1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/t_lock.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/systm.h> 34 #include <sys/user.h> 35 #include <sys/mman.h> 36 #include <sys/vm.h> 37 #include <sys/conf.h> 38 #include <sys/avintr.h> 39 #include <sys/autoconf.h> 40 #include <sys/disp.h> 41 #include <sys/class.h> 42 #include <sys/bitmap.h> 43 44 #include <sys/privregs.h> 45 46 #include <sys/proc.h> 47 #include <sys/buf.h> 48 #include <sys/kmem.h> 49 #include <sys/kstat.h> 50 51 #include <sys/reboot.h> 52 53 #include <sys/cred.h> 54 #include <sys/vnode.h> 55 #include <sys/file.h> 56 57 #include <sys/procfs.h> 58 59 #include <sys/vfs.h> 60 #include <sys/cmn_err.h> 61 #include <sys/utsname.h> 62 #include <sys/debug.h> 63 #include <sys/kdi.h> 64 65 #include <sys/dumphdr.h> 66 #include <sys/bootconf.h> 67 #include <sys/varargs.h> 68 #include <sys/promif.h> 69 #include <sys/modctl.h> /* for "procfs" hack */ 70 71 #include <sys/sunddi.h> 72 #include <sys/sunndi.h> 73 #include <sys/ndi_impldefs.h> 74 #include <sys/ddidmareq.h> 75 #include <sys/psw.h> 76 #include <sys/regset.h> 77 #include <sys/clock.h> 78 #include <sys/pte.h> 79 #include <sys/tss.h> 80 #include <sys/stack.h> 81 #include <sys/trap.h> 82 #include <sys/fp.h> 83 #include <vm/anon.h> 84 #include <vm/as.h> 85 #include <vm/page.h> 86 #include <vm/seg.h> 87 #include <vm/seg_dev.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_kpm.h> 90 #include <vm/seg_map.h> 91 #include <vm/seg_vn.h> 92 #include <vm/seg_kp.h> 93 #include <sys/memnode.h> 94 #include <vm/vm_dep.h> 95 #include <sys/thread.h> 96 #include <sys/sysconf.h> 97 #include <sys/vm_machparam.h> 98 #include <sys/archsystm.h> 99 #include <sys/machsystm.h> 100 #include <vm/hat.h> 101 #include <vm/hat_i86.h> 102 #include <sys/pmem.h> 103 #include <sys/smp_impldefs.h> 104 #include <sys/x86_archext.h> 105 #include <sys/segments.h> 106 #include <sys/clconf.h> 107 #include <sys/kobj.h> 108 #include <sys/kobj_lex.h> 109 #include <sys/cpc_impl.h> 110 #include <sys/chip.h> 111 #include <sys/x86_archext.h> 112 #include <sys/cpu_module.h> 113 #include <sys/smbios.h> 114 115 extern void progressbar_init(void); 116 extern void progressbar_start(void); 117 extern void brand_init(void); 118 119 /* 120 * XXX make declaration below "static" when drivers no longer use this 121 * interface. 122 */ 123 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 124 125 /* 126 * segkp 127 */ 128 extern int segkp_fromheap; 129 130 static void kvm_init(void); 131 static void startup_init(void); 132 static void startup_memlist(void); 133 static void startup_modules(void); 134 static void startup_bop_gone(void); 135 static void startup_vm(void); 136 static void startup_end(void); 137 138 /* 139 * Declare these as initialized data so we can patch them. 140 */ 141 #ifdef __i386 142 /* 143 * Due to virtual address space limitations running in 32 bit mode, restrict 144 * the amount of physical memory configured to a max of PHYSMEM32 pages (16g). 145 * 146 * If the physical max memory size of 64g were allowed to be configured, the 147 * size of user virtual address space will be less than 1g. A limited user 148 * address space greatly reduces the range of applications that can run. 149 * 150 * If more physical memory than PHYSMEM32 is required, users should preferably 151 * run in 64 bit mode which has no virtual address space limitation issues. 152 * 153 * If 64 bit mode is not available (as in IA32) and/or more physical memory 154 * than PHYSMEM32 is required in 32 bit mode, physmem can be set to the desired 155 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 156 * should also be carefully tuned to balance out the need of the user 157 * application while minimizing the risk of kernel heap exhaustion due to 158 * kernelbase being set too high. 159 */ 160 #define PHYSMEM32 0x400000 161 162 pgcnt_t physmem = PHYSMEM32; 163 #else 164 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */ 165 #endif 166 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 167 168 char *kobj_file_buf; 169 int kobj_file_bufsize; /* set in /etc/system */ 170 171 /* Global variables for MP support. Used in mp_startup */ 172 caddr_t rm_platter_va; 173 uint32_t rm_platter_pa; 174 175 int auto_lpg_disable = 1; 176 177 /* 178 * Some CPUs have holes in the middle of the 64-bit virtual address range. 179 */ 180 uintptr_t hole_start, hole_end; 181 182 /* 183 * kpm mapping window 184 */ 185 caddr_t kpm_vbase; 186 size_t kpm_size; 187 static int kpm_desired = 0; /* Do we want to try to use segkpm? */ 188 189 /* 190 * VA range that must be preserved for boot until we release all of its 191 * mappings. 192 */ 193 #if defined(__amd64) 194 static void *kmem_setaside; 195 #endif 196 197 /* 198 * Configuration parameters set at boot time. 199 */ 200 201 caddr_t econtig; /* end of first block of contiguous kernel */ 202 203 struct bootops *bootops = 0; /* passed in from boot */ 204 struct bootops **bootopsp; 205 struct boot_syscalls *sysp; /* passed in from boot */ 206 207 char bootblock_fstype[16]; 208 209 char kern_bootargs[OBP_MAXPATHLEN]; 210 211 /* 212 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 213 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 214 * zio buffers from their own segment, otherwise they are allocated from the 215 * heap. The optimization of allocating zio buffers from their own segment is 216 * only valid on 64-bit kernels. 217 */ 218 #if defined(__amd64) 219 int segzio_fromheap = 0; 220 #else 221 int segzio_fromheap = 1; 222 #endif 223 224 /* 225 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 226 * depends on number of BOP_ALLOC calls made and requested size, memory size 227 * combination and whether boot.bin memory needs to be freed. 228 */ 229 #define POSS_NEW_FRAGMENTS 12 230 231 /* 232 * VM data structures 233 */ 234 long page_hashsz; /* Size of page hash table (power of two) */ 235 struct page *pp_base; /* Base of initial system page struct array */ 236 struct page **page_hash; /* Page hash table */ 237 struct seg ktextseg; /* Segment used for kernel executable image */ 238 struct seg kvalloc; /* Segment used for "valloc" mapping */ 239 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 240 struct seg kmapseg; /* Segment used for generic kernel mappings */ 241 struct seg kdebugseg; /* Segment used for the kernel debugger */ 242 243 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 244 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 245 246 #if defined(__amd64) 247 struct seg kvseg_core; /* Segment used for the core heap */ 248 struct seg kpmseg; /* Segment used for physical mapping */ 249 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 250 #else 251 struct seg *segkpm = NULL; /* Unused on IA32 */ 252 #endif 253 254 caddr_t segkp_base; /* Base address of segkp */ 255 caddr_t segzio_base; /* Base address of segzio */ 256 #if defined(__amd64) 257 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 258 #else 259 pgcnt_t segkpsize = 0; 260 #endif 261 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 262 263 struct memseg *memseg_base; 264 struct vnode unused_pages_vp; 265 266 #define FOURGB 0x100000000LL 267 268 struct memlist *memlist; 269 270 caddr_t s_text; /* start of kernel text segment */ 271 caddr_t e_text; /* end of kernel text segment */ 272 caddr_t s_data; /* start of kernel data segment */ 273 caddr_t e_data; /* end of kernel data segment */ 274 caddr_t modtext; /* start of loadable module text reserved */ 275 caddr_t e_modtext; /* end of loadable module text reserved */ 276 caddr_t moddata; /* start of loadable module data reserved */ 277 caddr_t e_moddata; /* end of loadable module data reserved */ 278 279 struct memlist *phys_install; /* Total installed physical memory */ 280 struct memlist *phys_avail; /* Total available physical memory */ 281 282 static void memlist_add(uint64_t, uint64_t, struct memlist *, 283 struct memlist **); 284 285 /* 286 * kphysm_init returns the number of pages that were processed 287 */ 288 static pgcnt_t kphysm_init(page_t *, struct memseg *, pgcnt_t, pgcnt_t); 289 290 #define IO_PROP_SIZE 64 /* device property size */ 291 292 /* 293 * a couple useful roundup macros 294 */ 295 #define ROUND_UP_PAGE(x) \ 296 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 297 #define ROUND_UP_LPAGE(x) \ 298 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 299 #define ROUND_UP_4MEG(x) \ 300 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOURMB_PAGESIZE)) 301 #define ROUND_UP_TOPLEVEL(x) \ 302 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 303 304 /* 305 * 32-bit Kernel's Virtual memory layout. 306 * +-----------------------+ 307 * | psm 1-1 map | 308 * | exec args area | 309 * 0xFFC00000 -|-----------------------|- ARGSBASE 310 * | debugger | 311 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 312 * | Kernel Data | 313 * 0xFEC00000 -|-----------------------| 314 * | Kernel Text | 315 * 0xFE800000 -|-----------------------|- KERNEL_TEXT 316 * | LUFS sinkhole | 317 * 0xFE000000 -|-----------------------|- lufs_addr 318 * --- -|-----------------------|- valloc_base + valloc_sz 319 * | early pp structures | 320 * | memsegs, memlists, | 321 * | page hash, etc. | 322 * --- -|-----------------------|- valloc_base (floating) 323 * | ptable_va | 324 * 0xFDFFE000 -|-----------------------|- ekernelheap, ptable_va 325 * | | (segkp is an arena under the heap) 326 * | | 327 * | kvseg | 328 * | | 329 * | | 330 * --- -|-----------------------|- kernelheap (floating) 331 * | Segkmap | 332 * 0xC3002000 -|-----------------------|- segkmap_start (floating) 333 * | Red Zone | 334 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 335 * | | || 336 * | Shared objects | \/ 337 * | | 338 * : : 339 * | user data | 340 * |-----------------------| 341 * | user text | 342 * 0x08048000 -|-----------------------| 343 * | user stack | 344 * : : 345 * | invalid | 346 * 0x00000000 +-----------------------+ 347 * 348 * 349 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 350 * +-----------------------+ 351 * | psm 1-1 map | 352 * | exec args area | 353 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 354 * | debugger (?) | 355 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 356 * | unused | 357 * +-----------------------+ 358 * | Kernel Data | 359 * 0xFFFFFFFF.FBC00000 |-----------------------| 360 * | Kernel Text | 361 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 362 * | LUFS sinkhole | 363 * 0xFFFFFFFF.FB000000 -|-----------------------|- lufs_addr 364 * --- |-----------------------|- valloc_base + valloc_sz 365 * | early pp structures | 366 * | memsegs, memlists, | 367 * | page hash, etc. | 368 * --- |-----------------------|- valloc_base 369 * | ptable_va | 370 * --- |-----------------------|- ptable_va 371 * | Core heap | (used for loadable modules) 372 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 373 * | Kernel | 374 * | heap | 375 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 376 * | segkmap | 377 * 0xFFFFFXXX.XXX00000 |-----------------------|- segkmap_start (floating) 378 * | device mappings | 379 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 380 * | segzio | 381 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 382 * | segkp | 383 * --- |-----------------------|- segkp_base 384 * | segkpm | 385 * 0xFFFFFE00.00000000 |-----------------------| 386 * | Red Zone | 387 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE 388 * | User stack |- User space memory 389 * | | 390 * | shared objects, etc | (grows downwards) 391 * : : 392 * | | 393 * 0xFFFF8000.00000000 |-----------------------| 394 * | | 395 * | VA Hole / unused | 396 * | | 397 * 0x00008000.00000000 |-----------------------| 398 * | | 399 * | | 400 * : : 401 * | user heap | (grows upwards) 402 * | | 403 * | user data | 404 * |-----------------------| 405 * | user text | 406 * 0x00000000.04000000 |-----------------------| 407 * | invalid | 408 * 0x00000000.00000000 +-----------------------+ 409 * 410 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 411 * kernel, except that userlimit is raised to 0xfe000000 412 * 413 * Floating values: 414 * 415 * valloc_base: start of the kernel's memory management/tracking data 416 * structures. This region contains page_t structures for the lowest 4GB 417 * of physical memory, memsegs, memlists, and the page hash. 418 * 419 * core_base: start of the kernel's "core" heap area on 64-bit systems. 420 * This area is intended to be used for global data as well as for module 421 * text/data that does not fit into the nucleus pages. The core heap is 422 * restricted to a 2GB range, allowing every address within it to be 423 * accessed using rip-relative addressing 424 * 425 * ekernelheap: end of kernelheap and start of segmap. 426 * 427 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 428 * above a red zone that separates the user's address space from the 429 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 430 * 431 * segkmap_start: start of segmap. The length of segmap can be modified 432 * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated). 433 * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems. 434 * 435 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 436 * decreased by 2X the size required for page_t. This allows the kernel 437 * heap to grow in size with physical memory. With sizeof(page_t) == 80 438 * bytes, the following shows the values of kernelbase and kernel heap 439 * sizes for different memory configurations (assuming default segmap and 440 * segkp sizes). 441 * 442 * mem size for kernelbase kernel heap 443 * size page_t's size 444 * ---- --------- ---------- ----------- 445 * 1gb 0x01400000 0xd1800000 684MB 446 * 2gb 0x02800000 0xcf000000 704MB 447 * 4gb 0x05000000 0xca000000 744MB 448 * 6gb 0x07800000 0xc5000000 784MB 449 * 8gb 0x0a000000 0xc0000000 824MB 450 * 16gb 0x14000000 0xac000000 984MB 451 * 32gb 0x28000000 0x84000000 1304MB 452 * 64gb 0x50000000 0x34000000 1944MB (*) 453 * 454 * kernelbase is less than the abi minimum of 0xc0000000 for memory 455 * configurations above 8gb. 456 * 457 * (*) support for memory configurations above 32gb will require manual tuning 458 * of kernelbase to balance out the need of user applications. 459 */ 460 461 /* real-time-clock initialization parameters */ 462 long gmt_lag; /* offset in seconds of gmt to local time */ 463 extern long process_rtc_config_file(void); 464 465 char *final_kernelheap; 466 char *boot_kernelheap; 467 uintptr_t kernelbase; 468 uintptr_t eprom_kernelbase; 469 size_t segmapsize; 470 static uintptr_t segmap_reserved; 471 uintptr_t segkmap_start; 472 int segmapfreelists; 473 pgcnt_t boot_npages; 474 pgcnt_t npages; 475 size_t core_size; /* size of "core" heap */ 476 uintptr_t core_base; /* base address of "core" heap */ 477 478 /* 479 * List of bootstrap pages. We mark these as allocated in startup. 480 * release_bootstrap() will free them when we're completely done with 481 * the bootstrap. 482 */ 483 static page_t *bootpages, *rd_pages; 484 485 struct system_hardware system_hardware; 486 487 /* 488 * Enable some debugging messages concerning memory usage... 489 * 490 * XX64 There should only be one print routine once memlist usage between 491 * vmx and the kernel is cleaned up and there is a single memlist structure 492 * shared between kernel and boot. 493 */ 494 static void 495 print_boot_memlist(char *title, struct memlist *mp) 496 { 497 prom_printf("MEMLIST: %s:\n", title); 498 while (mp != NULL) { 499 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 500 mp->address, mp->size); 501 mp = mp->next; 502 } 503 } 504 505 static void 506 print_kernel_memlist(char *title, struct memlist *mp) 507 { 508 prom_printf("MEMLIST: %s:\n", title); 509 while (mp != NULL) { 510 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 511 mp->address, mp->size); 512 mp = mp->next; 513 } 514 } 515 516 /* 517 * XX64 need a comment here.. are these just default values, surely 518 * we read the "cpuid" type information to figure this out. 519 */ 520 int l2cache_sz = 0x80000; 521 int l2cache_linesz = 0x40; 522 int l2cache_assoc = 1; 523 524 /* 525 * on 64 bit we use a predifined VA range for mapping devices in the kernel 526 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 527 */ 528 #ifdef __amd64 529 530 vmem_t *device_arena; 531 uintptr_t toxic_addr = (uintptr_t)NULL; 532 size_t toxic_size = 1 * 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 533 534 #else /* __i386 */ 535 536 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 537 size_t toxic_bit_map_len = 0; /* in bits */ 538 539 #endif /* __i386 */ 540 541 /* 542 * Simple boot time debug facilities 543 */ 544 static char *prm_dbg_str[] = { 545 "%s:%d: '%s' is 0x%x\n", 546 "%s:%d: '%s' is 0x%llx\n" 547 }; 548 549 int prom_debug; 550 551 #define PRM_DEBUG(q) if (prom_debug) \ 552 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 553 #define PRM_POINT(q) if (prom_debug) \ 554 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 555 556 /* 557 * This structure is used to keep track of the intial allocations 558 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 559 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 560 */ 561 #define NUM_ALLOCATIONS 7 562 int num_allocations = 0; 563 struct { 564 void **al_ptr; 565 size_t al_size; 566 } allocations[NUM_ALLOCATIONS]; 567 size_t valloc_sz = 0; 568 uintptr_t valloc_base; 569 extern uintptr_t ptable_va; 570 extern size_t ptable_sz; 571 572 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 573 size = ROUND_UP_PAGE(size); \ 574 if (num_allocations == NUM_ALLOCATIONS) \ 575 panic("too many ADD_TO_ALLOCATIONS()"); \ 576 allocations[num_allocations].al_ptr = (void**)&ptr; \ 577 allocations[num_allocations].al_size = size; \ 578 valloc_sz += size; \ 579 ++num_allocations; \ 580 } 581 582 static void 583 perform_allocations(void) 584 { 585 caddr_t mem; 586 int i; 587 588 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, BO_NO_ALIGN); 589 if (mem != (caddr_t)valloc_base) 590 panic("BOP_ALLOC() failed"); 591 bzero(mem, valloc_sz); 592 for (i = 0; i < num_allocations; ++i) { 593 *allocations[i].al_ptr = (void *)mem; 594 mem += allocations[i].al_size; 595 } 596 } 597 598 /* 599 * Our world looks like this at startup time. 600 * 601 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 602 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 603 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 604 * addresses are fixed in the binary at link time. 605 * 606 * On the text page: 607 * unix/genunix/krtld/module text loads. 608 * 609 * On the data page: 610 * unix/genunix/krtld/module data loads and space for page_t's. 611 */ 612 /* 613 * Machine-dependent startup code 614 */ 615 void 616 startup(void) 617 { 618 extern void startup_bios_disk(void); 619 extern void startup_pci_bios(void); 620 /* 621 * Make sure that nobody tries to use sekpm until we have 622 * initialized it properly. 623 */ 624 #if defined(__amd64) 625 kpm_desired = kpm_enable; 626 #endif 627 kpm_enable = 0; 628 629 progressbar_init(); 630 startup_init(); 631 startup_memlist(); 632 startup_pci_bios(); 633 startup_modules(); 634 startup_bios_disk(); 635 startup_bop_gone(); 636 startup_vm(); 637 startup_end(); 638 progressbar_start(); 639 } 640 641 static void 642 startup_init() 643 { 644 PRM_POINT("startup_init() starting..."); 645 646 /* 647 * Complete the extraction of cpuid data 648 */ 649 cpuid_pass2(CPU); 650 651 (void) check_boot_version(BOP_GETVERSION(bootops)); 652 653 /* 654 * Check for prom_debug in boot environment 655 */ 656 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 657 ++prom_debug; 658 PRM_POINT("prom_debug found in boot enviroment"); 659 } 660 661 /* 662 * Collect node, cpu and memory configuration information. 663 */ 664 get_system_configuration(); 665 666 /* 667 * Halt if this is an unsupported processor. 668 */ 669 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 670 printf("\n486 processor (\"%s\") detected.\n", 671 CPU->cpu_brandstr); 672 halt("This processor is not supported by this release " 673 "of Solaris."); 674 } 675 676 PRM_POINT("startup_init() done"); 677 } 678 679 /* 680 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 681 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 682 * also filters out physical page zero. There is some reliance on the 683 * boot loader allocating only a few contiguous physical memory chunks. 684 */ 685 static void 686 avail_filter(uint64_t *addr, uint64_t *size) 687 { 688 uintptr_t va; 689 uintptr_t next_va; 690 pfn_t pfn; 691 uint64_t pfn_addr; 692 uint64_t pfn_eaddr; 693 uint_t prot; 694 size_t len; 695 uint_t change; 696 697 if (prom_debug) 698 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 699 *addr, *size); 700 701 /* 702 * page zero is required for BIOS.. never make it available 703 */ 704 if (*addr == 0) { 705 *addr += MMU_PAGESIZE; 706 *size -= MMU_PAGESIZE; 707 } 708 709 /* 710 * First we trim from the front of the range. Since hat_boot_probe() 711 * walks ranges in virtual order, but addr/size are physical, we need 712 * to the list until no changes are seen. This deals with the case 713 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 714 * but w < v. 715 */ 716 do { 717 change = 0; 718 for (va = KERNEL_TEXT; 719 *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; 720 va = next_va) { 721 722 next_va = va + len; 723 pfn_addr = ptob((uint64_t)pfn); 724 pfn_eaddr = pfn_addr + len; 725 726 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 727 change = 1; 728 while (*size > 0 && len > 0) { 729 *addr += MMU_PAGESIZE; 730 *size -= MMU_PAGESIZE; 731 len -= MMU_PAGESIZE; 732 } 733 } 734 } 735 if (change && prom_debug) 736 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 737 *addr, *size); 738 } while (change); 739 740 /* 741 * Trim pages from the end of the range. 742 */ 743 for (va = KERNEL_TEXT; 744 *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; 745 va = next_va) { 746 747 next_va = va + len; 748 pfn_addr = ptob((uint64_t)pfn); 749 750 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 751 *size = pfn_addr - *addr; 752 } 753 754 if (prom_debug) 755 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 756 *addr, *size); 757 } 758 759 static void 760 kpm_init() 761 { 762 struct segkpm_crargs b; 763 uintptr_t start, end; 764 struct memlist *pmem; 765 766 /* 767 * These variables were all designed for sfmmu in which segkpm is 768 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 769 * might use 2+ page sizes on a single machine, so none of these 770 * variables have a single correct value. They are set up as if we 771 * always use a 4KB pagesize, which should do no harm. In the long 772 * run, we should get rid of KPM's assumption that only a single 773 * pagesize is used. 774 */ 775 kpm_pgshft = MMU_PAGESHIFT; 776 kpm_pgsz = MMU_PAGESIZE; 777 kpm_pgoff = MMU_PAGEOFFSET; 778 kpmp2pshft = 0; 779 kpmpnpgs = 1; 780 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 781 782 PRM_POINT("about to create segkpm"); 783 rw_enter(&kas.a_lock, RW_WRITER); 784 785 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 786 panic("cannot attach segkpm"); 787 788 b.prot = PROT_READ | PROT_WRITE; 789 b.nvcolors = 1; 790 791 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 792 panic("segkpm_create segkpm"); 793 794 rw_exit(&kas.a_lock); 795 796 /* 797 * Map each of the memsegs into the kpm segment, coalesing adjacent 798 * memsegs to allow mapping with the largest possible pages. 799 */ 800 pmem = phys_install; 801 start = pmem->address; 802 end = start + pmem->size; 803 for (;;) { 804 if (pmem == NULL || pmem->address > end) { 805 hat_devload(kas.a_hat, kpm_vbase + start, 806 end - start, mmu_btop(start), 807 PROT_READ | PROT_WRITE, 808 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 809 if (pmem == NULL) 810 break; 811 start = pmem->address; 812 } 813 end = pmem->address + pmem->size; 814 pmem = pmem->next; 815 } 816 } 817 818 /* 819 * The purpose of startup memlist is to get the system to the 820 * point where it can use kmem_alloc()'s that operate correctly 821 * relying on BOP_ALLOC(). This includes allocating page_ts, 822 * page hash table, vmem initialized, etc. 823 * 824 * Boot's versions of physinstalled and physavail are insufficient for 825 * the kernel's purposes. Specifically we don't know which pages that 826 * are not in physavail can be reclaimed after boot is gone. 827 * 828 * This code solves the problem by dividing the address space 829 * into 3 regions as it takes over the MMU from the booter. 830 * 831 * 1) Any (non-nucleus) pages that are mapped at addresses above KERNEL_TEXT 832 * can not be used by the kernel. 833 * 834 * 2) Any free page that happens to be mapped below kernelbase 835 * is protected until the boot loader is released, but will then be reclaimed. 836 * 837 * 3) Boot shouldn't use any address in the remaining area between kernelbase 838 * and KERNEL_TEXT. 839 * 840 * In the case of multiple mappings to the same page, region 1 has precedence 841 * over region 2. 842 */ 843 static void 844 startup_memlist(void) 845 { 846 size_t memlist_sz; 847 size_t memseg_sz; 848 size_t pagehash_sz; 849 size_t pp_sz; 850 uintptr_t va; 851 size_t len; 852 uint_t prot; 853 pfn_t pfn; 854 int memblocks; 855 caddr_t pagecolor_mem; 856 size_t pagecolor_memsz; 857 caddr_t page_ctrs_mem; 858 size_t page_ctrs_size; 859 struct memlist *current; 860 pgcnt_t orig_npages = 0; 861 extern void startup_build_mem_nodes(struct memlist *); 862 863 /* XX64 fix these - they should be in include files */ 864 extern ulong_t cr4_value; 865 extern size_t page_coloring_init(uint_t, int, int); 866 extern void page_coloring_setup(caddr_t); 867 868 PRM_POINT("startup_memlist() starting..."); 869 870 /* 871 * Take the most current snapshot we can by calling mem-update. 872 * For this to work properly, we first have to ask boot for its 873 * end address. 874 */ 875 if (BOP_GETPROPLEN(bootops, "memory-update") == 0) 876 (void) BOP_GETPROP(bootops, "memory-update", NULL); 877 878 /* 879 * find if the kernel is mapped on a large page 880 */ 881 va = KERNEL_TEXT; 882 if (hat_boot_probe(&va, &len, &pfn, &prot) == 0) 883 panic("Couldn't find kernel text boot mapping"); 884 885 /* 886 * Use leftover large page nucleus text/data space for loadable modules. 887 * Use at most MODTEXT/MODDATA. 888 */ 889 if (len > MMU_PAGESIZE) { 890 891 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 892 e_moddata = (caddr_t)ROUND_UP_4MEG(e_data); 893 if (e_moddata - moddata > MODDATA) 894 e_moddata = moddata + MODDATA; 895 896 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 897 e_modtext = (caddr_t)ROUND_UP_4MEG(e_text); 898 if (e_modtext - modtext > MODTEXT) 899 e_modtext = modtext + MODTEXT; 900 901 902 } else { 903 904 PRM_POINT("Kernel NOT loaded on Large Page!"); 905 e_moddata = moddata = (caddr_t)ROUND_UP_PAGE(e_data); 906 e_modtext = modtext = (caddr_t)ROUND_UP_PAGE(e_text); 907 908 } 909 econtig = e_moddata; 910 911 PRM_DEBUG(modtext); 912 PRM_DEBUG(e_modtext); 913 PRM_DEBUG(moddata); 914 PRM_DEBUG(e_moddata); 915 PRM_DEBUG(econtig); 916 917 /* 918 * For MP machines cr4_value must be set or the non-boot 919 * CPUs will not be able to start. 920 */ 921 if (x86_feature & X86_LARGEPAGE) 922 cr4_value = getcr4(); 923 PRM_DEBUG(cr4_value); 924 925 /* 926 * Examine the boot loaders physical memory map to find out: 927 * - total memory in system - physinstalled 928 * - the max physical address - physmax 929 * - the number of segments the intsalled memory comes in 930 */ 931 if (prom_debug) 932 print_boot_memlist("boot physinstalled", 933 bootops->boot_mem->physinstalled); 934 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 935 &physinstalled, &memblocks); 936 PRM_DEBUG(physmax); 937 PRM_DEBUG(physinstalled); 938 PRM_DEBUG(memblocks); 939 940 if (prom_debug) 941 print_boot_memlist("boot physavail", 942 bootops->boot_mem->physavail); 943 944 /* 945 * Initialize hat's mmu parameters. 946 * Check for enforce-prot-exec in boot environment. It's used to 947 * enable/disable support for the page table entry NX bit. 948 * The default is to enforce PROT_EXEC on processors that support NX. 949 * Boot seems to round up the "len", but 8 seems to be big enough. 950 */ 951 mmu_init(); 952 953 #ifdef __i386 954 /* 955 * physmax is lowered if there is more memory than can be 956 * physically addressed in 32 bit (PAE/non-PAE) modes. 957 */ 958 if (mmu.pae_hat) { 959 if (PFN_ABOVE64G(physmax)) { 960 physinstalled -= (physmax - (PFN_64G - 1)); 961 physmax = PFN_64G - 1; 962 } 963 } else { 964 if (PFN_ABOVE4G(physmax)) { 965 physinstalled -= (physmax - (PFN_4G - 1)); 966 physmax = PFN_4G - 1; 967 } 968 } 969 #endif 970 971 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 972 973 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 974 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 975 char value[8]; 976 977 if (len < 8) 978 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 979 else 980 (void) strcpy(value, ""); 981 if (strcmp(value, "off") == 0) 982 mmu.pt_nx = 0; 983 } 984 PRM_DEBUG(mmu.pt_nx); 985 986 /* 987 * We will need page_t's for every page in the system, except for 988 * memory mapped at or above above the start of the kernel text segment. 989 * 990 * pages above e_modtext are attributed to kernel debugger (obp_pages) 991 */ 992 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 993 obp_pages = 0; 994 va = KERNEL_TEXT; 995 while (hat_boot_probe(&va, &len, &pfn, &prot) != 0) { 996 npages -= len >> MMU_PAGESHIFT; 997 if (va >= (uintptr_t)e_moddata) 998 obp_pages += len >> MMU_PAGESHIFT; 999 va += len; 1000 } 1001 PRM_DEBUG(npages); 1002 PRM_DEBUG(obp_pages); 1003 1004 /* 1005 * If physmem is patched to be non-zero, use it instead of 1006 * the computed value unless it is larger than the real 1007 * amount of memory on hand. 1008 */ 1009 if (physmem == 0 || physmem > npages) { 1010 physmem = npages; 1011 } else if (physmem < npages) { 1012 orig_npages = npages; 1013 npages = physmem; 1014 } 1015 PRM_DEBUG(physmem); 1016 1017 /* 1018 * We now compute the sizes of all the initial allocations for 1019 * structures the kernel needs in order do kmem_alloc(). These 1020 * include: 1021 * memsegs 1022 * memlists 1023 * page hash table 1024 * page_t's 1025 * page coloring data structs 1026 */ 1027 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1028 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1029 PRM_DEBUG(memseg_sz); 1030 1031 /* 1032 * Reserve space for phys_avail/phys_install memlists. 1033 * There's no real good way to know exactly how much room we'll need, 1034 * but this should be a good upper bound. 1035 */ 1036 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1037 (memblocks + POSS_NEW_FRAGMENTS)); 1038 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1039 PRM_DEBUG(memlist_sz); 1040 1041 /* 1042 * The page structure hash table size is a power of 2 1043 * such that the average hash chain length is PAGE_HASHAVELEN. 1044 */ 1045 page_hashsz = npages / PAGE_HASHAVELEN; 1046 page_hashsz = 1 << highbit(page_hashsz); 1047 pagehash_sz = sizeof (struct page *) * page_hashsz; 1048 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1049 PRM_DEBUG(pagehash_sz); 1050 1051 /* 1052 * Set aside room for the page structures themselves. Note: on 1053 * 64-bit systems we don't allocate page_t's for every page here. 1054 * We just allocate enough to map the lowest 4GB of physical 1055 * memory, minus those pages that are used for the "nucleus" kernel 1056 * text and data. The remaining pages are allocated once we can 1057 * map around boot. 1058 * 1059 * boot_npages is used to allocate an area big enough for our 1060 * initial page_t's. kphym_init may use less than that. 1061 */ 1062 boot_npages = npages; 1063 #if defined(__amd64) 1064 if (npages > mmu_btop(FOURGB - (econtig - s_text))) 1065 boot_npages = mmu_btop(FOURGB - (econtig - s_text)); 1066 #endif 1067 PRM_DEBUG(boot_npages); 1068 pp_sz = sizeof (struct page) * boot_npages; 1069 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1070 PRM_DEBUG(pp_sz); 1071 1072 /* 1073 * determine l2 cache info and memory size for page coloring 1074 */ 1075 (void) getl2cacheinfo(CPU, 1076 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1077 pagecolor_memsz = 1078 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1079 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1080 PRM_DEBUG(pagecolor_memsz); 1081 1082 page_ctrs_size = page_ctrs_sz(); 1083 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1084 PRM_DEBUG(page_ctrs_size); 1085 1086 /* 1087 * valloc_base will be below kernel text 1088 * The extra pages are for the HAT and kmdb to map page tables. 1089 */ 1090 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1091 valloc_base = KERNEL_TEXT - valloc_sz; 1092 PRM_DEBUG(valloc_base); 1093 ptable_va = valloc_base - ptable_sz; 1094 1095 #if defined(__amd64) 1096 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1097 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1098 "systems."); 1099 kernelbase = (uintptr_t)KERNELBASE; 1100 core_base = (uintptr_t)COREHEAP_BASE; 1101 core_size = ptable_va - core_base; 1102 #else /* __i386 */ 1103 /* 1104 * We configure kernelbase based on: 1105 * 1106 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1107 * KERNELBASE_MAX. we large page align eprom_kernelbase 1108 * 1109 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1110 * On large memory systems we must lower kernelbase to allow 1111 * enough room for page_t's for all of memory. 1112 * 1113 * The value set here, might be changed a little later. 1114 */ 1115 if (eprom_kernelbase) { 1116 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1117 if (kernelbase > KERNELBASE_MAX) 1118 kernelbase = KERNELBASE_MAX; 1119 } else { 1120 kernelbase = (uintptr_t)KERNELBASE; 1121 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1122 } 1123 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1124 core_base = ptable_va; 1125 core_size = 0; 1126 #endif 1127 1128 PRM_DEBUG(kernelbase); 1129 PRM_DEBUG(core_base); 1130 PRM_DEBUG(core_size); 1131 1132 /* 1133 * At this point, we can only use a portion of the kernelheap that 1134 * will be available after we boot. Both 32-bit and 64-bit systems 1135 * have this limitation, although the reasons are completely 1136 * different. 1137 * 1138 * On 64-bit systems, the booter only supports allocations in the 1139 * upper 4GB of memory, so we have to work with a reduced kernel 1140 * heap until we take over all allocations. The booter also sits 1141 * in the lower portion of that 4GB range, so we have to raise the 1142 * bottom of the heap even further. 1143 * 1144 * On 32-bit systems we have to leave room to place segmap below 1145 * the heap. We don't yet know how large segmap will be, so we 1146 * have to be very conservative. 1147 */ 1148 #if defined(__amd64) 1149 /* 1150 * XX64: For now, we let boot have the lower 2GB of the top 4GB 1151 * address range. In the long run, that should be fixed. It's 1152 * insane for a booter to need 2 2GB address ranges. 1153 */ 1154 boot_kernelheap = (caddr_t)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); 1155 segmap_reserved = 0; 1156 1157 #else /* __i386 */ 1158 segkp_fromheap = 1; 1159 segmap_reserved = ROUND_UP_LPAGE(MAX(segmapsize, SEGMAPMAX)); 1160 boot_kernelheap = (caddr_t)(ROUND_UP_LPAGE(kernelbase) + 1161 segmap_reserved); 1162 #endif 1163 PRM_DEBUG(boot_kernelheap); 1164 kernelheap = boot_kernelheap; 1165 ekernelheap = (char *)core_base; 1166 1167 /* 1168 * If segmap is too large we can push the bottom of the kernel heap 1169 * higher than the base. Or worse, it could exceed the top of the 1170 * VA space entirely, causing it to wrap around. 1171 */ 1172 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1173 panic("too little memory available for kernelheap," 1174 " use a different kernelbase"); 1175 1176 /* 1177 * Now that we know the real value of kernelbase, 1178 * update variables that were initialized with a value of 1179 * KERNELBASE (in common/conf/param.c). 1180 * 1181 * XXX The problem with this sort of hackery is that the 1182 * compiler just may feel like putting the const declarations 1183 * (in param.c) into the .text section. Perhaps they should 1184 * just be declared as variables there? 1185 */ 1186 1187 #if defined(__amd64) 1188 ASSERT(_kernelbase == KERNELBASE); 1189 ASSERT(_userlimit == USERLIMIT); 1190 /* 1191 * As one final sanity check, verify that the "red zone" between 1192 * kernel and userspace is exactly the size we expected. 1193 */ 1194 ASSERT(_kernelbase == (_userlimit + (2 * 1024 * 1024))); 1195 #else 1196 *(uintptr_t *)&_kernelbase = kernelbase; 1197 *(uintptr_t *)&_userlimit = kernelbase; 1198 *(uintptr_t *)&_userlimit32 = _userlimit; 1199 #endif 1200 PRM_DEBUG(_kernelbase); 1201 PRM_DEBUG(_userlimit); 1202 PRM_DEBUG(_userlimit32); 1203 1204 /* 1205 * do all the initial allocations 1206 */ 1207 perform_allocations(); 1208 1209 /* 1210 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1211 */ 1212 kernelheap_init(kernelheap, ekernelheap, kernelheap + MMU_PAGESIZE, 1213 (void *)core_base, (void *)ptable_va); 1214 1215 /* 1216 * Build phys_install and phys_avail in kernel memspace. 1217 * - phys_install should be all memory in the system. 1218 * - phys_avail is phys_install minus any memory mapped before this 1219 * point above KERNEL_TEXT. 1220 */ 1221 current = phys_install = memlist; 1222 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1223 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1224 panic("physinstalled was too big!"); 1225 if (prom_debug) 1226 print_kernel_memlist("phys_install", phys_install); 1227 1228 phys_avail = current; 1229 PRM_POINT("Building phys_avail:\n"); 1230 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1231 avail_filter); 1232 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1233 panic("physavail was too big!"); 1234 if (prom_debug) 1235 print_kernel_memlist("phys_avail", phys_avail); 1236 1237 /* 1238 * setup page coloring 1239 */ 1240 page_coloring_setup(pagecolor_mem); 1241 page_lock_init(); /* currently a no-op */ 1242 1243 /* 1244 * free page list counters 1245 */ 1246 (void) page_ctrs_alloc(page_ctrs_mem); 1247 1248 /* 1249 * Initialize the page structures from the memory lists. 1250 */ 1251 availrmem_initial = availrmem = freemem = 0; 1252 PRM_POINT("Calling kphysm_init()..."); 1253 boot_npages = kphysm_init(pp_base, memseg_base, 0, boot_npages); 1254 PRM_POINT("kphysm_init() done"); 1255 PRM_DEBUG(boot_npages); 1256 1257 /* 1258 * Now that page_t's have been initialized, remove all the 1259 * initial allocation pages from the kernel free page lists. 1260 */ 1261 boot_mapin((caddr_t)valloc_base, valloc_sz); 1262 1263 /* 1264 * Initialize kernel memory allocator. 1265 */ 1266 kmem_init(); 1267 1268 /* 1269 * print this out early so that we know what's going on 1270 */ 1271 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1272 1273 /* 1274 * Initialize bp_mapin(). 1275 */ 1276 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1277 1278 /* 1279 * orig_npages is non-zero if physmem has been configured for less 1280 * than the available memory. 1281 */ 1282 if (orig_npages) { 1283 #ifdef __i386 1284 /* 1285 * use npages for physmem in case it has been temporarily 1286 * modified via /etc/system in kmem_init/mod_read_system_file. 1287 */ 1288 if (npages == PHYSMEM32) { 1289 cmn_err(CE_WARN, "!Due to 32 bit virtual" 1290 " address space limitations, limiting" 1291 " physmem to 0x%lx of 0x%lx available pages", 1292 npages, orig_npages); 1293 } else { 1294 cmn_err(CE_WARN, "!limiting physmem to 0x%lx of" 1295 " 0x%lx available pages", npages, orig_npages); 1296 } 1297 #else 1298 cmn_err(CE_WARN, "!limiting physmem to 0x%lx of" 1299 " 0x%lx available pages", npages, orig_npages); 1300 #endif 1301 } 1302 #if defined(__i386) 1303 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1304 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1305 "System using 0x%lx", 1306 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1307 #endif 1308 1309 #ifdef KERNELBASE_ABI_MIN 1310 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1311 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1312 "i386 ABI compliant.", (uintptr_t)kernelbase); 1313 } 1314 #endif 1315 1316 PRM_POINT("startup_memlist() done"); 1317 } 1318 1319 static void 1320 startup_modules(void) 1321 { 1322 unsigned int i; 1323 extern void prom_setup(void); 1324 1325 PRM_POINT("startup_modules() starting..."); 1326 /* 1327 * Initialize ten-micro second timer so that drivers will 1328 * not get short changed in their init phase. This was 1329 * not getting called until clkinit which, on fast cpu's 1330 * caused the drv_usecwait to be way too short. 1331 */ 1332 microfind(); 1333 1334 /* 1335 * Read the GMT lag from /etc/rtc_config. 1336 */ 1337 gmt_lag = process_rtc_config_file(); 1338 1339 /* 1340 * Calculate default settings of system parameters based upon 1341 * maxusers, yet allow to be overridden via the /etc/system file. 1342 */ 1343 param_calc(0); 1344 1345 mod_setup(); 1346 1347 /* 1348 * Initialize system parameters. 1349 */ 1350 param_init(); 1351 1352 /* 1353 * Initialize the default brands 1354 */ 1355 brand_init(); 1356 1357 /* 1358 * maxmem is the amount of physical memory we're playing with. 1359 */ 1360 maxmem = physmem; 1361 1362 /* 1363 * Initialize the hat layer. 1364 */ 1365 hat_init(); 1366 1367 /* 1368 * Initialize segment management stuff. 1369 */ 1370 seg_init(); 1371 1372 if (modload("fs", "specfs") == -1) 1373 halt("Can't load specfs"); 1374 1375 if (modload("fs", "devfs") == -1) 1376 halt("Can't load devfs"); 1377 1378 if (modload("fs", "dev") == -1) 1379 halt("Can't load dev"); 1380 1381 (void) modloadonly("sys", "lbl_edition"); 1382 1383 dispinit(); 1384 1385 /* 1386 * This is needed here to initialize hw_serial[] for cluster booting. 1387 */ 1388 if ((i = modload("misc", "sysinit")) != (unsigned int)-1) 1389 (void) modunload(i); 1390 else 1391 cmn_err(CE_CONT, "sysinit load failed"); 1392 1393 /* Read cluster configuration data. */ 1394 clconf_init(); 1395 1396 /* 1397 * Create a kernel device tree. First, create rootnex and 1398 * then invoke bus specific code to probe devices. 1399 */ 1400 setup_ddi(); 1401 1402 /* 1403 * Set up the CPU module subsystem. Modifies the device tree, so it 1404 * must be done after setup_ddi(). 1405 */ 1406 cmi_init(); 1407 1408 /* 1409 * Initialize the MCA handlers 1410 */ 1411 if (x86_feature & X86_MCA) 1412 cmi_mca_init(); 1413 1414 /* 1415 * Fake a prom tree such that /dev/openprom continues to work 1416 */ 1417 prom_setup(); 1418 1419 /* 1420 * Load all platform specific modules 1421 */ 1422 psm_modload(); 1423 1424 PRM_POINT("startup_modules() done"); 1425 } 1426 1427 static void 1428 startup_bop_gone(void) 1429 { 1430 PRM_POINT("startup_bop_gone() starting..."); 1431 1432 /* 1433 * Do final allocations of HAT data structures that need to 1434 * be allocated before quiescing the boot loader. 1435 */ 1436 PRM_POINT("Calling hat_kern_alloc()..."); 1437 hat_kern_alloc(); 1438 PRM_POINT("hat_kern_alloc() done"); 1439 1440 /* 1441 * Setup MTRR (Memory type range registers) 1442 */ 1443 setup_mtrr(); 1444 PRM_POINT("startup_bop_gone() done"); 1445 } 1446 1447 /* 1448 * Walk through the pagetables looking for pages mapped in by boot. If the 1449 * setaside flag is set the pages are expected to be returned to the 1450 * kernel later in boot, so we add them to the bootpages list. 1451 */ 1452 static void 1453 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1454 { 1455 uintptr_t va = low; 1456 size_t len; 1457 uint_t prot; 1458 pfn_t pfn; 1459 page_t *pp; 1460 pgcnt_t boot_protect_cnt = 0; 1461 1462 while (hat_boot_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1463 if (va + len >= high) 1464 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1465 "legal range.", len, (void *)va); 1466 1467 while (len > 0) { 1468 pp = page_numtopp_alloc(pfn); 1469 if (pp != NULL) { 1470 if (setaside == 0) 1471 panic("Unexpected mapping by boot. " 1472 "addr=%p pfn=%lx\n", 1473 (void *)va, pfn); 1474 1475 pp->p_next = bootpages; 1476 bootpages = pp; 1477 ++boot_protect_cnt; 1478 } 1479 1480 ++pfn; 1481 len -= MMU_PAGESIZE; 1482 va += MMU_PAGESIZE; 1483 } 1484 } 1485 PRM_DEBUG(boot_protect_cnt); 1486 } 1487 1488 static void 1489 startup_vm(void) 1490 { 1491 struct segmap_crargs a; 1492 extern void hat_kern_setup(void); 1493 pgcnt_t pages_left; 1494 1495 extern int use_brk_lpg, use_stk_lpg; 1496 1497 PRM_POINT("startup_vm() starting..."); 1498 1499 /* 1500 * The next two loops are done in distinct steps in order 1501 * to be sure that any page that is doubly mapped (both above 1502 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1503 * Note this may never happen, but it might someday. 1504 */ 1505 1506 bootpages = NULL; 1507 PRM_POINT("Protecting boot pages"); 1508 /* 1509 * Protect any pages mapped above KERNEL_TEXT that somehow have 1510 * page_t's. This can only happen if something weird allocated 1511 * in this range (like kadb/kmdb). 1512 */ 1513 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1514 1515 /* 1516 * Before we can take over memory allocation/mapping from the boot 1517 * loader we must remove from our free page lists any boot pages that 1518 * will stay mapped until release_bootstrap(). 1519 */ 1520 protect_boot_range(0, kernelbase, 1); 1521 #if defined(__amd64) 1522 protect_boot_range(BOOT_DOUBLEMAP_BASE, 1523 BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE, 0); 1524 #endif 1525 1526 /* 1527 * Copy in boot's page tables, set up extra page tables for the kernel, 1528 * and switch to the kernel's context. 1529 */ 1530 PRM_POINT("Calling hat_kern_setup()..."); 1531 hat_kern_setup(); 1532 1533 /* 1534 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1535 */ 1536 bootops->bsys_alloc = NULL; 1537 PRM_POINT("hat_kern_setup() done"); 1538 1539 hat_cpu_online(CPU); 1540 1541 /* 1542 * Before we call kvm_init(), we need to establish the final size 1543 * of the kernel's heap. So, we need to figure out how much space 1544 * to set aside for segkp, segkpm, and segmap. 1545 */ 1546 final_kernelheap = (caddr_t)ROUND_UP_LPAGE(kernelbase); 1547 #if defined(__amd64) 1548 if (kpm_desired) { 1549 /* 1550 * Segkpm appears at the bottom of the kernel's address 1551 * range. To detect accidental overruns of the user 1552 * address space, we leave a "red zone" of unmapped memory 1553 * between kernelbase and the beginning of segkpm. 1554 */ 1555 kpm_vbase = final_kernelheap + KERNEL_REDZONE_SIZE; 1556 kpm_size = mmu_ptob(physmax + 1); 1557 PRM_DEBUG(kpm_vbase); 1558 PRM_DEBUG(kpm_size); 1559 final_kernelheap = 1560 (caddr_t)ROUND_UP_TOPLEVEL(kpm_vbase + kpm_size); 1561 } 1562 1563 if (!segkp_fromheap) { 1564 size_t sz = mmu_ptob(segkpsize); 1565 1566 /* 1567 * determine size of segkp and adjust the bottom of the 1568 * kernel's heap. 1569 */ 1570 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1571 sz = SEGKPDEFSIZE; 1572 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1573 "segkpsize has been reset to %ld pages", 1574 mmu_btop(sz)); 1575 } 1576 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1577 1578 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1579 segkp_base = final_kernelheap; 1580 PRM_DEBUG(segkpsize); 1581 PRM_DEBUG(segkp_base); 1582 final_kernelheap = segkp_base + mmu_ptob(segkpsize); 1583 PRM_DEBUG(final_kernelheap); 1584 } 1585 1586 if (!segzio_fromheap) { 1587 size_t size; 1588 1589 /* size is in bytes, segziosize is in pages */ 1590 if (segziosize == 0) { 1591 size = mmu_ptob(physmem * 2); 1592 } else { 1593 size = mmu_ptob(segziosize); 1594 } 1595 1596 if (size < SEGZIOMINSIZE) { 1597 size = SEGZIOMINSIZE; 1598 } else if (size > mmu_ptob(physmem * 4)) { 1599 size = mmu_ptob(physmem * 4); 1600 } 1601 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1602 segzio_base = final_kernelheap; 1603 PRM_DEBUG(segziosize); 1604 PRM_DEBUG(segzio_base); 1605 final_kernelheap = segzio_base + mmu_ptob(segziosize); 1606 PRM_DEBUG(final_kernelheap); 1607 } 1608 1609 /* 1610 * put the range of VA for device mappings next 1611 */ 1612 toxic_addr = (uintptr_t)final_kernelheap; 1613 PRM_DEBUG(toxic_addr); 1614 final_kernelheap = (char *)toxic_addr + toxic_size; 1615 #endif 1616 PRM_DEBUG(final_kernelheap); 1617 ASSERT(final_kernelheap < boot_kernelheap); 1618 1619 /* 1620 * Users can change segmapsize through eeprom or /etc/system. 1621 * If the variable is tuned through eeprom, there is no upper 1622 * bound on the size of segmap. If it is tuned through 1623 * /etc/system on 32-bit systems, it must be no larger than we 1624 * planned for in startup_memlist(). 1625 */ 1626 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1627 segkmap_start = ROUND_UP_LPAGE((uintptr_t)final_kernelheap); 1628 1629 #if defined(__i386) 1630 if (segmapsize > segmap_reserved) { 1631 cmn_err(CE_NOTE, "!segmapsize may not be set > 0x%lx in " 1632 "/etc/system. Use eeprom.", (long)SEGMAPMAX); 1633 segmapsize = segmap_reserved; 1634 } 1635 /* 1636 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1637 * the bottom of the kernel's address range. Set aside space for a 1638 * red zone just below the start of segmap. 1639 */ 1640 segkmap_start += KERNEL_REDZONE_SIZE; 1641 segmapsize -= KERNEL_REDZONE_SIZE; 1642 #endif 1643 final_kernelheap = (char *)(segkmap_start + segmapsize); 1644 1645 PRM_DEBUG(segkmap_start); 1646 PRM_DEBUG(segmapsize); 1647 PRM_DEBUG(final_kernelheap); 1648 1649 /* 1650 * Initialize VM system 1651 */ 1652 PRM_POINT("Calling kvm_init()..."); 1653 kvm_init(); 1654 PRM_POINT("kvm_init() done"); 1655 1656 /* 1657 * Tell kmdb that the VM system is now working 1658 */ 1659 if (boothowto & RB_DEBUG) 1660 kdi_dvec_vmready(); 1661 1662 /* 1663 * Mangle the brand string etc. 1664 */ 1665 cpuid_pass3(CPU); 1666 1667 PRM_DEBUG(final_kernelheap); 1668 1669 /* 1670 * Now that we can use memory outside the top 4GB (on 64-bit 1671 * systems) and we know the size of segmap, we can set the final 1672 * size of the kernel's heap. Note: on 64-bit systems we still 1673 * can't touch anything in the bottom half of the top 4GB range 1674 * because boot still has pages mapped there. 1675 */ 1676 if (final_kernelheap < boot_kernelheap) { 1677 kernelheap_extend(final_kernelheap, boot_kernelheap); 1678 #if defined(__amd64) 1679 kmem_setaside = vmem_xalloc(heap_arena, BOOT_DOUBLEMAP_SIZE, 1680 MMU_PAGESIZE, 0, 0, (void *)(BOOT_DOUBLEMAP_BASE), 1681 (void *)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE), 1682 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1683 PRM_DEBUG(kmem_setaside); 1684 if (kmem_setaside == NULL) 1685 panic("Could not protect boot's memory"); 1686 #endif 1687 } 1688 /* 1689 * Now that the kernel heap may have grown significantly, we need 1690 * to make all the remaining page_t's available to back that memory. 1691 * 1692 * XX64 this should probably wait till after release boot-strap too. 1693 */ 1694 pages_left = npages - boot_npages; 1695 if (pages_left > 0) { 1696 PRM_DEBUG(pages_left); 1697 (void) kphysm_init(NULL, memseg_base, boot_npages, pages_left); 1698 } 1699 1700 #if defined(__amd64) 1701 1702 /* 1703 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1704 */ 1705 device_arena = vmem_create("device", (void *)toxic_addr, 1706 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1707 1708 #else /* __i386 */ 1709 1710 /* 1711 * allocate the bit map that tracks toxic pages 1712 */ 1713 toxic_bit_map_len = btop((ulong_t)(ptable_va - kernelbase)); 1714 PRM_DEBUG(toxic_bit_map_len); 1715 toxic_bit_map = 1716 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1717 ASSERT(toxic_bit_map != NULL); 1718 PRM_DEBUG(toxic_bit_map); 1719 1720 #endif /* __i386 */ 1721 1722 1723 /* 1724 * Now that we've got more VA, as well as the ability to allocate from 1725 * it, tell the debugger. 1726 */ 1727 if (boothowto & RB_DEBUG) 1728 kdi_dvec_memavail(); 1729 1730 /* 1731 * The following code installs a special page fault handler (#pf) 1732 * to work around a pentium bug. 1733 */ 1734 #if !defined(__amd64) 1735 if (x86_type == X86_TYPE_P5) { 1736 gate_desc_t *newidt; 1737 desctbr_t newidt_r; 1738 1739 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1740 panic("failed to install pentium_pftrap"); 1741 1742 bcopy(idt0, newidt, sizeof (idt0)); 1743 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1744 KCS_SEL, 0, SDT_SYSIGT, SEL_KPL); 1745 1746 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1747 PROT_READ|PROT_EXEC); 1748 1749 newidt_r.dtr_limit = sizeof (idt0) - 1; 1750 newidt_r.dtr_base = (uintptr_t)newidt; 1751 CPU->cpu_idt = newidt; 1752 wr_idtr(&newidt_r); 1753 } 1754 #endif /* !__amd64 */ 1755 1756 /* 1757 * Map page pfn=0 for drivers, such as kd, that need to pick up 1758 * parameters left there by controllers/BIOS. 1759 */ 1760 PRM_POINT("setup up p0_va"); 1761 p0_va = i86devmap(0, 1, PROT_READ); 1762 PRM_DEBUG(p0_va); 1763 1764 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1765 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1766 1767 /* 1768 * disable automatic large pages for small memory systems or 1769 * when the disable flag is set. 1770 */ 1771 if (!auto_lpg_disable && mmu.max_page_level > 0) { 1772 max_uheap_lpsize = LEVEL_SIZE(1); 1773 max_ustack_lpsize = LEVEL_SIZE(1); 1774 max_privmap_lpsize = LEVEL_SIZE(1); 1775 max_uidata_lpsize = LEVEL_SIZE(1); 1776 max_utext_lpsize = LEVEL_SIZE(1); 1777 max_shm_lpsize = LEVEL_SIZE(1); 1778 } 1779 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 1780 auto_lpg_disable) { 1781 use_brk_lpg = 0; 1782 use_stk_lpg = 0; 1783 } 1784 if (mmu.max_page_level > 0) { 1785 mcntl0_lpsize = LEVEL_SIZE(1); 1786 } 1787 1788 PRM_POINT("Calling hat_init_finish()..."); 1789 hat_init_finish(); 1790 PRM_POINT("hat_init_finish() done"); 1791 1792 /* 1793 * Initialize the segkp segment type. 1794 */ 1795 rw_enter(&kas.a_lock, RW_WRITER); 1796 if (!segkp_fromheap) { 1797 if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1798 segkp) < 0) { 1799 panic("startup: cannot attach segkp"); 1800 /*NOTREACHED*/ 1801 } 1802 } else { 1803 /* 1804 * For 32 bit x86 systems, we will have segkp under the heap. 1805 * There will not be a segkp segment. We do, however, need 1806 * to fill in the seg structure. 1807 */ 1808 segkp->s_as = &kas; 1809 } 1810 if (segkp_create(segkp) != 0) { 1811 panic("startup: segkp_create failed"); 1812 /*NOTREACHED*/ 1813 } 1814 PRM_DEBUG(segkp); 1815 rw_exit(&kas.a_lock); 1816 1817 /* 1818 * kpm segment 1819 */ 1820 segmap_kpm = 0; 1821 if (kpm_desired) { 1822 kpm_init(); 1823 kpm_enable = 1; 1824 vpm_enable = 1; 1825 } 1826 1827 /* 1828 * Now create segmap segment. 1829 */ 1830 rw_enter(&kas.a_lock, RW_WRITER); 1831 if (seg_attach(&kas, (caddr_t)segkmap_start, segmapsize, segkmap) < 0) { 1832 panic("cannot attach segkmap"); 1833 /*NOTREACHED*/ 1834 } 1835 PRM_DEBUG(segkmap); 1836 1837 /* 1838 * The 64 bit HAT permanently maps only segmap's page tables. 1839 * The 32 bit HAT maps the heap's page tables too. 1840 */ 1841 #if defined(__amd64) 1842 hat_kmap_init(segkmap_start, segmapsize); 1843 #else /* __i386 */ 1844 ASSERT(segkmap_start + segmapsize == (uintptr_t)final_kernelheap); 1845 hat_kmap_init(segkmap_start, (uintptr_t)ekernelheap - segkmap_start); 1846 #endif /* __i386 */ 1847 1848 a.prot = PROT_READ | PROT_WRITE; 1849 a.shmsize = 0; 1850 a.nfreelist = segmapfreelists; 1851 1852 if (segmap_create(segkmap, (caddr_t)&a) != 0) 1853 panic("segmap_create segkmap"); 1854 rw_exit(&kas.a_lock); 1855 1856 setup_vaddr_for_ppcopy(CPU); 1857 1858 segdev_init(); 1859 pmem_init(); 1860 PRM_POINT("startup_vm() done"); 1861 } 1862 1863 static void 1864 startup_end(void) 1865 { 1866 extern void setx86isalist(void); 1867 1868 PRM_POINT("startup_end() starting..."); 1869 1870 /* 1871 * Perform tasks that get done after most of the VM 1872 * initialization has been done but before the clock 1873 * and other devices get started. 1874 */ 1875 kern_setup1(); 1876 1877 /* 1878 * Perform CPC initialization for this CPU. 1879 */ 1880 kcpc_hw_init(CPU); 1881 1882 #if defined(__amd64) 1883 /* 1884 * Validate support for syscall/sysret 1885 * XX64 -- include SSE, SSE2, etc. here too? 1886 */ 1887 if ((x86_feature & X86_ASYSC) == 0) { 1888 cmn_err(CE_WARN, 1889 "cpu%d does not support syscall/sysret", CPU->cpu_id); 1890 } 1891 #endif 1892 1893 #if defined(OPTERON_WORKAROUND_6323525) 1894 if (opteron_workaround_6323525) 1895 patch_workaround_6323525(); 1896 #endif 1897 /* 1898 * Configure the system. 1899 */ 1900 PRM_POINT("Calling configure()..."); 1901 configure(); /* set up devices */ 1902 PRM_POINT("configure() done"); 1903 1904 /* 1905 * Set the isa_list string to the defined instruction sets we 1906 * support. 1907 */ 1908 setx86isalist(); 1909 cpu_intr_alloc(CPU, NINTR_THREADS); 1910 psm_install(); 1911 1912 /* 1913 * We're done with bootops. We don't unmap the bootstrap yet because 1914 * we're still using bootsvcs. 1915 */ 1916 PRM_POINT("zeroing out bootops"); 1917 *bootopsp = (struct bootops *)0; 1918 bootops = (struct bootops *)NULL; 1919 1920 PRM_POINT("Enabling interrupts"); 1921 (*picinitf)(); 1922 sti(); 1923 1924 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 1925 "softlevel1", NULL, NULL); /* XXX to be moved later */ 1926 1927 PRM_POINT("startup_end() done"); 1928 } 1929 1930 extern char hw_serial[]; 1931 char *_hs1107 = hw_serial; 1932 ulong_t _bdhs34; 1933 1934 void 1935 post_startup(void) 1936 { 1937 /* 1938 * Set the system wide, processor-specific flags to be passed 1939 * to userland via the aux vector for performance hints and 1940 * instruction set extensions. 1941 */ 1942 bind_hwcap(); 1943 1944 /* 1945 * Load the System Management BIOS into the global ksmbios handle, 1946 * if an SMBIOS is present on this system. 1947 */ 1948 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1949 1950 /* 1951 * Startup memory scrubber. 1952 */ 1953 memscrub_init(); 1954 1955 /* 1956 * Complete CPU module initialization 1957 */ 1958 cmi_post_init(); 1959 1960 /* 1961 * Perform forceloading tasks for /etc/system. 1962 */ 1963 (void) mod_sysctl(SYS_FORCELOAD, NULL); 1964 1965 /* 1966 * ON4.0: Force /proc module in until clock interrupt handle fixed 1967 * ON4.0: This must be fixed or restated in /etc/systems. 1968 */ 1969 (void) modload("fs", "procfs"); 1970 1971 #if defined(__i386) 1972 /* 1973 * Check for required functional Floating Point hardware, 1974 * unless FP hardware explicitly disabled. 1975 */ 1976 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 1977 halt("No working FP hardware found"); 1978 #endif 1979 1980 maxmem = freemem; 1981 1982 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 1983 1984 /* 1985 * Perform the formal initialization of the boot chip, 1986 * and associate the boot cpu with it. 1987 * This must be done after the cpu node for CPU has been 1988 * added to the device tree, when the necessary probing to 1989 * know the chip type and chip "id" is performed. 1990 */ 1991 chip_cpu_init(CPU); 1992 chip_cpu_assign(CPU); 1993 } 1994 1995 static int 1996 pp_in_ramdisk(page_t *pp) 1997 { 1998 extern uint64_t ramdisk_start, ramdisk_end; 1999 2000 return ((pp->p_pagenum >= btop(ramdisk_start)) && 2001 (pp->p_pagenum < btopr(ramdisk_end))); 2002 } 2003 2004 void 2005 release_bootstrap(void) 2006 { 2007 int root_is_ramdisk; 2008 pfn_t pfn; 2009 page_t *pp; 2010 extern void kobj_boot_unmountroot(void); 2011 extern dev_t rootdev; 2012 2013 /* unmount boot ramdisk and release kmem usage */ 2014 kobj_boot_unmountroot(); 2015 2016 /* 2017 * We're finished using the boot loader so free its pages. 2018 */ 2019 PRM_POINT("Unmapping lower boot pages"); 2020 clear_boot_mappings(0, kernelbase); 2021 #if defined(__amd64) 2022 PRM_POINT("Unmapping upper boot pages"); 2023 clear_boot_mappings(BOOT_DOUBLEMAP_BASE, 2024 BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); 2025 #endif 2026 2027 /* 2028 * If root isn't on ramdisk, destroy the hardcoded 2029 * ramdisk node now and release the memory. Else, 2030 * ramdisk memory is kept in rd_pages. 2031 */ 2032 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2033 if (!root_is_ramdisk) { 2034 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2035 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2036 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2037 (void) ddi_remove_child(dip, 0); 2038 } 2039 2040 PRM_POINT("Releasing boot pages"); 2041 while (bootpages) { 2042 pp = bootpages; 2043 bootpages = pp->p_next; 2044 if (root_is_ramdisk && pp_in_ramdisk(pp)) { 2045 pp->p_next = rd_pages; 2046 rd_pages = pp; 2047 continue; 2048 } 2049 pp->p_next = (struct page *)0; 2050 page_free(pp, 1); 2051 } 2052 2053 /* 2054 * Find 1 page below 1 MB so that other processors can boot up. 2055 * Make sure it has a kernel VA as well as a 1:1 mapping. 2056 * We should have just free'd one up. 2057 */ 2058 if (use_mp) { 2059 for (pfn = 1; pfn < btop(1*1024*1024); pfn++) { 2060 if (page_numtopp_alloc(pfn) == NULL) 2061 continue; 2062 rm_platter_va = i86devmap(pfn, 1, 2063 PROT_READ | PROT_WRITE | PROT_EXEC); 2064 rm_platter_pa = ptob(pfn); 2065 hat_devload(kas.a_hat, 2066 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2067 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2068 HAT_LOAD_NOCONSIST); 2069 break; 2070 } 2071 if (pfn == btop(1*1024*1024)) 2072 panic("No page available for starting " 2073 "other processors"); 2074 } 2075 2076 #if defined(__amd64) 2077 PRM_POINT("Returning boot's VA space to kernel heap"); 2078 if (kmem_setaside != NULL) 2079 vmem_free(heap_arena, kmem_setaside, BOOT_DOUBLEMAP_SIZE); 2080 #endif 2081 } 2082 2083 /* 2084 * Initialize the platform-specific parts of a page_t. 2085 */ 2086 void 2087 add_physmem_cb(page_t *pp, pfn_t pnum) 2088 { 2089 pp->p_pagenum = pnum; 2090 pp->p_mapping = NULL; 2091 pp->p_embed = 0; 2092 pp->p_share = 0; 2093 pp->p_mlentry = 0; 2094 } 2095 2096 /* 2097 * kphysm_init() initializes physical memory. 2098 */ 2099 static pgcnt_t 2100 kphysm_init( 2101 page_t *inpp, 2102 struct memseg *memsegp, 2103 pgcnt_t start, 2104 pgcnt_t npages) 2105 { 2106 struct memlist *pmem; 2107 struct memseg *cur_memseg; 2108 struct memseg **memsegpp; 2109 pfn_t base_pfn; 2110 pgcnt_t num; 2111 pgcnt_t total_skipped = 0; 2112 pgcnt_t skipping = 0; 2113 pgcnt_t pages_done = 0; 2114 pgcnt_t largepgcnt; 2115 uint64_t addr; 2116 uint64_t size; 2117 page_t *pp = inpp; 2118 int dobreak = 0; 2119 extern pfn_t ddiphysmin; 2120 2121 ASSERT(page_hash != NULL && page_hashsz != 0); 2122 2123 for (cur_memseg = memsegp; cur_memseg->pages != NULL; cur_memseg++); 2124 ASSERT(cur_memseg == memsegp || start > 0); 2125 2126 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2127 /* 2128 * In a 32 bit kernel can't use higher memory if we're 2129 * not booting in PAE mode. This check takes care of that. 2130 */ 2131 addr = pmem->address; 2132 size = pmem->size; 2133 if (btop(addr) > physmax) 2134 continue; 2135 2136 /* 2137 * align addr and size - they may not be at page boundaries 2138 */ 2139 if ((addr & MMU_PAGEOFFSET) != 0) { 2140 addr += MMU_PAGEOFFSET; 2141 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2142 size -= addr - pmem->address; 2143 } 2144 2145 /* only process pages below or equal to physmax */ 2146 if ((btop(addr + size) - 1) > physmax) 2147 size = ptob(physmax - btop(addr) + 1); 2148 2149 num = btop(size); 2150 if (num == 0) 2151 continue; 2152 2153 if (total_skipped < start) { 2154 if (start - total_skipped > num) { 2155 total_skipped += num; 2156 continue; 2157 } 2158 skipping = start - total_skipped; 2159 num -= skipping; 2160 addr += (MMU_PAGESIZE * skipping); 2161 total_skipped = start; 2162 } 2163 if (num == 0) 2164 continue; 2165 2166 if (num > npages) 2167 num = npages; 2168 2169 npages -= num; 2170 pages_done += num; 2171 base_pfn = btop(addr); 2172 2173 /* 2174 * If the caller didn't provide space for the page 2175 * structures, carve them out of the memseg they will 2176 * represent. 2177 */ 2178 if (pp == NULL) { 2179 pgcnt_t pp_pgs; 2180 2181 if (num <= 1) 2182 continue; 2183 2184 /* 2185 * Compute how many of the pages we need to use for 2186 * page_ts 2187 */ 2188 pp_pgs = (num * sizeof (page_t)) / MMU_PAGESIZE + 1; 2189 while (mmu_ptob(pp_pgs - 1) / sizeof (page_t) >= 2190 num - pp_pgs + 1) 2191 --pp_pgs; 2192 PRM_DEBUG(pp_pgs); 2193 2194 pp = vmem_alloc(heap_arena, mmu_ptob(pp_pgs), 2195 VM_NOSLEEP); 2196 if (pp == NULL) { 2197 cmn_err(CE_WARN, "Unable to add %ld pages to " 2198 "the system.", num); 2199 continue; 2200 } 2201 2202 hat_devload(kas.a_hat, (void *)pp, mmu_ptob(pp_pgs), 2203 base_pfn, PROT_READ | PROT_WRITE | HAT_UNORDERED_OK, 2204 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 2205 bzero(pp, mmu_ptob(pp_pgs)); 2206 num -= pp_pgs; 2207 base_pfn += pp_pgs; 2208 } 2209 2210 if (prom_debug) 2211 prom_printf("MEMSEG addr=0x%" PRIx64 2212 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2213 addr, num, base_pfn, base_pfn + num); 2214 2215 /* 2216 * drop pages below ddiphysmin to simplify ddi memory 2217 * allocation with non-zero addr_lo requests. 2218 */ 2219 if (base_pfn < ddiphysmin) { 2220 if (base_pfn + num <= ddiphysmin) { 2221 /* drop entire range below ddiphysmin */ 2222 continue; 2223 } 2224 /* adjust range to ddiphysmin */ 2225 pp += (ddiphysmin - base_pfn); 2226 num -= (ddiphysmin - base_pfn); 2227 base_pfn = ddiphysmin; 2228 } 2229 /* 2230 * Build the memsegs entry 2231 */ 2232 cur_memseg->pages = pp; 2233 cur_memseg->epages = pp + num; 2234 cur_memseg->pages_base = base_pfn; 2235 cur_memseg->pages_end = base_pfn + num; 2236 2237 /* 2238 * insert in memseg list in decreasing pfn range order. 2239 * Low memory is typically more fragmented such that this 2240 * ordering keeps the larger ranges at the front of the list 2241 * for code that searches memseg. 2242 */ 2243 memsegpp = &memsegs; 2244 for (;;) { 2245 if (*memsegpp == NULL) { 2246 /* empty memsegs */ 2247 memsegs = cur_memseg; 2248 break; 2249 } 2250 /* check for continuity with start of memsegpp */ 2251 if (cur_memseg->pages_end == (*memsegpp)->pages_base) { 2252 if (cur_memseg->epages == (*memsegpp)->pages) { 2253 /* 2254 * contiguous pfn and page_t's. Merge 2255 * cur_memseg into *memsegpp. Drop 2256 * cur_memseg 2257 */ 2258 (*memsegpp)->pages_base = 2259 cur_memseg->pages_base; 2260 (*memsegpp)->pages = 2261 cur_memseg->pages; 2262 /* 2263 * check if contiguous with the end of 2264 * the next memseg. 2265 */ 2266 if ((*memsegpp)->next && 2267 ((*memsegpp)->pages_base == 2268 (*memsegpp)->next->pages_end)) { 2269 cur_memseg = *memsegpp; 2270 memsegpp = &((*memsegpp)->next); 2271 dobreak = 1; 2272 } else { 2273 break; 2274 } 2275 } else { 2276 /* 2277 * contiguous pfn but not page_t's. 2278 * drop last pfn/page_t in cur_memseg 2279 * to prevent creation of large pages 2280 * with noncontiguous page_t's if not 2281 * aligned to largest page boundary. 2282 */ 2283 largepgcnt = page_get_pagecnt( 2284 page_num_pagesizes() - 1); 2285 2286 if (cur_memseg->pages_end & 2287 (largepgcnt - 1)) { 2288 num--; 2289 cur_memseg->epages--; 2290 cur_memseg->pages_end--; 2291 } 2292 } 2293 } 2294 2295 /* check for continuity with end of memsegpp */ 2296 if (cur_memseg->pages_base == (*memsegpp)->pages_end) { 2297 if (cur_memseg->pages == (*memsegpp)->epages) { 2298 /* 2299 * contiguous pfn and page_t's. Merge 2300 * cur_memseg into *memsegpp. Drop 2301 * cur_memseg. 2302 */ 2303 if (dobreak) { 2304 /* merge previously done */ 2305 cur_memseg->pages = 2306 (*memsegpp)->pages; 2307 cur_memseg->pages_base = 2308 (*memsegpp)->pages_base; 2309 cur_memseg->next = 2310 (*memsegpp)->next; 2311 } else { 2312 (*memsegpp)->pages_end = 2313 cur_memseg->pages_end; 2314 (*memsegpp)->epages = 2315 cur_memseg->epages; 2316 } 2317 break; 2318 } 2319 /* 2320 * contiguous pfn but not page_t's. 2321 * drop first pfn/page_t in cur_memseg 2322 * to prevent creation of large pages 2323 * with noncontiguous page_t's if not 2324 * aligned to largest page boundary. 2325 */ 2326 largepgcnt = page_get_pagecnt( 2327 page_num_pagesizes() - 1); 2328 if (base_pfn & (largepgcnt - 1)) { 2329 num--; 2330 base_pfn++; 2331 cur_memseg->pages++; 2332 cur_memseg->pages_base++; 2333 pp = cur_memseg->pages; 2334 } 2335 if (dobreak) 2336 break; 2337 } 2338 2339 if (cur_memseg->pages_base >= 2340 (*memsegpp)->pages_end) { 2341 cur_memseg->next = *memsegpp; 2342 *memsegpp = cur_memseg; 2343 break; 2344 } 2345 if ((*memsegpp)->next == NULL) { 2346 cur_memseg->next = NULL; 2347 (*memsegpp)->next = cur_memseg; 2348 break; 2349 } 2350 memsegpp = &((*memsegpp)->next); 2351 ASSERT(*memsegpp != NULL); 2352 } 2353 2354 /* 2355 * add_physmem() initializes the PSM part of the page 2356 * struct by calling the PSM back with add_physmem_cb(). 2357 * In addition it coalesces pages into larger pages as 2358 * it initializes them. 2359 */ 2360 add_physmem(pp, num, base_pfn); 2361 cur_memseg++; 2362 availrmem_initial += num; 2363 availrmem += num; 2364 2365 /* 2366 * If the caller provided the page frames to us, then 2367 * advance in that list. Otherwise, prepare to allocate 2368 * our own page frames for the next memseg. 2369 */ 2370 pp = (inpp == NULL) ? NULL : pp + num; 2371 } 2372 2373 PRM_DEBUG(availrmem_initial); 2374 PRM_DEBUG(availrmem); 2375 PRM_DEBUG(freemem); 2376 build_pfn_hash(); 2377 return (pages_done); 2378 } 2379 2380 /* 2381 * Kernel VM initialization. 2382 */ 2383 static void 2384 kvm_init(void) 2385 { 2386 #ifdef DEBUG 2387 extern void _start(); 2388 2389 ASSERT((caddr_t)_start == s_text); 2390 #endif 2391 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2392 2393 /* 2394 * Put the kernel segments in kernel address space. 2395 */ 2396 rw_enter(&kas.a_lock, RW_WRITER); 2397 as_avlinit(&kas); 2398 2399 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2400 (void) segkmem_create(&ktextseg); 2401 2402 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2403 (void) segkmem_create(&kvalloc); 2404 2405 /* 2406 * We're about to map out /boot. This is the beginning of the 2407 * system resource management transition. We can no longer 2408 * call into /boot for I/O or memory allocations. 2409 * 2410 * XX64 - Is this still correct with kernelheap_extend() being called 2411 * later than this???? 2412 */ 2413 (void) seg_attach(&kas, final_kernelheap, 2414 ekernelheap - final_kernelheap, &kvseg); 2415 (void) segkmem_create(&kvseg); 2416 2417 #if defined(__amd64) 2418 (void) seg_attach(&kas, (caddr_t)core_base, core_size, &kvseg_core); 2419 (void) segkmem_create(&kvseg_core); 2420 2421 /* segzio optimization is only valid for 64-bit kernels */ 2422 if (!segzio_fromheap) { 2423 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2424 &kzioseg); 2425 (void) segkmem_zio_create(&kzioseg); 2426 2427 /* create zio area covering new segment */ 2428 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2429 } 2430 #endif 2431 2432 (void) seg_attach(&kas, (caddr_t)SEGDEBUGBASE, (size_t)SEGDEBUGSIZE, 2433 &kdebugseg); 2434 (void) segkmem_create(&kdebugseg); 2435 2436 rw_exit(&kas.a_lock); 2437 2438 /* 2439 * Ensure that the red zone at kernelbase is never accessible. 2440 */ 2441 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2442 2443 /* 2444 * Make the text writable so that it can be hot patched by DTrace. 2445 */ 2446 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2447 PROT_READ | PROT_WRITE | PROT_EXEC); 2448 2449 /* 2450 * Make data writable until end. 2451 */ 2452 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2453 PROT_READ | PROT_WRITE | PROT_EXEC); 2454 } 2455 2456 /* 2457 * These are MTTR registers supported by P6 2458 */ 2459 static struct mtrrvar mtrrphys_arr[MAX_MTRRVAR]; 2460 static uint64_t mtrr64k, mtrr16k1, mtrr16k2; 2461 static uint64_t mtrr4k1, mtrr4k2, mtrr4k3; 2462 static uint64_t mtrr4k4, mtrr4k5, mtrr4k6; 2463 static uint64_t mtrr4k7, mtrr4k8, mtrrcap; 2464 uint64_t mtrrdef, pat_attr_reg; 2465 2466 /* 2467 * Disable reprogramming of MTRRs by default. 2468 */ 2469 int enable_relaxed_mtrr = 0; 2470 2471 void 2472 setup_mtrr(void) 2473 { 2474 int i, ecx; 2475 int vcnt; 2476 struct mtrrvar *mtrrphys; 2477 2478 if (!(x86_feature & X86_MTRR)) 2479 return; 2480 2481 mtrrcap = rdmsr(REG_MTRRCAP); 2482 mtrrdef = rdmsr(REG_MTRRDEF); 2483 if (mtrrcap & MTRRCAP_FIX) { 2484 mtrr64k = rdmsr(REG_MTRR64K); 2485 mtrr16k1 = rdmsr(REG_MTRR16K1); 2486 mtrr16k2 = rdmsr(REG_MTRR16K2); 2487 mtrr4k1 = rdmsr(REG_MTRR4K1); 2488 mtrr4k2 = rdmsr(REG_MTRR4K2); 2489 mtrr4k3 = rdmsr(REG_MTRR4K3); 2490 mtrr4k4 = rdmsr(REG_MTRR4K4); 2491 mtrr4k5 = rdmsr(REG_MTRR4K5); 2492 mtrr4k6 = rdmsr(REG_MTRR4K6); 2493 mtrr4k7 = rdmsr(REG_MTRR4K7); 2494 mtrr4k8 = rdmsr(REG_MTRR4K8); 2495 } 2496 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2497 vcnt = MAX_MTRRVAR; 2498 2499 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2500 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2501 mtrrphys->mtrrphys_base = rdmsr(ecx); 2502 mtrrphys->mtrrphys_mask = rdmsr(ecx + 1); 2503 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2504 mtrrphys->mtrrphys_mask &= ~MTRRPHYSMASK_V; 2505 } 2506 } 2507 if (x86_feature & X86_PAT) { 2508 if (enable_relaxed_mtrr) 2509 mtrrdef = MTRR_TYPE_WB|MTRRDEF_FE|MTRRDEF_E; 2510 pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2511 } 2512 2513 mtrr_sync(); 2514 } 2515 2516 /* 2517 * Sync current cpu mtrr with the incore copy of mtrr. 2518 * This function has to be invoked with interrupts disabled 2519 * Currently we do not capture other cpu's. This is invoked on cpu0 2520 * just after reading /etc/system. 2521 * On other cpu's its invoked from mp_startup(). 2522 */ 2523 void 2524 mtrr_sync(void) 2525 { 2526 uint_t crvalue, cr0_orig; 2527 int vcnt, i, ecx; 2528 struct mtrrvar *mtrrphys; 2529 2530 cr0_orig = crvalue = getcr0(); 2531 crvalue |= CR0_CD; 2532 crvalue &= ~CR0_NW; 2533 setcr0(crvalue); 2534 invalidate_cache(); 2535 setcr3(getcr3()); 2536 2537 if (x86_feature & X86_PAT) 2538 wrmsr(REG_MTRRPAT, pat_attr_reg); 2539 2540 wrmsr(REG_MTRRDEF, rdmsr(REG_MTRRDEF) & 2541 ~((uint64_t)(uintptr_t)MTRRDEF_E)); 2542 2543 if (mtrrcap & MTRRCAP_FIX) { 2544 wrmsr(REG_MTRR64K, mtrr64k); 2545 wrmsr(REG_MTRR16K1, mtrr16k1); 2546 wrmsr(REG_MTRR16K2, mtrr16k2); 2547 wrmsr(REG_MTRR4K1, mtrr4k1); 2548 wrmsr(REG_MTRR4K2, mtrr4k2); 2549 wrmsr(REG_MTRR4K3, mtrr4k3); 2550 wrmsr(REG_MTRR4K4, mtrr4k4); 2551 wrmsr(REG_MTRR4K5, mtrr4k5); 2552 wrmsr(REG_MTRR4K6, mtrr4k6); 2553 wrmsr(REG_MTRR4K7, mtrr4k7); 2554 wrmsr(REG_MTRR4K8, mtrr4k8); 2555 } 2556 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2557 vcnt = MAX_MTRRVAR; 2558 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2559 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2560 wrmsr(ecx, mtrrphys->mtrrphys_base); 2561 wrmsr(ecx + 1, mtrrphys->mtrrphys_mask); 2562 } 2563 wrmsr(REG_MTRRDEF, mtrrdef); 2564 setcr3(getcr3()); 2565 invalidate_cache(); 2566 setcr0(cr0_orig); 2567 } 2568 2569 /* 2570 * resync mtrr so that BIOS is happy. Called from mdboot 2571 */ 2572 void 2573 mtrr_resync(void) 2574 { 2575 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2576 /* 2577 * We could have changed the default mtrr definition. 2578 * Put it back to uncached which is what it is at power on 2579 */ 2580 mtrrdef = MTRR_TYPE_UC|MTRRDEF_FE|MTRRDEF_E; 2581 mtrr_sync(); 2582 } 2583 } 2584 2585 void 2586 get_system_configuration(void) 2587 { 2588 char prop[32]; 2589 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2590 2591 if (((BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop)) || 2592 (BOP_GETPROP(bootops, "nodes", prop) < 0) || 2593 (kobj_getvalue(prop, &nodes_ll) == -1) || 2594 (nodes_ll > MAXNODES)) || 2595 ((BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop)) || 2596 (BOP_GETPROP(bootops, "cpus_pernode", prop) < 0) || 2597 (kobj_getvalue(prop, &cpus_pernode_ll) == -1))) { 2598 2599 system_hardware.hd_nodes = 1; 2600 system_hardware.hd_cpus_per_node = 0; 2601 } else { 2602 system_hardware.hd_nodes = (int)nodes_ll; 2603 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2604 } 2605 if ((BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop)) || 2606 (BOP_GETPROP(bootops, "kernelbase", prop) < 0) || 2607 (kobj_getvalue(prop, &lvalue) == -1)) 2608 eprom_kernelbase = NULL; 2609 else 2610 eprom_kernelbase = (uintptr_t)lvalue; 2611 2612 if ((BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop)) || 2613 (BOP_GETPROP(bootops, "segmapsize", prop) < 0) || 2614 (kobj_getvalue(prop, &lvalue) == -1)) { 2615 segmapsize = SEGMAPDEFAULT; 2616 } else { 2617 segmapsize = (uintptr_t)lvalue; 2618 } 2619 2620 if ((BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop)) || 2621 (BOP_GETPROP(bootops, "segmapfreelists", prop) < 0) || 2622 (kobj_getvalue(prop, &lvalue) == -1)) { 2623 segmapfreelists = 0; /* use segmap driver default */ 2624 } else { 2625 segmapfreelists = (int)lvalue; 2626 } 2627 2628 if ((BOP_GETPROPLEN(bootops, "physmem") <= sizeof (prop)) && 2629 (BOP_GETPROP(bootops, "physmem", prop) >= 0) && 2630 (kobj_getvalue(prop, &lvalue) != -1)) { 2631 physmem = (uintptr_t)lvalue; 2632 } 2633 } 2634 2635 /* 2636 * Add to a memory list. 2637 * start = start of new memory segment 2638 * len = length of new memory segment in bytes 2639 * new = pointer to a new struct memlist 2640 * memlistp = memory list to which to add segment. 2641 */ 2642 static void 2643 memlist_add( 2644 uint64_t start, 2645 uint64_t len, 2646 struct memlist *new, 2647 struct memlist **memlistp) 2648 { 2649 struct memlist *cur; 2650 uint64_t end = start + len; 2651 2652 new->address = start; 2653 new->size = len; 2654 2655 cur = *memlistp; 2656 2657 while (cur) { 2658 if (cur->address >= end) { 2659 new->next = cur; 2660 *memlistp = new; 2661 new->prev = cur->prev; 2662 cur->prev = new; 2663 return; 2664 } 2665 ASSERT(cur->address + cur->size <= start); 2666 if (cur->next == NULL) { 2667 cur->next = new; 2668 new->prev = cur; 2669 new->next = NULL; 2670 return; 2671 } 2672 memlistp = &cur->next; 2673 cur = cur->next; 2674 } 2675 } 2676 2677 void 2678 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2679 { 2680 size_t tsize = e_modtext - modtext; 2681 size_t dsize = e_moddata - moddata; 2682 2683 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2684 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2685 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2686 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2687 } 2688 2689 caddr_t 2690 kobj_text_alloc(vmem_t *arena, size_t size) 2691 { 2692 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2693 } 2694 2695 /*ARGSUSED*/ 2696 caddr_t 2697 kobj_texthole_alloc(caddr_t addr, size_t size) 2698 { 2699 panic("unexpected call to kobj_texthole_alloc()"); 2700 /*NOTREACHED*/ 2701 return (0); 2702 } 2703 2704 /*ARGSUSED*/ 2705 void 2706 kobj_texthole_free(caddr_t addr, size_t size) 2707 { 2708 panic("unexpected call to kobj_texthole_free()"); 2709 } 2710 2711 /* 2712 * This is called just after configure() in startup(). 2713 * 2714 * The ISALIST concept is a bit hopeless on Intel, because 2715 * there's no guarantee of an ever-more-capable processor 2716 * given that various parts of the instruction set may appear 2717 * and disappear between different implementations. 2718 * 2719 * While it would be possible to correct it and even enhance 2720 * it somewhat, the explicit hardware capability bitmask allows 2721 * more flexibility. 2722 * 2723 * So, we just leave this alone. 2724 */ 2725 void 2726 setx86isalist(void) 2727 { 2728 char *tp; 2729 size_t len; 2730 extern char *isa_list; 2731 2732 #define TBUFSIZE 1024 2733 2734 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2735 *tp = '\0'; 2736 2737 #if defined(__amd64) 2738 (void) strcpy(tp, "amd64 "); 2739 #endif 2740 2741 switch (x86_vendor) { 2742 case X86_VENDOR_Intel: 2743 case X86_VENDOR_AMD: 2744 case X86_VENDOR_TM: 2745 if (x86_feature & X86_CMOV) { 2746 /* 2747 * Pentium Pro or later 2748 */ 2749 (void) strcat(tp, "pentium_pro"); 2750 (void) strcat(tp, x86_feature & X86_MMX ? 2751 "+mmx pentium_pro " : " "); 2752 } 2753 /*FALLTHROUGH*/ 2754 case X86_VENDOR_Cyrix: 2755 /* 2756 * The Cyrix 6x86 does not have any Pentium features 2757 * accessible while not at privilege level 0. 2758 */ 2759 if (x86_feature & X86_CPUID) { 2760 (void) strcat(tp, "pentium"); 2761 (void) strcat(tp, x86_feature & X86_MMX ? 2762 "+mmx pentium " : " "); 2763 } 2764 break; 2765 default: 2766 break; 2767 } 2768 (void) strcat(tp, "i486 i386 i86"); 2769 len = strlen(tp) + 1; /* account for NULL at end of string */ 2770 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2771 kmem_free(tp, TBUFSIZE); 2772 2773 #undef TBUFSIZE 2774 } 2775 2776 2777 #ifdef __amd64 2778 2779 void * 2780 device_arena_alloc(size_t size, int vm_flag) 2781 { 2782 return (vmem_alloc(device_arena, size, vm_flag)); 2783 } 2784 2785 void 2786 device_arena_free(void *vaddr, size_t size) 2787 { 2788 vmem_free(device_arena, vaddr, size); 2789 } 2790 2791 #else 2792 2793 void * 2794 device_arena_alloc(size_t size, int vm_flag) 2795 { 2796 caddr_t vaddr; 2797 uintptr_t v; 2798 size_t start; 2799 size_t end; 2800 2801 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2802 if (vaddr == NULL) 2803 return (NULL); 2804 2805 v = (uintptr_t)vaddr; 2806 ASSERT(v >= kernelbase); 2807 ASSERT(v + size <= ptable_va); 2808 2809 start = btop(v - kernelbase); 2810 end = btop(v + size - 1 - kernelbase); 2811 ASSERT(start < toxic_bit_map_len); 2812 ASSERT(end < toxic_bit_map_len); 2813 2814 while (start <= end) { 2815 BT_ATOMIC_SET(toxic_bit_map, start); 2816 ++start; 2817 } 2818 return (vaddr); 2819 } 2820 2821 void 2822 device_arena_free(void *vaddr, size_t size) 2823 { 2824 uintptr_t v = (uintptr_t)vaddr; 2825 size_t start; 2826 size_t end; 2827 2828 ASSERT(v >= kernelbase); 2829 ASSERT(v + size <= ptable_va); 2830 2831 start = btop(v - kernelbase); 2832 end = btop(v + size - 1 - kernelbase); 2833 ASSERT(start < toxic_bit_map_len); 2834 ASSERT(end < toxic_bit_map_len); 2835 2836 while (start <= end) { 2837 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2838 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2839 ++start; 2840 } 2841 vmem_free(heap_arena, vaddr, size); 2842 } 2843 2844 /* 2845 * returns 1st address in range that is in device arena, or NULL 2846 * if len is not NULL it returns the length of the toxic range 2847 */ 2848 void * 2849 device_arena_contains(void *vaddr, size_t size, size_t *len) 2850 { 2851 uintptr_t v = (uintptr_t)vaddr; 2852 uintptr_t eaddr = v + size; 2853 size_t start; 2854 size_t end; 2855 2856 /* 2857 * if called very early by kmdb, just return NULL 2858 */ 2859 if (toxic_bit_map == NULL) 2860 return (NULL); 2861 2862 /* 2863 * First check if we're completely outside the bitmap range. 2864 */ 2865 if (v >= ptable_va || eaddr < kernelbase) 2866 return (NULL); 2867 2868 /* 2869 * Trim ends of search to look at only what the bitmap covers. 2870 */ 2871 if (v < kernelbase) 2872 v = kernelbase; 2873 start = btop(v - kernelbase); 2874 end = btop(eaddr - kernelbase); 2875 if (end >= toxic_bit_map_len) 2876 end = toxic_bit_map_len; 2877 2878 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2879 return (NULL); 2880 2881 v = kernelbase + ptob(start); 2882 if (len != NULL) 2883 *len = ptob(end - start); 2884 return ((void *)v); 2885 } 2886 2887 #endif 2888