1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/t_lock.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/signal.h> 31 #include <sys/systm.h> 32 #include <sys/user.h> 33 #include <sys/mman.h> 34 #include <sys/vm.h> 35 #include <sys/conf.h> 36 #include <sys/avintr.h> 37 #include <sys/autoconf.h> 38 #include <sys/disp.h> 39 #include <sys/class.h> 40 #include <sys/bitmap.h> 41 42 #include <sys/privregs.h> 43 44 #include <sys/proc.h> 45 #include <sys/buf.h> 46 #include <sys/kmem.h> 47 #include <sys/mem.h> 48 #include <sys/kstat.h> 49 50 #include <sys/reboot.h> 51 52 #include <sys/cred.h> 53 #include <sys/vnode.h> 54 #include <sys/file.h> 55 56 #include <sys/procfs.h> 57 58 #include <sys/vfs.h> 59 #include <sys/cmn_err.h> 60 #include <sys/utsname.h> 61 #include <sys/debug.h> 62 #include <sys/kdi.h> 63 64 #include <sys/dumphdr.h> 65 #include <sys/bootconf.h> 66 #include <sys/varargs.h> 67 #include <sys/promif.h> 68 #include <sys/modctl.h> 69 70 #include <sys/sunddi.h> 71 #include <sys/sunndi.h> 72 #include <sys/ndi_impldefs.h> 73 #include <sys/ddidmareq.h> 74 #include <sys/psw.h> 75 #include <sys/regset.h> 76 #include <sys/clock.h> 77 #include <sys/pte.h> 78 #include <sys/tss.h> 79 #include <sys/stack.h> 80 #include <sys/trap.h> 81 #include <sys/fp.h> 82 #include <vm/kboot_mmu.h> 83 #include <vm/anon.h> 84 #include <vm/as.h> 85 #include <vm/page.h> 86 #include <vm/seg.h> 87 #include <vm/seg_dev.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_kpm.h> 90 #include <vm/seg_map.h> 91 #include <vm/seg_vn.h> 92 #include <vm/seg_kp.h> 93 #include <sys/memnode.h> 94 #include <vm/vm_dep.h> 95 #include <sys/thread.h> 96 #include <sys/sysconf.h> 97 #include <sys/vm_machparam.h> 98 #include <sys/archsystm.h> 99 #include <sys/machsystm.h> 100 #include <vm/hat.h> 101 #include <vm/hat_i86.h> 102 #include <sys/pmem.h> 103 #include <sys/smp_impldefs.h> 104 #include <sys/x86_archext.h> 105 #include <sys/cpuvar.h> 106 #include <sys/segments.h> 107 #include <sys/clconf.h> 108 #include <sys/kobj.h> 109 #include <sys/kobj_lex.h> 110 #include <sys/cpc_impl.h> 111 #include <sys/cpu_module.h> 112 #include <sys/smbios.h> 113 #include <sys/debug_info.h> 114 #include <sys/bootinfo.h> 115 #include <sys/ddi_timer.h> 116 #include <sys/systeminfo.h> 117 #include <sys/multiboot.h> 118 119 #ifdef __xpv 120 121 #include <sys/hypervisor.h> 122 #include <sys/xen_mmu.h> 123 #include <sys/evtchn_impl.h> 124 #include <sys/gnttab.h> 125 #include <sys/xpv_panic.h> 126 #include <xen/sys/xenbus_comms.h> 127 #include <xen/public/physdev.h> 128 129 extern void xen_late_startup(void); 130 131 struct xen_evt_data cpu0_evt_data; 132 133 #endif /* __xpv */ 134 135 extern void progressbar_init(void); 136 extern void progressbar_start(void); 137 extern void brand_init(void); 138 extern void pcf_init(void); 139 extern void pg_init(void); 140 141 extern int size_pse_array(pgcnt_t, int); 142 143 #if defined(_SOFT_HOSTID) 144 145 #include <sys/rtc.h> 146 147 static int32_t set_soft_hostid(void); 148 static char hostid_file[] = "/etc/hostid"; 149 150 #endif 151 152 void *gfx_devinfo_list; 153 154 /* 155 * XXX make declaration below "static" when drivers no longer use this 156 * interface. 157 */ 158 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 159 160 /* 161 * segkp 162 */ 163 extern int segkp_fromheap; 164 165 static void kvm_init(void); 166 static void startup_init(void); 167 static void startup_memlist(void); 168 static void startup_kmem(void); 169 static void startup_modules(void); 170 static void startup_vm(void); 171 static void startup_end(void); 172 static void layout_kernel_va(void); 173 174 /* 175 * Declare these as initialized data so we can patch them. 176 */ 177 #ifdef __i386 178 179 /* 180 * Due to virtual address space limitations running in 32 bit mode, restrict 181 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 182 * 183 * If the physical max memory size of 64g were allowed to be configured, the 184 * size of user virtual address space will be less than 1g. A limited user 185 * address space greatly reduces the range of applications that can run. 186 * 187 * If more physical memory than PHYSMEM is required, users should preferably 188 * run in 64 bit mode which has far looser virtual address space limitations. 189 * 190 * If 64 bit mode is not available (as in IA32) and/or more physical memory 191 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 192 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 193 * should also be carefully tuned to balance out the need of the user 194 * application while minimizing the risk of kernel heap exhaustion due to 195 * kernelbase being set too high. 196 */ 197 #define PHYSMEM 0x400000 198 199 #else /* __amd64 */ 200 201 /* 202 * For now we can handle memory with physical addresses up to about 203 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 204 * half the VA space for seg_kpm. When systems get bigger than 64TB this 205 * code will need revisiting. There is an implicit assumption that there 206 * are no *huge* holes in the physical address space too. 207 */ 208 #define TERABYTE (1ul << 40) 209 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 210 #define PHYSMEM PHYSMEM_MAX64 211 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 212 213 #endif /* __amd64 */ 214 215 pgcnt_t physmem = PHYSMEM; 216 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 217 218 char *kobj_file_buf; 219 int kobj_file_bufsize; /* set in /etc/system */ 220 221 /* Global variables for MP support. Used in mp_startup */ 222 caddr_t rm_platter_va = 0; 223 uint32_t rm_platter_pa; 224 225 int auto_lpg_disable = 1; 226 227 /* 228 * Some CPUs have holes in the middle of the 64-bit virtual address range. 229 */ 230 uintptr_t hole_start, hole_end; 231 232 /* 233 * kpm mapping window 234 */ 235 caddr_t kpm_vbase; 236 size_t kpm_size; 237 static int kpm_desired; 238 #ifdef __amd64 239 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 240 #endif 241 242 /* 243 * Configuration parameters set at boot time. 244 */ 245 246 caddr_t econtig; /* end of first block of contiguous kernel */ 247 248 struct bootops *bootops = 0; /* passed in from boot */ 249 struct bootops **bootopsp; 250 struct boot_syscalls *sysp; /* passed in from boot */ 251 252 char bootblock_fstype[16]; 253 254 char kern_bootargs[OBP_MAXPATHLEN]; 255 char kern_bootfile[OBP_MAXPATHLEN]; 256 257 /* 258 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 259 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 260 * zio buffers from their own segment, otherwise they are allocated from the 261 * heap. The optimization of allocating zio buffers from their own segment is 262 * only valid on 64-bit kernels. 263 */ 264 #if defined(__amd64) 265 int segzio_fromheap = 0; 266 #else 267 int segzio_fromheap = 1; 268 #endif 269 270 /* 271 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 272 * depends on number of BOP_ALLOC calls made and requested size, memory size 273 * combination and whether boot.bin memory needs to be freed. 274 */ 275 #define POSS_NEW_FRAGMENTS 12 276 277 /* 278 * VM data structures 279 */ 280 long page_hashsz; /* Size of page hash table (power of two) */ 281 struct page *pp_base; /* Base of initial system page struct array */ 282 struct page **page_hash; /* Page hash table */ 283 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 284 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 285 int pse_shift; /* log2(pse_table_size) */ 286 struct seg ktextseg; /* Segment used for kernel executable image */ 287 struct seg kvalloc; /* Segment used for "valloc" mapping */ 288 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 289 struct seg kmapseg; /* Segment used for generic kernel mappings */ 290 struct seg kdebugseg; /* Segment used for the kernel debugger */ 291 292 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 293 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 294 295 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 296 297 #if defined(__amd64) 298 struct seg kvseg_core; /* Segment used for the core heap */ 299 struct seg kpmseg; /* Segment used for physical mapping */ 300 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 301 #else 302 struct seg *segkpm = NULL; /* Unused on IA32 */ 303 #endif 304 305 caddr_t segkp_base; /* Base address of segkp */ 306 caddr_t segzio_base; /* Base address of segzio */ 307 #if defined(__amd64) 308 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 309 #else 310 pgcnt_t segkpsize = 0; 311 #endif 312 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 313 314 /* 315 * VA range available to the debugger 316 */ 317 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 318 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 319 320 struct memseg *memseg_base; 321 struct vnode unused_pages_vp; 322 323 #define FOURGB 0x100000000LL 324 325 struct memlist *memlist; 326 327 caddr_t s_text; /* start of kernel text segment */ 328 caddr_t e_text; /* end of kernel text segment */ 329 caddr_t s_data; /* start of kernel data segment */ 330 caddr_t e_data; /* end of kernel data segment */ 331 caddr_t modtext; /* start of loadable module text reserved */ 332 caddr_t e_modtext; /* end of loadable module text reserved */ 333 caddr_t moddata; /* start of loadable module data reserved */ 334 caddr_t e_moddata; /* end of loadable module data reserved */ 335 336 struct memlist *phys_install; /* Total installed physical memory */ 337 struct memlist *phys_avail; /* Total available physical memory */ 338 339 /* 340 * kphysm_init returns the number of pages that were processed 341 */ 342 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 343 344 #define IO_PROP_SIZE 64 /* device property size */ 345 346 /* 347 * a couple useful roundup macros 348 */ 349 #define ROUND_UP_PAGE(x) \ 350 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 351 #define ROUND_UP_LPAGE(x) \ 352 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 353 #define ROUND_UP_4MEG(x) \ 354 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 355 #define ROUND_UP_TOPLEVEL(x) \ 356 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 357 358 /* 359 * 32-bit Kernel's Virtual memory layout. 360 * +-----------------------+ 361 * | | 362 * 0xFFC00000 -|-----------------------|- ARGSBASE 363 * | debugger | 364 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 365 * | Kernel Data | 366 * 0xFEC00000 -|-----------------------| 367 * | Kernel Text | 368 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 369 * |--- GDT ---|- GDT page (GDT_VA) 370 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 371 * | | 372 * | page_t structures | 373 * | memsegs, memlists, | 374 * | page hash, etc. | 375 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 376 * | | (segkp is just an arena in the heap) 377 * | | 378 * | kvseg | 379 * | | 380 * | | 381 * --- -|-----------------------|- kernelheap (floating) 382 * | Segkmap | 383 * 0xC3002000 -|-----------------------|- segmap_start (floating) 384 * | Red Zone | 385 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 386 * | | || 387 * | Shared objects | \/ 388 * | | 389 * : : 390 * | user data | 391 * |-----------------------| 392 * | user text | 393 * 0x08048000 -|-----------------------| 394 * | user stack | 395 * : : 396 * | invalid | 397 * 0x00000000 +-----------------------+ 398 * 399 * 400 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 401 * +-----------------------+ 402 * | | 403 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 404 * | debugger (?) | 405 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 406 * | unused | 407 * +-----------------------+ 408 * | Kernel Data | 409 * 0xFFFFFFFF.FBC00000 |-----------------------| 410 * | Kernel Text | 411 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 412 * |--- GDT ---|- GDT page (GDT_VA) 413 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 414 * | | 415 * | Core heap | (used for loadable modules) 416 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 417 * | Kernel | 418 * | heap | 419 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 420 * | segmap | 421 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 422 * | device mappings | 423 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 424 * | segzio | 425 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 426 * | segkp | 427 * --- |-----------------------|- segkp_base (floating) 428 * | page_t structures | valloc_base + valloc_sz 429 * | memsegs, memlists, | 430 * | page hash, etc. | 431 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 432 * | segkpm | 433 * 0xFFFFFE00.00000000 |-----------------------| 434 * | Red Zone | 435 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 436 * | User stack |- User space memory 437 * | | 438 * | shared objects, etc | (grows downwards) 439 * : : 440 * | | 441 * 0xFFFF8000.00000000 |-----------------------| 442 * | | 443 * | VA Hole / unused | 444 * | | 445 * 0x00008000.00000000 |-----------------------| 446 * | | 447 * | | 448 * : : 449 * | user heap | (grows upwards) 450 * | | 451 * | user data | 452 * |-----------------------| 453 * | user text | 454 * 0x00000000.04000000 |-----------------------| 455 * | invalid | 456 * 0x00000000.00000000 +-----------------------+ 457 * 458 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 459 * kernel, except that userlimit is raised to 0xfe000000 460 * 461 * Floating values: 462 * 463 * valloc_base: start of the kernel's memory management/tracking data 464 * structures. This region contains page_t structures for 465 * physical memory, memsegs, memlists, and the page hash. 466 * 467 * core_base: start of the kernel's "core" heap area on 64-bit systems. 468 * This area is intended to be used for global data as well as for module 469 * text/data that does not fit into the nucleus pages. The core heap is 470 * restricted to a 2GB range, allowing every address within it to be 471 * accessed using rip-relative addressing 472 * 473 * ekernelheap: end of kernelheap and start of segmap. 474 * 475 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 476 * above a red zone that separates the user's address space from the 477 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 478 * 479 * segmap_start: start of segmap. The length of segmap can be modified 480 * through eeprom. The default length is 16MB on 32-bit systems and 64MB 481 * on 64-bit systems. 482 * 483 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 484 * decreased by 2X the size required for page_t. This allows the kernel 485 * heap to grow in size with physical memory. With sizeof(page_t) == 80 486 * bytes, the following shows the values of kernelbase and kernel heap 487 * sizes for different memory configurations (assuming default segmap and 488 * segkp sizes). 489 * 490 * mem size for kernelbase kernel heap 491 * size page_t's size 492 * ---- --------- ---------- ----------- 493 * 1gb 0x01400000 0xd1800000 684MB 494 * 2gb 0x02800000 0xcf000000 704MB 495 * 4gb 0x05000000 0xca000000 744MB 496 * 6gb 0x07800000 0xc5000000 784MB 497 * 8gb 0x0a000000 0xc0000000 824MB 498 * 16gb 0x14000000 0xac000000 984MB 499 * 32gb 0x28000000 0x84000000 1304MB 500 * 64gb 0x50000000 0x34000000 1944MB (*) 501 * 502 * kernelbase is less than the abi minimum of 0xc0000000 for memory 503 * configurations above 8gb. 504 * 505 * (*) support for memory configurations above 32gb will require manual tuning 506 * of kernelbase to balance out the need of user applications. 507 */ 508 509 /* real-time-clock initialization parameters */ 510 extern time_t process_rtc_config_file(void); 511 512 uintptr_t kernelbase; 513 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 514 uintptr_t eprom_kernelbase; 515 size_t segmapsize; 516 uintptr_t segmap_start; 517 int segmapfreelists; 518 pgcnt_t npages; 519 pgcnt_t orig_npages; 520 size_t core_size; /* size of "core" heap */ 521 uintptr_t core_base; /* base address of "core" heap */ 522 523 /* 524 * List of bootstrap pages. We mark these as allocated in startup. 525 * release_bootstrap() will free them when we're completely done with 526 * the bootstrap. 527 */ 528 static page_t *bootpages; 529 530 /* 531 * boot time pages that have a vnode from the ramdisk will keep that forever. 532 */ 533 static page_t *rd_pages; 534 535 /* 536 * Lower 64K 537 */ 538 static page_t *lower_pages = NULL; 539 static int lower_pages_count = 0; 540 541 struct system_hardware system_hardware; 542 543 /* 544 * Enable some debugging messages concerning memory usage... 545 */ 546 static void 547 print_memlist(char *title, struct memlist *mp) 548 { 549 prom_printf("MEMLIST: %s:\n", title); 550 while (mp != NULL) { 551 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 552 mp->address, mp->size); 553 mp = mp->next; 554 } 555 } 556 557 /* 558 * XX64 need a comment here.. are these just default values, surely 559 * we read the "cpuid" type information to figure this out. 560 */ 561 int l2cache_sz = 0x80000; 562 int l2cache_linesz = 0x40; 563 int l2cache_assoc = 1; 564 565 static size_t textrepl_min_gb = 10; 566 567 /* 568 * on 64 bit we use a predifined VA range for mapping devices in the kernel 569 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 570 */ 571 #ifdef __amd64 572 573 vmem_t *device_arena; 574 uintptr_t toxic_addr = (uintptr_t)NULL; 575 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 576 577 #else /* __i386 */ 578 579 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 580 size_t toxic_bit_map_len = 0; /* in bits */ 581 582 #endif /* __i386 */ 583 584 /* 585 * Simple boot time debug facilities 586 */ 587 static char *prm_dbg_str[] = { 588 "%s:%d: '%s' is 0x%x\n", 589 "%s:%d: '%s' is 0x%llx\n" 590 }; 591 592 int prom_debug; 593 594 #define PRM_DEBUG(q) if (prom_debug) \ 595 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 596 #define PRM_POINT(q) if (prom_debug) \ 597 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 598 599 /* 600 * This structure is used to keep track of the intial allocations 601 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 602 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 603 */ 604 #define NUM_ALLOCATIONS 7 605 int num_allocations = 0; 606 struct { 607 void **al_ptr; 608 size_t al_size; 609 } allocations[NUM_ALLOCATIONS]; 610 size_t valloc_sz = 0; 611 uintptr_t valloc_base; 612 613 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 614 size = ROUND_UP_PAGE(size); \ 615 if (num_allocations == NUM_ALLOCATIONS) \ 616 panic("too many ADD_TO_ALLOCATIONS()"); \ 617 allocations[num_allocations].al_ptr = (void**)&ptr; \ 618 allocations[num_allocations].al_size = size; \ 619 valloc_sz += size; \ 620 ++num_allocations; \ 621 } 622 623 /* 624 * Allocate all the initial memory needed by the page allocator. 625 */ 626 static void 627 perform_allocations(void) 628 { 629 caddr_t mem; 630 int i; 631 int valloc_align; 632 633 PRM_DEBUG(valloc_base); 634 PRM_DEBUG(valloc_sz); 635 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 636 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 637 if (mem != (caddr_t)valloc_base) 638 panic("BOP_ALLOC() failed"); 639 bzero(mem, valloc_sz); 640 for (i = 0; i < num_allocations; ++i) { 641 *allocations[i].al_ptr = (void *)mem; 642 mem += allocations[i].al_size; 643 } 644 } 645 646 /* 647 * Our world looks like this at startup time. 648 * 649 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 650 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 651 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 652 * addresses are fixed in the binary at link time. 653 * 654 * On the text page: 655 * unix/genunix/krtld/module text loads. 656 * 657 * On the data page: 658 * unix/genunix/krtld/module data loads. 659 * 660 * Machine-dependent startup code 661 */ 662 void 663 startup(void) 664 { 665 #if !defined(__xpv) 666 extern void startup_bios_disk(void); 667 extern void startup_pci_bios(void); 668 extern int post_fastreboot; 669 #endif 670 extern cpuset_t cpu_ready_set; 671 672 /* 673 * Make sure that nobody tries to use sekpm until we have 674 * initialized it properly. 675 */ 676 #if defined(__amd64) 677 kpm_desired = 1; 678 #endif 679 kpm_enable = 0; 680 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 681 682 #if defined(__xpv) /* XXPV fix me! */ 683 { 684 extern int segvn_use_regions; 685 segvn_use_regions = 0; 686 } 687 #endif 688 progressbar_init(); 689 startup_init(); 690 #if defined(__xpv) 691 startup_xen_version(); 692 #endif 693 startup_memlist(); 694 startup_kmem(); 695 startup_vm(); 696 #if !defined(__xpv) 697 if (!post_fastreboot) 698 startup_pci_bios(); 699 #endif 700 #if defined(__xpv) 701 startup_xen_mca(); 702 #endif 703 startup_modules(); 704 #if !defined(__xpv) 705 if (!post_fastreboot) 706 startup_bios_disk(); 707 #endif 708 startup_end(); 709 progressbar_start(); 710 } 711 712 static void 713 startup_init() 714 { 715 PRM_POINT("startup_init() starting..."); 716 717 /* 718 * Complete the extraction of cpuid data 719 */ 720 cpuid_pass2(CPU); 721 722 (void) check_boot_version(BOP_GETVERSION(bootops)); 723 724 /* 725 * Check for prom_debug in boot environment 726 */ 727 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 728 ++prom_debug; 729 PRM_POINT("prom_debug found in boot enviroment"); 730 } 731 732 /* 733 * Collect node, cpu and memory configuration information. 734 */ 735 get_system_configuration(); 736 737 /* 738 * Halt if this is an unsupported processor. 739 */ 740 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 741 printf("\n486 processor (\"%s\") detected.\n", 742 CPU->cpu_brandstr); 743 halt("This processor is not supported by this release " 744 "of Solaris."); 745 } 746 747 PRM_POINT("startup_init() done"); 748 } 749 750 /* 751 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 752 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 753 * also filters out physical page zero. There is some reliance on the 754 * boot loader allocating only a few contiguous physical memory chunks. 755 */ 756 static void 757 avail_filter(uint64_t *addr, uint64_t *size) 758 { 759 uintptr_t va; 760 uintptr_t next_va; 761 pfn_t pfn; 762 uint64_t pfn_addr; 763 uint64_t pfn_eaddr; 764 uint_t prot; 765 size_t len; 766 uint_t change; 767 768 if (prom_debug) 769 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 770 *addr, *size); 771 772 /* 773 * page zero is required for BIOS.. never make it available 774 */ 775 if (*addr == 0) { 776 *addr += MMU_PAGESIZE; 777 *size -= MMU_PAGESIZE; 778 } 779 780 /* 781 * First we trim from the front of the range. Since kbm_probe() 782 * walks ranges in virtual order, but addr/size are physical, we need 783 * to the list until no changes are seen. This deals with the case 784 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 785 * but w < v. 786 */ 787 do { 788 change = 0; 789 for (va = KERNEL_TEXT; 790 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 791 va = next_va) { 792 793 next_va = va + len; 794 pfn_addr = pfn_to_pa(pfn); 795 pfn_eaddr = pfn_addr + len; 796 797 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 798 change = 1; 799 while (*size > 0 && len > 0) { 800 *addr += MMU_PAGESIZE; 801 *size -= MMU_PAGESIZE; 802 len -= MMU_PAGESIZE; 803 } 804 } 805 } 806 if (change && prom_debug) 807 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 808 *addr, *size); 809 } while (change); 810 811 /* 812 * Trim pages from the end of the range. 813 */ 814 for (va = KERNEL_TEXT; 815 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 816 va = next_va) { 817 818 next_va = va + len; 819 pfn_addr = pfn_to_pa(pfn); 820 821 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 822 *size = pfn_addr - *addr; 823 } 824 825 if (prom_debug) 826 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 827 *addr, *size); 828 } 829 830 static void 831 kpm_init() 832 { 833 struct segkpm_crargs b; 834 835 /* 836 * These variables were all designed for sfmmu in which segkpm is 837 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 838 * might use 2+ page sizes on a single machine, so none of these 839 * variables have a single correct value. They are set up as if we 840 * always use a 4KB pagesize, which should do no harm. In the long 841 * run, we should get rid of KPM's assumption that only a single 842 * pagesize is used. 843 */ 844 kpm_pgshft = MMU_PAGESHIFT; 845 kpm_pgsz = MMU_PAGESIZE; 846 kpm_pgoff = MMU_PAGEOFFSET; 847 kpmp2pshft = 0; 848 kpmpnpgs = 1; 849 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 850 851 PRM_POINT("about to create segkpm"); 852 rw_enter(&kas.a_lock, RW_WRITER); 853 854 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 855 panic("cannot attach segkpm"); 856 857 b.prot = PROT_READ | PROT_WRITE; 858 b.nvcolors = 1; 859 860 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 861 panic("segkpm_create segkpm"); 862 863 rw_exit(&kas.a_lock); 864 } 865 866 /* 867 * The debug info page provides enough information to allow external 868 * inspectors (e.g. when running under a hypervisor) to bootstrap 869 * themselves into allowing full-blown kernel debugging. 870 */ 871 static void 872 init_debug_info(void) 873 { 874 caddr_t mem; 875 debug_info_t *di; 876 877 #ifndef __lint 878 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 879 #endif 880 881 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 882 MMU_PAGESIZE); 883 884 if (mem != (caddr_t)DEBUG_INFO_VA) 885 panic("BOP_ALLOC() failed"); 886 bzero(mem, MMU_PAGESIZE); 887 888 di = (debug_info_t *)mem; 889 890 di->di_magic = DEBUG_INFO_MAGIC; 891 di->di_version = DEBUG_INFO_VERSION; 892 di->di_modules = (uintptr_t)&modules; 893 di->di_s_text = (uintptr_t)s_text; 894 di->di_e_text = (uintptr_t)e_text; 895 di->di_s_data = (uintptr_t)s_data; 896 di->di_e_data = (uintptr_t)e_data; 897 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 898 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 899 } 900 901 /* 902 * Build the memlists and other kernel essential memory system data structures. 903 * This is everything at valloc_base. 904 */ 905 static void 906 startup_memlist(void) 907 { 908 size_t memlist_sz; 909 size_t memseg_sz; 910 size_t pagehash_sz; 911 size_t pp_sz; 912 uintptr_t va; 913 size_t len; 914 uint_t prot; 915 pfn_t pfn; 916 int memblocks; 917 caddr_t pagecolor_mem; 918 size_t pagecolor_memsz; 919 caddr_t page_ctrs_mem; 920 size_t page_ctrs_size; 921 size_t pse_table_alloc_size; 922 struct memlist *current; 923 extern void startup_build_mem_nodes(struct memlist *); 924 925 /* XX64 fix these - they should be in include files */ 926 extern size_t page_coloring_init(uint_t, int, int); 927 extern void page_coloring_setup(caddr_t); 928 929 PRM_POINT("startup_memlist() starting..."); 930 931 /* 932 * Use leftover large page nucleus text/data space for loadable modules. 933 * Use at most MODTEXT/MODDATA. 934 */ 935 len = kbm_nucleus_size; 936 ASSERT(len > MMU_PAGESIZE); 937 938 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 939 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 940 if (e_moddata - moddata > MODDATA) 941 e_moddata = moddata + MODDATA; 942 943 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 944 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 945 if (e_modtext - modtext > MODTEXT) 946 e_modtext = modtext + MODTEXT; 947 948 econtig = e_moddata; 949 950 PRM_DEBUG(modtext); 951 PRM_DEBUG(e_modtext); 952 PRM_DEBUG(moddata); 953 PRM_DEBUG(e_moddata); 954 PRM_DEBUG(econtig); 955 956 /* 957 * Examine the boot loader physical memory map to find out: 958 * - total memory in system - physinstalled 959 * - the max physical address - physmax 960 * - the number of discontiguous segments of memory. 961 */ 962 if (prom_debug) 963 print_memlist("boot physinstalled", 964 bootops->boot_mem->physinstalled); 965 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 966 &physinstalled, &memblocks); 967 PRM_DEBUG(physmax); 968 PRM_DEBUG(physinstalled); 969 PRM_DEBUG(memblocks); 970 971 /* 972 * Initialize hat's mmu parameters. 973 * Check for enforce-prot-exec in boot environment. It's used to 974 * enable/disable support for the page table entry NX bit. 975 * The default is to enforce PROT_EXEC on processors that support NX. 976 * Boot seems to round up the "len", but 8 seems to be big enough. 977 */ 978 mmu_init(); 979 980 #ifdef __i386 981 /* 982 * physmax is lowered if there is more memory than can be 983 * physically addressed in 32 bit (PAE/non-PAE) modes. 984 */ 985 if (mmu.pae_hat) { 986 if (PFN_ABOVE64G(physmax)) { 987 physinstalled -= (physmax - (PFN_64G - 1)); 988 physmax = PFN_64G - 1; 989 } 990 } else { 991 if (PFN_ABOVE4G(physmax)) { 992 physinstalled -= (physmax - (PFN_4G - 1)); 993 physmax = PFN_4G - 1; 994 } 995 } 996 #endif 997 998 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 999 1000 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 1001 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 1002 char value[8]; 1003 1004 if (len < 8) 1005 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 1006 else 1007 (void) strcpy(value, ""); 1008 if (strcmp(value, "off") == 0) 1009 mmu.pt_nx = 0; 1010 } 1011 PRM_DEBUG(mmu.pt_nx); 1012 1013 /* 1014 * We will need page_t's for every page in the system, except for 1015 * memory mapped at or above above the start of the kernel text segment. 1016 * 1017 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1018 */ 1019 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1020 obp_pages = 0; 1021 va = KERNEL_TEXT; 1022 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1023 npages -= len >> MMU_PAGESHIFT; 1024 if (va >= (uintptr_t)e_moddata) 1025 obp_pages += len >> MMU_PAGESHIFT; 1026 va += len; 1027 } 1028 PRM_DEBUG(npages); 1029 PRM_DEBUG(obp_pages); 1030 1031 /* 1032 * If physmem is patched to be non-zero, use it instead of the computed 1033 * value unless it is larger than the actual amount of memory on hand. 1034 */ 1035 if (physmem == 0 || physmem > npages) { 1036 physmem = npages; 1037 } else if (physmem < npages) { 1038 orig_npages = npages; 1039 npages = physmem; 1040 } 1041 PRM_DEBUG(physmem); 1042 1043 /* 1044 * We now compute the sizes of all the initial allocations for 1045 * structures the kernel needs in order do kmem_alloc(). These 1046 * include: 1047 * memsegs 1048 * memlists 1049 * page hash table 1050 * page_t's 1051 * page coloring data structs 1052 */ 1053 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1054 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1055 PRM_DEBUG(memseg_sz); 1056 1057 /* 1058 * Reserve space for memlists. There's no real good way to know exactly 1059 * how much room we'll need, but this should be a good upper bound. 1060 */ 1061 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1062 (memblocks + POSS_NEW_FRAGMENTS)); 1063 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1064 PRM_DEBUG(memlist_sz); 1065 1066 /* 1067 * The page structure hash table size is a power of 2 1068 * such that the average hash chain length is PAGE_HASHAVELEN. 1069 */ 1070 page_hashsz = npages / PAGE_HASHAVELEN; 1071 page_hashsz = 1 << highbit(page_hashsz); 1072 pagehash_sz = sizeof (struct page *) * page_hashsz; 1073 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1074 PRM_DEBUG(pagehash_sz); 1075 1076 /* 1077 * Set aside room for the page structures themselves. 1078 */ 1079 PRM_DEBUG(npages); 1080 pp_sz = sizeof (struct page) * npages; 1081 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1082 PRM_DEBUG(pp_sz); 1083 1084 /* 1085 * determine l2 cache info and memory size for page coloring 1086 */ 1087 (void) getl2cacheinfo(CPU, 1088 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1089 pagecolor_memsz = 1090 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1091 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1092 PRM_DEBUG(pagecolor_memsz); 1093 1094 page_ctrs_size = page_ctrs_sz(); 1095 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1096 PRM_DEBUG(page_ctrs_size); 1097 1098 /* 1099 * Allocate the array that protects pp->p_selock. 1100 */ 1101 pse_shift = size_pse_array(physmem, max_ncpus); 1102 pse_table_size = 1 << pse_shift; 1103 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1104 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1105 1106 #if defined(__amd64) 1107 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1108 valloc_base = VALLOC_BASE; 1109 1110 /* 1111 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1112 * for values of physmax up to 1 Terabyte. They need adjusting when 1113 * memory is at addresses above 1 TB. 1114 */ 1115 if (physmax + 1 > mmu_btop(TERABYTE)) { 1116 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1117 1118 /* Round to largest possible pagesize for now */ 1119 kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1120 1121 segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */ 1122 1123 /* make sure we leave some space for user apps above hole */ 1124 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1125 if (segkpm_base > SEGKPM_BASE) 1126 segkpm_base = SEGKPM_BASE; 1127 PRM_DEBUG(segkpm_base); 1128 1129 valloc_base = segkpm_base + kpm_resv_amount; 1130 PRM_DEBUG(valloc_base); 1131 } 1132 #else /* __i386 */ 1133 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1134 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1135 PRM_DEBUG(valloc_base); 1136 #endif /* __i386 */ 1137 1138 /* 1139 * do all the initial allocations 1140 */ 1141 perform_allocations(); 1142 1143 /* 1144 * Build phys_install and phys_avail in kernel memspace. 1145 * - phys_install should be all memory in the system. 1146 * - phys_avail is phys_install minus any memory mapped before this 1147 * point above KERNEL_TEXT. 1148 */ 1149 current = phys_install = memlist; 1150 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1151 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1152 panic("physinstalled was too big!"); 1153 if (prom_debug) 1154 print_memlist("phys_install", phys_install); 1155 1156 phys_avail = current; 1157 PRM_POINT("Building phys_avail:\n"); 1158 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1159 avail_filter); 1160 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1161 panic("physavail was too big!"); 1162 if (prom_debug) 1163 print_memlist("phys_avail", phys_avail); 1164 1165 /* 1166 * setup page coloring 1167 */ 1168 page_coloring_setup(pagecolor_mem); 1169 page_lock_init(); /* currently a no-op */ 1170 1171 /* 1172 * free page list counters 1173 */ 1174 (void) page_ctrs_alloc(page_ctrs_mem); 1175 1176 /* 1177 * Size the pcf array based on the number of cpus in the box at 1178 * boot time. 1179 */ 1180 1181 pcf_init(); 1182 1183 /* 1184 * Initialize the page structures from the memory lists. 1185 */ 1186 availrmem_initial = availrmem = freemem = 0; 1187 PRM_POINT("Calling kphysm_init()..."); 1188 npages = kphysm_init(pp_base, npages); 1189 PRM_POINT("kphysm_init() done"); 1190 PRM_DEBUG(npages); 1191 1192 init_debug_info(); 1193 1194 /* 1195 * Now that page_t's have been initialized, remove all the 1196 * initial allocation pages from the kernel free page lists. 1197 */ 1198 boot_mapin((caddr_t)valloc_base, valloc_sz); 1199 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1200 PRM_POINT("startup_memlist() done"); 1201 1202 PRM_DEBUG(valloc_sz); 1203 1204 #if defined(__amd64) 1205 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1206 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1207 extern size_t textrepl_size_thresh; 1208 textrepl_size_thresh = (16 << 20) - 1; 1209 } 1210 #endif 1211 } 1212 1213 /* 1214 * Layout the kernel's part of address space and initialize kmem allocator. 1215 */ 1216 static void 1217 startup_kmem(void) 1218 { 1219 extern void page_set_colorequiv_arr(void); 1220 1221 PRM_POINT("startup_kmem() starting..."); 1222 1223 #if defined(__amd64) 1224 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1225 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1226 "systems."); 1227 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1228 core_base = (uintptr_t)COREHEAP_BASE; 1229 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1230 #else /* __i386 */ 1231 /* 1232 * We configure kernelbase based on: 1233 * 1234 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1235 * KERNELBASE_MAX. we large page align eprom_kernelbase 1236 * 1237 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1238 * On large memory systems we must lower kernelbase to allow 1239 * enough room for page_t's for all of memory. 1240 * 1241 * The value set here, might be changed a little later. 1242 */ 1243 if (eprom_kernelbase) { 1244 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1245 if (kernelbase > KERNELBASE_MAX) 1246 kernelbase = KERNELBASE_MAX; 1247 } else { 1248 kernelbase = (uintptr_t)KERNELBASE; 1249 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1250 } 1251 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1252 core_base = valloc_base; 1253 core_size = 0; 1254 #endif /* __i386 */ 1255 1256 PRM_DEBUG(core_base); 1257 PRM_DEBUG(core_size); 1258 PRM_DEBUG(kernelbase); 1259 1260 #if defined(__i386) 1261 segkp_fromheap = 1; 1262 #endif /* __i386 */ 1263 1264 ekernelheap = (char *)core_base; 1265 PRM_DEBUG(ekernelheap); 1266 1267 /* 1268 * Now that we know the real value of kernelbase, 1269 * update variables that were initialized with a value of 1270 * KERNELBASE (in common/conf/param.c). 1271 * 1272 * XXX The problem with this sort of hackery is that the 1273 * compiler just may feel like putting the const declarations 1274 * (in param.c) into the .text section. Perhaps they should 1275 * just be declared as variables there? 1276 */ 1277 1278 *(uintptr_t *)&_kernelbase = kernelbase; 1279 *(uintptr_t *)&_userlimit = kernelbase; 1280 #if defined(__amd64) 1281 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1282 #else 1283 *(uintptr_t *)&_userlimit32 = _userlimit; 1284 #endif 1285 PRM_DEBUG(_kernelbase); 1286 PRM_DEBUG(_userlimit); 1287 PRM_DEBUG(_userlimit32); 1288 1289 layout_kernel_va(); 1290 1291 #if defined(__i386) 1292 /* 1293 * If segmap is too large we can push the bottom of the kernel heap 1294 * higher than the base. Or worse, it could exceed the top of the 1295 * VA space entirely, causing it to wrap around. 1296 */ 1297 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1298 panic("too little address space available for kernelheap," 1299 " use eeprom for lower kernelbase or smaller segmapsize"); 1300 #endif /* __i386 */ 1301 1302 /* 1303 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1304 */ 1305 kernelheap_init(kernelheap, ekernelheap, 1306 kernelheap + MMU_PAGESIZE, 1307 (void *)core_base, (void *)(core_base + core_size)); 1308 1309 #if defined(__xpv) 1310 /* 1311 * Link pending events struct into cpu struct 1312 */ 1313 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1314 #endif 1315 /* 1316 * Initialize kernel memory allocator. 1317 */ 1318 kmem_init(); 1319 1320 /* 1321 * Factor in colorequiv to check additional 'equivalent' bins 1322 */ 1323 page_set_colorequiv_arr(); 1324 1325 /* 1326 * print this out early so that we know what's going on 1327 */ 1328 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1329 1330 /* 1331 * Initialize bp_mapin(). 1332 */ 1333 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1334 1335 /* 1336 * orig_npages is non-zero if physmem has been configured for less 1337 * than the available memory. 1338 */ 1339 if (orig_npages) { 1340 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1341 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1342 npages, orig_npages); 1343 } 1344 #if defined(__i386) 1345 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1346 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1347 "System using 0x%lx", 1348 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1349 #endif 1350 1351 #ifdef KERNELBASE_ABI_MIN 1352 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1353 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1354 "i386 ABI compliant.", (uintptr_t)kernelbase); 1355 } 1356 #endif 1357 1358 #ifdef __xpv 1359 /* 1360 * Some of the xen start information has to be relocated up 1361 * into the kernel's permanent address space. 1362 */ 1363 PRM_POINT("calling xen_relocate_start_info()"); 1364 xen_relocate_start_info(); 1365 PRM_POINT("xen_relocate_start_info() done"); 1366 1367 /* 1368 * (Update the vcpu pointer in our cpu structure to point into 1369 * the relocated shared info.) 1370 */ 1371 CPU->cpu_m.mcpu_vcpu_info = 1372 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1373 #endif 1374 1375 PRM_POINT("startup_kmem() done"); 1376 } 1377 1378 #ifndef __xpv 1379 /* 1380 * If we have detected that we are running in an HVM environment, we need 1381 * to prepend the PV driver directory to the module search path. 1382 */ 1383 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1384 static void 1385 update_default_path() 1386 { 1387 char *current, *newpath; 1388 int newlen; 1389 1390 /* 1391 * We are about to resync with krtld. krtld will reset its 1392 * internal module search path iff Solaris has set default_path. 1393 * We want to be sure we're prepending this new directory to the 1394 * right search path. 1395 */ 1396 current = (default_path == NULL) ? kobj_module_path : default_path; 1397 1398 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 1; 1399 newpath = kmem_alloc(newlen, KM_SLEEP); 1400 (void) strcpy(newpath, HVM_MOD_DIR); 1401 (void) strcat(newpath, " "); 1402 (void) strcat(newpath, current); 1403 1404 default_path = newpath; 1405 } 1406 #endif 1407 1408 static void 1409 startup_modules(void) 1410 { 1411 int cnt; 1412 extern void prom_setup(void); 1413 int32_t v, h; 1414 char d[11]; 1415 char *cp; 1416 cmi_hdl_t hdl; 1417 1418 PRM_POINT("startup_modules() starting..."); 1419 1420 #ifndef __xpv 1421 /* 1422 * Initialize ten-micro second timer so that drivers will 1423 * not get short changed in their init phase. This was 1424 * not getting called until clkinit which, on fast cpu's 1425 * caused the drv_usecwait to be way too short. 1426 */ 1427 microfind(); 1428 1429 if (get_hwenv() == HW_XEN_HVM) 1430 update_default_path(); 1431 #endif 1432 1433 /* 1434 * Read the GMT lag from /etc/rtc_config. 1435 */ 1436 sgmtl(process_rtc_config_file()); 1437 1438 /* 1439 * Calculate default settings of system parameters based upon 1440 * maxusers, yet allow to be overridden via the /etc/system file. 1441 */ 1442 param_calc(0); 1443 1444 mod_setup(); 1445 1446 /* 1447 * Initialize system parameters. 1448 */ 1449 param_init(); 1450 1451 /* 1452 * Initialize the default brands 1453 */ 1454 brand_init(); 1455 1456 /* 1457 * maxmem is the amount of physical memory we're playing with. 1458 */ 1459 maxmem = physmem; 1460 1461 /* 1462 * Initialize segment management stuff. 1463 */ 1464 seg_init(); 1465 1466 if (modload("fs", "specfs") == -1) 1467 halt("Can't load specfs"); 1468 1469 if (modload("fs", "devfs") == -1) 1470 halt("Can't load devfs"); 1471 1472 if (modload("fs", "dev") == -1) 1473 halt("Can't load dev"); 1474 1475 (void) modloadonly("sys", "lbl_edition"); 1476 1477 dispinit(); 1478 1479 /* 1480 * This is needed here to initialize hw_serial[] for cluster booting. 1481 */ 1482 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) { 1483 cmn_err(CE_WARN, "Unable to set hostid"); 1484 } else { 1485 for (v = h, cnt = 0; cnt < 10; cnt++) { 1486 d[cnt] = (char)(v % 10); 1487 v /= 10; 1488 if (v == 0) 1489 break; 1490 } 1491 for (cp = hw_serial; cnt >= 0; cnt--) 1492 *cp++ = d[cnt] + '0'; 1493 *cp = 0; 1494 } 1495 1496 /* Read cluster configuration data. */ 1497 clconf_init(); 1498 1499 #if defined(__xpv) 1500 ec_init(); 1501 gnttab_init(); 1502 (void) xs_early_init(); 1503 #endif /* __xpv */ 1504 1505 /* 1506 * Create a kernel device tree. First, create rootnex and 1507 * then invoke bus specific code to probe devices. 1508 */ 1509 setup_ddi(); 1510 1511 /* 1512 * Set up the CPU module subsystem for the boot cpu in the native 1513 * case, and all physical cpu resource in the xpv dom0 case. 1514 * Modifies the device tree, so this must be done after 1515 * setup_ddi(). 1516 */ 1517 #ifdef __xpv 1518 /* 1519 * If paravirtualized and on dom0 then we initialize all physical 1520 * cpu handles now; if paravirtualized on a domU then do not 1521 * initialize. 1522 */ 1523 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1524 xen_mc_lcpu_cookie_t cpi; 1525 1526 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1527 cpi = xen_physcpu_next(cpi)) { 1528 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1529 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1530 xen_physcpu_strandid(cpi))) != NULL && 1531 (x86_feature & X86_MCA)) 1532 cmi_mca_init(hdl); 1533 } 1534 } 1535 #else 1536 /* 1537 * Initialize a handle for the boot cpu - others will initialize 1538 * as they startup. Do not do this if we know we are in an HVM domU. 1539 */ 1540 if ((get_hwenv() != HW_XEN_HVM) && 1541 (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1542 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL && 1543 (x86_feature & X86_MCA)) 1544 cmi_mca_init(hdl); 1545 #endif /* __xpv */ 1546 1547 /* 1548 * Fake a prom tree such that /dev/openprom continues to work 1549 */ 1550 PRM_POINT("startup_modules: calling prom_setup..."); 1551 prom_setup(); 1552 PRM_POINT("startup_modules: done"); 1553 1554 /* 1555 * Load all platform specific modules 1556 */ 1557 PRM_POINT("startup_modules: calling psm_modload..."); 1558 psm_modload(); 1559 1560 PRM_POINT("startup_modules() done"); 1561 } 1562 1563 /* 1564 * claim a "setaside" boot page for use in the kernel 1565 */ 1566 page_t * 1567 boot_claim_page(pfn_t pfn) 1568 { 1569 page_t *pp; 1570 1571 pp = page_numtopp_nolock(pfn); 1572 ASSERT(pp != NULL); 1573 1574 if (PP_ISBOOTPAGES(pp)) { 1575 if (pp->p_next != NULL) 1576 pp->p_next->p_prev = pp->p_prev; 1577 if (pp->p_prev == NULL) 1578 bootpages = pp->p_next; 1579 else 1580 pp->p_prev->p_next = pp->p_next; 1581 } else { 1582 /* 1583 * htable_attach() expects a base pagesize page 1584 */ 1585 if (pp->p_szc != 0) 1586 page_boot_demote(pp); 1587 pp = page_numtopp(pfn, SE_EXCL); 1588 } 1589 return (pp); 1590 } 1591 1592 /* 1593 * Walk through the pagetables looking for pages mapped in by boot. If the 1594 * setaside flag is set the pages are expected to be returned to the 1595 * kernel later in boot, so we add them to the bootpages list. 1596 */ 1597 static void 1598 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1599 { 1600 uintptr_t va = low; 1601 size_t len; 1602 uint_t prot; 1603 pfn_t pfn; 1604 page_t *pp; 1605 pgcnt_t boot_protect_cnt = 0; 1606 1607 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1608 if (va + len >= high) 1609 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1610 "legal range.", len, (void *)va); 1611 1612 while (len > 0) { 1613 pp = page_numtopp_alloc(pfn); 1614 if (pp != NULL) { 1615 if (setaside == 0) 1616 panic("Unexpected mapping by boot. " 1617 "addr=%p pfn=%lx\n", 1618 (void *)va, pfn); 1619 1620 pp->p_next = bootpages; 1621 pp->p_prev = NULL; 1622 PP_SETBOOTPAGES(pp); 1623 if (bootpages != NULL) { 1624 bootpages->p_prev = pp; 1625 } 1626 bootpages = pp; 1627 ++boot_protect_cnt; 1628 } 1629 1630 ++pfn; 1631 len -= MMU_PAGESIZE; 1632 va += MMU_PAGESIZE; 1633 } 1634 } 1635 PRM_DEBUG(boot_protect_cnt); 1636 } 1637 1638 /* 1639 * 1640 */ 1641 static void 1642 layout_kernel_va(void) 1643 { 1644 PRM_POINT("layout_kernel_va() starting..."); 1645 /* 1646 * Establish the final size of the kernel's heap, size of segmap, 1647 * segkp, etc. 1648 */ 1649 1650 #if defined(__amd64) 1651 1652 kpm_vbase = (caddr_t)segkpm_base; 1653 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1654 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1655 panic("not enough room for kpm!"); 1656 PRM_DEBUG(kpm_size); 1657 PRM_DEBUG(kpm_vbase); 1658 1659 /* 1660 * By default we create a seg_kp in 64 bit kernels, it's a little 1661 * faster to access than embedding it in the heap. 1662 */ 1663 segkp_base = (caddr_t)valloc_base + valloc_sz; 1664 if (!segkp_fromheap) { 1665 size_t sz = mmu_ptob(segkpsize); 1666 1667 /* 1668 * determine size of segkp 1669 */ 1670 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1671 sz = SEGKPDEFSIZE; 1672 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1673 "segkpsize has been reset to %ld pages", 1674 mmu_btop(sz)); 1675 } 1676 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1677 1678 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1679 } 1680 PRM_DEBUG(segkp_base); 1681 PRM_DEBUG(segkpsize); 1682 1683 /* 1684 * segzio is used for ZFS cached data. It uses a distinct VA 1685 * segment (from kernel heap) so that we can easily tell not to 1686 * include it in kernel crash dumps on 64 bit kernels. The trick is 1687 * to give it lots of VA, but not constrain the kernel heap. 1688 * We scale the size of segzio linearly with physmem up to 1689 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1690 */ 1691 segzio_base = segkp_base + mmu_ptob(segkpsize); 1692 if (segzio_fromheap) { 1693 segziosize = 0; 1694 } else { 1695 size_t physmem_size = mmu_ptob(physmem); 1696 size_t size = (segziosize == 0) ? 1697 physmem_size : mmu_ptob(segziosize); 1698 1699 if (size < SEGZIOMINSIZE) 1700 size = SEGZIOMINSIZE; 1701 if (size > SEGZIOMAXSIZE) { 1702 size = SEGZIOMAXSIZE; 1703 if (physmem_size > size) 1704 size += (physmem_size - size) / 2; 1705 } 1706 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1707 } 1708 PRM_DEBUG(segziosize); 1709 PRM_DEBUG(segzio_base); 1710 1711 /* 1712 * Put the range of VA for device mappings next, kmdb knows to not 1713 * grep in this range of addresses. 1714 */ 1715 toxic_addr = 1716 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1717 PRM_DEBUG(toxic_addr); 1718 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1719 #else /* __i386 */ 1720 segmap_start = ROUND_UP_LPAGE(kernelbase); 1721 #endif /* __i386 */ 1722 PRM_DEBUG(segmap_start); 1723 1724 /* 1725 * Users can change segmapsize through eeprom. If the variable 1726 * is tuned through eeprom, there is no upper bound on the 1727 * size of segmap. 1728 */ 1729 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1730 1731 #if defined(__i386) 1732 /* 1733 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1734 * the bottom of the kernel's address range. Set aside space for a 1735 * small red zone just below the start of segmap. 1736 */ 1737 segmap_start += KERNEL_REDZONE_SIZE; 1738 segmapsize -= KERNEL_REDZONE_SIZE; 1739 #endif 1740 1741 PRM_DEBUG(segmap_start); 1742 PRM_DEBUG(segmapsize); 1743 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1744 PRM_DEBUG(kernelheap); 1745 PRM_POINT("layout_kernel_va() done..."); 1746 } 1747 1748 /* 1749 * Finish initializing the VM system, now that we are no longer 1750 * relying on the boot time memory allocators. 1751 */ 1752 static void 1753 startup_vm(void) 1754 { 1755 struct segmap_crargs a; 1756 1757 extern int use_brk_lpg, use_stk_lpg; 1758 1759 PRM_POINT("startup_vm() starting..."); 1760 1761 /* 1762 * Initialize the hat layer. 1763 */ 1764 hat_init(); 1765 1766 /* 1767 * Do final allocations of HAT data structures that need to 1768 * be allocated before quiescing the boot loader. 1769 */ 1770 PRM_POINT("Calling hat_kern_alloc()..."); 1771 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1772 PRM_POINT("hat_kern_alloc() done"); 1773 1774 #ifndef __xpv 1775 /* 1776 * Setup Page Attribute Table 1777 */ 1778 pat_sync(); 1779 #endif 1780 1781 /* 1782 * The next two loops are done in distinct steps in order 1783 * to be sure that any page that is doubly mapped (both above 1784 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1785 * Note this may never happen, but it might someday. 1786 */ 1787 bootpages = NULL; 1788 PRM_POINT("Protecting boot pages"); 1789 1790 /* 1791 * Protect any pages mapped above KERNEL_TEXT that somehow have 1792 * page_t's. This can only happen if something weird allocated 1793 * in this range (like kadb/kmdb). 1794 */ 1795 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1796 1797 /* 1798 * Before we can take over memory allocation/mapping from the boot 1799 * loader we must remove from our free page lists any boot allocated 1800 * pages that stay mapped until release_bootstrap(). 1801 */ 1802 protect_boot_range(0, kernelbase, 1); 1803 1804 1805 /* 1806 * Switch to running on regular HAT (not boot_mmu) 1807 */ 1808 PRM_POINT("Calling hat_kern_setup()..."); 1809 hat_kern_setup(); 1810 1811 /* 1812 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1813 */ 1814 bop_no_more_mem(); 1815 1816 PRM_POINT("hat_kern_setup() done"); 1817 1818 hat_cpu_online(CPU); 1819 1820 /* 1821 * Initialize VM system 1822 */ 1823 PRM_POINT("Calling kvm_init()..."); 1824 kvm_init(); 1825 PRM_POINT("kvm_init() done"); 1826 1827 /* 1828 * Tell kmdb that the VM system is now working 1829 */ 1830 if (boothowto & RB_DEBUG) 1831 kdi_dvec_vmready(); 1832 1833 #if defined(__xpv) 1834 /* 1835 * Populate the I/O pool on domain 0 1836 */ 1837 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1838 extern long populate_io_pool(void); 1839 long init_io_pool_cnt; 1840 1841 PRM_POINT("Populating reserve I/O page pool"); 1842 init_io_pool_cnt = populate_io_pool(); 1843 PRM_DEBUG(init_io_pool_cnt); 1844 } 1845 #endif 1846 /* 1847 * Mangle the brand string etc. 1848 */ 1849 cpuid_pass3(CPU); 1850 1851 #if defined(__amd64) 1852 1853 /* 1854 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1855 */ 1856 device_arena = vmem_create("device", (void *)toxic_addr, 1857 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1858 1859 #else /* __i386 */ 1860 1861 /* 1862 * allocate the bit map that tracks toxic pages 1863 */ 1864 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 1865 PRM_DEBUG(toxic_bit_map_len); 1866 toxic_bit_map = 1867 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1868 ASSERT(toxic_bit_map != NULL); 1869 PRM_DEBUG(toxic_bit_map); 1870 1871 #endif /* __i386 */ 1872 1873 1874 /* 1875 * Now that we've got more VA, as well as the ability to allocate from 1876 * it, tell the debugger. 1877 */ 1878 if (boothowto & RB_DEBUG) 1879 kdi_dvec_memavail(); 1880 1881 /* 1882 * The following code installs a special page fault handler (#pf) 1883 * to work around a pentium bug. 1884 */ 1885 #if !defined(__amd64) && !defined(__xpv) 1886 if (x86_type == X86_TYPE_P5) { 1887 desctbr_t idtr; 1888 gate_desc_t *newidt; 1889 1890 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1891 panic("failed to install pentium_pftrap"); 1892 1893 bcopy(idt0, newidt, NIDT * sizeof (*idt0)); 1894 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1895 KCS_SEL, SDT_SYSIGT, TRP_KPL, 0); 1896 1897 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1898 PROT_READ | PROT_EXEC); 1899 1900 CPU->cpu_idt = newidt; 1901 idtr.dtr_base = (uintptr_t)CPU->cpu_idt; 1902 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1; 1903 wr_idtr(&idtr); 1904 } 1905 #endif /* !__amd64 */ 1906 1907 #if !defined(__xpv) 1908 /* 1909 * Map page pfn=0 for drivers, such as kd, that need to pick up 1910 * parameters left there by controllers/BIOS. 1911 */ 1912 PRM_POINT("setup up p0_va"); 1913 p0_va = i86devmap(0, 1, PROT_READ); 1914 PRM_DEBUG(p0_va); 1915 #endif 1916 1917 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1918 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1919 1920 /* 1921 * disable automatic large pages for small memory systems or 1922 * when the disable flag is set. 1923 * 1924 * Do not yet consider page sizes larger than 2m/4m. 1925 */ 1926 if (!auto_lpg_disable && mmu.max_page_level > 0) { 1927 max_uheap_lpsize = LEVEL_SIZE(1); 1928 max_ustack_lpsize = LEVEL_SIZE(1); 1929 max_privmap_lpsize = LEVEL_SIZE(1); 1930 max_uidata_lpsize = LEVEL_SIZE(1); 1931 max_utext_lpsize = LEVEL_SIZE(1); 1932 max_shm_lpsize = LEVEL_SIZE(1); 1933 } 1934 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 1935 auto_lpg_disable) { 1936 use_brk_lpg = 0; 1937 use_stk_lpg = 0; 1938 } 1939 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 1940 1941 PRM_POINT("Calling hat_init_finish()..."); 1942 hat_init_finish(); 1943 PRM_POINT("hat_init_finish() done"); 1944 1945 /* 1946 * Initialize the segkp segment type. 1947 */ 1948 rw_enter(&kas.a_lock, RW_WRITER); 1949 PRM_POINT("Attaching segkp"); 1950 if (segkp_fromheap) { 1951 segkp->s_as = &kas; 1952 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1953 segkp) < 0) { 1954 panic("startup: cannot attach segkp"); 1955 /*NOTREACHED*/ 1956 } 1957 PRM_POINT("Doing segkp_create()"); 1958 if (segkp_create(segkp) != 0) { 1959 panic("startup: segkp_create failed"); 1960 /*NOTREACHED*/ 1961 } 1962 PRM_DEBUG(segkp); 1963 rw_exit(&kas.a_lock); 1964 1965 /* 1966 * kpm segment 1967 */ 1968 segmap_kpm = 0; 1969 if (kpm_desired) { 1970 kpm_init(); 1971 kpm_enable = 1; 1972 } 1973 1974 /* 1975 * Now create segmap segment. 1976 */ 1977 rw_enter(&kas.a_lock, RW_WRITER); 1978 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 1979 panic("cannot attach segmap"); 1980 /*NOTREACHED*/ 1981 } 1982 PRM_DEBUG(segmap); 1983 1984 a.prot = PROT_READ | PROT_WRITE; 1985 a.shmsize = 0; 1986 a.nfreelist = segmapfreelists; 1987 1988 if (segmap_create(segmap, (caddr_t)&a) != 0) 1989 panic("segmap_create segmap"); 1990 rw_exit(&kas.a_lock); 1991 1992 setup_vaddr_for_ppcopy(CPU); 1993 1994 segdev_init(); 1995 #if defined(__xpv) 1996 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1997 #endif 1998 pmem_init(); 1999 2000 PRM_POINT("startup_vm() done"); 2001 } 2002 2003 /* 2004 * Load a tod module for the non-standard tod part found on this system. 2005 */ 2006 static void 2007 load_tod_module(char *todmod) 2008 { 2009 if (modload("tod", todmod) == -1) 2010 halt("Can't load TOD module"); 2011 } 2012 2013 static void 2014 startup_end(void) 2015 { 2016 int i; 2017 extern void setx86isalist(void); 2018 2019 PRM_POINT("startup_end() starting..."); 2020 2021 /* 2022 * Perform tasks that get done after most of the VM 2023 * initialization has been done but before the clock 2024 * and other devices get started. 2025 */ 2026 kern_setup1(); 2027 2028 /* 2029 * Perform CPC initialization for this CPU. 2030 */ 2031 kcpc_hw_init(CPU); 2032 2033 #if defined(OPTERON_WORKAROUND_6323525) 2034 if (opteron_workaround_6323525) 2035 patch_workaround_6323525(); 2036 #endif 2037 /* 2038 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2039 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2040 */ 2041 if (tod_module_name != NULL) { 2042 PRM_POINT("load_tod_module()"); 2043 load_tod_module(tod_module_name); 2044 } 2045 2046 #if defined(__xpv) 2047 /* 2048 * Forceload interposing TOD module for the hypervisor. 2049 */ 2050 PRM_POINT("load_tod_module()"); 2051 load_tod_module("xpvtod"); 2052 #endif 2053 2054 /* 2055 * Configure the system. 2056 */ 2057 PRM_POINT("Calling configure()..."); 2058 configure(); /* set up devices */ 2059 PRM_POINT("configure() done"); 2060 2061 /* 2062 * Set the isa_list string to the defined instruction sets we 2063 * support. 2064 */ 2065 setx86isalist(); 2066 cpu_intr_alloc(CPU, NINTR_THREADS); 2067 psm_install(); 2068 2069 /* 2070 * We're done with bootops. We don't unmap the bootstrap yet because 2071 * we're still using bootsvcs. 2072 */ 2073 PRM_POINT("NULLing out bootops"); 2074 *bootopsp = (struct bootops *)NULL; 2075 bootops = (struct bootops *)NULL; 2076 2077 #if defined(__xpv) 2078 ec_init_debug_irq(); 2079 xs_domu_init(); 2080 #endif 2081 PRM_POINT("Enabling interrupts"); 2082 (*picinitf)(); 2083 sti(); 2084 #if defined(__xpv) 2085 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2086 xen_late_startup(); 2087 #endif 2088 2089 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2090 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2091 2092 /* 2093 * Register these software interrupts for ddi timer. 2094 * Software interrupts up to the level 10 are supported. 2095 */ 2096 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2097 char name[sizeof ("timer_softintr") + 2]; 2098 (void) sprintf(name, "timer_softintr%02d", i); 2099 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2100 (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL); 2101 } 2102 2103 #if !defined(__xpv) 2104 if (modload("drv", "amd_iommu") < 0) { 2105 PRM_POINT("No AMD IOMMU present\n"); 2106 } else if (ddi_hold_installed_driver(ddi_name_to_major( 2107 "amd_iommu")) == NULL) { 2108 prom_printf("ERROR: failed to attach AMD IOMMU\n"); 2109 } 2110 #endif 2111 post_startup_cpu_fixups(); 2112 2113 PRM_POINT("startup_end() done"); 2114 } 2115 2116 /* 2117 * Don't remove the following 2 variables. They are necessary 2118 * for reading the hostid from the legacy file (/kernel/misc/sysinit). 2119 */ 2120 char *_hs1107 = hw_serial; 2121 ulong_t _bdhs34; 2122 2123 void 2124 post_startup(void) 2125 { 2126 extern void cpupm_init(cpu_t *); 2127 2128 /* 2129 * Set the system wide, processor-specific flags to be passed 2130 * to userland via the aux vector for performance hints and 2131 * instruction set extensions. 2132 */ 2133 bind_hwcap(); 2134 2135 #ifdef __xpv 2136 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2137 #endif 2138 { 2139 /* 2140 * Load the System Management BIOS into the global ksmbios 2141 * handle, if an SMBIOS is present on this system. 2142 */ 2143 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 2144 2145 #if defined(__xpv) 2146 xpv_panic_init(); 2147 #else 2148 /* 2149 * Startup the memory scrubber. 2150 * XXPV This should be running somewhere .. 2151 */ 2152 if (get_hwenv() != HW_XEN_HVM) 2153 memscrub_init(); 2154 #endif 2155 } 2156 2157 /* 2158 * Complete CPU module initialization 2159 */ 2160 cmi_post_startup(); 2161 2162 /* 2163 * Perform forceloading tasks for /etc/system. 2164 */ 2165 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2166 2167 /* 2168 * ON4.0: Force /proc module in until clock interrupt handle fixed 2169 * ON4.0: This must be fixed or restated in /etc/systems. 2170 */ 2171 (void) modload("fs", "procfs"); 2172 2173 (void) i_ddi_attach_hw_nodes("pit_beep"); 2174 2175 #if defined(__i386) 2176 /* 2177 * Check for required functional Floating Point hardware, 2178 * unless FP hardware explicitly disabled. 2179 */ 2180 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2181 halt("No working FP hardware found"); 2182 #endif 2183 2184 maxmem = freemem; 2185 2186 cpupm_init(CPU); 2187 2188 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 2189 2190 pg_init(); 2191 } 2192 2193 static int 2194 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) 2195 { 2196 return ((pp->p_pagenum >= btop(low_addr)) && 2197 (pp->p_pagenum < btopr(high_addr))); 2198 } 2199 2200 void 2201 release_bootstrap(void) 2202 { 2203 int root_is_ramdisk; 2204 page_t *pp; 2205 extern void kobj_boot_unmountroot(void); 2206 extern dev_t rootdev; 2207 #if !defined(__xpv) 2208 pfn_t pfn; 2209 #endif 2210 2211 /* unmount boot ramdisk and release kmem usage */ 2212 kobj_boot_unmountroot(); 2213 2214 /* 2215 * We're finished using the boot loader so free its pages. 2216 */ 2217 PRM_POINT("Unmapping lower boot pages"); 2218 2219 clear_boot_mappings(0, _userlimit); 2220 2221 postbootkernelbase = kernelbase; 2222 2223 /* 2224 * If root isn't on ramdisk, destroy the hardcoded 2225 * ramdisk node now and release the memory. Else, 2226 * ramdisk memory is kept in rd_pages. 2227 */ 2228 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2229 if (!root_is_ramdisk) { 2230 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2231 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2232 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2233 (void) ddi_remove_child(dip, 0); 2234 } 2235 2236 PRM_POINT("Releasing boot pages"); 2237 while (bootpages) { 2238 extern uint64_t ramdisk_start, ramdisk_end; 2239 pp = bootpages; 2240 bootpages = pp->p_next; 2241 2242 2243 /* Keep pages for the lower 64K */ 2244 if (pp_in_range(pp, 0, 0x40000)) { 2245 pp->p_next = lower_pages; 2246 lower_pages = pp; 2247 lower_pages_count++; 2248 continue; 2249 } 2250 2251 2252 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start, 2253 ramdisk_end)) { 2254 pp->p_next = rd_pages; 2255 rd_pages = pp; 2256 continue; 2257 } 2258 pp->p_next = (struct page *)0; 2259 pp->p_prev = (struct page *)0; 2260 PP_CLRBOOTPAGES(pp); 2261 page_free(pp, 1); 2262 } 2263 PRM_POINT("Boot pages released"); 2264 2265 #if !defined(__xpv) 2266 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2267 /* 2268 * Find 1 page below 1 MB so that other processors can boot up or 2269 * so that any processor can resume. 2270 * Make sure it has a kernel VA as well as a 1:1 mapping. 2271 * We should have just free'd one up. 2272 */ 2273 2274 /* 2275 * 0x10 pages is 64K. Leave the bottom 64K alone 2276 * for BIOS. 2277 */ 2278 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { 2279 if (page_numtopp_alloc(pfn) == NULL) 2280 continue; 2281 rm_platter_va = i86devmap(pfn, 1, 2282 PROT_READ | PROT_WRITE | PROT_EXEC); 2283 rm_platter_pa = ptob(pfn); 2284 hat_devload(kas.a_hat, 2285 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2286 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2287 HAT_LOAD_NOCONSIST); 2288 break; 2289 } 2290 if (pfn == btop(1*1024*1024) && use_mp) 2291 panic("No page below 1M available for starting " 2292 "other processors or for resuming from system-suspend"); 2293 #endif /* !__xpv */ 2294 } 2295 2296 /* 2297 * Initialize the platform-specific parts of a page_t. 2298 */ 2299 void 2300 add_physmem_cb(page_t *pp, pfn_t pnum) 2301 { 2302 pp->p_pagenum = pnum; 2303 pp->p_mapping = NULL; 2304 pp->p_embed = 0; 2305 pp->p_share = 0; 2306 pp->p_mlentry = 0; 2307 } 2308 2309 /* 2310 * kphysm_init() initializes physical memory. 2311 */ 2312 static pgcnt_t 2313 kphysm_init( 2314 page_t *pp, 2315 pgcnt_t npages) 2316 { 2317 struct memlist *pmem; 2318 struct memseg *cur_memseg; 2319 pfn_t base_pfn; 2320 pgcnt_t num; 2321 pgcnt_t pages_done = 0; 2322 uint64_t addr; 2323 uint64_t size; 2324 extern pfn_t ddiphysmin; 2325 2326 ASSERT(page_hash != NULL && page_hashsz != 0); 2327 2328 cur_memseg = memseg_base; 2329 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2330 /* 2331 * In a 32 bit kernel can't use higher memory if we're 2332 * not booting in PAE mode. This check takes care of that. 2333 */ 2334 addr = pmem->address; 2335 size = pmem->size; 2336 if (btop(addr) > physmax) 2337 continue; 2338 2339 /* 2340 * align addr and size - they may not be at page boundaries 2341 */ 2342 if ((addr & MMU_PAGEOFFSET) != 0) { 2343 addr += MMU_PAGEOFFSET; 2344 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2345 size -= addr - pmem->address; 2346 } 2347 2348 /* only process pages below or equal to physmax */ 2349 if ((btop(addr + size) - 1) > physmax) 2350 size = ptob(physmax - btop(addr) + 1); 2351 2352 num = btop(size); 2353 if (num == 0) 2354 continue; 2355 2356 if (num > npages) 2357 num = npages; 2358 2359 npages -= num; 2360 pages_done += num; 2361 base_pfn = btop(addr); 2362 2363 if (prom_debug) 2364 prom_printf("MEMSEG addr=0x%" PRIx64 2365 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2366 addr, num, base_pfn, base_pfn + num); 2367 2368 /* 2369 * Ignore pages below ddiphysmin to simplify ddi memory 2370 * allocation with non-zero addr_lo requests. 2371 */ 2372 if (base_pfn < ddiphysmin) { 2373 if (base_pfn + num <= ddiphysmin) 2374 continue; 2375 pp += (ddiphysmin - base_pfn); 2376 num -= (ddiphysmin - base_pfn); 2377 base_pfn = ddiphysmin; 2378 } 2379 2380 /* 2381 * Build the memsegs entry 2382 */ 2383 cur_memseg->pages = pp; 2384 cur_memseg->epages = pp + num; 2385 cur_memseg->pages_base = base_pfn; 2386 cur_memseg->pages_end = base_pfn + num; 2387 2388 /* 2389 * Insert into memseg list in decreasing pfn range order. 2390 * Low memory is typically more fragmented such that this 2391 * ordering keeps the larger ranges at the front of the list 2392 * for code that searches memseg. 2393 * This ASSERTS that the memsegs coming in from boot are in 2394 * increasing physical address order and not contiguous. 2395 */ 2396 if (memsegs != NULL) { 2397 ASSERT(cur_memseg->pages_base >= memsegs->pages_end); 2398 cur_memseg->next = memsegs; 2399 } 2400 memsegs = cur_memseg; 2401 2402 /* 2403 * add_physmem() initializes the PSM part of the page 2404 * struct by calling the PSM back with add_physmem_cb(). 2405 * In addition it coalesces pages into larger pages as 2406 * it initializes them. 2407 */ 2408 add_physmem(pp, num, base_pfn); 2409 cur_memseg++; 2410 availrmem_initial += num; 2411 availrmem += num; 2412 2413 pp += num; 2414 } 2415 2416 PRM_DEBUG(availrmem_initial); 2417 PRM_DEBUG(availrmem); 2418 PRM_DEBUG(freemem); 2419 build_pfn_hash(); 2420 return (pages_done); 2421 } 2422 2423 /* 2424 * Kernel VM initialization. 2425 */ 2426 static void 2427 kvm_init(void) 2428 { 2429 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2430 2431 /* 2432 * Put the kernel segments in kernel address space. 2433 */ 2434 rw_enter(&kas.a_lock, RW_WRITER); 2435 as_avlinit(&kas); 2436 2437 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2438 (void) segkmem_create(&ktextseg); 2439 2440 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2441 (void) segkmem_create(&kvalloc); 2442 2443 (void) seg_attach(&kas, kernelheap, 2444 ekernelheap - kernelheap, &kvseg); 2445 (void) segkmem_create(&kvseg); 2446 2447 if (core_size > 0) { 2448 PRM_POINT("attaching kvseg_core"); 2449 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2450 &kvseg_core); 2451 (void) segkmem_create(&kvseg_core); 2452 } 2453 2454 if (segziosize > 0) { 2455 PRM_POINT("attaching segzio"); 2456 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2457 &kzioseg); 2458 (void) segkmem_zio_create(&kzioseg); 2459 2460 /* create zio area covering new segment */ 2461 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2462 } 2463 2464 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2465 (void) segkmem_create(&kdebugseg); 2466 2467 rw_exit(&kas.a_lock); 2468 2469 /* 2470 * Ensure that the red zone at kernelbase is never accessible. 2471 */ 2472 PRM_POINT("protecting redzone"); 2473 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2474 2475 /* 2476 * Make the text writable so that it can be hot patched by DTrace. 2477 */ 2478 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2479 PROT_READ | PROT_WRITE | PROT_EXEC); 2480 2481 /* 2482 * Make data writable until end. 2483 */ 2484 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2485 PROT_READ | PROT_WRITE | PROT_EXEC); 2486 } 2487 2488 #ifndef __xpv 2489 /* 2490 * Solaris adds an entry for Write Combining caching to the PAT 2491 */ 2492 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2493 2494 void 2495 pat_sync(void) 2496 { 2497 ulong_t cr0, cr0_orig, cr4; 2498 2499 if (!(x86_feature & X86_PAT)) 2500 return; 2501 cr0_orig = cr0 = getcr0(); 2502 cr4 = getcr4(); 2503 2504 /* disable caching and flush all caches and TLBs */ 2505 cr0 |= CR0_CD; 2506 cr0 &= ~CR0_NW; 2507 setcr0(cr0); 2508 invalidate_cache(); 2509 if (cr4 & CR4_PGE) { 2510 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2511 setcr4(cr4); 2512 } else { 2513 reload_cr3(); 2514 } 2515 2516 /* add our entry to the PAT */ 2517 wrmsr(REG_PAT, pat_attr_reg); 2518 2519 /* flush TLBs and cache again, then reenable cr0 caching */ 2520 if (cr4 & CR4_PGE) { 2521 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2522 setcr4(cr4); 2523 } else { 2524 reload_cr3(); 2525 } 2526 invalidate_cache(); 2527 setcr0(cr0_orig); 2528 } 2529 2530 #endif /* !__xpv */ 2531 2532 #if defined(_SOFT_HOSTID) 2533 /* 2534 * On platforms that do not have a hardware serial number, attempt 2535 * to set one based on the contents of /etc/hostid. If this file does 2536 * not exist, assume that we are to generate a new hostid and set 2537 * it in the kernel, for subsequent saving by a userland process 2538 * once the system is up and the root filesystem is mounted r/w. 2539 * 2540 * In order to gracefully support upgrade on OpenSolaris, if 2541 * /etc/hostid does not exist, we will attempt to get a serial number 2542 * using the legacy method (/kernel/misc/sysinit). 2543 * 2544 * In an attempt to make the hostid less prone to abuse 2545 * (for license circumvention, etc), we store it in /etc/hostid 2546 * in rot47 format. 2547 */ 2548 extern volatile unsigned long tenmicrodata; 2549 static int atoi(char *); 2550 2551 static int32_t 2552 set_soft_hostid(void) 2553 { 2554 struct _buf *file; 2555 char tokbuf[MAXNAMELEN]; 2556 token_t token; 2557 int done = 0; 2558 u_longlong_t tmp; 2559 int i; 2560 int32_t hostid = (int32_t)HW_INVALID_HOSTID; 2561 unsigned char *c; 2562 hrtime_t tsc; 2563 2564 /* 2565 * If /etc/hostid file not found, we'd like to get a pseudo 2566 * random number to use at the hostid. A nice way to do this 2567 * is to read the real time clock. To remain xen-compatible, 2568 * we can't poke the real hardware, so we use tsc_read() to 2569 * read the real time clock. However, there is an ominous 2570 * warning in tsc_read that says it can return zero, so we 2571 * deal with that possibility by falling back to using the 2572 * (hopefully random enough) value in tenmicrodata. 2573 */ 2574 2575 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) { 2576 /* 2577 * hostid file not found - try to load sysinit module 2578 * and see if it has a nonzero hostid value...use that 2579 * instead of generating a new hostid here if so. 2580 */ 2581 if ((i = modload("misc", "sysinit")) != -1) { 2582 if (strlen(hw_serial) > 0) 2583 hostid = (int32_t)atoi(hw_serial); 2584 (void) modunload(i); 2585 } 2586 if (hostid == HW_INVALID_HOSTID) { 2587 tsc = tsc_read(); 2588 if (tsc == 0) /* tsc_read can return zero sometimes */ 2589 hostid = (int32_t)tenmicrodata & 0x0CFFFFF; 2590 else 2591 hostid = (int32_t)tsc & 0x0CFFFFF; 2592 } 2593 } else { 2594 /* hostid file found */ 2595 while (!done) { 2596 token = kobj_lex(file, tokbuf, sizeof (tokbuf)); 2597 2598 switch (token) { 2599 case POUND: 2600 /* 2601 * skip comments 2602 */ 2603 kobj_find_eol(file); 2604 break; 2605 case STRING: 2606 /* 2607 * un-rot47 - obviously this 2608 * nonsense is ascii-specific 2609 */ 2610 for (c = (unsigned char *)tokbuf; 2611 *c != '\0'; c++) { 2612 *c += 47; 2613 if (*c > '~') 2614 *c -= 94; 2615 else if (*c < '!') 2616 *c += 94; 2617 } 2618 /* 2619 * now we should have a real number 2620 */ 2621 2622 if (kobj_getvalue(tokbuf, &tmp) != 0) 2623 kobj_file_err(CE_WARN, file, 2624 "Bad value %s for hostid", 2625 tokbuf); 2626 else 2627 hostid = (int32_t)tmp; 2628 2629 break; 2630 case EOF: 2631 done = 1; 2632 /* FALLTHROUGH */ 2633 case NEWLINE: 2634 kobj_newline(file); 2635 break; 2636 default: 2637 break; 2638 2639 } 2640 } 2641 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */ 2642 kobj_file_err(CE_WARN, file, 2643 "hostid missing or corrupt"); 2644 2645 kobj_close_file(file); 2646 } 2647 /* 2648 * hostid is now the value read from /etc/hostid, or the 2649 * new hostid we generated in this routine or HW_INVALID_HOSTID if not 2650 * set. 2651 */ 2652 return (hostid); 2653 } 2654 2655 static int 2656 atoi(char *p) 2657 { 2658 int i = 0; 2659 2660 while (*p != '\0') 2661 i = 10 * i + (*p++ - '0'); 2662 2663 return (i); 2664 } 2665 2666 #endif /* _SOFT_HOSTID */ 2667 2668 void 2669 get_system_configuration(void) 2670 { 2671 char prop[32]; 2672 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2673 2674 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2675 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2676 kobj_getvalue(prop, &nodes_ll) == -1 || 2677 nodes_ll > MAXNODES || 2678 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2679 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2680 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2681 system_hardware.hd_nodes = 1; 2682 system_hardware.hd_cpus_per_node = 0; 2683 } else { 2684 system_hardware.hd_nodes = (int)nodes_ll; 2685 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2686 } 2687 2688 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2689 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2690 kobj_getvalue(prop, &lvalue) == -1) 2691 eprom_kernelbase = NULL; 2692 else 2693 eprom_kernelbase = (uintptr_t)lvalue; 2694 2695 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2696 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2697 kobj_getvalue(prop, &lvalue) == -1) 2698 segmapsize = SEGMAPDEFAULT; 2699 else 2700 segmapsize = (uintptr_t)lvalue; 2701 2702 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2703 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2704 kobj_getvalue(prop, &lvalue) == -1) 2705 segmapfreelists = 0; /* use segmap driver default */ 2706 else 2707 segmapfreelists = (int)lvalue; 2708 2709 /* physmem used to be here, but moved much earlier to fakebop.c */ 2710 } 2711 2712 /* 2713 * Add to a memory list. 2714 * start = start of new memory segment 2715 * len = length of new memory segment in bytes 2716 * new = pointer to a new struct memlist 2717 * memlistp = memory list to which to add segment. 2718 */ 2719 void 2720 memlist_add( 2721 uint64_t start, 2722 uint64_t len, 2723 struct memlist *new, 2724 struct memlist **memlistp) 2725 { 2726 struct memlist *cur; 2727 uint64_t end = start + len; 2728 2729 new->address = start; 2730 new->size = len; 2731 2732 cur = *memlistp; 2733 2734 while (cur) { 2735 if (cur->address >= end) { 2736 new->next = cur; 2737 *memlistp = new; 2738 new->prev = cur->prev; 2739 cur->prev = new; 2740 return; 2741 } 2742 ASSERT(cur->address + cur->size <= start); 2743 if (cur->next == NULL) { 2744 cur->next = new; 2745 new->prev = cur; 2746 new->next = NULL; 2747 return; 2748 } 2749 memlistp = &cur->next; 2750 cur = cur->next; 2751 } 2752 } 2753 2754 void 2755 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2756 { 2757 size_t tsize = e_modtext - modtext; 2758 size_t dsize = e_moddata - moddata; 2759 2760 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2761 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2762 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2763 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2764 } 2765 2766 caddr_t 2767 kobj_text_alloc(vmem_t *arena, size_t size) 2768 { 2769 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2770 } 2771 2772 /*ARGSUSED*/ 2773 caddr_t 2774 kobj_texthole_alloc(caddr_t addr, size_t size) 2775 { 2776 panic("unexpected call to kobj_texthole_alloc()"); 2777 /*NOTREACHED*/ 2778 return (0); 2779 } 2780 2781 /*ARGSUSED*/ 2782 void 2783 kobj_texthole_free(caddr_t addr, size_t size) 2784 { 2785 panic("unexpected call to kobj_texthole_free()"); 2786 } 2787 2788 /* 2789 * This is called just after configure() in startup(). 2790 * 2791 * The ISALIST concept is a bit hopeless on Intel, because 2792 * there's no guarantee of an ever-more-capable processor 2793 * given that various parts of the instruction set may appear 2794 * and disappear between different implementations. 2795 * 2796 * While it would be possible to correct it and even enhance 2797 * it somewhat, the explicit hardware capability bitmask allows 2798 * more flexibility. 2799 * 2800 * So, we just leave this alone. 2801 */ 2802 void 2803 setx86isalist(void) 2804 { 2805 char *tp; 2806 size_t len; 2807 extern char *isa_list; 2808 2809 #define TBUFSIZE 1024 2810 2811 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2812 *tp = '\0'; 2813 2814 #if defined(__amd64) 2815 (void) strcpy(tp, "amd64 "); 2816 #endif 2817 2818 switch (x86_vendor) { 2819 case X86_VENDOR_Intel: 2820 case X86_VENDOR_AMD: 2821 case X86_VENDOR_TM: 2822 if (x86_feature & X86_CMOV) { 2823 /* 2824 * Pentium Pro or later 2825 */ 2826 (void) strcat(tp, "pentium_pro"); 2827 (void) strcat(tp, x86_feature & X86_MMX ? 2828 "+mmx pentium_pro " : " "); 2829 } 2830 /*FALLTHROUGH*/ 2831 case X86_VENDOR_Cyrix: 2832 /* 2833 * The Cyrix 6x86 does not have any Pentium features 2834 * accessible while not at privilege level 0. 2835 */ 2836 if (x86_feature & X86_CPUID) { 2837 (void) strcat(tp, "pentium"); 2838 (void) strcat(tp, x86_feature & X86_MMX ? 2839 "+mmx pentium " : " "); 2840 } 2841 break; 2842 default: 2843 break; 2844 } 2845 (void) strcat(tp, "i486 i386 i86"); 2846 len = strlen(tp) + 1; /* account for NULL at end of string */ 2847 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2848 kmem_free(tp, TBUFSIZE); 2849 2850 #undef TBUFSIZE 2851 } 2852 2853 2854 #ifdef __amd64 2855 2856 void * 2857 device_arena_alloc(size_t size, int vm_flag) 2858 { 2859 return (vmem_alloc(device_arena, size, vm_flag)); 2860 } 2861 2862 void 2863 device_arena_free(void *vaddr, size_t size) 2864 { 2865 vmem_free(device_arena, vaddr, size); 2866 } 2867 2868 #else /* __i386 */ 2869 2870 void * 2871 device_arena_alloc(size_t size, int vm_flag) 2872 { 2873 caddr_t vaddr; 2874 uintptr_t v; 2875 size_t start; 2876 size_t end; 2877 2878 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2879 if (vaddr == NULL) 2880 return (NULL); 2881 2882 v = (uintptr_t)vaddr; 2883 ASSERT(v >= kernelbase); 2884 ASSERT(v + size <= valloc_base); 2885 2886 start = btop(v - kernelbase); 2887 end = btop(v + size - 1 - kernelbase); 2888 ASSERT(start < toxic_bit_map_len); 2889 ASSERT(end < toxic_bit_map_len); 2890 2891 while (start <= end) { 2892 BT_ATOMIC_SET(toxic_bit_map, start); 2893 ++start; 2894 } 2895 return (vaddr); 2896 } 2897 2898 void 2899 device_arena_free(void *vaddr, size_t size) 2900 { 2901 uintptr_t v = (uintptr_t)vaddr; 2902 size_t start; 2903 size_t end; 2904 2905 ASSERT(v >= kernelbase); 2906 ASSERT(v + size <= valloc_base); 2907 2908 start = btop(v - kernelbase); 2909 end = btop(v + size - 1 - kernelbase); 2910 ASSERT(start < toxic_bit_map_len); 2911 ASSERT(end < toxic_bit_map_len); 2912 2913 while (start <= end) { 2914 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2915 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2916 ++start; 2917 } 2918 vmem_free(heap_arena, vaddr, size); 2919 } 2920 2921 /* 2922 * returns 1st address in range that is in device arena, or NULL 2923 * if len is not NULL it returns the length of the toxic range 2924 */ 2925 void * 2926 device_arena_contains(void *vaddr, size_t size, size_t *len) 2927 { 2928 uintptr_t v = (uintptr_t)vaddr; 2929 uintptr_t eaddr = v + size; 2930 size_t start; 2931 size_t end; 2932 2933 /* 2934 * if called very early by kmdb, just return NULL 2935 */ 2936 if (toxic_bit_map == NULL) 2937 return (NULL); 2938 2939 /* 2940 * First check if we're completely outside the bitmap range. 2941 */ 2942 if (v >= valloc_base || eaddr < kernelbase) 2943 return (NULL); 2944 2945 /* 2946 * Trim ends of search to look at only what the bitmap covers. 2947 */ 2948 if (v < kernelbase) 2949 v = kernelbase; 2950 start = btop(v - kernelbase); 2951 end = btop(eaddr - kernelbase); 2952 if (end >= toxic_bit_map_len) 2953 end = toxic_bit_map_len; 2954 2955 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2956 return (NULL); 2957 2958 v = kernelbase + ptob(start); 2959 if (len != NULL) 2960 *len = ptob(end - start); 2961 return ((void *)v); 2962 } 2963 2964 #endif /* __i386 */ 2965