - map_addr; 3837 window_size = mmu_btop(map_len) * mmu.pte_size; 3838 htable_cnt = mmu_btop(map_len) / mmu.ptes_per_table; 3839 3840 /* 3841 * allocate vmem for the kmap_ptes 3842 */ 3843 ptes = vmem_xalloc(heap_arena, window_size, MMU_PAGESIZE, 0, 3844 0, NULL, NULL, VM_SLEEP); 3845 mmu.kmap_htables = 3846 kmem_alloc(htable_cnt * sizeof (htable_t *), KM_SLEEP); 3847 3848 /* 3849 * Map the page tables that cover kmap into the allocated range. 3850 * Note we don't ever htable_release() the kmap page tables - they 3851 * can't ever be stolen, freed, etc. 3852 */ 3853 for (i = 0; i < htable_cnt; ++i) { 3854 ht = htable_create(kas.a_hat, map_addr + i * LEVEL_SIZE(1), 3855 0, NULL); 3856 mmu.kmap_htables[i] = ht; 3857 3858 hat_devload(kas.a_hat, ptes + i * MMU_PAGESIZE, MMU_PAGESIZE, 3859 ht->ht_pfn, 3860 PROT_READ | PROT_WRITE | HAT_NOSYNC | HAT_UNORDERED_OK, 3861 HAT_LOAD | HAT_LOAD_NOCONSIST); 3862 3863 } 3864 3865 /* 3866 * set information in mmu to activate handling of kmap 3867 */ 3868 mmu.kmap_addr = base; 3869 mmu.kmap_eaddr = base + len; 3870 mmu.kmap_ptes = 3871 (x86pte_t *)(ptes + mmu.pte_size * mmu_btop(base - map_addr)); 3872 } 3873 3874 /* 3875 * Atomically update a new translation for a single page. If the 3876 * currently installed PTE doesn't match the value we expect to find, 3877 * it's not updated and we return the PTE we found. 3878 * 3879 * If activating nosync or NOWRITE and the page was modified we need to sync 3880 * with the page_t. Also sync with page_t if clearing ref/mod bits. 3881 */ 3882 static x86pte_t 3883 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new) 3884 { 3885 page_t *pp; 3886 uint_t rm = 0; 3887 x86pte_t replaced; 3888 3889 if (!PTE_GET(expected, PT_NOSYNC | PT_NOCONSIST) && 3890 PTE_GET(expected, PT_MOD | PT_REF) && 3891 (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) || 3892 !PTE_GET(new, PT_MOD | PT_REF))) { 3893 3894 pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level)); 3895 ASSERT(pp != NULL); 3896 if (PTE_GET(expected, PT_MOD)) 3897 rm |= P_MOD; 3898 if (PTE_GET(expected, PT_REF)) 3899 rm |= P_REF; 3900 PTE_CLR(new, PT_MOD | PT_REF); 3901 } 3902 3903 replaced = x86pte_update(ht, entry, expected, new); 3904 if (replaced != expected) 3905 return (replaced); 3906 3907 if (rm) { 3908 /* 3909 * sync to all constituent pages of a large page 3910 */ 3911 pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level); 3912 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 3913 while (pgcnt-- > 0) { 3914 /* 3915 * hat_page_demote() can't decrease 3916 * pszc below this mapping size 3917 * since large mapping existed after we 3918 * took mlist lock. 3919 */ 3920 ASSERT(pp->p_szc >= ht->ht_level); 3921 hat_page_setattr(pp, rm); 3922 ++pp; 3923 } 3924 } 3925 3926 return (0); 3927 } 3928 3929 /* 3930 * Kernel Physical Mapping (kpm) facility 3931 * 3932 * Most of the routines needed to support segkpm are almost no-ops on the 3933 * x86 platform. We map in the entire segment when it is created and leave 3934 * it mapped in, so there is no additional work required to set up and tear 3935 * down individual mappings. All of these routines were created to support 3936 * SPARC platforms that have to avoid aliasing in their virtually indexed 3937 * caches. 3938 * 3939 * Most of the routines have sanity checks in them (e.g. verifying that the 3940 * passed-in page is locked). We don't actually care about most of these 3941 * checks on x86, but we leave them in place to identify problems in the 3942 * upper levels. 3943 */ 3944 3945 /* 3946 * Map in a locked page and return the vaddr. 3947 */ 3948 /*ARGSUSED*/ 3949 caddr_t 3950 hat_kpm_mapin(struct page *pp, struct kpme *kpme) 3951 { 3952 caddr_t vaddr; 3953 3954 #ifdef DEBUG 3955 if (kpm_enable == 0) { 3956 cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n"); 3957 return ((caddr_t)NULL); 3958 } 3959 3960 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 3961 cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n"); 3962 return ((caddr_t)NULL); 3963 } 3964 #endif 3965 3966 vaddr = hat_kpm_page2va(pp, 1); 3967 3968 return (vaddr); 3969 } 3970 3971 /* 3972 * Mapout a locked page. 3973 */ 3974 /*ARGSUSED*/ 3975 void 3976 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr) 3977 { 3978 #ifdef DEBUG 3979 if (kpm_enable == 0) { 3980 cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n"); 3981 return; 3982 } 3983 3984 if (IS_KPM_ADDR(vaddr) == 0) { 3985 cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n"); 3986 return; 3987 } 3988 3989 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 3990 cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n"); 3991 return; 3992 } 3993 #endif 3994 } 3995 3996 /* 3997 * Return the kpm virtual address for a specific pfn 3998 */ 3999 caddr_t 4000 hat_kpm_pfn2va(pfn_t pfn) 4001 { 4002 uintptr_t vaddr; 4003 4004 ASSERT(kpm_enable); 4005 4006 vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn); 4007 4008 return ((caddr_t)vaddr); 4009 } 4010 4011 /* 4012 * Return the kpm virtual address for the page at pp. 4013 */ 4014 /*ARGSUSED*/ 4015 caddr_t 4016 hat_kpm_page2va(struct page *pp, int checkswap) 4017 { 4018 return (hat_kpm_pfn2va(pp->p_pagenum)); 4019 } 4020 4021 /* 4022 * Return the page frame number for the kpm virtual address vaddr. 4023 */ 4024 pfn_t 4025 hat_kpm_va2pfn(caddr_t vaddr) 4026 { 4027 pfn_t pfn; 4028 4029 ASSERT(IS_KPM_ADDR(vaddr)); 4030 4031 pfn = (pfn_t)btop(vaddr - kpm_vbase); 4032 4033 return (pfn); 4034 } 4035 4036 4037 /* 4038 * Return the page for the kpm virtual address vaddr. 4039 */ 4040 page_t * 4041 hat_kpm_vaddr2page(caddr_t vaddr) 4042 { 4043 pfn_t pfn; 4044 4045 ASSERT(IS_KPM_ADDR(vaddr)); 4046 4047 pfn = hat_kpm_va2pfn(vaddr); 4048 4049 return (page_numtopp_nolock(pfn)); 4050 } 4051 4052 /* 4053 * hat_kpm_fault is called from segkpm_fault when we take a page fault on a 4054 * KPM page. This should never happen on x86 4055 */ 4056 int 4057 hat_kpm_fault(hat_t *hat, caddr_t vaddr) 4058 { 4059 panic("pagefault in seg_kpm. hat: 0x%p vaddr: 0x%p", hat, vaddr); 4060 4061 return (0); 4062 } 4063 4064 /*ARGSUSED*/ 4065 void 4066 hat_kpm_mseghash_clear(int nentries) 4067 {} 4068 4069 /*ARGSUSED*/ 4070 void 4071 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp) 4072 {} 4073