1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/t_lock.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/systm.h> 34 #include <sys/user.h> 35 #include <sys/mman.h> 36 #include <sys/vm.h> 37 #include <sys/conf.h> 38 #include <sys/avintr.h> 39 #include <sys/autoconf.h> 40 #include <sys/disp.h> 41 #include <sys/class.h> 42 #include <sys/bitmap.h> 43 44 #include <sys/privregs.h> 45 46 #include <sys/proc.h> 47 #include <sys/buf.h> 48 #include <sys/kmem.h> 49 #include <sys/mem.h> 50 #include <sys/kstat.h> 51 52 #include <sys/reboot.h> 53 54 #include <sys/cred.h> 55 #include <sys/vnode.h> 56 #include <sys/file.h> 57 58 #include <sys/procfs.h> 59 60 #include <sys/vfs.h> 61 #include <sys/cmn_err.h> 62 #include <sys/utsname.h> 63 #include <sys/debug.h> 64 #include <sys/kdi.h> 65 66 #include <sys/dumphdr.h> 67 #include <sys/bootconf.h> 68 #include <sys/varargs.h> 69 #include <sys/promif.h> 70 #include <sys/modctl.h> 71 72 #include <sys/sunddi.h> 73 #include <sys/sunndi.h> 74 #include <sys/ndi_impldefs.h> 75 #include <sys/ddidmareq.h> 76 #include <sys/psw.h> 77 #include <sys/regset.h> 78 #include <sys/clock.h> 79 #include <sys/pte.h> 80 #include <sys/tss.h> 81 #include <sys/stack.h> 82 #include <sys/trap.h> 83 #include <sys/fp.h> 84 #include <vm/kboot_mmu.h> 85 #include <vm/anon.h> 86 #include <vm/as.h> 87 #include <vm/page.h> 88 #include <vm/seg.h> 89 #include <vm/seg_dev.h> 90 #include <vm/seg_kmem.h> 91 #include <vm/seg_kpm.h> 92 #include <vm/seg_map.h> 93 #include <vm/seg_vn.h> 94 #include <vm/seg_kp.h> 95 #include <sys/memnode.h> 96 #include <vm/vm_dep.h> 97 #include <sys/thread.h> 98 #include <sys/sysconf.h> 99 #include <sys/vm_machparam.h> 100 #include <sys/archsystm.h> 101 #include <sys/machsystm.h> 102 #include <vm/hat.h> 103 #include <vm/hat_i86.h> 104 #include <sys/pmem.h> 105 #include <sys/smp_impldefs.h> 106 #include <sys/x86_archext.h> 107 #include <sys/segments.h> 108 #include <sys/clconf.h> 109 #include <sys/kobj.h> 110 #include <sys/kobj_lex.h> 111 #include <sys/cpc_impl.h> 112 #include <sys/x86_archext.h> 113 #include <sys/cpu_module.h> 114 #include <sys/smbios.h> 115 #include <sys/debug_info.h> 116 #include <sys/bootinfo.h> 117 #include <sys/ddi_timer.h> 118 119 #ifdef __xpv 120 121 #include <sys/hypervisor.h> 122 #include <sys/xen_mmu.h> 123 #include <sys/evtchn_impl.h> 124 #include <sys/gnttab.h> 125 #include <sys/xpv_panic.h> 126 #include <xen/sys/xenbus_comms.h> 127 #include <xen/public/physdev.h> 128 129 extern void xen_late_startup(void); 130 131 struct xen_evt_data cpu0_evt_data; 132 133 #endif /* __xpv */ 134 135 extern void progressbar_init(void); 136 extern void progressbar_start(void); 137 extern void brand_init(void); 138 139 extern int size_pse_array(pgcnt_t, int); 140 141 /* 142 * XXX make declaration below "static" when drivers no longer use this 143 * interface. 144 */ 145 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 146 147 /* 148 * segkp 149 */ 150 extern int segkp_fromheap; 151 152 static void kvm_init(void); 153 static void startup_init(void); 154 static void startup_memlist(void); 155 static void startup_kmem(void); 156 static void startup_modules(void); 157 static void startup_vm(void); 158 static void startup_end(void); 159 static void layout_kernel_va(void); 160 161 /* 162 * Declare these as initialized data so we can patch them. 163 */ 164 #ifdef __i386 165 166 /* 167 * Due to virtual address space limitations running in 32 bit mode, restrict 168 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 169 * 170 * If the physical max memory size of 64g were allowed to be configured, the 171 * size of user virtual address space will be less than 1g. A limited user 172 * address space greatly reduces the range of applications that can run. 173 * 174 * If more physical memory than PHYSMEM is required, users should preferably 175 * run in 64 bit mode which has far looser virtual address space limitations. 176 * 177 * If 64 bit mode is not available (as in IA32) and/or more physical memory 178 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 179 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 180 * should also be carefully tuned to balance out the need of the user 181 * application while minimizing the risk of kernel heap exhaustion due to 182 * kernelbase being set too high. 183 */ 184 #define PHYSMEM 0x400000 185 186 #else /* __amd64 */ 187 188 /* 189 * For now we can handle memory with physical addresses up to about 190 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 191 * half the VA space for seg_kpm. When systems get bigger than 64TB this 192 * code will need revisiting. There is an implicit assumption that there 193 * are no *huge* holes in the physical address space too. 194 */ 195 #define TERABYTE (1ul << 40) 196 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 197 #define PHYSMEM PHYSMEM_MAX64 198 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 199 200 #endif /* __amd64 */ 201 202 pgcnt_t physmem = PHYSMEM; 203 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 204 205 char *kobj_file_buf; 206 int kobj_file_bufsize; /* set in /etc/system */ 207 208 /* Global variables for MP support. Used in mp_startup */ 209 caddr_t rm_platter_va; 210 uint32_t rm_platter_pa; 211 212 int auto_lpg_disable = 1; 213 214 /* 215 * Some CPUs have holes in the middle of the 64-bit virtual address range. 216 */ 217 uintptr_t hole_start, hole_end; 218 219 /* 220 * kpm mapping window 221 */ 222 caddr_t kpm_vbase; 223 size_t kpm_size; 224 static int kpm_desired; 225 #ifdef __amd64 226 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 227 #endif 228 229 /* 230 * Configuration parameters set at boot time. 231 */ 232 233 caddr_t econtig; /* end of first block of contiguous kernel */ 234 235 struct bootops *bootops = 0; /* passed in from boot */ 236 struct bootops **bootopsp; 237 struct boot_syscalls *sysp; /* passed in from boot */ 238 239 char bootblock_fstype[16]; 240 241 char kern_bootargs[OBP_MAXPATHLEN]; 242 243 /* 244 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 245 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 246 * zio buffers from their own segment, otherwise they are allocated from the 247 * heap. The optimization of allocating zio buffers from their own segment is 248 * only valid on 64-bit kernels. 249 */ 250 #if defined(__amd64) 251 int segzio_fromheap = 0; 252 #else 253 int segzio_fromheap = 1; 254 #endif 255 256 /* 257 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 258 * depends on number of BOP_ALLOC calls made and requested size, memory size 259 * combination and whether boot.bin memory needs to be freed. 260 */ 261 #define POSS_NEW_FRAGMENTS 12 262 263 /* 264 * VM data structures 265 */ 266 long page_hashsz; /* Size of page hash table (power of two) */ 267 struct page *pp_base; /* Base of initial system page struct array */ 268 struct page **page_hash; /* Page hash table */ 269 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 270 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 271 int pse_shift; /* log2(pse_table_size) */ 272 struct seg ktextseg; /* Segment used for kernel executable image */ 273 struct seg kvalloc; /* Segment used for "valloc" mapping */ 274 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 275 struct seg kmapseg; /* Segment used for generic kernel mappings */ 276 struct seg kdebugseg; /* Segment used for the kernel debugger */ 277 278 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 279 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 280 281 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 282 283 #if defined(__amd64) 284 struct seg kvseg_core; /* Segment used for the core heap */ 285 struct seg kpmseg; /* Segment used for physical mapping */ 286 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 287 #else 288 struct seg *segkpm = NULL; /* Unused on IA32 */ 289 #endif 290 291 caddr_t segkp_base; /* Base address of segkp */ 292 caddr_t segzio_base; /* Base address of segzio */ 293 #if defined(__amd64) 294 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 295 #else 296 pgcnt_t segkpsize = 0; 297 #endif 298 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 299 300 /* 301 * VA range available to the debugger 302 */ 303 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 304 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 305 306 struct memseg *memseg_base; 307 struct vnode unused_pages_vp; 308 309 #define FOURGB 0x100000000LL 310 311 struct memlist *memlist; 312 313 caddr_t s_text; /* start of kernel text segment */ 314 caddr_t e_text; /* end of kernel text segment */ 315 caddr_t s_data; /* start of kernel data segment */ 316 caddr_t e_data; /* end of kernel data segment */ 317 caddr_t modtext; /* start of loadable module text reserved */ 318 caddr_t e_modtext; /* end of loadable module text reserved */ 319 caddr_t moddata; /* start of loadable module data reserved */ 320 caddr_t e_moddata; /* end of loadable module data reserved */ 321 322 struct memlist *phys_install; /* Total installed physical memory */ 323 struct memlist *phys_avail; /* Total available physical memory */ 324 325 /* 326 * kphysm_init returns the number of pages that were processed 327 */ 328 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 329 330 #define IO_PROP_SIZE 64 /* device property size */ 331 332 /* 333 * a couple useful roundup macros 334 */ 335 #define ROUND_UP_PAGE(x) \ 336 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 337 #define ROUND_UP_LPAGE(x) \ 338 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 339 #define ROUND_UP_4MEG(x) \ 340 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 341 #define ROUND_UP_TOPLEVEL(x) \ 342 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 343 344 /* 345 * 32-bit Kernel's Virtual memory layout. 346 * +-----------------------+ 347 * | | 348 * 0xFFC00000 -|-----------------------|- ARGSBASE 349 * | debugger | 350 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 351 * | Kernel Data | 352 * 0xFEC00000 -|-----------------------| 353 * | Kernel Text | 354 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 355 * |--- GDT ---|- GDT page (GDT_VA) 356 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 357 * | | 358 * | page_t structures | 359 * | memsegs, memlists, | 360 * | page hash, etc. | 361 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 362 * | | (segkp is just an arena in the heap) 363 * | | 364 * | kvseg | 365 * | | 366 * | | 367 * --- -|-----------------------|- kernelheap (floating) 368 * | Segkmap | 369 * 0xC3002000 -|-----------------------|- segmap_start (floating) 370 * | Red Zone | 371 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 372 * | | || 373 * | Shared objects | \/ 374 * | | 375 * : : 376 * | user data | 377 * |-----------------------| 378 * | user text | 379 * 0x08048000 -|-----------------------| 380 * | user stack | 381 * : : 382 * | invalid | 383 * 0x00000000 +-----------------------+ 384 * 385 * 386 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 387 * +-----------------------+ 388 * | | 389 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 390 * | debugger (?) | 391 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 392 * | unused | 393 * +-----------------------+ 394 * | Kernel Data | 395 * 0xFFFFFFFF.FBC00000 |-----------------------| 396 * | Kernel Text | 397 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 398 * |--- GDT ---|- GDT page (GDT_VA) 399 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 400 * | | 401 * | Core heap | (used for loadable modules) 402 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 403 * | Kernel | 404 * | heap | 405 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 406 * | segmap | 407 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 408 * | device mappings | 409 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 410 * | segzio | 411 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 412 * | segkp | 413 * --- |-----------------------|- segkp_base (floating) 414 * | page_t structures | valloc_base + valloc_sz 415 * | memsegs, memlists, | 416 * | page hash, etc. | 417 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 418 * | segkpm | 419 * 0xFFFFFE00.00000000 |-----------------------| 420 * | Red Zone | 421 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 422 * | User stack |- User space memory 423 * | | 424 * | shared objects, etc | (grows downwards) 425 * : : 426 * | | 427 * 0xFFFF8000.00000000 |-----------------------| 428 * | | 429 * | VA Hole / unused | 430 * | | 431 * 0x00008000.00000000 |-----------------------| 432 * | | 433 * | | 434 * : : 435 * | user heap | (grows upwards) 436 * | | 437 * | user data | 438 * |-----------------------| 439 * | user text | 440 * 0x00000000.04000000 |-----------------------| 441 * | invalid | 442 * 0x00000000.00000000 +-----------------------+ 443 * 444 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 445 * kernel, except that userlimit is raised to 0xfe000000 446 * 447 * Floating values: 448 * 449 * valloc_base: start of the kernel's memory management/tracking data 450 * structures. This region contains page_t structures for 451 * physical memory, memsegs, memlists, and the page hash. 452 * 453 * core_base: start of the kernel's "core" heap area on 64-bit systems. 454 * This area is intended to be used for global data as well as for module 455 * text/data that does not fit into the nucleus pages. The core heap is 456 * restricted to a 2GB range, allowing every address within it to be 457 * accessed using rip-relative addressing 458 * 459 * ekernelheap: end of kernelheap and start of segmap. 460 * 461 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 462 * above a red zone that separates the user's address space from the 463 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 464 * 465 * segmap_start: start of segmap. The length of segmap can be modified 466 * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated). 467 * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems. 468 * 469 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 470 * decreased by 2X the size required for page_t. This allows the kernel 471 * heap to grow in size with physical memory. With sizeof(page_t) == 80 472 * bytes, the following shows the values of kernelbase and kernel heap 473 * sizes for different memory configurations (assuming default segmap and 474 * segkp sizes). 475 * 476 * mem size for kernelbase kernel heap 477 * size page_t's size 478 * ---- --------- ---------- ----------- 479 * 1gb 0x01400000 0xd1800000 684MB 480 * 2gb 0x02800000 0xcf000000 704MB 481 * 4gb 0x05000000 0xca000000 744MB 482 * 6gb 0x07800000 0xc5000000 784MB 483 * 8gb 0x0a000000 0xc0000000 824MB 484 * 16gb 0x14000000 0xac000000 984MB 485 * 32gb 0x28000000 0x84000000 1304MB 486 * 64gb 0x50000000 0x34000000 1944MB (*) 487 * 488 * kernelbase is less than the abi minimum of 0xc0000000 for memory 489 * configurations above 8gb. 490 * 491 * (*) support for memory configurations above 32gb will require manual tuning 492 * of kernelbase to balance out the need of user applications. 493 */ 494 495 /* real-time-clock initialization parameters */ 496 extern time_t process_rtc_config_file(void); 497 498 uintptr_t kernelbase; 499 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 500 uintptr_t eprom_kernelbase; 501 size_t segmapsize; 502 uintptr_t segmap_start; 503 int segmapfreelists; 504 pgcnt_t npages; 505 pgcnt_t orig_npages; 506 size_t core_size; /* size of "core" heap */ 507 uintptr_t core_base; /* base address of "core" heap */ 508 509 /* 510 * List of bootstrap pages. We mark these as allocated in startup. 511 * release_bootstrap() will free them when we're completely done with 512 * the bootstrap. 513 */ 514 static page_t *bootpages; 515 516 /* 517 * boot time pages that have a vnode from the ramdisk will keep that forever. 518 */ 519 static page_t *rd_pages; 520 521 struct system_hardware system_hardware; 522 523 /* 524 * Enable some debugging messages concerning memory usage... 525 */ 526 static void 527 print_memlist(char *title, struct memlist *mp) 528 { 529 prom_printf("MEMLIST: %s:\n", title); 530 while (mp != NULL) { 531 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 532 mp->address, mp->size); 533 mp = mp->next; 534 } 535 } 536 537 /* 538 * XX64 need a comment here.. are these just default values, surely 539 * we read the "cpuid" type information to figure this out. 540 */ 541 int l2cache_sz = 0x80000; 542 int l2cache_linesz = 0x40; 543 int l2cache_assoc = 1; 544 545 static size_t textrepl_min_gb = 10; 546 547 /* 548 * on 64 bit we use a predifined VA range for mapping devices in the kernel 549 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 550 */ 551 #ifdef __amd64 552 553 vmem_t *device_arena; 554 uintptr_t toxic_addr = (uintptr_t)NULL; 555 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 556 557 #else /* __i386 */ 558 559 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 560 size_t toxic_bit_map_len = 0; /* in bits */ 561 562 #endif /* __i386 */ 563 564 /* 565 * Simple boot time debug facilities 566 */ 567 static char *prm_dbg_str[] = { 568 "%s:%d: '%s' is 0x%x\n", 569 "%s:%d: '%s' is 0x%llx\n" 570 }; 571 572 int prom_debug; 573 574 #define PRM_DEBUG(q) if (prom_debug) \ 575 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 576 #define PRM_POINT(q) if (prom_debug) \ 577 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 578 579 /* 580 * This structure is used to keep track of the intial allocations 581 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 582 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 583 */ 584 #define NUM_ALLOCATIONS 7 585 int num_allocations = 0; 586 struct { 587 void **al_ptr; 588 size_t al_size; 589 } allocations[NUM_ALLOCATIONS]; 590 size_t valloc_sz = 0; 591 uintptr_t valloc_base; 592 593 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 594 size = ROUND_UP_PAGE(size); \ 595 if (num_allocations == NUM_ALLOCATIONS) \ 596 panic("too many ADD_TO_ALLOCATIONS()"); \ 597 allocations[num_allocations].al_ptr = (void**)&ptr; \ 598 allocations[num_allocations].al_size = size; \ 599 valloc_sz += size; \ 600 ++num_allocations; \ 601 } 602 603 /* 604 * Allocate all the initial memory needed by the page allocator. 605 */ 606 static void 607 perform_allocations(void) 608 { 609 caddr_t mem; 610 int i; 611 int valloc_align; 612 613 PRM_DEBUG(valloc_base); 614 PRM_DEBUG(valloc_sz); 615 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 616 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 617 if (mem != (caddr_t)valloc_base) 618 panic("BOP_ALLOC() failed"); 619 bzero(mem, valloc_sz); 620 for (i = 0; i < num_allocations; ++i) { 621 *allocations[i].al_ptr = (void *)mem; 622 mem += allocations[i].al_size; 623 } 624 } 625 626 /* 627 * Our world looks like this at startup time. 628 * 629 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 630 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 631 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 632 * addresses are fixed in the binary at link time. 633 * 634 * On the text page: 635 * unix/genunix/krtld/module text loads. 636 * 637 * On the data page: 638 * unix/genunix/krtld/module data loads. 639 * 640 * Machine-dependent startup code 641 */ 642 void 643 startup(void) 644 { 645 #if !defined(__xpv) 646 extern void startup_bios_disk(void); 647 extern void startup_pci_bios(void); 648 #endif 649 /* 650 * Make sure that nobody tries to use sekpm until we have 651 * initialized it properly. 652 */ 653 #if defined(__amd64) 654 kpm_desired = 1; 655 #endif 656 kpm_enable = 0; 657 658 #if defined(__xpv) /* XXPV fix me! */ 659 { 660 extern int segvn_use_regions; 661 segvn_use_regions = 0; 662 } 663 #endif 664 progressbar_init(); 665 startup_init(); 666 startup_memlist(); 667 startup_kmem(); 668 startup_vm(); 669 #if !defined(__xpv) 670 startup_pci_bios(); 671 #endif 672 startup_modules(); 673 #if !defined(__xpv) 674 startup_bios_disk(); 675 #endif 676 startup_end(); 677 progressbar_start(); 678 } 679 680 static void 681 startup_init() 682 { 683 PRM_POINT("startup_init() starting..."); 684 685 /* 686 * Complete the extraction of cpuid data 687 */ 688 cpuid_pass2(CPU); 689 690 (void) check_boot_version(BOP_GETVERSION(bootops)); 691 692 /* 693 * Check for prom_debug in boot environment 694 */ 695 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 696 ++prom_debug; 697 PRM_POINT("prom_debug found in boot enviroment"); 698 } 699 700 /* 701 * Collect node, cpu and memory configuration information. 702 */ 703 get_system_configuration(); 704 705 /* 706 * Halt if this is an unsupported processor. 707 */ 708 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 709 printf("\n486 processor (\"%s\") detected.\n", 710 CPU->cpu_brandstr); 711 halt("This processor is not supported by this release " 712 "of Solaris."); 713 } 714 715 PRM_POINT("startup_init() done"); 716 } 717 718 /* 719 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 720 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 721 * also filters out physical page zero. There is some reliance on the 722 * boot loader allocating only a few contiguous physical memory chunks. 723 */ 724 static void 725 avail_filter(uint64_t *addr, uint64_t *size) 726 { 727 uintptr_t va; 728 uintptr_t next_va; 729 pfn_t pfn; 730 uint64_t pfn_addr; 731 uint64_t pfn_eaddr; 732 uint_t prot; 733 size_t len; 734 uint_t change; 735 736 if (prom_debug) 737 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 738 *addr, *size); 739 740 /* 741 * page zero is required for BIOS.. never make it available 742 */ 743 if (*addr == 0) { 744 *addr += MMU_PAGESIZE; 745 *size -= MMU_PAGESIZE; 746 } 747 748 /* 749 * First we trim from the front of the range. Since kbm_probe() 750 * walks ranges in virtual order, but addr/size are physical, we need 751 * to the list until no changes are seen. This deals with the case 752 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 753 * but w < v. 754 */ 755 do { 756 change = 0; 757 for (va = KERNEL_TEXT; 758 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 759 va = next_va) { 760 761 next_va = va + len; 762 pfn_addr = pfn_to_pa(pfn); 763 pfn_eaddr = pfn_addr + len; 764 765 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 766 change = 1; 767 while (*size > 0 && len > 0) { 768 *addr += MMU_PAGESIZE; 769 *size -= MMU_PAGESIZE; 770 len -= MMU_PAGESIZE; 771 } 772 } 773 } 774 if (change && prom_debug) 775 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 776 *addr, *size); 777 } while (change); 778 779 /* 780 * Trim pages from the end of the range. 781 */ 782 for (va = KERNEL_TEXT; 783 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 784 va = next_va) { 785 786 next_va = va + len; 787 pfn_addr = pfn_to_pa(pfn); 788 789 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 790 *size = pfn_addr - *addr; 791 } 792 793 if (prom_debug) 794 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 795 *addr, *size); 796 } 797 798 static void 799 kpm_init() 800 { 801 struct segkpm_crargs b; 802 803 /* 804 * These variables were all designed for sfmmu in which segkpm is 805 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 806 * might use 2+ page sizes on a single machine, so none of these 807 * variables have a single correct value. They are set up as if we 808 * always use a 4KB pagesize, which should do no harm. In the long 809 * run, we should get rid of KPM's assumption that only a single 810 * pagesize is used. 811 */ 812 kpm_pgshft = MMU_PAGESHIFT; 813 kpm_pgsz = MMU_PAGESIZE; 814 kpm_pgoff = MMU_PAGEOFFSET; 815 kpmp2pshft = 0; 816 kpmpnpgs = 1; 817 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 818 819 PRM_POINT("about to create segkpm"); 820 rw_enter(&kas.a_lock, RW_WRITER); 821 822 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 823 panic("cannot attach segkpm"); 824 825 b.prot = PROT_READ | PROT_WRITE; 826 b.nvcolors = 1; 827 828 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 829 panic("segkpm_create segkpm"); 830 831 rw_exit(&kas.a_lock); 832 } 833 834 /* 835 * The debug info page provides enough information to allow external 836 * inspectors (e.g. when running under a hypervisor) to bootstrap 837 * themselves into allowing full-blown kernel debugging. 838 */ 839 static void 840 init_debug_info(void) 841 { 842 caddr_t mem; 843 debug_info_t *di; 844 845 #ifndef __lint 846 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 847 #endif 848 849 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 850 MMU_PAGESIZE); 851 852 if (mem != (caddr_t)DEBUG_INFO_VA) 853 panic("BOP_ALLOC() failed"); 854 bzero(mem, MMU_PAGESIZE); 855 856 di = (debug_info_t *)mem; 857 858 di->di_magic = DEBUG_INFO_MAGIC; 859 di->di_version = DEBUG_INFO_VERSION; 860 di->di_modules = (uintptr_t)&modules; 861 di->di_s_text = (uintptr_t)s_text; 862 di->di_e_text = (uintptr_t)e_text; 863 di->di_s_data = (uintptr_t)s_data; 864 di->di_e_data = (uintptr_t)e_data; 865 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 866 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 867 } 868 869 /* 870 * Build the memlists and other kernel essential memory system data structures. 871 * This is everything at valloc_base. 872 */ 873 static void 874 startup_memlist(void) 875 { 876 size_t memlist_sz; 877 size_t memseg_sz; 878 size_t pagehash_sz; 879 size_t pp_sz; 880 uintptr_t va; 881 size_t len; 882 uint_t prot; 883 pfn_t pfn; 884 int memblocks; 885 caddr_t pagecolor_mem; 886 size_t pagecolor_memsz; 887 caddr_t page_ctrs_mem; 888 size_t page_ctrs_size; 889 size_t pse_table_alloc_size; 890 struct memlist *current; 891 extern void startup_build_mem_nodes(struct memlist *); 892 893 /* XX64 fix these - they should be in include files */ 894 extern size_t page_coloring_init(uint_t, int, int); 895 extern void page_coloring_setup(caddr_t); 896 897 PRM_POINT("startup_memlist() starting..."); 898 899 /* 900 * Use leftover large page nucleus text/data space for loadable modules. 901 * Use at most MODTEXT/MODDATA. 902 */ 903 len = kbm_nucleus_size; 904 ASSERT(len > MMU_PAGESIZE); 905 906 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 907 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 908 if (e_moddata - moddata > MODDATA) 909 e_moddata = moddata + MODDATA; 910 911 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 912 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 913 if (e_modtext - modtext > MODTEXT) 914 e_modtext = modtext + MODTEXT; 915 916 econtig = e_moddata; 917 918 PRM_DEBUG(modtext); 919 PRM_DEBUG(e_modtext); 920 PRM_DEBUG(moddata); 921 PRM_DEBUG(e_moddata); 922 PRM_DEBUG(econtig); 923 924 /* 925 * Examine the boot loader physical memory map to find out: 926 * - total memory in system - physinstalled 927 * - the max physical address - physmax 928 * - the number of discontiguous segments of memory. 929 */ 930 if (prom_debug) 931 print_memlist("boot physinstalled", 932 bootops->boot_mem->physinstalled); 933 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 934 &physinstalled, &memblocks); 935 PRM_DEBUG(physmax); 936 PRM_DEBUG(physinstalled); 937 PRM_DEBUG(memblocks); 938 939 /* 940 * Initialize hat's mmu parameters. 941 * Check for enforce-prot-exec in boot environment. It's used to 942 * enable/disable support for the page table entry NX bit. 943 * The default is to enforce PROT_EXEC on processors that support NX. 944 * Boot seems to round up the "len", but 8 seems to be big enough. 945 */ 946 mmu_init(); 947 948 #ifdef __i386 949 /* 950 * physmax is lowered if there is more memory than can be 951 * physically addressed in 32 bit (PAE/non-PAE) modes. 952 */ 953 if (mmu.pae_hat) { 954 if (PFN_ABOVE64G(physmax)) { 955 physinstalled -= (physmax - (PFN_64G - 1)); 956 physmax = PFN_64G - 1; 957 } 958 } else { 959 if (PFN_ABOVE4G(physmax)) { 960 physinstalled -= (physmax - (PFN_4G - 1)); 961 physmax = PFN_4G - 1; 962 } 963 } 964 #endif 965 966 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 967 968 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 969 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 970 char value[8]; 971 972 if (len < 8) 973 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 974 else 975 (void) strcpy(value, ""); 976 if (strcmp(value, "off") == 0) 977 mmu.pt_nx = 0; 978 } 979 PRM_DEBUG(mmu.pt_nx); 980 981 /* 982 * We will need page_t's for every page in the system, except for 983 * memory mapped at or above above the start of the kernel text segment. 984 * 985 * pages above e_modtext are attributed to kernel debugger (obp_pages) 986 */ 987 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 988 obp_pages = 0; 989 va = KERNEL_TEXT; 990 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 991 npages -= len >> MMU_PAGESHIFT; 992 if (va >= (uintptr_t)e_moddata) 993 obp_pages += len >> MMU_PAGESHIFT; 994 va += len; 995 } 996 PRM_DEBUG(npages); 997 PRM_DEBUG(obp_pages); 998 999 /* 1000 * If physmem is patched to be non-zero, use it instead of the computed 1001 * value unless it is larger than the actual amount of memory on hand. 1002 */ 1003 if (physmem == 0 || physmem > npages) { 1004 physmem = npages; 1005 } else if (physmem < npages) { 1006 orig_npages = npages; 1007 npages = physmem; 1008 } 1009 PRM_DEBUG(physmem); 1010 1011 /* 1012 * We now compute the sizes of all the initial allocations for 1013 * structures the kernel needs in order do kmem_alloc(). These 1014 * include: 1015 * memsegs 1016 * memlists 1017 * page hash table 1018 * page_t's 1019 * page coloring data structs 1020 */ 1021 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1022 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1023 PRM_DEBUG(memseg_sz); 1024 1025 /* 1026 * Reserve space for memlists. There's no real good way to know exactly 1027 * how much room we'll need, but this should be a good upper bound. 1028 */ 1029 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1030 (memblocks + POSS_NEW_FRAGMENTS)); 1031 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1032 PRM_DEBUG(memlist_sz); 1033 1034 /* 1035 * The page structure hash table size is a power of 2 1036 * such that the average hash chain length is PAGE_HASHAVELEN. 1037 */ 1038 page_hashsz = npages / PAGE_HASHAVELEN; 1039 page_hashsz = 1 << highbit(page_hashsz); 1040 pagehash_sz = sizeof (struct page *) * page_hashsz; 1041 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1042 PRM_DEBUG(pagehash_sz); 1043 1044 /* 1045 * Set aside room for the page structures themselves. 1046 */ 1047 PRM_DEBUG(npages); 1048 pp_sz = sizeof (struct page) * npages; 1049 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1050 PRM_DEBUG(pp_sz); 1051 1052 /* 1053 * determine l2 cache info and memory size for page coloring 1054 */ 1055 (void) getl2cacheinfo(CPU, 1056 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1057 pagecolor_memsz = 1058 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1059 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1060 PRM_DEBUG(pagecolor_memsz); 1061 1062 page_ctrs_size = page_ctrs_sz(); 1063 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1064 PRM_DEBUG(page_ctrs_size); 1065 1066 /* 1067 * Allocate the array that protects pp->p_selock. 1068 */ 1069 pse_shift = size_pse_array(physmem, max_ncpus); 1070 pse_table_size = 1 << pse_shift; 1071 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1072 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1073 1074 #if defined(__amd64) 1075 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1076 valloc_base = VALLOC_BASE; 1077 1078 /* 1079 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1080 * for values of physmax up to 1 Terabyte. They need adjusting when 1081 * memory is at addresses above 1 TB. 1082 */ 1083 if (physmax + 1 > mmu_btop(TERABYTE)) { 1084 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1085 1086 /* Round to largest possible pagesize for now */ 1087 kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1088 1089 segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */ 1090 1091 /* make sure we leave some space for user apps above hole */ 1092 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1093 if (segkpm_base > SEGKPM_BASE) 1094 segkpm_base = SEGKPM_BASE; 1095 PRM_DEBUG(segkpm_base); 1096 1097 valloc_base = segkpm_base + kpm_resv_amount; 1098 PRM_DEBUG(valloc_base); 1099 } 1100 #else /* __i386 */ 1101 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1102 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1103 PRM_DEBUG(valloc_base); 1104 #endif /* __i386 */ 1105 1106 /* 1107 * do all the initial allocations 1108 */ 1109 perform_allocations(); 1110 1111 /* 1112 * Build phys_install and phys_avail in kernel memspace. 1113 * - phys_install should be all memory in the system. 1114 * - phys_avail is phys_install minus any memory mapped before this 1115 * point above KERNEL_TEXT. 1116 */ 1117 current = phys_install = memlist; 1118 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1119 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1120 panic("physinstalled was too big!"); 1121 if (prom_debug) 1122 print_memlist("phys_install", phys_install); 1123 1124 phys_avail = current; 1125 PRM_POINT("Building phys_avail:\n"); 1126 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1127 avail_filter); 1128 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1129 panic("physavail was too big!"); 1130 if (prom_debug) 1131 print_memlist("phys_avail", phys_avail); 1132 1133 /* 1134 * setup page coloring 1135 */ 1136 page_coloring_setup(pagecolor_mem); 1137 page_lock_init(); /* currently a no-op */ 1138 1139 /* 1140 * free page list counters 1141 */ 1142 (void) page_ctrs_alloc(page_ctrs_mem); 1143 1144 /* 1145 * Initialize the page structures from the memory lists. 1146 */ 1147 availrmem_initial = availrmem = freemem = 0; 1148 PRM_POINT("Calling kphysm_init()..."); 1149 npages = kphysm_init(pp_base, npages); 1150 PRM_POINT("kphysm_init() done"); 1151 PRM_DEBUG(npages); 1152 1153 init_debug_info(); 1154 1155 /* 1156 * Now that page_t's have been initialized, remove all the 1157 * initial allocation pages from the kernel free page lists. 1158 */ 1159 boot_mapin((caddr_t)valloc_base, valloc_sz); 1160 boot_mapin((caddr_t)GDT_VA, MMU_PAGESIZE); 1161 boot_mapin((caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE); 1162 PRM_POINT("startup_memlist() done"); 1163 1164 PRM_DEBUG(valloc_sz); 1165 1166 #if defined(__amd64) 1167 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1168 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1169 extern size_t textrepl_size_thresh; 1170 textrepl_size_thresh = (16 << 20) - 1; 1171 } 1172 #endif 1173 } 1174 1175 /* 1176 * Layout the kernel's part of address space and initialize kmem allocator. 1177 */ 1178 static void 1179 startup_kmem(void) 1180 { 1181 extern void page_set_colorequiv_arr(void); 1182 1183 PRM_POINT("startup_kmem() starting..."); 1184 1185 #if defined(__amd64) 1186 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1187 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1188 "systems."); 1189 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1190 core_base = (uintptr_t)COREHEAP_BASE; 1191 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1192 #else /* __i386 */ 1193 /* 1194 * We configure kernelbase based on: 1195 * 1196 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1197 * KERNELBASE_MAX. we large page align eprom_kernelbase 1198 * 1199 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1200 * On large memory systems we must lower kernelbase to allow 1201 * enough room for page_t's for all of memory. 1202 * 1203 * The value set here, might be changed a little later. 1204 */ 1205 if (eprom_kernelbase) { 1206 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1207 if (kernelbase > KERNELBASE_MAX) 1208 kernelbase = KERNELBASE_MAX; 1209 } else { 1210 kernelbase = (uintptr_t)KERNELBASE; 1211 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1212 } 1213 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1214 core_base = valloc_base; 1215 core_size = 0; 1216 #endif /* __i386 */ 1217 1218 PRM_DEBUG(core_base); 1219 PRM_DEBUG(core_size); 1220 PRM_DEBUG(kernelbase); 1221 1222 #if defined(__i386) 1223 segkp_fromheap = 1; 1224 #endif /* __i386 */ 1225 1226 ekernelheap = (char *)core_base; 1227 PRM_DEBUG(ekernelheap); 1228 1229 /* 1230 * Now that we know the real value of kernelbase, 1231 * update variables that were initialized with a value of 1232 * KERNELBASE (in common/conf/param.c). 1233 * 1234 * XXX The problem with this sort of hackery is that the 1235 * compiler just may feel like putting the const declarations 1236 * (in param.c) into the .text section. Perhaps they should 1237 * just be declared as variables there? 1238 */ 1239 1240 *(uintptr_t *)&_kernelbase = kernelbase; 1241 *(uintptr_t *)&_userlimit = kernelbase; 1242 #if defined(__amd64) 1243 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1244 #else 1245 *(uintptr_t *)&_userlimit32 = _userlimit; 1246 #endif 1247 PRM_DEBUG(_kernelbase); 1248 PRM_DEBUG(_userlimit); 1249 PRM_DEBUG(_userlimit32); 1250 1251 layout_kernel_va(); 1252 1253 #if defined(__i386) 1254 /* 1255 * If segmap is too large we can push the bottom of the kernel heap 1256 * higher than the base. Or worse, it could exceed the top of the 1257 * VA space entirely, causing it to wrap around. 1258 */ 1259 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1260 panic("too little address space available for kernelheap," 1261 " use eeprom for lower kernelbase or smaller segmapsize"); 1262 #endif /* __i386 */ 1263 1264 /* 1265 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1266 */ 1267 kernelheap_init(kernelheap, ekernelheap, 1268 kernelheap + MMU_PAGESIZE, 1269 (void *)core_base, (void *)(core_base + core_size)); 1270 1271 #if defined(__xpv) 1272 /* 1273 * Link pending events struct into cpu struct 1274 */ 1275 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1276 #endif 1277 /* 1278 * Initialize kernel memory allocator. 1279 */ 1280 kmem_init(); 1281 1282 /* 1283 * Factor in colorequiv to check additional 'equivalent' bins 1284 */ 1285 page_set_colorequiv_arr(); 1286 1287 #if defined(__xpv) 1288 xen_version(); 1289 #endif 1290 1291 /* 1292 * print this out early so that we know what's going on 1293 */ 1294 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1295 1296 /* 1297 * Initialize bp_mapin(). 1298 */ 1299 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1300 1301 /* 1302 * orig_npages is non-zero if physmem has been configured for less 1303 * than the available memory. 1304 */ 1305 if (orig_npages) { 1306 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1307 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1308 npages, orig_npages); 1309 } 1310 #if defined(__i386) 1311 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1312 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1313 "System using 0x%lx", 1314 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1315 #endif 1316 1317 #ifdef KERNELBASE_ABI_MIN 1318 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1319 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1320 "i386 ABI compliant.", (uintptr_t)kernelbase); 1321 } 1322 #endif 1323 1324 #ifdef __xpv 1325 /* 1326 * Some of the xen start information has to be relocated up 1327 * into the kernel's permanent address space. 1328 */ 1329 PRM_POINT("calling xen_relocate_start_info()"); 1330 xen_relocate_start_info(); 1331 PRM_POINT("xen_relocate_start_info() done"); 1332 1333 /* 1334 * (Update the vcpu pointer in our cpu structure to point into 1335 * the relocated shared info.) 1336 */ 1337 CPU->cpu_m.mcpu_vcpu_info = 1338 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1339 #endif 1340 1341 PRM_POINT("startup_kmem() done"); 1342 } 1343 1344 static void 1345 startup_modules(void) 1346 { 1347 unsigned int i; 1348 extern void prom_setup(void); 1349 1350 PRM_POINT("startup_modules() starting..."); 1351 1352 #ifndef __xpv 1353 /* 1354 * Initialize ten-micro second timer so that drivers will 1355 * not get short changed in their init phase. This was 1356 * not getting called until clkinit which, on fast cpu's 1357 * caused the drv_usecwait to be way too short. 1358 */ 1359 microfind(); 1360 #endif 1361 1362 /* 1363 * Read the GMT lag from /etc/rtc_config. 1364 */ 1365 sgmtl(process_rtc_config_file()); 1366 1367 /* 1368 * Calculate default settings of system parameters based upon 1369 * maxusers, yet allow to be overridden via the /etc/system file. 1370 */ 1371 param_calc(0); 1372 1373 mod_setup(); 1374 1375 /* 1376 * Initialize system parameters. 1377 */ 1378 param_init(); 1379 1380 /* 1381 * Initialize the default brands 1382 */ 1383 brand_init(); 1384 1385 /* 1386 * maxmem is the amount of physical memory we're playing with. 1387 */ 1388 maxmem = physmem; 1389 1390 /* 1391 * Initialize segment management stuff. 1392 */ 1393 seg_init(); 1394 1395 if (modload("fs", "specfs") == -1) 1396 halt("Can't load specfs"); 1397 1398 if (modload("fs", "devfs") == -1) 1399 halt("Can't load devfs"); 1400 1401 if (modload("fs", "dev") == -1) 1402 halt("Can't load dev"); 1403 1404 (void) modloadonly("sys", "lbl_edition"); 1405 1406 dispinit(); 1407 1408 /* 1409 * This is needed here to initialize hw_serial[] for cluster booting. 1410 */ 1411 if ((i = modload("misc", "sysinit")) != (unsigned int)-1) 1412 (void) modunload(i); 1413 else 1414 cmn_err(CE_CONT, "sysinit load failed"); 1415 1416 /* Read cluster configuration data. */ 1417 clconf_init(); 1418 1419 #if defined(__xpv) 1420 ec_init(); 1421 gnttab_init(); 1422 (void) xs_early_init(); 1423 #endif /* __xpv */ 1424 1425 /* 1426 * Create a kernel device tree. First, create rootnex and 1427 * then invoke bus specific code to probe devices. 1428 */ 1429 setup_ddi(); 1430 1431 /* 1432 * Set up the CPU module subsystem. Modifies the device tree, so it 1433 * must be done after setup_ddi(). 1434 */ 1435 cmi_init(); 1436 1437 /* 1438 * Initialize the MCA handlers 1439 */ 1440 if (x86_feature & X86_MCA) 1441 cmi_mca_init(); 1442 1443 /* 1444 * Fake a prom tree such that /dev/openprom continues to work 1445 */ 1446 PRM_POINT("startup_modules: calling prom_setup..."); 1447 prom_setup(); 1448 PRM_POINT("startup_modules: done"); 1449 1450 /* 1451 * Load all platform specific modules 1452 */ 1453 PRM_POINT("startup_modules: calling psm_modload..."); 1454 psm_modload(); 1455 1456 PRM_POINT("startup_modules() done"); 1457 } 1458 1459 /* 1460 * claim a "setaside" boot page for use in the kernel 1461 */ 1462 page_t * 1463 boot_claim_page(pfn_t pfn) 1464 { 1465 page_t *pp; 1466 1467 pp = page_numtopp_nolock(pfn); 1468 ASSERT(pp != NULL); 1469 1470 if (PP_ISBOOTPAGES(pp)) { 1471 if (pp->p_next != NULL) 1472 pp->p_next->p_prev = pp->p_prev; 1473 if (pp->p_prev == NULL) 1474 bootpages = pp->p_next; 1475 else 1476 pp->p_prev->p_next = pp->p_next; 1477 } else { 1478 /* 1479 * htable_attach() expects a base pagesize page 1480 */ 1481 if (pp->p_szc != 0) 1482 page_boot_demote(pp); 1483 pp = page_numtopp(pfn, SE_EXCL); 1484 } 1485 return (pp); 1486 } 1487 1488 /* 1489 * Walk through the pagetables looking for pages mapped in by boot. If the 1490 * setaside flag is set the pages are expected to be returned to the 1491 * kernel later in boot, so we add them to the bootpages list. 1492 */ 1493 static void 1494 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1495 { 1496 uintptr_t va = low; 1497 size_t len; 1498 uint_t prot; 1499 pfn_t pfn; 1500 page_t *pp; 1501 pgcnt_t boot_protect_cnt = 0; 1502 1503 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1504 if (va + len >= high) 1505 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1506 "legal range.", len, (void *)va); 1507 1508 while (len > 0) { 1509 pp = page_numtopp_alloc(pfn); 1510 if (pp != NULL) { 1511 if (setaside == 0) 1512 panic("Unexpected mapping by boot. " 1513 "addr=%p pfn=%lx\n", 1514 (void *)va, pfn); 1515 1516 pp->p_next = bootpages; 1517 pp->p_prev = NULL; 1518 PP_SETBOOTPAGES(pp); 1519 if (bootpages != NULL) { 1520 bootpages->p_prev = pp; 1521 } 1522 bootpages = pp; 1523 ++boot_protect_cnt; 1524 } 1525 1526 ++pfn; 1527 len -= MMU_PAGESIZE; 1528 va += MMU_PAGESIZE; 1529 } 1530 } 1531 PRM_DEBUG(boot_protect_cnt); 1532 } 1533 1534 /* 1535 * 1536 */ 1537 static void 1538 layout_kernel_va(void) 1539 { 1540 PRM_POINT("layout_kernel_va() starting..."); 1541 /* 1542 * Establish the final size of the kernel's heap, size of segmap, 1543 * segkp, etc. 1544 */ 1545 1546 #if defined(__amd64) 1547 1548 kpm_vbase = (caddr_t)segkpm_base; 1549 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1550 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1551 panic("not enough room for kpm!"); 1552 PRM_DEBUG(kpm_size); 1553 PRM_DEBUG(kpm_vbase); 1554 1555 /* 1556 * By default we create a seg_kp in 64 bit kernels, it's a little 1557 * faster to access than embedding it in the heap. 1558 */ 1559 segkp_base = (caddr_t)valloc_base + valloc_sz; 1560 if (!segkp_fromheap) { 1561 size_t sz = mmu_ptob(segkpsize); 1562 1563 /* 1564 * determine size of segkp 1565 */ 1566 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1567 sz = SEGKPDEFSIZE; 1568 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1569 "segkpsize has been reset to %ld pages", 1570 mmu_btop(sz)); 1571 } 1572 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1573 1574 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1575 } 1576 PRM_DEBUG(segkp_base); 1577 PRM_DEBUG(segkpsize); 1578 1579 /* 1580 * segzio is used for ZFS cached data. It uses a distinct VA 1581 * segment (from kernel heap) so that we can easily tell not to 1582 * include it in kernel crash dumps on 64 bit kernels. The trick is 1583 * to give it lots of VA, but not constrain the kernel heap. 1584 * We scale the size of segzio linearly with physmem up to 1585 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1586 */ 1587 segzio_base = segkp_base + mmu_ptob(segkpsize); 1588 if (segzio_fromheap) { 1589 segziosize = 0; 1590 } else { 1591 size_t physmem_size = mmu_ptob(physmem); 1592 size_t size = (segziosize == 0) ? 1593 physmem_size : mmu_ptob(segziosize); 1594 1595 if (size < SEGZIOMINSIZE) 1596 size = SEGZIOMINSIZE; 1597 if (size > SEGZIOMAXSIZE) { 1598 size = SEGZIOMAXSIZE; 1599 if (physmem_size > size) 1600 size += (physmem_size - size) / 2; 1601 } 1602 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1603 } 1604 PRM_DEBUG(segziosize); 1605 PRM_DEBUG(segzio_base); 1606 1607 /* 1608 * Put the range of VA for device mappings next, kmdb knows to not 1609 * grep in this range of addresses. 1610 */ 1611 toxic_addr = 1612 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1613 PRM_DEBUG(toxic_addr); 1614 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1615 #else /* __i386 */ 1616 segmap_start = ROUND_UP_LPAGE(kernelbase); 1617 #endif /* __i386 */ 1618 PRM_DEBUG(segmap_start); 1619 1620 /* 1621 * Users can change segmapsize through eeprom or /etc/system. 1622 * If the variable is tuned through eeprom, there is no upper 1623 * bound on the size of segmap. If it is tuned through 1624 * /etc/system on 32-bit systems, it must be no larger than we 1625 * planned for in startup_memlist(). 1626 */ 1627 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1628 1629 #if defined(__i386) 1630 /* 1631 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1632 * the bottom of the kernel's address range. Set aside space for a 1633 * small red zone just below the start of segmap. 1634 */ 1635 segmap_start += KERNEL_REDZONE_SIZE; 1636 segmapsize -= KERNEL_REDZONE_SIZE; 1637 #endif 1638 1639 PRM_DEBUG(segmap_start); 1640 PRM_DEBUG(segmapsize); 1641 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1642 PRM_DEBUG(kernelheap); 1643 PRM_POINT("layout_kernel_va() done..."); 1644 } 1645 1646 /* 1647 * Finish initializing the VM system, now that we are no longer 1648 * relying on the boot time memory allocators. 1649 */ 1650 static void 1651 startup_vm(void) 1652 { 1653 struct segmap_crargs a; 1654 1655 extern int use_brk_lpg, use_stk_lpg; 1656 1657 PRM_POINT("startup_vm() starting..."); 1658 1659 /* 1660 * Initialize the hat layer. 1661 */ 1662 hat_init(); 1663 1664 /* 1665 * Do final allocations of HAT data structures that need to 1666 * be allocated before quiescing the boot loader. 1667 */ 1668 PRM_POINT("Calling hat_kern_alloc()..."); 1669 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1670 PRM_POINT("hat_kern_alloc() done"); 1671 1672 #ifndef __xpv 1673 /* 1674 * Setup Page Attribute Table 1675 */ 1676 pat_sync(); 1677 #endif 1678 1679 /* 1680 * The next two loops are done in distinct steps in order 1681 * to be sure that any page that is doubly mapped (both above 1682 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1683 * Note this may never happen, but it might someday. 1684 */ 1685 bootpages = NULL; 1686 PRM_POINT("Protecting boot pages"); 1687 1688 /* 1689 * Protect any pages mapped above KERNEL_TEXT that somehow have 1690 * page_t's. This can only happen if something weird allocated 1691 * in this range (like kadb/kmdb). 1692 */ 1693 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1694 1695 /* 1696 * Before we can take over memory allocation/mapping from the boot 1697 * loader we must remove from our free page lists any boot allocated 1698 * pages that stay mapped until release_bootstrap(). 1699 */ 1700 protect_boot_range(0, kernelbase, 1); 1701 1702 1703 /* 1704 * Switch to running on regular HAT (not boot_mmu) 1705 */ 1706 PRM_POINT("Calling hat_kern_setup()..."); 1707 hat_kern_setup(); 1708 1709 /* 1710 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1711 */ 1712 bop_no_more_mem(); 1713 1714 PRM_POINT("hat_kern_setup() done"); 1715 1716 hat_cpu_online(CPU); 1717 1718 /* 1719 * Initialize VM system 1720 */ 1721 PRM_POINT("Calling kvm_init()..."); 1722 kvm_init(); 1723 PRM_POINT("kvm_init() done"); 1724 1725 /* 1726 * Tell kmdb that the VM system is now working 1727 */ 1728 if (boothowto & RB_DEBUG) 1729 kdi_dvec_vmready(); 1730 1731 #if defined(__xpv) 1732 /* 1733 * Populate the I/O pool on domain 0 1734 */ 1735 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1736 extern long populate_io_pool(void); 1737 long init_io_pool_cnt; 1738 1739 PRM_POINT("Populating reserve I/O page pool"); 1740 init_io_pool_cnt = populate_io_pool(); 1741 PRM_DEBUG(init_io_pool_cnt); 1742 } 1743 #endif 1744 /* 1745 * Mangle the brand string etc. 1746 */ 1747 cpuid_pass3(CPU); 1748 1749 #if defined(__amd64) 1750 1751 /* 1752 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1753 */ 1754 device_arena = vmem_create("device", (void *)toxic_addr, 1755 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1756 1757 #else /* __i386 */ 1758 1759 /* 1760 * allocate the bit map that tracks toxic pages 1761 */ 1762 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 1763 PRM_DEBUG(toxic_bit_map_len); 1764 toxic_bit_map = 1765 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1766 ASSERT(toxic_bit_map != NULL); 1767 PRM_DEBUG(toxic_bit_map); 1768 1769 #endif /* __i386 */ 1770 1771 1772 /* 1773 * Now that we've got more VA, as well as the ability to allocate from 1774 * it, tell the debugger. 1775 */ 1776 if (boothowto & RB_DEBUG) 1777 kdi_dvec_memavail(); 1778 1779 /* 1780 * The following code installs a special page fault handler (#pf) 1781 * to work around a pentium bug. 1782 */ 1783 #if !defined(__amd64) && !defined(__xpv) 1784 if (x86_type == X86_TYPE_P5) { 1785 desctbr_t idtr; 1786 gate_desc_t *newidt; 1787 struct machcpu *mcpu = &CPU->cpu_m; 1788 1789 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1790 panic("failed to install pentium_pftrap"); 1791 1792 bcopy(idt0, newidt, sizeof (idt0)); 1793 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1794 KCS_SEL, SDT_SYSIGT, TRP_KPL); 1795 1796 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1797 PROT_READ|PROT_EXEC); 1798 1799 mcpu->mcpu_idt = newidt; 1800 idtr.dtr_base = (uintptr_t)mcpu->mcpu_idt; 1801 idtr.dtr_limit = sizeof (idt0) - 1; 1802 wr_idtr(&idtr); 1803 } 1804 #endif /* !__amd64 */ 1805 1806 #if !defined(__xpv) 1807 /* 1808 * Map page pfn=0 for drivers, such as kd, that need to pick up 1809 * parameters left there by controllers/BIOS. 1810 */ 1811 PRM_POINT("setup up p0_va"); 1812 p0_va = i86devmap(0, 1, PROT_READ); 1813 PRM_DEBUG(p0_va); 1814 #endif 1815 1816 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1817 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1818 1819 /* 1820 * disable automatic large pages for small memory systems or 1821 * when the disable flag is set. 1822 */ 1823 if (!auto_lpg_disable && mmu.max_page_level > 0) { 1824 max_uheap_lpsize = LEVEL_SIZE(1); 1825 max_ustack_lpsize = LEVEL_SIZE(1); 1826 max_privmap_lpsize = LEVEL_SIZE(1); 1827 max_uidata_lpsize = LEVEL_SIZE(1); 1828 max_utext_lpsize = LEVEL_SIZE(1); 1829 max_shm_lpsize = LEVEL_SIZE(1); 1830 } 1831 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 1832 auto_lpg_disable) { 1833 use_brk_lpg = 0; 1834 use_stk_lpg = 0; 1835 } 1836 if (mmu.max_page_level > 0) { 1837 mcntl0_lpsize = LEVEL_SIZE(1); 1838 } 1839 1840 PRM_POINT("Calling hat_init_finish()..."); 1841 hat_init_finish(); 1842 PRM_POINT("hat_init_finish() done"); 1843 1844 /* 1845 * Initialize the segkp segment type. 1846 */ 1847 rw_enter(&kas.a_lock, RW_WRITER); 1848 PRM_POINT("Attaching segkp"); 1849 if (segkp_fromheap) { 1850 segkp->s_as = &kas; 1851 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1852 segkp) < 0) { 1853 panic("startup: cannot attach segkp"); 1854 /*NOTREACHED*/ 1855 } 1856 PRM_POINT("Doing segkp_create()"); 1857 if (segkp_create(segkp) != 0) { 1858 panic("startup: segkp_create failed"); 1859 /*NOTREACHED*/ 1860 } 1861 PRM_DEBUG(segkp); 1862 rw_exit(&kas.a_lock); 1863 1864 /* 1865 * kpm segment 1866 */ 1867 segmap_kpm = 0; 1868 if (kpm_desired) { 1869 kpm_init(); 1870 kpm_enable = 1; 1871 vpm_enable = 1; 1872 } 1873 1874 /* 1875 * Now create segmap segment. 1876 */ 1877 rw_enter(&kas.a_lock, RW_WRITER); 1878 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 1879 panic("cannot attach segmap"); 1880 /*NOTREACHED*/ 1881 } 1882 PRM_DEBUG(segmap); 1883 1884 a.prot = PROT_READ | PROT_WRITE; 1885 a.shmsize = 0; 1886 a.nfreelist = segmapfreelists; 1887 1888 if (segmap_create(segmap, (caddr_t)&a) != 0) 1889 panic("segmap_create segmap"); 1890 rw_exit(&kas.a_lock); 1891 1892 setup_vaddr_for_ppcopy(CPU); 1893 1894 segdev_init(); 1895 #if defined(__xpv) 1896 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1897 #endif 1898 pmem_init(); 1899 1900 PRM_POINT("startup_vm() done"); 1901 } 1902 1903 /* 1904 * Load a tod module for the non-standard tod part found on this system. 1905 */ 1906 static void 1907 load_tod_module(char *todmod) 1908 { 1909 if (modload("tod", todmod) == -1) 1910 halt("Can't load TOD module"); 1911 } 1912 1913 static void 1914 startup_end(void) 1915 { 1916 int i; 1917 extern void setx86isalist(void); 1918 1919 PRM_POINT("startup_end() starting..."); 1920 1921 /* 1922 * Perform tasks that get done after most of the VM 1923 * initialization has been done but before the clock 1924 * and other devices get started. 1925 */ 1926 kern_setup1(); 1927 1928 /* 1929 * Perform CPC initialization for this CPU. 1930 */ 1931 kcpc_hw_init(CPU); 1932 1933 #if defined(OPTERON_WORKAROUND_6323525) 1934 if (opteron_workaround_6323525) 1935 patch_workaround_6323525(); 1936 #endif 1937 /* 1938 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 1939 * (For now, "needed" is defined as set tod_module_name in /etc/system) 1940 */ 1941 if (tod_module_name != NULL) { 1942 PRM_POINT("load_tod_module()"); 1943 load_tod_module(tod_module_name); 1944 } 1945 1946 #if defined(__xpv) 1947 /* 1948 * Forceload interposing TOD module for the hypervisor. 1949 */ 1950 PRM_POINT("load_tod_module()"); 1951 load_tod_module("xpvtod"); 1952 #endif 1953 1954 /* 1955 * Configure the system. 1956 */ 1957 PRM_POINT("Calling configure()..."); 1958 configure(); /* set up devices */ 1959 PRM_POINT("configure() done"); 1960 1961 /* 1962 * Set the isa_list string to the defined instruction sets we 1963 * support. 1964 */ 1965 setx86isalist(); 1966 cpu_intr_alloc(CPU, NINTR_THREADS); 1967 psm_install(); 1968 1969 /* 1970 * We're done with bootops. We don't unmap the bootstrap yet because 1971 * we're still using bootsvcs. 1972 */ 1973 PRM_POINT("NULLing out bootops"); 1974 *bootopsp = (struct bootops *)NULL; 1975 bootops = (struct bootops *)NULL; 1976 1977 #if defined(__xpv) 1978 ec_init_debug_irq(); 1979 xs_domu_init(); 1980 #endif 1981 PRM_POINT("Enabling interrupts"); 1982 (*picinitf)(); 1983 sti(); 1984 #if defined(__xpv) 1985 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 1986 xen_late_startup(); 1987 #endif 1988 1989 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 1990 "softlevel1", NULL, NULL); /* XXX to be moved later */ 1991 1992 /* 1993 * Register these software interrupts for ddi timer. 1994 * Software interrupts up to the level 10 are supported. 1995 */ 1996 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 1997 char name[sizeof ("timer_softintr") + 2]; 1998 (void) sprintf(name, "timer_softintr%02d", i); 1999 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2000 (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL); 2001 } 2002 2003 PRM_POINT("startup_end() done"); 2004 } 2005 2006 extern char hw_serial[]; 2007 char *_hs1107 = hw_serial; 2008 ulong_t _bdhs34; 2009 2010 void 2011 post_startup(void) 2012 { 2013 /* 2014 * Set the system wide, processor-specific flags to be passed 2015 * to userland via the aux vector for performance hints and 2016 * instruction set extensions. 2017 */ 2018 bind_hwcap(); 2019 2020 #ifdef __xpv 2021 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2022 #endif 2023 { 2024 /* 2025 * Load the System Management BIOS into the global ksmbios 2026 * handle, if an SMBIOS is present on this system. 2027 */ 2028 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 2029 2030 #if defined(__xpv) 2031 xpv_panic_init(); 2032 #else 2033 /* 2034 * Startup the memory scrubber. 2035 * XXPV This should be running somewhere .. 2036 */ 2037 memscrub_init(); 2038 #endif 2039 } 2040 2041 /* 2042 * Complete CPU module initialization 2043 */ 2044 cmi_post_init(); 2045 2046 /* 2047 * Perform forceloading tasks for /etc/system. 2048 */ 2049 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2050 2051 /* 2052 * ON4.0: Force /proc module in until clock interrupt handle fixed 2053 * ON4.0: This must be fixed or restated in /etc/systems. 2054 */ 2055 (void) modload("fs", "procfs"); 2056 2057 (void) i_ddi_attach_hw_nodes("pit_beep"); 2058 2059 #if defined(__i386) 2060 /* 2061 * Check for required functional Floating Point hardware, 2062 * unless FP hardware explicitly disabled. 2063 */ 2064 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2065 halt("No working FP hardware found"); 2066 #endif 2067 2068 maxmem = freemem; 2069 2070 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 2071 } 2072 2073 static int 2074 pp_in_ramdisk(page_t *pp) 2075 { 2076 extern uint64_t ramdisk_start, ramdisk_end; 2077 2078 return ((pp->p_pagenum >= btop(ramdisk_start)) && 2079 (pp->p_pagenum < btopr(ramdisk_end))); 2080 } 2081 2082 void 2083 release_bootstrap(void) 2084 { 2085 int root_is_ramdisk; 2086 page_t *pp; 2087 extern void kobj_boot_unmountroot(void); 2088 extern dev_t rootdev; 2089 2090 /* unmount boot ramdisk and release kmem usage */ 2091 kobj_boot_unmountroot(); 2092 2093 /* 2094 * We're finished using the boot loader so free its pages. 2095 */ 2096 PRM_POINT("Unmapping lower boot pages"); 2097 clear_boot_mappings(0, _userlimit); 2098 postbootkernelbase = kernelbase; 2099 2100 /* 2101 * If root isn't on ramdisk, destroy the hardcoded 2102 * ramdisk node now and release the memory. Else, 2103 * ramdisk memory is kept in rd_pages. 2104 */ 2105 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2106 if (!root_is_ramdisk) { 2107 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2108 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2109 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2110 (void) ddi_remove_child(dip, 0); 2111 } 2112 2113 PRM_POINT("Releasing boot pages"); 2114 while (bootpages) { 2115 pp = bootpages; 2116 bootpages = pp->p_next; 2117 if (root_is_ramdisk && pp_in_ramdisk(pp)) { 2118 pp->p_next = rd_pages; 2119 rd_pages = pp; 2120 continue; 2121 } 2122 pp->p_next = (struct page *)0; 2123 pp->p_prev = (struct page *)0; 2124 PP_CLRBOOTPAGES(pp); 2125 page_free(pp, 1); 2126 } 2127 PRM_POINT("Boot pages released"); 2128 2129 #if !defined(__xpv) 2130 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2131 /* 2132 * Find 1 page below 1 MB so that other processors can boot up. 2133 * Make sure it has a kernel VA as well as a 1:1 mapping. 2134 * We should have just free'd one up. 2135 */ 2136 if (use_mp) { 2137 pfn_t pfn; 2138 2139 for (pfn = 1; pfn < btop(1*1024*1024); pfn++) { 2140 if (page_numtopp_alloc(pfn) == NULL) 2141 continue; 2142 rm_platter_va = i86devmap(pfn, 1, 2143 PROT_READ | PROT_WRITE | PROT_EXEC); 2144 rm_platter_pa = ptob(pfn); 2145 hat_devload(kas.a_hat, 2146 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2147 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2148 HAT_LOAD_NOCONSIST); 2149 break; 2150 } 2151 if (pfn == btop(1*1024*1024)) 2152 panic("No page available for starting " 2153 "other processors"); 2154 } 2155 #endif /* !__xpv */ 2156 } 2157 2158 /* 2159 * Initialize the platform-specific parts of a page_t. 2160 */ 2161 void 2162 add_physmem_cb(page_t *pp, pfn_t pnum) 2163 { 2164 pp->p_pagenum = pnum; 2165 pp->p_mapping = NULL; 2166 pp->p_embed = 0; 2167 pp->p_share = 0; 2168 pp->p_mlentry = 0; 2169 } 2170 2171 /* 2172 * kphysm_init() initializes physical memory. 2173 */ 2174 static pgcnt_t 2175 kphysm_init( 2176 page_t *pp, 2177 pgcnt_t npages) 2178 { 2179 struct memlist *pmem; 2180 struct memseg *cur_memseg; 2181 pfn_t base_pfn; 2182 pgcnt_t num; 2183 pgcnt_t pages_done = 0; 2184 uint64_t addr; 2185 uint64_t size; 2186 extern pfn_t ddiphysmin; 2187 2188 ASSERT(page_hash != NULL && page_hashsz != 0); 2189 2190 cur_memseg = memseg_base; 2191 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2192 /* 2193 * In a 32 bit kernel can't use higher memory if we're 2194 * not booting in PAE mode. This check takes care of that. 2195 */ 2196 addr = pmem->address; 2197 size = pmem->size; 2198 if (btop(addr) > physmax) 2199 continue; 2200 2201 /* 2202 * align addr and size - they may not be at page boundaries 2203 */ 2204 if ((addr & MMU_PAGEOFFSET) != 0) { 2205 addr += MMU_PAGEOFFSET; 2206 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2207 size -= addr - pmem->address; 2208 } 2209 2210 /* only process pages below or equal to physmax */ 2211 if ((btop(addr + size) - 1) > physmax) 2212 size = ptob(physmax - btop(addr) + 1); 2213 2214 num = btop(size); 2215 if (num == 0) 2216 continue; 2217 2218 if (num > npages) 2219 num = npages; 2220 2221 npages -= num; 2222 pages_done += num; 2223 base_pfn = btop(addr); 2224 2225 if (prom_debug) 2226 prom_printf("MEMSEG addr=0x%" PRIx64 2227 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2228 addr, num, base_pfn, base_pfn + num); 2229 2230 /* 2231 * Ignore pages below ddiphysmin to simplify ddi memory 2232 * allocation with non-zero addr_lo requests. 2233 */ 2234 if (base_pfn < ddiphysmin) { 2235 if (base_pfn + num <= ddiphysmin) 2236 continue; 2237 pp += (ddiphysmin - base_pfn); 2238 num -= (ddiphysmin - base_pfn); 2239 base_pfn = ddiphysmin; 2240 } 2241 2242 /* 2243 * Build the memsegs entry 2244 */ 2245 cur_memseg->pages = pp; 2246 cur_memseg->epages = pp + num; 2247 cur_memseg->pages_base = base_pfn; 2248 cur_memseg->pages_end = base_pfn + num; 2249 2250 /* 2251 * Insert into memseg list in decreasing pfn range order. 2252 * Low memory is typically more fragmented such that this 2253 * ordering keeps the larger ranges at the front of the list 2254 * for code that searches memseg. 2255 * This ASSERTS that the memsegs coming in from boot are in 2256 * increasing physical address order and not contiguous. 2257 */ 2258 if (memsegs != NULL) { 2259 ASSERT(cur_memseg->pages_base >= memsegs->pages_end); 2260 cur_memseg->next = memsegs; 2261 } 2262 memsegs = cur_memseg; 2263 2264 /* 2265 * add_physmem() initializes the PSM part of the page 2266 * struct by calling the PSM back with add_physmem_cb(). 2267 * In addition it coalesces pages into larger pages as 2268 * it initializes them. 2269 */ 2270 add_physmem(pp, num, base_pfn); 2271 cur_memseg++; 2272 availrmem_initial += num; 2273 availrmem += num; 2274 2275 pp += num; 2276 } 2277 2278 PRM_DEBUG(availrmem_initial); 2279 PRM_DEBUG(availrmem); 2280 PRM_DEBUG(freemem); 2281 build_pfn_hash(); 2282 return (pages_done); 2283 } 2284 2285 /* 2286 * Kernel VM initialization. 2287 */ 2288 static void 2289 kvm_init(void) 2290 { 2291 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2292 2293 /* 2294 * Put the kernel segments in kernel address space. 2295 */ 2296 rw_enter(&kas.a_lock, RW_WRITER); 2297 as_avlinit(&kas); 2298 2299 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2300 (void) segkmem_create(&ktextseg); 2301 2302 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2303 (void) segkmem_create(&kvalloc); 2304 2305 (void) seg_attach(&kas, kernelheap, 2306 ekernelheap - kernelheap, &kvseg); 2307 (void) segkmem_create(&kvseg); 2308 2309 if (core_size > 0) { 2310 PRM_POINT("attaching kvseg_core"); 2311 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2312 &kvseg_core); 2313 (void) segkmem_create(&kvseg_core); 2314 } 2315 2316 if (segziosize > 0) { 2317 PRM_POINT("attaching segzio"); 2318 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2319 &kzioseg); 2320 (void) segkmem_zio_create(&kzioseg); 2321 2322 /* create zio area covering new segment */ 2323 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2324 } 2325 2326 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2327 (void) segkmem_create(&kdebugseg); 2328 2329 rw_exit(&kas.a_lock); 2330 2331 /* 2332 * Ensure that the red zone at kernelbase is never accessible. 2333 */ 2334 PRM_POINT("protecting redzone"); 2335 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2336 2337 /* 2338 * Make the text writable so that it can be hot patched by DTrace. 2339 */ 2340 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2341 PROT_READ | PROT_WRITE | PROT_EXEC); 2342 2343 /* 2344 * Make data writable until end. 2345 */ 2346 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2347 PROT_READ | PROT_WRITE | PROT_EXEC); 2348 } 2349 2350 #ifndef __xpv 2351 /* 2352 * Solaris adds an entry for Write Combining caching to the PAT 2353 */ 2354 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2355 2356 void 2357 pat_sync(void) 2358 { 2359 ulong_t cr0, cr0_orig, cr4; 2360 2361 if (!(x86_feature & X86_PAT)) 2362 return; 2363 cr0_orig = cr0 = getcr0(); 2364 cr4 = getcr4(); 2365 2366 /* disable caching and flush all caches and TLBs */ 2367 cr0 |= CR0_CD; 2368 cr0 &= ~CR0_NW; 2369 setcr0(cr0); 2370 invalidate_cache(); 2371 if (cr4 & CR4_PGE) { 2372 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2373 setcr4(cr4); 2374 } else { 2375 reload_cr3(); 2376 } 2377 2378 /* add our entry to the PAT */ 2379 wrmsr(REG_PAT, pat_attr_reg); 2380 2381 /* flush TLBs and cache again, then reenable cr0 caching */ 2382 if (cr4 & CR4_PGE) { 2383 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2384 setcr4(cr4); 2385 } else { 2386 reload_cr3(); 2387 } 2388 invalidate_cache(); 2389 setcr0(cr0_orig); 2390 } 2391 2392 #endif /* !__xpv */ 2393 2394 void 2395 get_system_configuration(void) 2396 { 2397 char prop[32]; 2398 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2399 2400 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2401 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2402 kobj_getvalue(prop, &nodes_ll) == -1 || 2403 nodes_ll > MAXNODES || 2404 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2405 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2406 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2407 system_hardware.hd_nodes = 1; 2408 system_hardware.hd_cpus_per_node = 0; 2409 } else { 2410 system_hardware.hd_nodes = (int)nodes_ll; 2411 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2412 } 2413 2414 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2415 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2416 kobj_getvalue(prop, &lvalue) == -1) 2417 eprom_kernelbase = NULL; 2418 else 2419 eprom_kernelbase = (uintptr_t)lvalue; 2420 2421 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2422 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2423 kobj_getvalue(prop, &lvalue) == -1) 2424 segmapsize = SEGMAPDEFAULT; 2425 else 2426 segmapsize = (uintptr_t)lvalue; 2427 2428 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2429 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2430 kobj_getvalue(prop, &lvalue) == -1) 2431 segmapfreelists = 0; /* use segmap driver default */ 2432 else 2433 segmapfreelists = (int)lvalue; 2434 2435 /* physmem used to be here, but moved much earlier to fakebop.c */ 2436 } 2437 2438 /* 2439 * Add to a memory list. 2440 * start = start of new memory segment 2441 * len = length of new memory segment in bytes 2442 * new = pointer to a new struct memlist 2443 * memlistp = memory list to which to add segment. 2444 */ 2445 void 2446 memlist_add( 2447 uint64_t start, 2448 uint64_t len, 2449 struct memlist *new, 2450 struct memlist **memlistp) 2451 { 2452 struct memlist *cur; 2453 uint64_t end = start + len; 2454 2455 new->address = start; 2456 new->size = len; 2457 2458 cur = *memlistp; 2459 2460 while (cur) { 2461 if (cur->address >= end) { 2462 new->next = cur; 2463 *memlistp = new; 2464 new->prev = cur->prev; 2465 cur->prev = new; 2466 return; 2467 } 2468 ASSERT(cur->address + cur->size <= start); 2469 if (cur->next == NULL) { 2470 cur->next = new; 2471 new->prev = cur; 2472 new->next = NULL; 2473 return; 2474 } 2475 memlistp = &cur->next; 2476 cur = cur->next; 2477 } 2478 } 2479 2480 void 2481 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2482 { 2483 size_t tsize = e_modtext - modtext; 2484 size_t dsize = e_moddata - moddata; 2485 2486 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2487 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2488 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2489 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2490 } 2491 2492 caddr_t 2493 kobj_text_alloc(vmem_t *arena, size_t size) 2494 { 2495 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2496 } 2497 2498 /*ARGSUSED*/ 2499 caddr_t 2500 kobj_texthole_alloc(caddr_t addr, size_t size) 2501 { 2502 panic("unexpected call to kobj_texthole_alloc()"); 2503 /*NOTREACHED*/ 2504 return (0); 2505 } 2506 2507 /*ARGSUSED*/ 2508 void 2509 kobj_texthole_free(caddr_t addr, size_t size) 2510 { 2511 panic("unexpected call to kobj_texthole_free()"); 2512 } 2513 2514 /* 2515 * This is called just after configure() in startup(). 2516 * 2517 * The ISALIST concept is a bit hopeless on Intel, because 2518 * there's no guarantee of an ever-more-capable processor 2519 * given that various parts of the instruction set may appear 2520 * and disappear between different implementations. 2521 * 2522 * While it would be possible to correct it and even enhance 2523 * it somewhat, the explicit hardware capability bitmask allows 2524 * more flexibility. 2525 * 2526 * So, we just leave this alone. 2527 */ 2528 void 2529 setx86isalist(void) 2530 { 2531 char *tp; 2532 size_t len; 2533 extern char *isa_list; 2534 2535 #define TBUFSIZE 1024 2536 2537 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2538 *tp = '\0'; 2539 2540 #if defined(__amd64) 2541 (void) strcpy(tp, "amd64 "); 2542 #endif 2543 2544 switch (x86_vendor) { 2545 case X86_VENDOR_Intel: 2546 case X86_VENDOR_AMD: 2547 case X86_VENDOR_TM: 2548 if (x86_feature & X86_CMOV) { 2549 /* 2550 * Pentium Pro or later 2551 */ 2552 (void) strcat(tp, "pentium_pro"); 2553 (void) strcat(tp, x86_feature & X86_MMX ? 2554 "+mmx pentium_pro " : " "); 2555 } 2556 /*FALLTHROUGH*/ 2557 case X86_VENDOR_Cyrix: 2558 /* 2559 * The Cyrix 6x86 does not have any Pentium features 2560 * accessible while not at privilege level 0. 2561 */ 2562 if (x86_feature & X86_CPUID) { 2563 (void) strcat(tp, "pentium"); 2564 (void) strcat(tp, x86_feature & X86_MMX ? 2565 "+mmx pentium " : " "); 2566 } 2567 break; 2568 default: 2569 break; 2570 } 2571 (void) strcat(tp, "i486 i386 i86"); 2572 len = strlen(tp) + 1; /* account for NULL at end of string */ 2573 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2574 kmem_free(tp, TBUFSIZE); 2575 2576 #undef TBUFSIZE 2577 } 2578 2579 2580 #ifdef __amd64 2581 2582 void * 2583 device_arena_alloc(size_t size, int vm_flag) 2584 { 2585 return (vmem_alloc(device_arena, size, vm_flag)); 2586 } 2587 2588 void 2589 device_arena_free(void *vaddr, size_t size) 2590 { 2591 vmem_free(device_arena, vaddr, size); 2592 } 2593 2594 #else /* __i386 */ 2595 2596 void * 2597 device_arena_alloc(size_t size, int vm_flag) 2598 { 2599 caddr_t vaddr; 2600 uintptr_t v; 2601 size_t start; 2602 size_t end; 2603 2604 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2605 if (vaddr == NULL) 2606 return (NULL); 2607 2608 v = (uintptr_t)vaddr; 2609 ASSERT(v >= kernelbase); 2610 ASSERT(v + size <= valloc_base); 2611 2612 start = btop(v - kernelbase); 2613 end = btop(v + size - 1 - kernelbase); 2614 ASSERT(start < toxic_bit_map_len); 2615 ASSERT(end < toxic_bit_map_len); 2616 2617 while (start <= end) { 2618 BT_ATOMIC_SET(toxic_bit_map, start); 2619 ++start; 2620 } 2621 return (vaddr); 2622 } 2623 2624 void 2625 device_arena_free(void *vaddr, size_t size) 2626 { 2627 uintptr_t v = (uintptr_t)vaddr; 2628 size_t start; 2629 size_t end; 2630 2631 ASSERT(v >= kernelbase); 2632 ASSERT(v + size <= valloc_base); 2633 2634 start = btop(v - kernelbase); 2635 end = btop(v + size - 1 - kernelbase); 2636 ASSERT(start < toxic_bit_map_len); 2637 ASSERT(end < toxic_bit_map_len); 2638 2639 while (start <= end) { 2640 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2641 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2642 ++start; 2643 } 2644 vmem_free(heap_arena, vaddr, size); 2645 } 2646 2647 /* 2648 * returns 1st address in range that is in device arena, or NULL 2649 * if len is not NULL it returns the length of the toxic range 2650 */ 2651 void * 2652 device_arena_contains(void *vaddr, size_t size, size_t *len) 2653 { 2654 uintptr_t v = (uintptr_t)vaddr; 2655 uintptr_t eaddr = v + size; 2656 size_t start; 2657 size_t end; 2658 2659 /* 2660 * if called very early by kmdb, just return NULL 2661 */ 2662 if (toxic_bit_map == NULL) 2663 return (NULL); 2664 2665 /* 2666 * First check if we're completely outside the bitmap range. 2667 */ 2668 if (v >= valloc_base || eaddr < kernelbase) 2669 return (NULL); 2670 2671 /* 2672 * Trim ends of search to look at only what the bitmap covers. 2673 */ 2674 if (v < kernelbase) 2675 v = kernelbase; 2676 start = btop(v - kernelbase); 2677 end = btop(eaddr - kernelbase); 2678 if (end >= toxic_bit_map_len) 2679 end = toxic_bit_map_len; 2680 2681 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2682 return (NULL); 2683 2684 v = kernelbase + ptob(start); 2685 if (len != NULL) 2686 *len = ptob(end - start); 2687 return ((void *)v); 2688 } 2689 2690 #endif /* __i386 */ 2691