1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/systm.h> 35 #include <sys/user.h> 36 #include <sys/mman.h> 37 #include <sys/vm.h> 38 #include <sys/conf.h> 39 #include <sys/avintr.h> 40 #include <sys/autoconf.h> 41 #include <sys/disp.h> 42 #include <sys/class.h> 43 #include <sys/bitmap.h> 44 45 #include <sys/privregs.h> 46 47 #include <sys/proc.h> 48 #include <sys/buf.h> 49 #include <sys/kmem.h> 50 #include <sys/kstat.h> 51 52 #include <sys/reboot.h> 53 #include <sys/uadmin.h> 54 55 #include <sys/cred.h> 56 #include <sys/vnode.h> 57 #include <sys/file.h> 58 59 #include <sys/procfs.h> 60 #include <sys/acct.h> 61 62 #include <sys/vfs.h> 63 #include <sys/dnlc.h> 64 #include <sys/var.h> 65 #include <sys/cmn_err.h> 66 #include <sys/utsname.h> 67 #include <sys/debug.h> 68 #include <sys/kdi.h> 69 70 #include <sys/dumphdr.h> 71 #include <sys/bootconf.h> 72 #include <sys/varargs.h> 73 #include <sys/promif.h> 74 #include <sys/prom_emul.h> /* for create_prom_prop */ 75 #include <sys/modctl.h> /* for "procfs" hack */ 76 77 #include <sys/consdev.h> 78 #include <sys/frame.h> 79 80 #include <sys/sunddi.h> 81 #include <sys/sunndi.h> 82 #include <sys/ndi_impldefs.h> 83 #include <sys/ddidmareq.h> 84 #include <sys/psw.h> 85 #include <sys/regset.h> 86 #include <sys/clock.h> 87 #include <sys/pte.h> 88 #include <sys/mmu.h> 89 #include <sys/tss.h> 90 #include <sys/stack.h> 91 #include <sys/trap.h> 92 #include <sys/pic.h> 93 #include <sys/fp.h> 94 #include <vm/anon.h> 95 #include <vm/as.h> 96 #include <vm/page.h> 97 #include <vm/seg.h> 98 #include <vm/seg_dev.h> 99 #include <vm/seg_kmem.h> 100 #include <vm/seg_kpm.h> 101 #include <vm/seg_map.h> 102 #include <vm/seg_vn.h> 103 #include <vm/seg_kp.h> 104 #include <sys/memnode.h> 105 #include <vm/vm_dep.h> 106 #include <sys/swap.h> 107 #include <sys/thread.h> 108 #include <sys/sysconf.h> 109 #include <sys/vm_machparam.h> 110 #include <sys/archsystm.h> 111 #include <sys/machsystm.h> 112 #include <vm/hat.h> 113 #include <vm/hat_i86.h> 114 #include <sys/pmem.h> 115 #include <sys/instance.h> 116 #include <sys/smp_impldefs.h> 117 #include <sys/x86_archext.h> 118 #include <sys/segments.h> 119 #include <sys/clconf.h> 120 #include <sys/kobj.h> 121 #include <sys/kobj_lex.h> 122 #include <sys/prom_emul.h> 123 #include <sys/cpc_impl.h> 124 #include <sys/chip.h> 125 #include <sys/x86_archext.h> 126 #include <sys/smbios.h> 127 128 extern void progressbar_init(void); 129 extern void progressbar_start(void); 130 131 /* 132 * XXX make declaration below "static" when drivers no longer use this 133 * interface. 134 */ 135 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 136 137 /* 138 * segkp 139 */ 140 extern int segkp_fromheap; 141 142 static void kvm_init(void); 143 static void startup_init(void); 144 static void startup_memlist(void); 145 static void startup_modules(void); 146 static void startup_bop_gone(void); 147 static void startup_vm(void); 148 static void startup_end(void); 149 150 /* 151 * Declare these as initialized data so we can patch them. 152 */ 153 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */ 154 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 155 156 char *kobj_file_buf; 157 int kobj_file_bufsize; /* set in /etc/system */ 158 159 /* Global variables for MP support. Used in mp_startup */ 160 caddr_t rm_platter_va; 161 uint32_t rm_platter_pa; 162 163 int auto_lpg_disable = 1; 164 165 /* 166 * Some CPUs have holes in the middle of the 64-bit virtual address range. 167 */ 168 uintptr_t hole_start, hole_end; 169 170 /* 171 * kpm mapping window 172 */ 173 caddr_t kpm_vbase; 174 size_t kpm_size; 175 static int kpm_desired = 0; /* Do we want to try to use segkpm? */ 176 177 /* 178 * VA range that must be preserved for boot until we release all of its 179 * mappings. 180 */ 181 #if defined(__amd64) 182 static void *kmem_setaside; 183 #endif 184 185 /* 186 * Configuration parameters set at boot time. 187 */ 188 189 caddr_t econtig; /* end of first block of contiguous kernel */ 190 191 struct bootops *bootops = 0; /* passed in from boot */ 192 struct bootops **bootopsp; 193 struct boot_syscalls *sysp; /* passed in from boot */ 194 195 char bootblock_fstype[16]; 196 197 char kern_bootargs[OBP_MAXPATHLEN]; 198 199 /* 200 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 201 * depends on number of BOP_ALLOC calls made and requested size, memory size 202 * combination and whether boot.bin memory needs to be freed. 203 */ 204 #define POSS_NEW_FRAGMENTS 12 205 206 /* 207 * VM data structures 208 */ 209 long page_hashsz; /* Size of page hash table (power of two) */ 210 struct page *pp_base; /* Base of initial system page struct array */ 211 struct page **page_hash; /* Page hash table */ 212 struct seg ktextseg; /* Segment used for kernel executable image */ 213 struct seg kvalloc; /* Segment used for "valloc" mapping */ 214 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 215 struct seg kmapseg; /* Segment used for generic kernel mappings */ 216 struct seg kdebugseg; /* Segment used for the kernel debugger */ 217 218 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 219 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 220 221 #if defined(__amd64) 222 struct seg kvseg_core; /* Segment used for the core heap */ 223 struct seg kpmseg; /* Segment used for physical mapping */ 224 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 225 #else 226 struct seg *segkpm = NULL; /* Unused on IA32 */ 227 #endif 228 229 caddr_t segkp_base; /* Base address of segkp */ 230 #if defined(__amd64) 231 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 232 #else 233 pgcnt_t segkpsize = 0; 234 #endif 235 236 struct memseg *memseg_base; 237 struct vnode unused_pages_vp; 238 239 #define FOURGB 0x100000000LL 240 241 struct memlist *memlist; 242 243 caddr_t s_text; /* start of kernel text segment */ 244 caddr_t e_text; /* end of kernel text segment */ 245 caddr_t s_data; /* start of kernel data segment */ 246 caddr_t e_data; /* end of kernel data segment */ 247 caddr_t modtext; /* start of loadable module text reserved */ 248 caddr_t e_modtext; /* end of loadable module text reserved */ 249 caddr_t moddata; /* start of loadable module data reserved */ 250 caddr_t e_moddata; /* end of loadable module data reserved */ 251 252 struct memlist *phys_install; /* Total installed physical memory */ 253 struct memlist *phys_avail; /* Total available physical memory */ 254 255 static void memlist_add(uint64_t, uint64_t, struct memlist *, 256 struct memlist **); 257 258 /* 259 * kphysm_init returns the number of pages that were processed 260 */ 261 static pgcnt_t kphysm_init(page_t *, struct memseg *, pgcnt_t, pgcnt_t); 262 263 #define IO_PROP_SIZE 64 /* device property size */ 264 265 /* 266 * a couple useful roundup macros 267 */ 268 #define ROUND_UP_PAGE(x) \ 269 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 270 #define ROUND_UP_LPAGE(x) \ 271 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 272 #define ROUND_UP_4MEG(x) \ 273 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOURMB_PAGESIZE)) 274 #define ROUND_UP_TOPLEVEL(x) \ 275 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 276 277 /* 278 * 32-bit Kernel's Virtual memory layout. 279 * +-----------------------+ 280 * | psm 1-1 map | 281 * | exec args area | 282 * 0xFFC00000 -|-----------------------|- ARGSBASE 283 * | debugger | 284 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 285 * | Kernel Data | 286 * 0xFEC00000 -|-----------------------| 287 * | Kernel Text | 288 * 0xFE800000 -|-----------------------|- KERNEL_TEXT 289 * | LUFS sinkhole | 290 * 0xFE000000 -|-----------------------|- lufs_addr 291 * --- -|-----------------------|- valloc_base + valloc_sz 292 * | early pp structures | 293 * | memsegs, memlists, | 294 * | page hash, etc. | 295 * --- -|-----------------------|- valloc_base (floating) 296 * | ptable_va | 297 * 0xFDFFE000 -|-----------------------|- ekernelheap, ptable_va 298 * | | (segkp is an arena under the heap) 299 * | | 300 * | kvseg | 301 * | | 302 * | | 303 * --- -|-----------------------|- kernelheap (floating) 304 * | Segkmap | 305 * 0xC3002000 -|-----------------------|- segkmap_start (floating) 306 * | Red Zone | 307 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 308 * | | || 309 * | Shared objects | \/ 310 * | | 311 * : : 312 * | user data | 313 * |-----------------------| 314 * | user text | 315 * 0x08048000 -|-----------------------| 316 * | user stack | 317 * : : 318 * | invalid | 319 * 0x00000000 +-----------------------+ 320 * 321 * 322 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 323 * +-----------------------+ 324 * | psm 1-1 map | 325 * | exec args area | 326 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 327 * | debugger (?) | 328 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 329 * | unused | 330 * +-----------------------+ 331 * | Kernel Data | 332 * 0xFFFFFFFF.FBC00000 |-----------------------| 333 * | Kernel Text | 334 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 335 * | LUFS sinkhole | 336 * 0xFFFFFFFF.FB000000 -|-----------------------|- lufs_addr 337 * --- |-----------------------|- valloc_base + valloc_sz 338 * | early pp structures | 339 * | memsegs, memlists, | 340 * | page hash, etc. | 341 * --- |-----------------------|- valloc_base 342 * | ptable_va | 343 * --- |-----------------------|- ptable_va 344 * | Core heap | (used for loadable modules) 345 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 346 * | Kernel | 347 * | heap | 348 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 349 * | segkmap | 350 * 0xFFFFFXXX.XXX00000 |-----------------------|- segkmap_start (floating) 351 * | device mappings | 352 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 353 * | segkp | 354 * --- |-----------------------|- segkp_base 355 * | segkpm | 356 * 0xFFFFFE00.00000000 |-----------------------| 357 * | Red Zone | 358 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE 359 * | User stack |- User space memory 360 * | | 361 * | shared objects, etc | (grows downwards) 362 * : : 363 * | | 364 * 0xFFFF8000.00000000 |-----------------------| 365 * | | 366 * | VA Hole / unused | 367 * | | 368 * 0x00008000.00000000 |-----------------------| 369 * | | 370 * | | 371 * : : 372 * | user heap | (grows upwards) 373 * | | 374 * | user data | 375 * |-----------------------| 376 * | user text | 377 * 0x00000000.04000000 |-----------------------| 378 * | invalid | 379 * 0x00000000.00000000 +-----------------------+ 380 * 381 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 382 * kernel, except that userlimit is raised to 0xfe000000 383 * 384 * Floating values: 385 * 386 * valloc_base: start of the kernel's memory management/tracking data 387 * structures. This region contains page_t structures for the lowest 4GB 388 * of physical memory, memsegs, memlists, and the page hash. 389 * 390 * core_base: start of the kernel's "core" heap area on 64-bit systems. 391 * This area is intended to be used for global data as well as for module 392 * text/data that does not fit into the nucleus pages. The core heap is 393 * restricted to a 2GB range, allowing every address within it to be 394 * accessed using rip-relative addressing 395 * 396 * ekernelheap: end of kernelheap and start of segmap. 397 * 398 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 399 * above a red zone that separates the user's address space from the 400 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 401 * 402 * segkmap_start: start of segmap. The length of segmap can be modified 403 * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated). 404 * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems. 405 * 406 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 407 * decreased by 2X the size required for page_t. This allows the kernel 408 * heap to grow in size with physical memory. With sizeof(page_t) == 80 409 * bytes, the following shows the values of kernelbase and kernel heap 410 * sizes for different memory configurations (assuming default segmap and 411 * segkp sizes). 412 * 413 * mem size for kernelbase kernel heap 414 * size page_t's size 415 * ---- --------- ---------- ----------- 416 * 1gb 0x01400000 0xd1800000 684MB 417 * 2gb 0x02800000 0xcf000000 704MB 418 * 4gb 0x05000000 0xca000000 744MB 419 * 6gb 0x07800000 0xc5000000 784MB 420 * 8gb 0x0a000000 0xc0000000 824MB 421 * 16gb 0x14000000 0xac000000 984MB 422 * 32gb 0x28000000 0x84000000 1304MB 423 * 64gb 0x50000000 0x34000000 1944MB (*) 424 * 425 * kernelbase is less than the abi minimum of 0xc0000000 for memory 426 * configurations above 8gb. 427 * 428 * (*) support for memory configurations above 32gb will require manual tuning 429 * of kernelbase to balance out the need of user applications. 430 */ 431 432 void init_intr_threads(struct cpu *); 433 434 /* real-time-clock initialization parameters */ 435 long gmt_lag; /* offset in seconds of gmt to local time */ 436 extern long process_rtc_config_file(void); 437 438 char *final_kernelheap; 439 char *boot_kernelheap; 440 uintptr_t kernelbase; 441 uintptr_t eprom_kernelbase; 442 size_t segmapsize; 443 static uintptr_t segmap_reserved; 444 uintptr_t segkmap_start; 445 int segmapfreelists; 446 pgcnt_t boot_npages; 447 pgcnt_t npages; 448 size_t core_size; /* size of "core" heap */ 449 uintptr_t core_base; /* base address of "core" heap */ 450 451 /* 452 * List of bootstrap pages. We mark these as allocated in startup. 453 * release_bootstrap() will free them when we're completely done with 454 * the bootstrap. 455 */ 456 static page_t *bootpages, *rd_pages; 457 458 struct system_hardware system_hardware; 459 460 /* 461 * Enable some debugging messages concerning memory usage... 462 * 463 * XX64 There should only be one print routine once memlist usage between 464 * vmx and the kernel is cleaned up and there is a single memlist structure 465 * shared between kernel and boot. 466 */ 467 static void 468 print_boot_memlist(char *title, struct memlist *mp) 469 { 470 prom_printf("MEMLIST: %s:\n", title); 471 while (mp != NULL) { 472 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 473 mp->address, mp->size); 474 mp = mp->next; 475 } 476 } 477 478 static void 479 print_kernel_memlist(char *title, struct memlist *mp) 480 { 481 prom_printf("MEMLIST: %s:\n", title); 482 while (mp != NULL) { 483 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 484 mp->address, mp->size); 485 mp = mp->next; 486 } 487 } 488 489 /* 490 * XX64 need a comment here.. are these just default values, surely 491 * we read the "cpuid" type information to figure this out. 492 */ 493 int l2cache_sz = 0x80000; 494 int l2cache_linesz = 0x40; 495 int l2cache_assoc = 1; 496 497 /* 498 * on 64 bit we use a predifined VA range for mapping devices in the kernel 499 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 500 */ 501 #ifdef __amd64 502 503 vmem_t *device_arena; 504 uintptr_t toxic_addr = (uintptr_t)NULL; 505 size_t toxic_size = 1 * 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 506 507 #else /* __i386 */ 508 509 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 510 size_t toxic_bit_map_len = 0; /* in bits */ 511 512 #endif /* __i386 */ 513 514 /* 515 * Simple boot time debug facilities 516 */ 517 static char *prm_dbg_str[] = { 518 "%s:%d: '%s' is 0x%x\n", 519 "%s:%d: '%s' is 0x%llx\n" 520 }; 521 522 int prom_debug; 523 524 #define PRM_DEBUG(q) if (prom_debug) \ 525 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 526 #define PRM_POINT(q) if (prom_debug) \ 527 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 528 529 /* 530 * This structure is used to keep track of the intial allocations 531 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 532 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 533 */ 534 #define NUM_ALLOCATIONS 7 535 int num_allocations = 0; 536 struct { 537 void **al_ptr; 538 size_t al_size; 539 } allocations[NUM_ALLOCATIONS]; 540 size_t valloc_sz = 0; 541 uintptr_t valloc_base; 542 extern uintptr_t ptable_va; 543 extern size_t ptable_sz; 544 545 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 546 size = ROUND_UP_PAGE(size); \ 547 if (num_allocations == NUM_ALLOCATIONS) \ 548 panic("too many ADD_TO_ALLOCATIONS()"); \ 549 allocations[num_allocations].al_ptr = (void**)&ptr; \ 550 allocations[num_allocations].al_size = size; \ 551 valloc_sz += size; \ 552 ++num_allocations; \ 553 } 554 555 static void 556 perform_allocations(void) 557 { 558 caddr_t mem; 559 int i; 560 561 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, BO_NO_ALIGN); 562 if (mem != (caddr_t)valloc_base) 563 panic("BOP_ALLOC() failed"); 564 bzero(mem, valloc_sz); 565 for (i = 0; i < num_allocations; ++i) { 566 *allocations[i].al_ptr = (void *)mem; 567 mem += allocations[i].al_size; 568 } 569 } 570 571 /* 572 * Our world looks like this at startup time. 573 * 574 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 575 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 576 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 577 * addresses are fixed in the binary at link time. 578 * 579 * On the text page: 580 * unix/genunix/krtld/module text loads. 581 * 582 * On the data page: 583 * unix/genunix/krtld/module data loads and space for page_t's. 584 */ 585 /* 586 * Machine-dependent startup code 587 */ 588 void 589 startup(void) 590 { 591 extern void startup_bios_disk(); 592 /* 593 * Make sure that nobody tries to use sekpm until we have 594 * initialized it properly. 595 */ 596 #if defined(__amd64) 597 kpm_desired = kpm_enable; 598 #endif 599 kpm_enable = 0; 600 601 progressbar_init(); 602 startup_init(); 603 startup_memlist(); 604 startup_modules(); 605 startup_bios_disk(); 606 startup_bop_gone(); 607 startup_vm(); 608 startup_end(); 609 progressbar_start(); 610 } 611 612 static void 613 startup_init() 614 { 615 PRM_POINT("startup_init() starting..."); 616 617 /* 618 * Complete the extraction of cpuid data 619 */ 620 cpuid_pass2(CPU); 621 622 (void) check_boot_version(BOP_GETVERSION(bootops)); 623 624 /* 625 * Check for prom_debug in boot environment 626 */ 627 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 628 ++prom_debug; 629 PRM_POINT("prom_debug found in boot enviroment"); 630 } 631 632 /* 633 * Collect node, cpu and memory configuration information. 634 */ 635 get_system_configuration(); 636 637 /* 638 * Halt if this is an unsupported processor. 639 */ 640 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 641 printf("\n486 processor (\"%s\") detected.\n", 642 CPU->cpu_brandstr); 643 halt("This processor is not supported by this release " 644 "of Solaris."); 645 } 646 647 PRM_POINT("startup_init() done"); 648 } 649 650 /* 651 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 652 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 653 * also filters out physical page zero. There is some reliance on the 654 * boot loader allocating only a few contiguous physical memory chunks. 655 */ 656 static void 657 avail_filter(uint64_t *addr, uint64_t *size) 658 { 659 uintptr_t va; 660 uintptr_t next_va; 661 pfn_t pfn; 662 uint64_t pfn_addr; 663 uint64_t pfn_eaddr; 664 uint_t prot; 665 size_t len; 666 uint_t change; 667 668 if (prom_debug) 669 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 670 *addr, *size); 671 672 /* 673 * page zero is required for BIOS.. never make it available 674 */ 675 if (*addr == 0) { 676 *addr += MMU_PAGESIZE; 677 *size -= MMU_PAGESIZE; 678 } 679 680 /* 681 * First we trim from the front of the range. Since hat_boot_probe() 682 * walks ranges in virtual order, but addr/size are physical, we need 683 * to the list until no changes are seen. This deals with the case 684 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 685 * but w < v. 686 */ 687 do { 688 change = 0; 689 for (va = KERNEL_TEXT; 690 *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; 691 va = next_va) { 692 693 next_va = va + len; 694 pfn_addr = ptob((uint64_t)pfn); 695 pfn_eaddr = pfn_addr + len; 696 697 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 698 change = 1; 699 while (*size > 0 && len > 0) { 700 *addr += MMU_PAGESIZE; 701 *size -= MMU_PAGESIZE; 702 len -= MMU_PAGESIZE; 703 } 704 } 705 } 706 if (change && prom_debug) 707 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 708 *addr, *size); 709 } while (change); 710 711 /* 712 * Trim pages from the end of the range. 713 */ 714 for (va = KERNEL_TEXT; 715 *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; 716 va = next_va) { 717 718 next_va = va + len; 719 pfn_addr = ptob((uint64_t)pfn); 720 721 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 722 *size = pfn_addr - *addr; 723 } 724 725 if (prom_debug) 726 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 727 *addr, *size); 728 } 729 730 static void 731 kpm_init() 732 { 733 struct segkpm_crargs b; 734 uintptr_t start, end; 735 struct memlist *pmem; 736 737 /* 738 * These variables were all designed for sfmmu in which segkpm is 739 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 740 * might use 2+ page sizes on a single machine, so none of these 741 * variables have a single correct value. They are set up as if we 742 * always use a 4KB pagesize, which should do no harm. In the long 743 * run, we should get rid of KPM's assumption that only a single 744 * pagesize is used. 745 */ 746 kpm_pgshft = MMU_PAGESHIFT; 747 kpm_pgsz = MMU_PAGESIZE; 748 kpm_pgoff = MMU_PAGEOFFSET; 749 kpmp2pshft = 0; 750 kpmpnpgs = 1; 751 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 752 753 PRM_POINT("about to create segkpm"); 754 rw_enter(&kas.a_lock, RW_WRITER); 755 756 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 757 panic("cannot attach segkpm"); 758 759 b.prot = PROT_READ | PROT_WRITE; 760 b.nvcolors = 1; 761 762 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 763 panic("segkpm_create segkpm"); 764 765 rw_exit(&kas.a_lock); 766 767 /* 768 * Map each of the memsegs into the kpm segment, coalesing adjacent 769 * memsegs to allow mapping with the largest possible pages. 770 */ 771 pmem = phys_install; 772 start = pmem->address; 773 end = start + pmem->size; 774 for (;;) { 775 if (pmem == NULL || pmem->address > end) { 776 hat_devload(kas.a_hat, kpm_vbase + start, 777 end - start, mmu_btop(start), 778 PROT_READ | PROT_WRITE, 779 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 780 if (pmem == NULL) 781 break; 782 start = pmem->address; 783 } 784 end = pmem->address + pmem->size; 785 pmem = pmem->next; 786 } 787 } 788 789 /* 790 * The purpose of startup memlist is to get the system to the 791 * point where it can use kmem_alloc()'s that operate correctly 792 * relying on BOP_ALLOC(). This includes allocating page_ts, 793 * page hash table, vmem initialized, etc. 794 * 795 * Boot's versions of physinstalled and physavail are insufficient for 796 * the kernel's purposes. Specifically we don't know which pages that 797 * are not in physavail can be reclaimed after boot is gone. 798 * 799 * This code solves the problem by dividing the address space 800 * into 3 regions as it takes over the MMU from the booter. 801 * 802 * 1) Any (non-nucleus) pages that are mapped at addresses above KERNEL_TEXT 803 * can not be used by the kernel. 804 * 805 * 2) Any free page that happens to be mapped below kernelbase 806 * is protected until the boot loader is released, but will then be reclaimed. 807 * 808 * 3) Boot shouldn't use any address in the remaining area between kernelbase 809 * and KERNEL_TEXT. 810 * 811 * In the case of multiple mappings to the same page, region 1 has precedence 812 * over region 2. 813 */ 814 static void 815 startup_memlist(void) 816 { 817 size_t memlist_sz; 818 size_t memseg_sz; 819 size_t pagehash_sz; 820 size_t pp_sz; 821 uintptr_t va; 822 size_t len; 823 uint_t prot; 824 pfn_t pfn; 825 int memblocks; 826 caddr_t pagecolor_mem; 827 size_t pagecolor_memsz; 828 caddr_t page_ctrs_mem; 829 size_t page_ctrs_size; 830 struct memlist *current; 831 extern void startup_build_mem_nodes(struct memlist *); 832 833 /* XX64 fix these - they should be in include files */ 834 extern ulong_t cr4_value; 835 extern size_t page_coloring_init(uint_t, int, int); 836 extern void page_coloring_setup(caddr_t); 837 838 PRM_POINT("startup_memlist() starting..."); 839 840 /* 841 * Take the most current snapshot we can by calling mem-update. 842 * For this to work properly, we first have to ask boot for its 843 * end address. 844 */ 845 if (BOP_GETPROPLEN(bootops, "memory-update") == 0) 846 (void) BOP_GETPROP(bootops, "memory-update", NULL); 847 848 /* 849 * find if the kernel is mapped on a large page 850 */ 851 va = KERNEL_TEXT; 852 if (hat_boot_probe(&va, &len, &pfn, &prot) == 0) 853 panic("Couldn't find kernel text boot mapping"); 854 855 /* 856 * Use leftover large page nucleus text/data space for loadable modules. 857 * Use at most MODTEXT/MODDATA. 858 */ 859 if (len > MMU_PAGESIZE) { 860 861 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 862 e_moddata = (caddr_t)ROUND_UP_4MEG(e_data); 863 if (e_moddata - moddata > MODDATA) 864 e_moddata = moddata + MODDATA; 865 866 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 867 e_modtext = (caddr_t)ROUND_UP_4MEG(e_text); 868 if (e_modtext - modtext > MODTEXT) 869 e_modtext = modtext + MODTEXT; 870 871 872 } else { 873 874 PRM_POINT("Kernel NOT loaded on Large Page!"); 875 e_moddata = moddata = (caddr_t)ROUND_UP_PAGE(e_data); 876 e_modtext = modtext = (caddr_t)ROUND_UP_PAGE(e_text); 877 878 } 879 econtig = e_moddata; 880 881 PRM_DEBUG(modtext); 882 PRM_DEBUG(e_modtext); 883 PRM_DEBUG(moddata); 884 PRM_DEBUG(e_moddata); 885 PRM_DEBUG(econtig); 886 887 /* 888 * For MP machines cr4_value must be set or the non-boot 889 * CPUs will not be able to start. 890 */ 891 if (x86_feature & X86_LARGEPAGE) 892 cr4_value = getcr4(); 893 PRM_DEBUG(cr4_value); 894 895 /* 896 * Examine the boot loaders physical memory map to find out: 897 * - total memory in system - physinstalled 898 * - the max physical address - physmax 899 * - the number of segments the intsalled memory comes in 900 */ 901 if (prom_debug) 902 print_boot_memlist("boot physinstalled", 903 bootops->boot_mem->physinstalled); 904 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 905 &physinstalled, &memblocks); 906 PRM_DEBUG(physmax); 907 PRM_DEBUG(physinstalled); 908 PRM_DEBUG(memblocks); 909 910 if (prom_debug) 911 print_boot_memlist("boot physavail", 912 bootops->boot_mem->physavail); 913 914 /* 915 * Initialize hat's mmu parameters. 916 * Check for enforce-prot-exec in boot environment. It's used to 917 * enable/disable support for the page table entry NX bit. 918 * The default is to enforce PROT_EXEC on processors that support NX. 919 * Boot seems to round up the "len", but 8 seems to be big enough. 920 */ 921 mmu_init(); 922 923 #ifdef __i386 924 /* 925 * physmax is lowered if there is more memory than can be 926 * physically addressed in 32 bit (PAE/non-PAE) modes. 927 */ 928 if (mmu.pae_hat) { 929 if (PFN_ABOVE64G(physmax)) { 930 physinstalled -= (physmax - (PFN_64G - 1)); 931 physmax = PFN_64G - 1; 932 } 933 } else { 934 if (PFN_ABOVE4G(physmax)) { 935 physinstalled -= (physmax - (PFN_4G - 1)); 936 physmax = PFN_4G - 1; 937 } 938 } 939 #endif 940 941 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 942 943 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 944 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 945 char value[8]; 946 947 if (len < 8) 948 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 949 else 950 (void) strcpy(value, ""); 951 if (strcmp(value, "off") == 0) 952 mmu.pt_nx = 0; 953 } 954 PRM_DEBUG(mmu.pt_nx); 955 956 /* 957 * We will need page_t's for every page in the system, except for 958 * memory mapped at or above above the start of the kernel text segment. 959 * 960 * pages above e_modtext are attributed to kernel debugger (obp_pages) 961 */ 962 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 963 obp_pages = 0; 964 va = KERNEL_TEXT; 965 while (hat_boot_probe(&va, &len, &pfn, &prot) != 0) { 966 npages -= len >> MMU_PAGESHIFT; 967 if (va >= (uintptr_t)e_moddata) 968 obp_pages += len >> MMU_PAGESHIFT; 969 va += len; 970 } 971 PRM_DEBUG(npages); 972 PRM_DEBUG(obp_pages); 973 974 /* 975 * If physmem is patched to be non-zero, use it instead of 976 * the computed value unless it is larger than the real 977 * amount of memory on hand. 978 */ 979 if (physmem == 0 || physmem > npages) 980 physmem = npages; 981 else 982 npages = physmem; 983 PRM_DEBUG(physmem); 984 985 /* 986 * We now compute the sizes of all the initial allocations for 987 * structures the kernel needs in order do kmem_alloc(). These 988 * include: 989 * memsegs 990 * memlists 991 * page hash table 992 * page_t's 993 * page coloring data structs 994 */ 995 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 996 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 997 PRM_DEBUG(memseg_sz); 998 999 /* 1000 * Reserve space for phys_avail/phys_install memlists. 1001 * There's no real good way to know exactly how much room we'll need, 1002 * but this should be a good upper bound. 1003 */ 1004 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1005 (memblocks + POSS_NEW_FRAGMENTS)); 1006 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1007 PRM_DEBUG(memlist_sz); 1008 1009 /* 1010 * The page structure hash table size is a power of 2 1011 * such that the average hash chain length is PAGE_HASHAVELEN. 1012 */ 1013 page_hashsz = npages / PAGE_HASHAVELEN; 1014 page_hashsz = 1 << highbit(page_hashsz); 1015 pagehash_sz = sizeof (struct page *) * page_hashsz; 1016 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1017 PRM_DEBUG(pagehash_sz); 1018 1019 /* 1020 * Set aside room for the page structures themselves. Note: on 1021 * 64-bit systems we don't allocate page_t's for every page here. 1022 * We just allocate enough to map the lowest 4GB of physical 1023 * memory, minus those pages that are used for the "nucleus" kernel 1024 * text and data. The remaining pages are allocated once we can 1025 * map around boot. 1026 * 1027 * boot_npages is used to allocate an area big enough for our 1028 * initial page_t's. kphym_init may use less than that. 1029 */ 1030 boot_npages = npages; 1031 #if defined(__amd64) 1032 if (npages > mmu_btop(FOURGB - (econtig - s_text))) 1033 boot_npages = mmu_btop(FOURGB - (econtig - s_text)); 1034 #endif 1035 PRM_DEBUG(boot_npages); 1036 pp_sz = sizeof (struct page) * boot_npages; 1037 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1038 PRM_DEBUG(pp_sz); 1039 1040 /* 1041 * determine l2 cache info and memory size for page coloring 1042 */ 1043 (void) getl2cacheinfo(CPU, 1044 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1045 pagecolor_memsz = 1046 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1047 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1048 PRM_DEBUG(pagecolor_memsz); 1049 1050 page_ctrs_size = page_ctrs_sz(); 1051 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1052 PRM_DEBUG(page_ctrs_size); 1053 1054 /* 1055 * valloc_base will be below kernel text 1056 * The extra pages are for the HAT and kmdb to map page tables. 1057 */ 1058 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1059 valloc_base = KERNEL_TEXT - valloc_sz; 1060 PRM_DEBUG(valloc_base); 1061 ptable_va = valloc_base - ptable_sz; 1062 1063 #if defined(__amd64) 1064 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1065 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1066 "systems."); 1067 kernelbase = (uintptr_t)KERNELBASE; 1068 core_base = (uintptr_t)COREHEAP_BASE; 1069 core_size = ptable_va - core_base; 1070 #else /* __i386 */ 1071 /* 1072 * We configure kernelbase based on: 1073 * 1074 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1075 * KERNELBASE_MAX. we large page align eprom_kernelbase 1076 * 1077 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1078 * On large memory systems we must lower kernelbase to allow 1079 * enough room for page_t's for all of memory. 1080 * 1081 * The value set here, might be changed a little later. 1082 */ 1083 if (eprom_kernelbase) { 1084 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1085 if (kernelbase > KERNELBASE_MAX) 1086 kernelbase = KERNELBASE_MAX; 1087 } else { 1088 kernelbase = (uintptr_t)KERNELBASE; 1089 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1090 } 1091 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1092 core_base = ptable_va; 1093 core_size = 0; 1094 #endif 1095 1096 PRM_DEBUG(kernelbase); 1097 PRM_DEBUG(core_base); 1098 PRM_DEBUG(core_size); 1099 1100 /* 1101 * At this point, we can only use a portion of the kernelheap that 1102 * will be available after we boot. Both 32-bit and 64-bit systems 1103 * have this limitation, although the reasons are completely 1104 * different. 1105 * 1106 * On 64-bit systems, the booter only supports allocations in the 1107 * upper 4GB of memory, so we have to work with a reduced kernel 1108 * heap until we take over all allocations. The booter also sits 1109 * in the lower portion of that 4GB range, so we have to raise the 1110 * bottom of the heap even further. 1111 * 1112 * On 32-bit systems we have to leave room to place segmap below 1113 * the heap. We don't yet know how large segmap will be, so we 1114 * have to be very conservative. 1115 */ 1116 #if defined(__amd64) 1117 /* 1118 * XX64: For now, we let boot have the lower 2GB of the top 4GB 1119 * address range. In the long run, that should be fixed. It's 1120 * insane for a booter to need 2 2GB address ranges. 1121 */ 1122 boot_kernelheap = (caddr_t)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); 1123 segmap_reserved = 0; 1124 1125 #else /* __i386 */ 1126 segkp_fromheap = 1; 1127 segmap_reserved = ROUND_UP_LPAGE(MAX(segmapsize, SEGMAPMAX)); 1128 boot_kernelheap = (caddr_t)(ROUND_UP_LPAGE(kernelbase) + 1129 segmap_reserved); 1130 #endif 1131 PRM_DEBUG(boot_kernelheap); 1132 kernelheap = boot_kernelheap; 1133 ekernelheap = (char *)core_base; 1134 1135 /* 1136 * If segmap is too large we can push the bottom of the kernel heap 1137 * higher than the base. Or worse, it could exceed the top of the 1138 * VA space entirely, causing it to wrap around. 1139 */ 1140 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1141 panic("too little memory available for kernelheap," 1142 " use a different kernelbase"); 1143 1144 /* 1145 * Now that we know the real value of kernelbase, 1146 * update variables that were initialized with a value of 1147 * KERNELBASE (in common/conf/param.c). 1148 * 1149 * XXX The problem with this sort of hackery is that the 1150 * compiler just may feel like putting the const declarations 1151 * (in param.c) into the .text section. Perhaps they should 1152 * just be declared as variables there? 1153 */ 1154 1155 #if defined(__amd64) 1156 ASSERT(_kernelbase == KERNELBASE); 1157 ASSERT(_userlimit == USERLIMIT); 1158 /* 1159 * As one final sanity check, verify that the "red zone" between 1160 * kernel and userspace is exactly the size we expected. 1161 */ 1162 ASSERT(_kernelbase == (_userlimit + (2 * 1024 * 1024))); 1163 #else 1164 *(uintptr_t *)&_kernelbase = kernelbase; 1165 *(uintptr_t *)&_userlimit = kernelbase; 1166 *(uintptr_t *)&_userlimit32 = _userlimit; 1167 #endif 1168 PRM_DEBUG(_kernelbase); 1169 PRM_DEBUG(_userlimit); 1170 PRM_DEBUG(_userlimit32); 1171 1172 /* 1173 * do all the initial allocations 1174 */ 1175 perform_allocations(); 1176 1177 /* 1178 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1179 */ 1180 kernelheap_init(kernelheap, ekernelheap, kernelheap + MMU_PAGESIZE, 1181 (void *)core_base, (void *)ptable_va); 1182 1183 /* 1184 * Build phys_install and phys_avail in kernel memspace. 1185 * - phys_install should be all memory in the system. 1186 * - phys_avail is phys_install minus any memory mapped before this 1187 * point above KERNEL_TEXT. 1188 */ 1189 current = phys_install = memlist; 1190 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1191 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1192 panic("physinstalled was too big!"); 1193 if (prom_debug) 1194 print_kernel_memlist("phys_install", phys_install); 1195 1196 phys_avail = current; 1197 PRM_POINT("Building phys_avail:\n"); 1198 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1199 avail_filter); 1200 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1201 panic("physavail was too big!"); 1202 if (prom_debug) 1203 print_kernel_memlist("phys_avail", phys_avail); 1204 1205 /* 1206 * setup page coloring 1207 */ 1208 page_coloring_setup(pagecolor_mem); 1209 page_lock_init(); /* currently a no-op */ 1210 1211 /* 1212 * free page list counters 1213 */ 1214 (void) page_ctrs_alloc(page_ctrs_mem); 1215 1216 /* 1217 * Initialize the page structures from the memory lists. 1218 */ 1219 availrmem_initial = availrmem = freemem = 0; 1220 PRM_POINT("Calling kphysm_init()..."); 1221 boot_npages = kphysm_init(pp_base, memseg_base, 0, boot_npages); 1222 PRM_POINT("kphysm_init() done"); 1223 PRM_DEBUG(boot_npages); 1224 1225 /* 1226 * Now that page_t's have been initialized, remove all the 1227 * initial allocation pages from the kernel free page lists. 1228 */ 1229 boot_mapin((caddr_t)valloc_base, valloc_sz); 1230 1231 /* 1232 * Initialize kernel memory allocator. 1233 */ 1234 kmem_init(); 1235 1236 /* 1237 * print this out early so that we know what's going on 1238 */ 1239 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1240 1241 /* 1242 * Initialize bp_mapin(). 1243 */ 1244 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1245 1246 #if defined(__i386) 1247 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1248 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1249 "System using 0x%lx", 1250 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1251 #endif 1252 1253 #ifdef KERNELBASE_ABI_MIN 1254 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1255 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1256 "i386 ABI compliant.", (uintptr_t)kernelbase); 1257 } 1258 #endif 1259 1260 PRM_POINT("startup_memlist() done"); 1261 } 1262 1263 static void 1264 startup_modules(void) 1265 { 1266 unsigned int i; 1267 extern void prom_setup(void); 1268 1269 PRM_POINT("startup_modules() starting..."); 1270 /* 1271 * Initialize ten-micro second timer so that drivers will 1272 * not get short changed in their init phase. This was 1273 * not getting called until clkinit which, on fast cpu's 1274 * caused the drv_usecwait to be way too short. 1275 */ 1276 microfind(); 1277 1278 /* 1279 * Read the GMT lag from /etc/rtc_config. 1280 */ 1281 gmt_lag = process_rtc_config_file(); 1282 1283 /* 1284 * Calculate default settings of system parameters based upon 1285 * maxusers, yet allow to be overridden via the /etc/system file. 1286 */ 1287 param_calc(0); 1288 1289 mod_setup(); 1290 1291 /* 1292 * Setup machine check architecture on P6 1293 */ 1294 setup_mca(); 1295 1296 /* 1297 * Initialize system parameters. 1298 */ 1299 param_init(); 1300 1301 /* 1302 * maxmem is the amount of physical memory we're playing with. 1303 */ 1304 maxmem = physmem; 1305 1306 /* 1307 * Initialize the hat layer. 1308 */ 1309 hat_init(); 1310 1311 /* 1312 * Initialize segment management stuff. 1313 */ 1314 seg_init(); 1315 1316 if (modload("fs", "specfs") == -1) 1317 halt("Can't load specfs"); 1318 1319 if (modload("fs", "devfs") == -1) 1320 halt("Can't load devfs"); 1321 1322 dispinit(); 1323 1324 /* 1325 * This is needed here to initialize hw_serial[] for cluster booting. 1326 */ 1327 if ((i = modload("misc", "sysinit")) != (unsigned int)-1) 1328 (void) modunload(i); 1329 else 1330 cmn_err(CE_CONT, "sysinit load failed"); 1331 1332 /* Read cluster configuration data. */ 1333 clconf_init(); 1334 1335 /* 1336 * Create a kernel device tree. First, create rootnex and 1337 * then invoke bus specific code to probe devices. 1338 */ 1339 setup_ddi(); 1340 /* 1341 * Fake a prom tree such that /dev/openprom continues to work 1342 */ 1343 prom_setup(); 1344 1345 /* 1346 * Load all platform specific modules 1347 */ 1348 psm_modload(); 1349 1350 PRM_POINT("startup_modules() done"); 1351 } 1352 1353 static void 1354 startup_bop_gone(void) 1355 { 1356 PRM_POINT("startup_bop_gone() starting..."); 1357 1358 /* 1359 * Do final allocations of HAT data structures that need to 1360 * be allocated before quiescing the boot loader. 1361 */ 1362 PRM_POINT("Calling hat_kern_alloc()..."); 1363 hat_kern_alloc(); 1364 PRM_POINT("hat_kern_alloc() done"); 1365 1366 /* 1367 * Setup MTRR (Memory type range registers) 1368 */ 1369 setup_mtrr(); 1370 PRM_POINT("startup_bop_gone() done"); 1371 } 1372 1373 /* 1374 * Walk through the pagetables looking for pages mapped in by boot. If the 1375 * setaside flag is set the pages are expected to be returned to the 1376 * kernel later in boot, so we add them to the bootpages list. 1377 */ 1378 static void 1379 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1380 { 1381 uintptr_t va = low; 1382 size_t len; 1383 uint_t prot; 1384 pfn_t pfn; 1385 page_t *pp; 1386 pgcnt_t boot_protect_cnt = 0; 1387 1388 while (hat_boot_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1389 if (va + len >= high) 1390 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1391 "legal range.", len, (void *)va); 1392 1393 while (len > 0) { 1394 pp = page_numtopp_alloc(pfn); 1395 if (pp != NULL) { 1396 if (setaside == 0) 1397 panic("Unexpected mapping by boot. " 1398 "addr=%p pfn=%lx\n", 1399 (void *)va, pfn); 1400 1401 pp->p_next = bootpages; 1402 bootpages = pp; 1403 ++boot_protect_cnt; 1404 } 1405 1406 ++pfn; 1407 len -= MMU_PAGESIZE; 1408 va += MMU_PAGESIZE; 1409 } 1410 } 1411 PRM_DEBUG(boot_protect_cnt); 1412 } 1413 1414 static void 1415 startup_vm(void) 1416 { 1417 struct segmap_crargs a; 1418 extern void hat_kern_setup(void); 1419 pgcnt_t pages_left; 1420 1421 extern int exec_lpg_disable, use_brk_lpg, use_stk_lpg, use_zmap_lpg; 1422 extern pgcnt_t auto_lpg_min_physmem; 1423 1424 PRM_POINT("startup_vm() starting..."); 1425 1426 /* 1427 * The next two loops are done in distinct steps in order 1428 * to be sure that any page that is doubly mapped (both above 1429 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1430 * Note this may never happen, but it might someday. 1431 */ 1432 1433 bootpages = NULL; 1434 PRM_POINT("Protecting boot pages"); 1435 /* 1436 * Protect any pages mapped above KERNEL_TEXT that somehow have 1437 * page_t's. This can only happen if something weird allocated 1438 * in this range (like kadb/kmdb). 1439 */ 1440 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1441 1442 /* 1443 * Before we can take over memory allocation/mapping from the boot 1444 * loader we must remove from our free page lists any boot pages that 1445 * will stay mapped until release_bootstrap(). 1446 */ 1447 protect_boot_range(0, kernelbase, 1); 1448 #if defined(__amd64) 1449 protect_boot_range(BOOT_DOUBLEMAP_BASE, 1450 BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE, 0); 1451 #endif 1452 1453 /* 1454 * Copy in boot's page tables, set up extra page tables for the kernel, 1455 * and switch to the kernel's context. 1456 */ 1457 PRM_POINT("Calling hat_kern_setup()..."); 1458 hat_kern_setup(); 1459 1460 /* 1461 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1462 */ 1463 bootops->bsys_alloc = NULL; 1464 PRM_POINT("hat_kern_setup() done"); 1465 1466 hat_cpu_online(CPU); 1467 1468 /* 1469 * Before we call kvm_init(), we need to establish the final size 1470 * of the kernel's heap. So, we need to figure out how much space 1471 * to set aside for segkp, segkpm, and segmap. 1472 */ 1473 final_kernelheap = (caddr_t)ROUND_UP_LPAGE(kernelbase); 1474 #if defined(__amd64) 1475 if (kpm_desired) { 1476 /* 1477 * Segkpm appears at the bottom of the kernel's address 1478 * range. To detect accidental overruns of the user 1479 * address space, we leave a "red zone" of unmapped memory 1480 * between kernelbase and the beginning of segkpm. 1481 */ 1482 kpm_vbase = final_kernelheap + KERNEL_REDZONE_SIZE; 1483 kpm_size = mmu_ptob(physmax); 1484 PRM_DEBUG(kpm_vbase); 1485 PRM_DEBUG(kpm_size); 1486 final_kernelheap = 1487 (caddr_t)ROUND_UP_TOPLEVEL(kpm_vbase + kpm_size); 1488 } 1489 1490 if (!segkp_fromheap) { 1491 size_t sz = mmu_ptob(segkpsize); 1492 1493 /* 1494 * determine size of segkp and adjust the bottom of the 1495 * kernel's heap. 1496 */ 1497 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1498 sz = SEGKPDEFSIZE; 1499 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1500 "segkpsize has been reset to %ld pages", 1501 mmu_btop(sz)); 1502 } 1503 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1504 1505 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1506 segkp_base = final_kernelheap; 1507 PRM_DEBUG(segkpsize); 1508 PRM_DEBUG(segkp_base); 1509 final_kernelheap = segkp_base + mmu_ptob(segkpsize); 1510 PRM_DEBUG(final_kernelheap); 1511 } 1512 1513 /* 1514 * put the range of VA for device mappings next 1515 */ 1516 toxic_addr = (uintptr_t)final_kernelheap; 1517 PRM_DEBUG(toxic_addr); 1518 final_kernelheap = (char *)toxic_addr + toxic_size; 1519 #endif 1520 PRM_DEBUG(final_kernelheap); 1521 ASSERT(final_kernelheap < boot_kernelheap); 1522 1523 /* 1524 * Users can change segmapsize through eeprom or /etc/system. 1525 * If the variable is tuned through eeprom, there is no upper 1526 * bound on the size of segmap. If it is tuned through 1527 * /etc/system on 32-bit systems, it must be no larger than we 1528 * planned for in startup_memlist(). 1529 */ 1530 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1531 segkmap_start = ROUND_UP_LPAGE((uintptr_t)final_kernelheap); 1532 1533 #if defined(__i386) 1534 if (segmapsize > segmap_reserved) { 1535 cmn_err(CE_NOTE, "!segmapsize may not be set > 0x%lx in " 1536 "/etc/system. Use eeprom.", (long)SEGMAPMAX); 1537 segmapsize = segmap_reserved; 1538 } 1539 /* 1540 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1541 * the bottom of the kernel's address range. Set aside space for a 1542 * red zone just below the start of segmap. 1543 */ 1544 segkmap_start += KERNEL_REDZONE_SIZE; 1545 segmapsize -= KERNEL_REDZONE_SIZE; 1546 #endif 1547 final_kernelheap = (char *)(segkmap_start + segmapsize); 1548 1549 PRM_DEBUG(segkmap_start); 1550 PRM_DEBUG(segmapsize); 1551 PRM_DEBUG(final_kernelheap); 1552 1553 /* 1554 * Initialize VM system 1555 */ 1556 PRM_POINT("Calling kvm_init()..."); 1557 kvm_init(); 1558 PRM_POINT("kvm_init() done"); 1559 1560 /* 1561 * Tell kmdb that the VM system is now working 1562 */ 1563 if (boothowto & RB_DEBUG) 1564 kdi_dvec_vmready(); 1565 1566 /* 1567 * Mangle the brand string etc. 1568 */ 1569 cpuid_pass3(CPU); 1570 1571 PRM_DEBUG(final_kernelheap); 1572 1573 /* 1574 * Now that we can use memory outside the top 4GB (on 64-bit 1575 * systems) and we know the size of segmap, we can set the final 1576 * size of the kernel's heap. Note: on 64-bit systems we still 1577 * can't touch anything in the bottom half of the top 4GB range 1578 * because boot still has pages mapped there. 1579 */ 1580 if (final_kernelheap < boot_kernelheap) { 1581 kernelheap_extend(final_kernelheap, boot_kernelheap); 1582 #if defined(__amd64) 1583 kmem_setaside = vmem_xalloc(heap_arena, BOOT_DOUBLEMAP_SIZE, 1584 MMU_PAGESIZE, 0, 0, (void *)(BOOT_DOUBLEMAP_BASE), 1585 (void *)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE), 1586 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1587 PRM_DEBUG(kmem_setaside); 1588 if (kmem_setaside == NULL) 1589 panic("Could not protect boot's memory"); 1590 #endif 1591 } 1592 /* 1593 * Now that the kernel heap may have grown significantly, we need 1594 * to make all the remaining page_t's available to back that memory. 1595 * 1596 * XX64 this should probably wait till after release boot-strap too. 1597 */ 1598 pages_left = npages - boot_npages; 1599 if (pages_left > 0) { 1600 PRM_DEBUG(pages_left); 1601 (void) kphysm_init(NULL, memseg_base, boot_npages, pages_left); 1602 } 1603 1604 #if defined(__amd64) 1605 1606 /* 1607 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1608 */ 1609 device_arena = vmem_create("device", (void *)toxic_addr, 1610 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1611 1612 #else /* __i386 */ 1613 1614 /* 1615 * allocate the bit map that tracks toxic pages 1616 */ 1617 toxic_bit_map_len = btop((ulong_t)(ptable_va - kernelbase)); 1618 PRM_DEBUG(toxic_bit_map_len); 1619 toxic_bit_map = 1620 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1621 ASSERT(toxic_bit_map != NULL); 1622 PRM_DEBUG(toxic_bit_map); 1623 1624 #endif /* __i386 */ 1625 1626 1627 /* 1628 * Now that we've got more VA, as well as the ability to allocate from 1629 * it, tell the debugger. 1630 */ 1631 if (boothowto & RB_DEBUG) 1632 kdi_dvec_memavail(); 1633 1634 /* 1635 * The following code installs a special page fault handler (#pf) 1636 * to work around a pentium bug. 1637 */ 1638 #if !defined(__amd64) 1639 if (x86_type == X86_TYPE_P5) { 1640 gate_desc_t *newidt; 1641 desctbr_t newidt_r; 1642 1643 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1644 panic("failed to install pentium_pftrap"); 1645 1646 bcopy(idt0, newidt, sizeof (idt0)); 1647 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1648 KCS_SEL, 0, SDT_SYSIGT, SEL_KPL); 1649 1650 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1651 PROT_READ|PROT_EXEC); 1652 1653 newidt_r.dtr_limit = sizeof (idt0) - 1; 1654 newidt_r.dtr_base = (uintptr_t)newidt; 1655 CPU->cpu_idt = newidt; 1656 wr_idtr(&newidt_r); 1657 } 1658 #endif /* !__amd64 */ 1659 1660 /* 1661 * Map page pfn=0 for drivers, such as kd, that need to pick up 1662 * parameters left there by controllers/BIOS. 1663 */ 1664 PRM_POINT("setup up p0_va"); 1665 p0_va = i86devmap(0, 1, PROT_READ); 1666 PRM_DEBUG(p0_va); 1667 1668 /* 1669 * If the following is true, someone has patched phsymem to be less 1670 * than the number of pages that the system actually has. Remove 1671 * pages until system memory is limited to the requested amount. 1672 * Since we have allocated page structures for all pages, we 1673 * correct the amount of memory we want to remove by the size of 1674 * the memory used to hold page structures for the non-used pages. 1675 */ 1676 if (physmem < npages) { 1677 uint_t diff; 1678 offset_t off; 1679 struct page *pp; 1680 caddr_t rand_vaddr; 1681 struct seg kseg; 1682 1683 cmn_err(CE_WARN, "limiting physmem to %lu pages", physmem); 1684 1685 off = 0; 1686 diff = npages - physmem; 1687 diff -= mmu_btopr(diff * sizeof (struct page)); 1688 kseg.s_as = &kas; 1689 while (diff--) { 1690 rand_vaddr = (caddr_t) 1691 (((uintptr_t)&unused_pages_vp >> 7) ^ 1692 (uintptr_t)((u_offset_t)off >> MMU_PAGESHIFT)); 1693 pp = page_create_va(&unused_pages_vp, off, MMU_PAGESIZE, 1694 PG_WAIT | PG_EXCL, &kseg, rand_vaddr); 1695 if (pp == NULL) { 1696 panic("limited physmem too much!"); 1697 /*NOTREACHED*/ 1698 } 1699 page_io_unlock(pp); 1700 page_downgrade(pp); 1701 availrmem--; 1702 off += MMU_PAGESIZE; 1703 } 1704 } 1705 1706 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1707 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1708 1709 /* 1710 * disable automatic large pages for small memory systems or 1711 * when the disable flag is set. 1712 */ 1713 if (physmem < auto_lpg_min_physmem || auto_lpg_disable) { 1714 exec_lpg_disable = 1; 1715 use_brk_lpg = 0; 1716 use_stk_lpg = 0; 1717 use_zmap_lpg = 0; 1718 } 1719 1720 PRM_POINT("Calling hat_init_finish()..."); 1721 hat_init_finish(); 1722 PRM_POINT("hat_init_finish() done"); 1723 1724 /* 1725 * Initialize the segkp segment type. 1726 */ 1727 rw_enter(&kas.a_lock, RW_WRITER); 1728 if (!segkp_fromheap) { 1729 if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1730 segkp) < 0) { 1731 panic("startup: cannot attach segkp"); 1732 /*NOTREACHED*/ 1733 } 1734 } else { 1735 /* 1736 * For 32 bit x86 systems, we will have segkp under the heap. 1737 * There will not be a segkp segment. We do, however, need 1738 * to fill in the seg structure. 1739 */ 1740 segkp->s_as = &kas; 1741 } 1742 if (segkp_create(segkp) != 0) { 1743 panic("startup: segkp_create failed"); 1744 /*NOTREACHED*/ 1745 } 1746 PRM_DEBUG(segkp); 1747 rw_exit(&kas.a_lock); 1748 1749 /* 1750 * kpm segment 1751 */ 1752 segmap_kpm = 0; 1753 if (kpm_desired) { 1754 kpm_init(); 1755 kpm_enable = 1; 1756 } 1757 1758 /* 1759 * Now create segmap segment. 1760 */ 1761 rw_enter(&kas.a_lock, RW_WRITER); 1762 if (seg_attach(&kas, (caddr_t)segkmap_start, segmapsize, segkmap) < 0) { 1763 panic("cannot attach segkmap"); 1764 /*NOTREACHED*/ 1765 } 1766 PRM_DEBUG(segkmap); 1767 1768 /* 1769 * The 64 bit HAT permanently maps only segmap's page tables. 1770 * The 32 bit HAT maps the heap's page tables too. 1771 */ 1772 #if defined(__amd64) 1773 hat_kmap_init(segkmap_start, segmapsize); 1774 #else /* __i386 */ 1775 ASSERT(segkmap_start + segmapsize == (uintptr_t)final_kernelheap); 1776 hat_kmap_init(segkmap_start, (uintptr_t)ekernelheap - segkmap_start); 1777 #endif /* __i386 */ 1778 1779 a.prot = PROT_READ | PROT_WRITE; 1780 a.shmsize = 0; 1781 a.nfreelist = segmapfreelists; 1782 1783 if (segmap_create(segkmap, (caddr_t)&a) != 0) 1784 panic("segmap_create segkmap"); 1785 rw_exit(&kas.a_lock); 1786 1787 setup_vaddr_for_ppcopy(CPU); 1788 1789 segdev_init(); 1790 pmem_init(); 1791 PRM_POINT("startup_vm() done"); 1792 } 1793 1794 static void 1795 startup_end(void) 1796 { 1797 extern void setx86isalist(void); 1798 1799 PRM_POINT("startup_end() starting..."); 1800 1801 /* 1802 * Perform tasks that get done after most of the VM 1803 * initialization has been done but before the clock 1804 * and other devices get started. 1805 */ 1806 kern_setup1(); 1807 1808 /* 1809 * Perform CPC initialization for this CPU. 1810 */ 1811 kcpc_hw_init(CPU); 1812 1813 #if defined(__amd64) 1814 /* 1815 * Validate support for syscall/sysret 1816 * XX64 -- include SSE, SSE2, etc. here too? 1817 */ 1818 if ((x86_feature & X86_ASYSC) == 0) { 1819 cmn_err(CE_WARN, 1820 "cpu%d does not support syscall/sysret", CPU->cpu_id); 1821 } 1822 #endif 1823 /* 1824 * Configure the system. 1825 */ 1826 PRM_POINT("Calling configure()..."); 1827 configure(); /* set up devices */ 1828 PRM_POINT("configure() done"); 1829 1830 /* 1831 * Set the isa_list string to the defined instruction sets we 1832 * support. 1833 */ 1834 setx86isalist(); 1835 init_intr_threads(CPU); 1836 psm_install(); 1837 1838 /* 1839 * We're done with bootops. We don't unmap the bootstrap yet because 1840 * we're still using bootsvcs. 1841 */ 1842 PRM_POINT("zeroing out bootops"); 1843 *bootopsp = (struct bootops *)0; 1844 bootops = (struct bootops *)NULL; 1845 1846 PRM_POINT("Enabling interrupts"); 1847 (*picinitf)(); 1848 sti(); 1849 1850 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 1851 "softlevel1", NULL, NULL); /* XXX to be moved later */ 1852 1853 PRM_POINT("startup_end() done"); 1854 } 1855 1856 extern char hw_serial[]; 1857 char *_hs1107 = hw_serial; 1858 ulong_t _bdhs34; 1859 1860 void 1861 post_startup(void) 1862 { 1863 /* 1864 * Set the system wide, processor-specific flags to be passed 1865 * to userland via the aux vector for performance hints and 1866 * instruction set extensions. 1867 */ 1868 bind_hwcap(); 1869 1870 /* 1871 * Load the System Management BIOS into the global ksmbios handle, 1872 * if an SMBIOS is present on this system. 1873 */ 1874 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1875 1876 /* 1877 * Startup memory scrubber. 1878 */ 1879 memscrub_init(); 1880 1881 /* 1882 * Perform forceloading tasks for /etc/system. 1883 */ 1884 (void) mod_sysctl(SYS_FORCELOAD, NULL); 1885 1886 /* 1887 * ON4.0: Force /proc module in until clock interrupt handle fixed 1888 * ON4.0: This must be fixed or restated in /etc/systems. 1889 */ 1890 (void) modload("fs", "procfs"); 1891 1892 #if defined(__i386) 1893 /* 1894 * Check for required functional Floating Point hardware, 1895 * unless FP hardware explicitly disabled. 1896 */ 1897 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 1898 halt("No working FP hardware found"); 1899 #endif 1900 1901 maxmem = freemem; 1902 1903 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 1904 1905 /* 1906 * Perform the formal initialization of the boot chip, 1907 * and associate the boot cpu with it. 1908 * This must be done after the cpu node for CPU has been 1909 * added to the device tree, when the necessary probing to 1910 * know the chip type and chip "id" is performed. 1911 */ 1912 chip_cpu_init(CPU); 1913 chip_cpu_assign(CPU); 1914 } 1915 1916 static int 1917 pp_in_ramdisk(page_t *pp) 1918 { 1919 extern uint64_t ramdisk_start, ramdisk_end; 1920 1921 return ((pp->p_pagenum >= btop(ramdisk_start)) && 1922 (pp->p_pagenum < btopr(ramdisk_end))); 1923 } 1924 1925 void 1926 release_bootstrap(void) 1927 { 1928 int root_is_ramdisk; 1929 pfn_t pfn; 1930 page_t *pp; 1931 extern void kobj_boot_unmountroot(void); 1932 extern dev_t rootdev; 1933 1934 /* unmount boot ramdisk and release kmem usage */ 1935 kobj_boot_unmountroot(); 1936 1937 /* 1938 * We're finished using the boot loader so free its pages. 1939 */ 1940 PRM_POINT("Unmapping lower boot pages"); 1941 clear_boot_mappings(0, kernelbase); 1942 #if defined(__amd64) 1943 PRM_POINT("Unmapping upper boot pages"); 1944 clear_boot_mappings(BOOT_DOUBLEMAP_BASE, 1945 BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); 1946 #endif 1947 1948 /* 1949 * If root isn't on ramdisk, destroy the hardcoded 1950 * ramdisk node now and release the memory. Else, 1951 * ramdisk memory is kept in rd_pages. 1952 */ 1953 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 1954 if (!root_is_ramdisk) { 1955 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 1956 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 1957 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 1958 (void) ddi_remove_child(dip, 0); 1959 } 1960 1961 PRM_POINT("Releasing boot pages"); 1962 while (bootpages) { 1963 pp = bootpages; 1964 bootpages = pp->p_next; 1965 if (root_is_ramdisk && pp_in_ramdisk(pp)) { 1966 pp->p_next = rd_pages; 1967 rd_pages = pp; 1968 continue; 1969 } 1970 pp->p_next = (struct page *)0; 1971 page_free(pp, 1); 1972 } 1973 1974 /* 1975 * Find 1 page below 1 MB so that other processors can boot up. 1976 * Make sure it has a kernel VA as well as a 1:1 mapping. 1977 * We should have just free'd one up. 1978 */ 1979 if (use_mp) { 1980 for (pfn = 1; pfn < btop(1*1024*1024); pfn++) { 1981 if (page_numtopp_alloc(pfn) == NULL) 1982 continue; 1983 rm_platter_va = i86devmap(pfn, 1, 1984 PROT_READ | PROT_WRITE | PROT_EXEC); 1985 rm_platter_pa = ptob(pfn); 1986 hat_devload(kas.a_hat, 1987 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 1988 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 1989 HAT_LOAD_NOCONSIST); 1990 break; 1991 } 1992 if (pfn == btop(1*1024*1024)) 1993 panic("No page available for starting " 1994 "other processors"); 1995 } 1996 1997 #if defined(__amd64) 1998 PRM_POINT("Returning boot's VA space to kernel heap"); 1999 if (kmem_setaside != NULL) 2000 vmem_free(heap_arena, kmem_setaside, BOOT_DOUBLEMAP_SIZE); 2001 #endif 2002 } 2003 2004 /* 2005 * Initialize the platform-specific parts of a page_t. 2006 */ 2007 void 2008 add_physmem_cb(page_t *pp, pfn_t pnum) 2009 { 2010 pp->p_pagenum = pnum; 2011 pp->p_mapping = NULL; 2012 pp->p_embed = 0; 2013 pp->p_share = 0; 2014 pp->p_mlentry = 0; 2015 } 2016 2017 /* 2018 * kphysm_init() initializes physical memory. 2019 */ 2020 static pgcnt_t 2021 kphysm_init( 2022 page_t *inpp, 2023 struct memseg *memsegp, 2024 pgcnt_t start, 2025 pgcnt_t npages) 2026 { 2027 struct memlist *pmem; 2028 struct memseg *cur_memseg; 2029 struct memseg **memsegpp; 2030 pfn_t base_pfn; 2031 pgcnt_t num; 2032 pgcnt_t total_skipped = 0; 2033 pgcnt_t skipping = 0; 2034 pgcnt_t pages_done = 0; 2035 pgcnt_t largepgcnt; 2036 uint64_t addr; 2037 uint64_t size; 2038 page_t *pp = inpp; 2039 int dobreak = 0; 2040 extern pfn_t ddiphysmin; 2041 2042 ASSERT(page_hash != NULL && page_hashsz != 0); 2043 2044 for (cur_memseg = memsegp; cur_memseg->pages != NULL; cur_memseg++); 2045 ASSERT(cur_memseg == memsegp || start > 0); 2046 2047 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2048 /* 2049 * In a 32 bit kernel can't use higher memory if we're 2050 * not booting in PAE mode. This check takes care of that. 2051 */ 2052 addr = pmem->address; 2053 size = pmem->size; 2054 if (btop(addr) > physmax) 2055 continue; 2056 2057 /* 2058 * align addr and size - they may not be at page boundaries 2059 */ 2060 if ((addr & MMU_PAGEOFFSET) != 0) { 2061 addr += MMU_PAGEOFFSET; 2062 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2063 size -= addr - pmem->address; 2064 } 2065 2066 /* only process pages below or equal to physmax */ 2067 if ((btop(addr + size) - 1) > physmax) 2068 size = ptob(physmax - btop(addr) + 1); 2069 2070 num = btop(size); 2071 if (num == 0) 2072 continue; 2073 2074 if (total_skipped < start) { 2075 if (start - total_skipped > num) { 2076 total_skipped += num; 2077 continue; 2078 } 2079 skipping = start - total_skipped; 2080 num -= skipping; 2081 addr += (MMU_PAGESIZE * skipping); 2082 total_skipped = start; 2083 } 2084 if (num == 0) 2085 continue; 2086 2087 if (num > npages) 2088 num = npages; 2089 2090 npages -= num; 2091 pages_done += num; 2092 base_pfn = btop(addr); 2093 2094 /* 2095 * If the caller didn't provide space for the page 2096 * structures, carve them out of the memseg they will 2097 * represent. 2098 */ 2099 if (pp == NULL) { 2100 pgcnt_t pp_pgs; 2101 2102 if (num <= 1) 2103 continue; 2104 2105 /* 2106 * Compute how many of the pages we need to use for 2107 * page_ts 2108 */ 2109 pp_pgs = (num * sizeof (page_t)) / MMU_PAGESIZE + 1; 2110 while (mmu_ptob(pp_pgs - 1) / sizeof (page_t) >= 2111 num - pp_pgs + 1) 2112 --pp_pgs; 2113 PRM_DEBUG(pp_pgs); 2114 2115 pp = vmem_alloc(heap_arena, mmu_ptob(pp_pgs), 2116 VM_NOSLEEP); 2117 if (pp == NULL) { 2118 cmn_err(CE_WARN, "Unable to add %ld pages to " 2119 "the system.", num); 2120 continue; 2121 } 2122 2123 hat_devload(kas.a_hat, (void *)pp, mmu_ptob(pp_pgs), 2124 base_pfn, PROT_READ | PROT_WRITE | HAT_UNORDERED_OK, 2125 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 2126 bzero(pp, mmu_ptob(pp_pgs)); 2127 num -= pp_pgs; 2128 base_pfn += pp_pgs; 2129 } 2130 2131 if (prom_debug) 2132 prom_printf("MEMSEG addr=0x%" PRIx64 2133 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2134 addr, num, base_pfn, base_pfn + num); 2135 2136 /* 2137 * drop pages below ddiphysmin to simplify ddi memory 2138 * allocation with non-zero addr_lo requests. 2139 */ 2140 if (base_pfn < ddiphysmin) { 2141 if (base_pfn + num <= ddiphysmin) { 2142 /* drop entire range below ddiphysmin */ 2143 continue; 2144 } 2145 /* adjust range to ddiphysmin */ 2146 pp += (ddiphysmin - base_pfn); 2147 num -= (ddiphysmin - base_pfn); 2148 base_pfn = ddiphysmin; 2149 } 2150 /* 2151 * Build the memsegs entry 2152 */ 2153 cur_memseg->pages = pp; 2154 cur_memseg->epages = pp + num; 2155 cur_memseg->pages_base = base_pfn; 2156 cur_memseg->pages_end = base_pfn + num; 2157 2158 /* 2159 * insert in memseg list in decreasing pfn range order. 2160 * Low memory is typically more fragmented such that this 2161 * ordering keeps the larger ranges at the front of the list 2162 * for code that searches memseg. 2163 */ 2164 memsegpp = &memsegs; 2165 for (;;) { 2166 if (*memsegpp == NULL) { 2167 /* empty memsegs */ 2168 memsegs = cur_memseg; 2169 break; 2170 } 2171 /* check for continuity with start of memsegpp */ 2172 if (cur_memseg->pages_end == (*memsegpp)->pages_base) { 2173 if (cur_memseg->epages == (*memsegpp)->pages) { 2174 /* 2175 * contiguous pfn and page_t's. Merge 2176 * cur_memseg into *memsegpp. Drop 2177 * cur_memseg 2178 */ 2179 (*memsegpp)->pages_base = 2180 cur_memseg->pages_base; 2181 (*memsegpp)->pages = 2182 cur_memseg->pages; 2183 /* 2184 * check if contiguous with the end of 2185 * the next memseg. 2186 */ 2187 if ((*memsegpp)->next && 2188 ((*memsegpp)->pages_base == 2189 (*memsegpp)->next->pages_end)) { 2190 cur_memseg = *memsegpp; 2191 memsegpp = &((*memsegpp)->next); 2192 dobreak = 1; 2193 } else { 2194 break; 2195 } 2196 } else { 2197 /* 2198 * contiguous pfn but not page_t's. 2199 * drop last pfn/page_t in cur_memseg 2200 * to prevent creation of large pages 2201 * with noncontiguous page_t's if not 2202 * aligned to largest page boundary. 2203 */ 2204 largepgcnt = page_get_pagecnt( 2205 page_num_pagesizes() - 1); 2206 2207 if (cur_memseg->pages_end & 2208 (largepgcnt - 1)) { 2209 num--; 2210 cur_memseg->epages--; 2211 cur_memseg->pages_end--; 2212 } 2213 } 2214 } 2215 2216 /* check for continuity with end of memsegpp */ 2217 if (cur_memseg->pages_base == (*memsegpp)->pages_end) { 2218 if (cur_memseg->pages == (*memsegpp)->epages) { 2219 /* 2220 * contiguous pfn and page_t's. Merge 2221 * cur_memseg into *memsegpp. Drop 2222 * cur_memseg. 2223 */ 2224 if (dobreak) { 2225 /* merge previously done */ 2226 cur_memseg->pages = 2227 (*memsegpp)->pages; 2228 cur_memseg->pages_base = 2229 (*memsegpp)->pages_base; 2230 cur_memseg->next = 2231 (*memsegpp)->next; 2232 } else { 2233 (*memsegpp)->pages_end = 2234 cur_memseg->pages_end; 2235 (*memsegpp)->epages = 2236 cur_memseg->epages; 2237 } 2238 break; 2239 } 2240 /* 2241 * contiguous pfn but not page_t's. 2242 * drop first pfn/page_t in cur_memseg 2243 * to prevent creation of large pages 2244 * with noncontiguous page_t's if not 2245 * aligned to largest page boundary. 2246 */ 2247 largepgcnt = page_get_pagecnt( 2248 page_num_pagesizes() - 1); 2249 if (base_pfn & (largepgcnt - 1)) { 2250 num--; 2251 base_pfn++; 2252 cur_memseg->pages++; 2253 cur_memseg->pages_base++; 2254 pp = cur_memseg->pages; 2255 } 2256 if (dobreak) 2257 break; 2258 } 2259 2260 if (cur_memseg->pages_base >= 2261 (*memsegpp)->pages_end) { 2262 cur_memseg->next = *memsegpp; 2263 *memsegpp = cur_memseg; 2264 break; 2265 } 2266 if ((*memsegpp)->next == NULL) { 2267 cur_memseg->next = NULL; 2268 (*memsegpp)->next = cur_memseg; 2269 break; 2270 } 2271 memsegpp = &((*memsegpp)->next); 2272 ASSERT(*memsegpp != NULL); 2273 } 2274 2275 /* 2276 * add_physmem() initializes the PSM part of the page 2277 * struct by calling the PSM back with add_physmem_cb(). 2278 * In addition it coalesces pages into larger pages as 2279 * it initializes them. 2280 */ 2281 add_physmem(pp, num, base_pfn); 2282 cur_memseg++; 2283 availrmem_initial += num; 2284 availrmem += num; 2285 2286 /* 2287 * If the caller provided the page frames to us, then 2288 * advance in that list. Otherwise, prepare to allocate 2289 * our own page frames for the next memseg. 2290 */ 2291 pp = (inpp == NULL) ? NULL : pp + num; 2292 } 2293 2294 PRM_DEBUG(availrmem_initial); 2295 PRM_DEBUG(availrmem); 2296 PRM_DEBUG(freemem); 2297 build_pfn_hash(); 2298 return (pages_done); 2299 } 2300 2301 /* 2302 * Kernel VM initialization. 2303 */ 2304 static void 2305 kvm_init(void) 2306 { 2307 #ifdef DEBUG 2308 extern void _start(); 2309 2310 ASSERT((caddr_t)_start == s_text); 2311 #endif 2312 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2313 2314 /* 2315 * Put the kernel segments in kernel address space. 2316 */ 2317 rw_enter(&kas.a_lock, RW_WRITER); 2318 as_avlinit(&kas); 2319 2320 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2321 (void) segkmem_create(&ktextseg); 2322 2323 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2324 (void) segkmem_create(&kvalloc); 2325 2326 /* 2327 * We're about to map out /boot. This is the beginning of the 2328 * system resource management transition. We can no longer 2329 * call into /boot for I/O or memory allocations. 2330 * 2331 * XX64 - Is this still correct with kernelheap_extend() being called 2332 * later than this???? 2333 */ 2334 (void) seg_attach(&kas, final_kernelheap, 2335 ekernelheap - final_kernelheap, &kvseg); 2336 (void) segkmem_create(&kvseg); 2337 2338 #if defined(__amd64) 2339 (void) seg_attach(&kas, (caddr_t)core_base, core_size, &kvseg_core); 2340 (void) segkmem_create(&kvseg_core); 2341 #endif 2342 2343 (void) seg_attach(&kas, (caddr_t)SEGDEBUGBASE, (size_t)SEGDEBUGSIZE, 2344 &kdebugseg); 2345 (void) segkmem_create(&kdebugseg); 2346 2347 rw_exit(&kas.a_lock); 2348 2349 /* 2350 * Ensure that the red zone at kernelbase is never accessible. 2351 */ 2352 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2353 2354 /* 2355 * Make the text writable so that it can be hot patched by DTrace. 2356 */ 2357 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2358 PROT_READ | PROT_WRITE | PROT_EXEC); 2359 2360 /* 2361 * Make data writable until end. 2362 */ 2363 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2364 PROT_READ | PROT_WRITE | PROT_EXEC); 2365 } 2366 2367 /* 2368 * These are MTTR registers supported by P6 2369 */ 2370 static struct mtrrvar mtrrphys_arr[MAX_MTRRVAR]; 2371 static uint64_t mtrr64k, mtrr16k1, mtrr16k2; 2372 static uint64_t mtrr4k1, mtrr4k2, mtrr4k3; 2373 static uint64_t mtrr4k4, mtrr4k5, mtrr4k6; 2374 static uint64_t mtrr4k7, mtrr4k8, mtrrcap; 2375 uint64_t mtrrdef, pat_attr_reg; 2376 2377 /* 2378 * Disable reprogramming of MTRRs by default. 2379 */ 2380 int enable_relaxed_mtrr = 0; 2381 2382 /* 2383 * These must serve for Pentium, Pentium Pro (P6/Pentium II/Pentium III) 2384 * and Pentium 4, and yes, they are named 0, 1, 2, 4, 3 in ascending 2385 * address order (starting from 0x400). The Pentium 4 only implements 2386 * 4 sets, and while they are named 0-3 in the doc, the corresponding 2387 * names for P6 are 0,1,2,4. So define these arrays in address order 2388 * so that they work for both pre-Pentium4 and Pentium 4 processors. 2389 */ 2390 2391 static uint_t mci_ctl[] = {REG_MC0_CTL, REG_MC1_CTL, REG_MC2_CTL, 2392 REG_MC4_CTL, REG_MC3_CTL}; 2393 static uint_t mci_status[] = {REG_MC0_STATUS, REG_MC1_STATUS, REG_MC2_STATUS, 2394 REG_MC4_STATUS, REG_MC3_STATUS}; 2395 static uint_t mci_addr[] = {REG_MC0_ADDR, REG_MC1_ADDR, REG_MC2_ADDR, 2396 REG_MC4_ADDR, REG_MC3_ADDR}; 2397 static int mca_cnt; 2398 2399 2400 void 2401 setup_mca() 2402 { 2403 int i; 2404 uint64_t mca_cap; 2405 2406 if (!(x86_feature & X86_MCA)) 2407 return; 2408 mca_cap = rdmsr(REG_MCG_CAP); 2409 if (mca_cap & MCG_CAP_CTL_P) 2410 wrmsr(REG_MCG_CTL, -1ULL); /* all ones */ 2411 mca_cnt = mca_cap & MCG_CAP_COUNT_MASK; 2412 if (mca_cnt > P6_MCG_CAP_COUNT) 2413 mca_cnt = P6_MCG_CAP_COUNT; 2414 for (i = 1; i < mca_cnt; i++) 2415 wrmsr(mci_ctl[i], -1ULL); /* all ones */ 2416 for (i = 0; i < mca_cnt; i++) 2417 wrmsr(mci_status[i], 0ULL); 2418 setcr4(getcr4() | CR4_MCE); 2419 2420 } 2421 2422 int 2423 mca_exception(struct regs *rp) 2424 { 2425 uint64_t status, addr; 2426 int i, ret = 1, errcode, mserrcode; 2427 2428 status = rdmsr(REG_MCG_STATUS); 2429 if (status & MCG_STATUS_RIPV) 2430 ret = 0; 2431 if (status & MCG_STATUS_EIPV) 2432 cmn_err(CE_WARN, "MCE at 0x%lx", rp->r_pc); 2433 wrmsr(REG_MCG_STATUS, 0ULL); 2434 for (i = 0; i < mca_cnt; i++) { 2435 status = rdmsr(mci_status[i]); 2436 /* 2437 * If status register not valid skip this bank 2438 */ 2439 if (!(status & MCI_STATUS_VAL)) 2440 continue; 2441 errcode = status & MCI_STATUS_ERRCODE; 2442 mserrcode = (status >> MSERRCODE_SHFT) & MCI_STATUS_ERRCODE; 2443 if (status & MCI_STATUS_ADDRV) { 2444 /* 2445 * If mci_addr contains the address where 2446 * error occurred, display the address 2447 */ 2448 addr = rdmsr(mci_addr[i]); 2449 cmn_err(CE_WARN, "MCE: Bank %d: error code 0x%x:"\ 2450 "addr = 0x%" PRIx64 ", model errcode = 0x%x", i, 2451 errcode, addr, mserrcode); 2452 } else { 2453 cmn_err(CE_WARN, 2454 "MCE: Bank %d: error code 0x%x, mserrcode = 0x%x", 2455 i, errcode, mserrcode); 2456 } 2457 wrmsr(mci_status[i], 0ULL); 2458 } 2459 return (ret); 2460 } 2461 2462 void 2463 setup_mtrr() 2464 { 2465 int i, ecx; 2466 int vcnt; 2467 struct mtrrvar *mtrrphys; 2468 2469 if (!(x86_feature & X86_MTRR)) 2470 return; 2471 2472 mtrrcap = rdmsr(REG_MTRRCAP); 2473 mtrrdef = rdmsr(REG_MTRRDEF); 2474 if (mtrrcap & MTRRCAP_FIX) { 2475 mtrr64k = rdmsr(REG_MTRR64K); 2476 mtrr16k1 = rdmsr(REG_MTRR16K1); 2477 mtrr16k2 = rdmsr(REG_MTRR16K2); 2478 mtrr4k1 = rdmsr(REG_MTRR4K1); 2479 mtrr4k2 = rdmsr(REG_MTRR4K2); 2480 mtrr4k3 = rdmsr(REG_MTRR4K3); 2481 mtrr4k4 = rdmsr(REG_MTRR4K4); 2482 mtrr4k5 = rdmsr(REG_MTRR4K5); 2483 mtrr4k6 = rdmsr(REG_MTRR4K6); 2484 mtrr4k7 = rdmsr(REG_MTRR4K7); 2485 mtrr4k8 = rdmsr(REG_MTRR4K8); 2486 } 2487 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2488 vcnt = MAX_MTRRVAR; 2489 2490 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2491 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2492 mtrrphys->mtrrphys_base = rdmsr(ecx); 2493 mtrrphys->mtrrphys_mask = rdmsr(ecx + 1); 2494 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2495 mtrrphys->mtrrphys_mask &= ~MTRRPHYSMASK_V; 2496 } 2497 } 2498 if (x86_feature & X86_PAT) { 2499 if (enable_relaxed_mtrr) 2500 mtrrdef = MTRR_TYPE_WB|MTRRDEF_FE|MTRRDEF_E; 2501 pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2502 } 2503 2504 mtrr_sync(); 2505 } 2506 2507 /* 2508 * Sync current cpu mtrr with the incore copy of mtrr. 2509 * This function has to be invoked with interrupts disabled 2510 * Currently we do not capture other cpu's. This is invoked on cpu0 2511 * just after reading /etc/system. 2512 * On other cpu's its invoked from mp_startup(). 2513 */ 2514 void 2515 mtrr_sync() 2516 { 2517 uint_t crvalue, cr0_orig; 2518 int vcnt, i, ecx; 2519 struct mtrrvar *mtrrphys; 2520 2521 cr0_orig = crvalue = getcr0(); 2522 crvalue |= CR0_CD; 2523 crvalue &= ~CR0_NW; 2524 setcr0(crvalue); 2525 invalidate_cache(); 2526 setcr3(getcr3()); 2527 2528 if (x86_feature & X86_PAT) 2529 wrmsr(REG_MTRRPAT, pat_attr_reg); 2530 2531 wrmsr(REG_MTRRDEF, rdmsr(REG_MTRRDEF) & 2532 ~((uint64_t)(uintptr_t)MTRRDEF_E)); 2533 2534 if (mtrrcap & MTRRCAP_FIX) { 2535 wrmsr(REG_MTRR64K, mtrr64k); 2536 wrmsr(REG_MTRR16K1, mtrr16k1); 2537 wrmsr(REG_MTRR16K2, mtrr16k2); 2538 wrmsr(REG_MTRR4K1, mtrr4k1); 2539 wrmsr(REG_MTRR4K2, mtrr4k2); 2540 wrmsr(REG_MTRR4K3, mtrr4k3); 2541 wrmsr(REG_MTRR4K4, mtrr4k4); 2542 wrmsr(REG_MTRR4K5, mtrr4k5); 2543 wrmsr(REG_MTRR4K6, mtrr4k6); 2544 wrmsr(REG_MTRR4K7, mtrr4k7); 2545 wrmsr(REG_MTRR4K8, mtrr4k8); 2546 } 2547 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2548 vcnt = MAX_MTRRVAR; 2549 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2550 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2551 wrmsr(ecx, mtrrphys->mtrrphys_base); 2552 wrmsr(ecx + 1, mtrrphys->mtrrphys_mask); 2553 } 2554 wrmsr(REG_MTRRDEF, mtrrdef); 2555 setcr3(getcr3()); 2556 invalidate_cache(); 2557 setcr0(cr0_orig); 2558 } 2559 2560 /* 2561 * resync mtrr so that BIOS is happy. Called from mdboot 2562 */ 2563 void 2564 mtrr_resync() 2565 { 2566 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2567 /* 2568 * We could have changed the default mtrr definition. 2569 * Put it back to uncached which is what it is at power on 2570 */ 2571 mtrrdef = MTRR_TYPE_UC|MTRRDEF_FE|MTRRDEF_E; 2572 mtrr_sync(); 2573 } 2574 } 2575 2576 void 2577 get_system_configuration() 2578 { 2579 char prop[32]; 2580 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2581 2582 if (((BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop)) || 2583 (BOP_GETPROP(bootops, "nodes", prop) < 0) || 2584 (kobj_getvalue(prop, &nodes_ll) == -1) || 2585 (nodes_ll > MAXNODES)) || 2586 ((BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop)) || 2587 (BOP_GETPROP(bootops, "cpus_pernode", prop) < 0) || 2588 (kobj_getvalue(prop, &cpus_pernode_ll) == -1))) { 2589 2590 system_hardware.hd_nodes = 1; 2591 system_hardware.hd_cpus_per_node = 0; 2592 } else { 2593 system_hardware.hd_nodes = (int)nodes_ll; 2594 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2595 } 2596 if ((BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop)) || 2597 (BOP_GETPROP(bootops, "kernelbase", prop) < 0) || 2598 (kobj_getvalue(prop, &lvalue) == -1)) 2599 eprom_kernelbase = NULL; 2600 else 2601 eprom_kernelbase = (uintptr_t)lvalue; 2602 2603 if ((BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop)) || 2604 (BOP_GETPROP(bootops, "segmapsize", prop) < 0) || 2605 (kobj_getvalue(prop, &lvalue) == -1)) { 2606 segmapsize = SEGMAPDEFAULT; 2607 } else { 2608 segmapsize = (uintptr_t)lvalue; 2609 } 2610 2611 if ((BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop)) || 2612 (BOP_GETPROP(bootops, "segmapfreelists", prop) < 0) || 2613 (kobj_getvalue(prop, &lvalue) == -1)) { 2614 segmapfreelists = 0; /* use segmap driver default */ 2615 } else { 2616 segmapfreelists = (int)lvalue; 2617 } 2618 } 2619 2620 /* 2621 * Add to a memory list. 2622 * start = start of new memory segment 2623 * len = length of new memory segment in bytes 2624 * new = pointer to a new struct memlist 2625 * memlistp = memory list to which to add segment. 2626 */ 2627 static void 2628 memlist_add( 2629 uint64_t start, 2630 uint64_t len, 2631 struct memlist *new, 2632 struct memlist **memlistp) 2633 { 2634 struct memlist *cur; 2635 uint64_t end = start + len; 2636 2637 new->address = start; 2638 new->size = len; 2639 2640 cur = *memlistp; 2641 2642 while (cur) { 2643 if (cur->address >= end) { 2644 new->next = cur; 2645 *memlistp = new; 2646 new->prev = cur->prev; 2647 cur->prev = new; 2648 return; 2649 } 2650 ASSERT(cur->address + cur->size <= start); 2651 if (cur->next == NULL) { 2652 cur->next = new; 2653 new->prev = cur; 2654 new->next = NULL; 2655 return; 2656 } 2657 memlistp = &cur->next; 2658 cur = cur->next; 2659 } 2660 } 2661 2662 void 2663 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2664 { 2665 size_t tsize = e_modtext - modtext; 2666 size_t dsize = e_moddata - moddata; 2667 2668 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2669 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2670 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2671 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2672 } 2673 2674 caddr_t 2675 kobj_text_alloc(vmem_t *arena, size_t size) 2676 { 2677 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2678 } 2679 2680 /*ARGSUSED*/ 2681 caddr_t 2682 kobj_texthole_alloc(caddr_t addr, size_t size) 2683 { 2684 panic("unexpected call to kobj_texthole_alloc()"); 2685 /*NOTREACHED*/ 2686 return (0); 2687 } 2688 2689 /*ARGSUSED*/ 2690 void 2691 kobj_texthole_free(caddr_t addr, size_t size) 2692 { 2693 panic("unexpected call to kobj_texthole_free()"); 2694 } 2695 2696 /* 2697 * This is called just after configure() in startup(). 2698 * 2699 * The ISALIST concept is a bit hopeless on Intel, because 2700 * there's no guarantee of an ever-more-capable processor 2701 * given that various parts of the instruction set may appear 2702 * and disappear between different implementations. 2703 * 2704 * While it would be possible to correct it and even enhance 2705 * it somewhat, the explicit hardware capability bitmask allows 2706 * more flexibility. 2707 * 2708 * So, we just leave this alone. 2709 */ 2710 void 2711 setx86isalist(void) 2712 { 2713 char *tp; 2714 size_t len; 2715 extern char *isa_list; 2716 2717 #define TBUFSIZE 1024 2718 2719 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2720 *tp = '\0'; 2721 2722 #if defined(__amd64) 2723 (void) strcpy(tp, "amd64 "); 2724 #endif 2725 2726 switch (x86_vendor) { 2727 case X86_VENDOR_Intel: 2728 case X86_VENDOR_AMD: 2729 case X86_VENDOR_TM: 2730 if (x86_feature & X86_CMOV) { 2731 /* 2732 * Pentium Pro or later 2733 */ 2734 (void) strcat(tp, "pentium_pro"); 2735 (void) strcat(tp, x86_feature & X86_MMX ? 2736 "+mmx pentium_pro " : " "); 2737 } 2738 /*FALLTHROUGH*/ 2739 case X86_VENDOR_Cyrix: 2740 /* 2741 * The Cyrix 6x86 does not have any Pentium features 2742 * accessible while not at privilege level 0. 2743 */ 2744 if (x86_feature & X86_CPUID) { 2745 (void) strcat(tp, "pentium"); 2746 (void) strcat(tp, x86_feature & X86_MMX ? 2747 "+mmx pentium " : " "); 2748 } 2749 break; 2750 default: 2751 break; 2752 } 2753 (void) strcat(tp, "i486 i386 i86"); 2754 len = strlen(tp) + 1; /* account for NULL at end of string */ 2755 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2756 kmem_free(tp, TBUFSIZE); 2757 2758 #undef TBUFSIZE 2759 } 2760 2761 2762 #ifdef __amd64 2763 2764 void * 2765 device_arena_alloc(size_t size, int vm_flag) 2766 { 2767 return (vmem_alloc(device_arena, size, vm_flag)); 2768 } 2769 2770 void 2771 device_arena_free(void *vaddr, size_t size) 2772 { 2773 vmem_free(device_arena, vaddr, size); 2774 } 2775 2776 #else 2777 2778 void * 2779 device_arena_alloc(size_t size, int vm_flag) 2780 { 2781 caddr_t vaddr; 2782 uintptr_t v; 2783 size_t start; 2784 size_t end; 2785 2786 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2787 if (vaddr == NULL) 2788 return (NULL); 2789 2790 v = (uintptr_t)vaddr; 2791 ASSERT(v >= kernelbase); 2792 ASSERT(v + size <= ptable_va); 2793 2794 start = btop(v - kernelbase); 2795 end = btop(v + size - 1 - kernelbase); 2796 ASSERT(start < toxic_bit_map_len); 2797 ASSERT(end < toxic_bit_map_len); 2798 2799 while (start <= end) { 2800 BT_ATOMIC_SET(toxic_bit_map, start); 2801 ++start; 2802 } 2803 return (vaddr); 2804 } 2805 2806 void 2807 device_arena_free(void *vaddr, size_t size) 2808 { 2809 uintptr_t v = (uintptr_t)vaddr; 2810 size_t start; 2811 size_t end; 2812 2813 ASSERT(v >= kernelbase); 2814 ASSERT(v + size <= ptable_va); 2815 2816 start = btop(v - kernelbase); 2817 end = btop(v + size - 1 - kernelbase); 2818 ASSERT(start < toxic_bit_map_len); 2819 ASSERT(end < toxic_bit_map_len); 2820 2821 while (start <= end) { 2822 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2823 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2824 ++start; 2825 } 2826 vmem_free(heap_arena, vaddr, size); 2827 } 2828 2829 /* 2830 * returns 1st address in range that is in device arena, or NULL 2831 * if len is not NULL it returns the length of the toxic range 2832 */ 2833 void * 2834 device_arena_contains(void *vaddr, size_t size, size_t *len) 2835 { 2836 uintptr_t v = (uintptr_t)vaddr; 2837 uintptr_t eaddr = v + size; 2838 size_t start; 2839 size_t end; 2840 2841 /* 2842 * if called very early by kmdb, just return NULL 2843 */ 2844 if (toxic_bit_map == NULL) 2845 return (NULL); 2846 2847 /* 2848 * First check if we're completely outside the bitmap range. 2849 */ 2850 if (v >= ptable_va || eaddr < kernelbase) 2851 return (NULL); 2852 2853 /* 2854 * Trim ends of search to look at only what the bitmap covers. 2855 */ 2856 if (v < kernelbase) 2857 v = kernelbase; 2858 start = btop(v - kernelbase); 2859 end = btop(eaddr - kernelbase); 2860 if (end >= toxic_bit_map_len) 2861 end = toxic_bit_map_len; 2862 2863 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2864 return (NULL); 2865 2866 v = kernelbase + ptob(start); 2867 if (len != NULL) 2868 *len = ptob(end - start); 2869 return ((void *)v); 2870 } 2871 2872 #endif 2873