1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/t_lock.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/systm.h> 34 #include <sys/user.h> 35 #include <sys/mman.h> 36 #include <sys/vm.h> 37 #include <sys/conf.h> 38 #include <sys/avintr.h> 39 #include <sys/autoconf.h> 40 #include <sys/disp.h> 41 #include <sys/class.h> 42 #include <sys/bitmap.h> 43 44 #include <sys/privregs.h> 45 46 #include <sys/proc.h> 47 #include <sys/buf.h> 48 #include <sys/kmem.h> 49 #include <sys/mem.h> 50 #include <sys/kstat.h> 51 52 #include <sys/reboot.h> 53 54 #include <sys/cred.h> 55 #include <sys/vnode.h> 56 #include <sys/file.h> 57 58 #include <sys/procfs.h> 59 60 #include <sys/vfs.h> 61 #include <sys/cmn_err.h> 62 #include <sys/utsname.h> 63 #include <sys/debug.h> 64 #include <sys/kdi.h> 65 66 #include <sys/dumphdr.h> 67 #include <sys/bootconf.h> 68 #include <sys/varargs.h> 69 #include <sys/promif.h> 70 #include <sys/modctl.h> 71 72 #include <sys/sunddi.h> 73 #include <sys/sunndi.h> 74 #include <sys/ndi_impldefs.h> 75 #include <sys/ddidmareq.h> 76 #include <sys/psw.h> 77 #include <sys/regset.h> 78 #include <sys/clock.h> 79 #include <sys/pte.h> 80 #include <sys/tss.h> 81 #include <sys/stack.h> 82 #include <sys/trap.h> 83 #include <sys/fp.h> 84 #include <vm/kboot_mmu.h> 85 #include <vm/anon.h> 86 #include <vm/as.h> 87 #include <vm/page.h> 88 #include <vm/seg.h> 89 #include <vm/seg_dev.h> 90 #include <vm/seg_kmem.h> 91 #include <vm/seg_kpm.h> 92 #include <vm/seg_map.h> 93 #include <vm/seg_vn.h> 94 #include <vm/seg_kp.h> 95 #include <sys/memnode.h> 96 #include <vm/vm_dep.h> 97 #include <sys/thread.h> 98 #include <sys/sysconf.h> 99 #include <sys/vm_machparam.h> 100 #include <sys/archsystm.h> 101 #include <sys/machsystm.h> 102 #include <vm/hat.h> 103 #include <vm/hat_i86.h> 104 #include <sys/pmem.h> 105 #include <sys/smp_impldefs.h> 106 #include <sys/x86_archext.h> 107 #include <sys/cpuvar.h> 108 #include <sys/segments.h> 109 #include <sys/clconf.h> 110 #include <sys/kobj.h> 111 #include <sys/kobj_lex.h> 112 #include <sys/cpc_impl.h> 113 #include <sys/x86_archext.h> 114 #include <sys/cpu_module.h> 115 #include <sys/smbios.h> 116 #include <sys/debug_info.h> 117 #include <sys/bootinfo.h> 118 #include <sys/ddi_timer.h> 119 120 #ifdef __xpv 121 122 #include <sys/hypervisor.h> 123 #include <sys/xen_mmu.h> 124 #include <sys/evtchn_impl.h> 125 #include <sys/gnttab.h> 126 #include <sys/xpv_panic.h> 127 #include <xen/sys/xenbus_comms.h> 128 #include <xen/public/physdev.h> 129 130 extern void xen_late_startup(void); 131 132 struct xen_evt_data cpu0_evt_data; 133 134 #endif /* __xpv */ 135 136 extern void progressbar_init(void); 137 extern void progressbar_start(void); 138 extern void brand_init(void); 139 extern void pcf_init(void); 140 141 extern int size_pse_array(pgcnt_t, int); 142 143 /* 144 * XXX make declaration below "static" when drivers no longer use this 145 * interface. 146 */ 147 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 148 149 /* 150 * segkp 151 */ 152 extern int segkp_fromheap; 153 154 static void kvm_init(void); 155 static void startup_init(void); 156 static void startup_memlist(void); 157 static void startup_kmem(void); 158 static void startup_modules(void); 159 static void startup_vm(void); 160 static void startup_end(void); 161 static void layout_kernel_va(void); 162 163 /* 164 * Declare these as initialized data so we can patch them. 165 */ 166 #ifdef __i386 167 168 /* 169 * Due to virtual address space limitations running in 32 bit mode, restrict 170 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 171 * 172 * If the physical max memory size of 64g were allowed to be configured, the 173 * size of user virtual address space will be less than 1g. A limited user 174 * address space greatly reduces the range of applications that can run. 175 * 176 * If more physical memory than PHYSMEM is required, users should preferably 177 * run in 64 bit mode which has far looser virtual address space limitations. 178 * 179 * If 64 bit mode is not available (as in IA32) and/or more physical memory 180 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 181 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 182 * should also be carefully tuned to balance out the need of the user 183 * application while minimizing the risk of kernel heap exhaustion due to 184 * kernelbase being set too high. 185 */ 186 #define PHYSMEM 0x400000 187 188 #else /* __amd64 */ 189 190 /* 191 * For now we can handle memory with physical addresses up to about 192 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 193 * half the VA space for seg_kpm. When systems get bigger than 64TB this 194 * code will need revisiting. There is an implicit assumption that there 195 * are no *huge* holes in the physical address space too. 196 */ 197 #define TERABYTE (1ul << 40) 198 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 199 #define PHYSMEM PHYSMEM_MAX64 200 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 201 202 #endif /* __amd64 */ 203 204 pgcnt_t physmem = PHYSMEM; 205 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 206 207 char *kobj_file_buf; 208 int kobj_file_bufsize; /* set in /etc/system */ 209 210 /* Global variables for MP support. Used in mp_startup */ 211 caddr_t rm_platter_va; 212 uint32_t rm_platter_pa; 213 214 int auto_lpg_disable = 1; 215 216 /* 217 * Some CPUs have holes in the middle of the 64-bit virtual address range. 218 */ 219 uintptr_t hole_start, hole_end; 220 221 /* 222 * kpm mapping window 223 */ 224 caddr_t kpm_vbase; 225 size_t kpm_size; 226 static int kpm_desired; 227 #ifdef __amd64 228 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 229 #endif 230 231 /* 232 * Configuration parameters set at boot time. 233 */ 234 235 caddr_t econtig; /* end of first block of contiguous kernel */ 236 237 struct bootops *bootops = 0; /* passed in from boot */ 238 struct bootops **bootopsp; 239 struct boot_syscalls *sysp; /* passed in from boot */ 240 241 char bootblock_fstype[16]; 242 243 char kern_bootargs[OBP_MAXPATHLEN]; 244 245 /* 246 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 247 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 248 * zio buffers from their own segment, otherwise they are allocated from the 249 * heap. The optimization of allocating zio buffers from their own segment is 250 * only valid on 64-bit kernels. 251 */ 252 #if defined(__amd64) 253 int segzio_fromheap = 0; 254 #else 255 int segzio_fromheap = 1; 256 #endif 257 258 /* 259 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 260 * depends on number of BOP_ALLOC calls made and requested size, memory size 261 * combination and whether boot.bin memory needs to be freed. 262 */ 263 #define POSS_NEW_FRAGMENTS 12 264 265 /* 266 * VM data structures 267 */ 268 long page_hashsz; /* Size of page hash table (power of two) */ 269 struct page *pp_base; /* Base of initial system page struct array */ 270 struct page **page_hash; /* Page hash table */ 271 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 272 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 273 int pse_shift; /* log2(pse_table_size) */ 274 struct seg ktextseg; /* Segment used for kernel executable image */ 275 struct seg kvalloc; /* Segment used for "valloc" mapping */ 276 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 277 struct seg kmapseg; /* Segment used for generic kernel mappings */ 278 struct seg kdebugseg; /* Segment used for the kernel debugger */ 279 280 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 281 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 282 283 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 284 285 #if defined(__amd64) 286 struct seg kvseg_core; /* Segment used for the core heap */ 287 struct seg kpmseg; /* Segment used for physical mapping */ 288 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 289 #else 290 struct seg *segkpm = NULL; /* Unused on IA32 */ 291 #endif 292 293 caddr_t segkp_base; /* Base address of segkp */ 294 caddr_t segzio_base; /* Base address of segzio */ 295 #if defined(__amd64) 296 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 297 #else 298 pgcnt_t segkpsize = 0; 299 #endif 300 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 301 302 /* 303 * VA range available to the debugger 304 */ 305 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 306 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 307 308 struct memseg *memseg_base; 309 struct vnode unused_pages_vp; 310 311 #define FOURGB 0x100000000LL 312 313 struct memlist *memlist; 314 315 caddr_t s_text; /* start of kernel text segment */ 316 caddr_t e_text; /* end of kernel text segment */ 317 caddr_t s_data; /* start of kernel data segment */ 318 caddr_t e_data; /* end of kernel data segment */ 319 caddr_t modtext; /* start of loadable module text reserved */ 320 caddr_t e_modtext; /* end of loadable module text reserved */ 321 caddr_t moddata; /* start of loadable module data reserved */ 322 caddr_t e_moddata; /* end of loadable module data reserved */ 323 324 struct memlist *phys_install; /* Total installed physical memory */ 325 struct memlist *phys_avail; /* Total available physical memory */ 326 327 /* 328 * kphysm_init returns the number of pages that were processed 329 */ 330 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 331 332 #define IO_PROP_SIZE 64 /* device property size */ 333 334 /* 335 * a couple useful roundup macros 336 */ 337 #define ROUND_UP_PAGE(x) \ 338 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 339 #define ROUND_UP_LPAGE(x) \ 340 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 341 #define ROUND_UP_4MEG(x) \ 342 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 343 #define ROUND_UP_TOPLEVEL(x) \ 344 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 345 346 /* 347 * 32-bit Kernel's Virtual memory layout. 348 * +-----------------------+ 349 * | | 350 * 0xFFC00000 -|-----------------------|- ARGSBASE 351 * | debugger | 352 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 353 * | Kernel Data | 354 * 0xFEC00000 -|-----------------------| 355 * | Kernel Text | 356 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 357 * |--- GDT ---|- GDT page (GDT_VA) 358 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 359 * | | 360 * | page_t structures | 361 * | memsegs, memlists, | 362 * | page hash, etc. | 363 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 364 * | | (segkp is just an arena in the heap) 365 * | | 366 * | kvseg | 367 * | | 368 * | | 369 * --- -|-----------------------|- kernelheap (floating) 370 * | Segkmap | 371 * 0xC3002000 -|-----------------------|- segmap_start (floating) 372 * | Red Zone | 373 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 374 * | | || 375 * | Shared objects | \/ 376 * | | 377 * : : 378 * | user data | 379 * |-----------------------| 380 * | user text | 381 * 0x08048000 -|-----------------------| 382 * | user stack | 383 * : : 384 * | invalid | 385 * 0x00000000 +-----------------------+ 386 * 387 * 388 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 389 * +-----------------------+ 390 * | | 391 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 392 * | debugger (?) | 393 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 394 * | unused | 395 * +-----------------------+ 396 * | Kernel Data | 397 * 0xFFFFFFFF.FBC00000 |-----------------------| 398 * | Kernel Text | 399 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 400 * |--- GDT ---|- GDT page (GDT_VA) 401 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 402 * | | 403 * | Core heap | (used for loadable modules) 404 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 405 * | Kernel | 406 * | heap | 407 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 408 * | segmap | 409 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 410 * | device mappings | 411 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 412 * | segzio | 413 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 414 * | segkp | 415 * --- |-----------------------|- segkp_base (floating) 416 * | page_t structures | valloc_base + valloc_sz 417 * | memsegs, memlists, | 418 * | page hash, etc. | 419 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 420 * | segkpm | 421 * 0xFFFFFE00.00000000 |-----------------------| 422 * | Red Zone | 423 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 424 * | User stack |- User space memory 425 * | | 426 * | shared objects, etc | (grows downwards) 427 * : : 428 * | | 429 * 0xFFFF8000.00000000 |-----------------------| 430 * | | 431 * | VA Hole / unused | 432 * | | 433 * 0x00008000.00000000 |-----------------------| 434 * | | 435 * | | 436 * : : 437 * | user heap | (grows upwards) 438 * | | 439 * | user data | 440 * |-----------------------| 441 * | user text | 442 * 0x00000000.04000000 |-----------------------| 443 * | invalid | 444 * 0x00000000.00000000 +-----------------------+ 445 * 446 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 447 * kernel, except that userlimit is raised to 0xfe000000 448 * 449 * Floating values: 450 * 451 * valloc_base: start of the kernel's memory management/tracking data 452 * structures. This region contains page_t structures for 453 * physical memory, memsegs, memlists, and the page hash. 454 * 455 * core_base: start of the kernel's "core" heap area on 64-bit systems. 456 * This area is intended to be used for global data as well as for module 457 * text/data that does not fit into the nucleus pages. The core heap is 458 * restricted to a 2GB range, allowing every address within it to be 459 * accessed using rip-relative addressing 460 * 461 * ekernelheap: end of kernelheap and start of segmap. 462 * 463 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 464 * above a red zone that separates the user's address space from the 465 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 466 * 467 * segmap_start: start of segmap. The length of segmap can be modified 468 * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated). 469 * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems. 470 * 471 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 472 * decreased by 2X the size required for page_t. This allows the kernel 473 * heap to grow in size with physical memory. With sizeof(page_t) == 80 474 * bytes, the following shows the values of kernelbase and kernel heap 475 * sizes for different memory configurations (assuming default segmap and 476 * segkp sizes). 477 * 478 * mem size for kernelbase kernel heap 479 * size page_t's size 480 * ---- --------- ---------- ----------- 481 * 1gb 0x01400000 0xd1800000 684MB 482 * 2gb 0x02800000 0xcf000000 704MB 483 * 4gb 0x05000000 0xca000000 744MB 484 * 6gb 0x07800000 0xc5000000 784MB 485 * 8gb 0x0a000000 0xc0000000 824MB 486 * 16gb 0x14000000 0xac000000 984MB 487 * 32gb 0x28000000 0x84000000 1304MB 488 * 64gb 0x50000000 0x34000000 1944MB (*) 489 * 490 * kernelbase is less than the abi minimum of 0xc0000000 for memory 491 * configurations above 8gb. 492 * 493 * (*) support for memory configurations above 32gb will require manual tuning 494 * of kernelbase to balance out the need of user applications. 495 */ 496 497 /* real-time-clock initialization parameters */ 498 extern time_t process_rtc_config_file(void); 499 500 uintptr_t kernelbase; 501 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 502 uintptr_t eprom_kernelbase; 503 size_t segmapsize; 504 uintptr_t segmap_start; 505 int segmapfreelists; 506 pgcnt_t npages; 507 pgcnt_t orig_npages; 508 size_t core_size; /* size of "core" heap */ 509 uintptr_t core_base; /* base address of "core" heap */ 510 511 /* 512 * List of bootstrap pages. We mark these as allocated in startup. 513 * release_bootstrap() will free them when we're completely done with 514 * the bootstrap. 515 */ 516 static page_t *bootpages; 517 518 /* 519 * boot time pages that have a vnode from the ramdisk will keep that forever. 520 */ 521 static page_t *rd_pages; 522 523 struct system_hardware system_hardware; 524 525 /* 526 * Is this Solaris instance running in a fully virtualized xVM domain? 527 */ 528 int xpv_is_hvm = 0; 529 530 /* 531 * Enable some debugging messages concerning memory usage... 532 */ 533 static void 534 print_memlist(char *title, struct memlist *mp) 535 { 536 prom_printf("MEMLIST: %s:\n", title); 537 while (mp != NULL) { 538 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 539 mp->address, mp->size); 540 mp = mp->next; 541 } 542 } 543 544 /* 545 * XX64 need a comment here.. are these just default values, surely 546 * we read the "cpuid" type information to figure this out. 547 */ 548 int l2cache_sz = 0x80000; 549 int l2cache_linesz = 0x40; 550 int l2cache_assoc = 1; 551 552 static size_t textrepl_min_gb = 10; 553 554 /* 555 * on 64 bit we use a predifined VA range for mapping devices in the kernel 556 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 557 */ 558 #ifdef __amd64 559 560 vmem_t *device_arena; 561 uintptr_t toxic_addr = (uintptr_t)NULL; 562 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 563 564 #else /* __i386 */ 565 566 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 567 size_t toxic_bit_map_len = 0; /* in bits */ 568 569 #endif /* __i386 */ 570 571 /* 572 * Simple boot time debug facilities 573 */ 574 static char *prm_dbg_str[] = { 575 "%s:%d: '%s' is 0x%x\n", 576 "%s:%d: '%s' is 0x%llx\n" 577 }; 578 579 int prom_debug; 580 581 #define PRM_DEBUG(q) if (prom_debug) \ 582 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 583 #define PRM_POINT(q) if (prom_debug) \ 584 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 585 586 /* 587 * This structure is used to keep track of the intial allocations 588 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 589 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 590 */ 591 #define NUM_ALLOCATIONS 7 592 int num_allocations = 0; 593 struct { 594 void **al_ptr; 595 size_t al_size; 596 } allocations[NUM_ALLOCATIONS]; 597 size_t valloc_sz = 0; 598 uintptr_t valloc_base; 599 600 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 601 size = ROUND_UP_PAGE(size); \ 602 if (num_allocations == NUM_ALLOCATIONS) \ 603 panic("too many ADD_TO_ALLOCATIONS()"); \ 604 allocations[num_allocations].al_ptr = (void**)&ptr; \ 605 allocations[num_allocations].al_size = size; \ 606 valloc_sz += size; \ 607 ++num_allocations; \ 608 } 609 610 /* 611 * Allocate all the initial memory needed by the page allocator. 612 */ 613 static void 614 perform_allocations(void) 615 { 616 caddr_t mem; 617 int i; 618 int valloc_align; 619 620 PRM_DEBUG(valloc_base); 621 PRM_DEBUG(valloc_sz); 622 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 623 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 624 if (mem != (caddr_t)valloc_base) 625 panic("BOP_ALLOC() failed"); 626 bzero(mem, valloc_sz); 627 for (i = 0; i < num_allocations; ++i) { 628 *allocations[i].al_ptr = (void *)mem; 629 mem += allocations[i].al_size; 630 } 631 } 632 633 /* 634 * Our world looks like this at startup time. 635 * 636 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 637 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 638 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 639 * addresses are fixed in the binary at link time. 640 * 641 * On the text page: 642 * unix/genunix/krtld/module text loads. 643 * 644 * On the data page: 645 * unix/genunix/krtld/module data loads. 646 * 647 * Machine-dependent startup code 648 */ 649 void 650 startup(void) 651 { 652 #if !defined(__xpv) 653 extern void startup_bios_disk(void); 654 extern void startup_pci_bios(void); 655 #endif 656 extern cpuset_t cpu_ready_set; 657 658 /* 659 * Make sure that nobody tries to use sekpm until we have 660 * initialized it properly. 661 */ 662 #if defined(__amd64) 663 kpm_desired = 1; 664 #endif 665 kpm_enable = 0; 666 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 667 668 #if defined(__xpv) /* XXPV fix me! */ 669 { 670 extern int segvn_use_regions; 671 segvn_use_regions = 0; 672 } 673 #endif 674 progressbar_init(); 675 startup_init(); 676 #if defined(__xpv) 677 startup_xen_version(); 678 #endif 679 startup_memlist(); 680 startup_kmem(); 681 startup_vm(); 682 #if !defined(__xpv) 683 startup_pci_bios(); 684 #endif 685 startup_modules(); 686 #if !defined(__xpv) 687 startup_bios_disk(); 688 #endif 689 startup_end(); 690 progressbar_start(); 691 } 692 693 static void 694 startup_init() 695 { 696 PRM_POINT("startup_init() starting..."); 697 698 /* 699 * Complete the extraction of cpuid data 700 */ 701 cpuid_pass2(CPU); 702 703 (void) check_boot_version(BOP_GETVERSION(bootops)); 704 705 /* 706 * Check for prom_debug in boot environment 707 */ 708 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 709 ++prom_debug; 710 PRM_POINT("prom_debug found in boot enviroment"); 711 } 712 713 /* 714 * Collect node, cpu and memory configuration information. 715 */ 716 get_system_configuration(); 717 718 /* 719 * Halt if this is an unsupported processor. 720 */ 721 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 722 printf("\n486 processor (\"%s\") detected.\n", 723 CPU->cpu_brandstr); 724 halt("This processor is not supported by this release " 725 "of Solaris."); 726 } 727 728 PRM_POINT("startup_init() done"); 729 } 730 731 /* 732 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 733 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 734 * also filters out physical page zero. There is some reliance on the 735 * boot loader allocating only a few contiguous physical memory chunks. 736 */ 737 static void 738 avail_filter(uint64_t *addr, uint64_t *size) 739 { 740 uintptr_t va; 741 uintptr_t next_va; 742 pfn_t pfn; 743 uint64_t pfn_addr; 744 uint64_t pfn_eaddr; 745 uint_t prot; 746 size_t len; 747 uint_t change; 748 749 if (prom_debug) 750 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 751 *addr, *size); 752 753 /* 754 * page zero is required for BIOS.. never make it available 755 */ 756 if (*addr == 0) { 757 *addr += MMU_PAGESIZE; 758 *size -= MMU_PAGESIZE; 759 } 760 761 /* 762 * First we trim from the front of the range. Since kbm_probe() 763 * walks ranges in virtual order, but addr/size are physical, we need 764 * to the list until no changes are seen. This deals with the case 765 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 766 * but w < v. 767 */ 768 do { 769 change = 0; 770 for (va = KERNEL_TEXT; 771 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 772 va = next_va) { 773 774 next_va = va + len; 775 pfn_addr = pfn_to_pa(pfn); 776 pfn_eaddr = pfn_addr + len; 777 778 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 779 change = 1; 780 while (*size > 0 && len > 0) { 781 *addr += MMU_PAGESIZE; 782 *size -= MMU_PAGESIZE; 783 len -= MMU_PAGESIZE; 784 } 785 } 786 } 787 if (change && prom_debug) 788 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 789 *addr, *size); 790 } while (change); 791 792 /* 793 * Trim pages from the end of the range. 794 */ 795 for (va = KERNEL_TEXT; 796 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 797 va = next_va) { 798 799 next_va = va + len; 800 pfn_addr = pfn_to_pa(pfn); 801 802 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 803 *size = pfn_addr - *addr; 804 } 805 806 if (prom_debug) 807 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 808 *addr, *size); 809 } 810 811 static void 812 kpm_init() 813 { 814 struct segkpm_crargs b; 815 816 /* 817 * These variables were all designed for sfmmu in which segkpm is 818 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 819 * might use 2+ page sizes on a single machine, so none of these 820 * variables have a single correct value. They are set up as if we 821 * always use a 4KB pagesize, which should do no harm. In the long 822 * run, we should get rid of KPM's assumption that only a single 823 * pagesize is used. 824 */ 825 kpm_pgshft = MMU_PAGESHIFT; 826 kpm_pgsz = MMU_PAGESIZE; 827 kpm_pgoff = MMU_PAGEOFFSET; 828 kpmp2pshft = 0; 829 kpmpnpgs = 1; 830 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 831 832 PRM_POINT("about to create segkpm"); 833 rw_enter(&kas.a_lock, RW_WRITER); 834 835 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 836 panic("cannot attach segkpm"); 837 838 b.prot = PROT_READ | PROT_WRITE; 839 b.nvcolors = 1; 840 841 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 842 panic("segkpm_create segkpm"); 843 844 rw_exit(&kas.a_lock); 845 } 846 847 /* 848 * The debug info page provides enough information to allow external 849 * inspectors (e.g. when running under a hypervisor) to bootstrap 850 * themselves into allowing full-blown kernel debugging. 851 */ 852 static void 853 init_debug_info(void) 854 { 855 caddr_t mem; 856 debug_info_t *di; 857 858 #ifndef __lint 859 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 860 #endif 861 862 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 863 MMU_PAGESIZE); 864 865 if (mem != (caddr_t)DEBUG_INFO_VA) 866 panic("BOP_ALLOC() failed"); 867 bzero(mem, MMU_PAGESIZE); 868 869 di = (debug_info_t *)mem; 870 871 di->di_magic = DEBUG_INFO_MAGIC; 872 di->di_version = DEBUG_INFO_VERSION; 873 di->di_modules = (uintptr_t)&modules; 874 di->di_s_text = (uintptr_t)s_text; 875 di->di_e_text = (uintptr_t)e_text; 876 di->di_s_data = (uintptr_t)s_data; 877 di->di_e_data = (uintptr_t)e_data; 878 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 879 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 880 } 881 882 /* 883 * Build the memlists and other kernel essential memory system data structures. 884 * This is everything at valloc_base. 885 */ 886 static void 887 startup_memlist(void) 888 { 889 size_t memlist_sz; 890 size_t memseg_sz; 891 size_t pagehash_sz; 892 size_t pp_sz; 893 uintptr_t va; 894 size_t len; 895 uint_t prot; 896 pfn_t pfn; 897 int memblocks; 898 caddr_t pagecolor_mem; 899 size_t pagecolor_memsz; 900 caddr_t page_ctrs_mem; 901 size_t page_ctrs_size; 902 size_t pse_table_alloc_size; 903 struct memlist *current; 904 extern void startup_build_mem_nodes(struct memlist *); 905 906 /* XX64 fix these - they should be in include files */ 907 extern size_t page_coloring_init(uint_t, int, int); 908 extern void page_coloring_setup(caddr_t); 909 910 PRM_POINT("startup_memlist() starting..."); 911 912 /* 913 * Use leftover large page nucleus text/data space for loadable modules. 914 * Use at most MODTEXT/MODDATA. 915 */ 916 len = kbm_nucleus_size; 917 ASSERT(len > MMU_PAGESIZE); 918 919 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 920 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 921 if (e_moddata - moddata > MODDATA) 922 e_moddata = moddata + MODDATA; 923 924 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 925 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 926 if (e_modtext - modtext > MODTEXT) 927 e_modtext = modtext + MODTEXT; 928 929 econtig = e_moddata; 930 931 PRM_DEBUG(modtext); 932 PRM_DEBUG(e_modtext); 933 PRM_DEBUG(moddata); 934 PRM_DEBUG(e_moddata); 935 PRM_DEBUG(econtig); 936 937 /* 938 * Examine the boot loader physical memory map to find out: 939 * - total memory in system - physinstalled 940 * - the max physical address - physmax 941 * - the number of discontiguous segments of memory. 942 */ 943 if (prom_debug) 944 print_memlist("boot physinstalled", 945 bootops->boot_mem->physinstalled); 946 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 947 &physinstalled, &memblocks); 948 PRM_DEBUG(physmax); 949 PRM_DEBUG(physinstalled); 950 PRM_DEBUG(memblocks); 951 952 /* 953 * Initialize hat's mmu parameters. 954 * Check for enforce-prot-exec in boot environment. It's used to 955 * enable/disable support for the page table entry NX bit. 956 * The default is to enforce PROT_EXEC on processors that support NX. 957 * Boot seems to round up the "len", but 8 seems to be big enough. 958 */ 959 mmu_init(); 960 961 #ifdef __i386 962 /* 963 * physmax is lowered if there is more memory than can be 964 * physically addressed in 32 bit (PAE/non-PAE) modes. 965 */ 966 if (mmu.pae_hat) { 967 if (PFN_ABOVE64G(physmax)) { 968 physinstalled -= (physmax - (PFN_64G - 1)); 969 physmax = PFN_64G - 1; 970 } 971 } else { 972 if (PFN_ABOVE4G(physmax)) { 973 physinstalled -= (physmax - (PFN_4G - 1)); 974 physmax = PFN_4G - 1; 975 } 976 } 977 #endif 978 979 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 980 981 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 982 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 983 char value[8]; 984 985 if (len < 8) 986 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 987 else 988 (void) strcpy(value, ""); 989 if (strcmp(value, "off") == 0) 990 mmu.pt_nx = 0; 991 } 992 PRM_DEBUG(mmu.pt_nx); 993 994 /* 995 * We will need page_t's for every page in the system, except for 996 * memory mapped at or above above the start of the kernel text segment. 997 * 998 * pages above e_modtext are attributed to kernel debugger (obp_pages) 999 */ 1000 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1001 obp_pages = 0; 1002 va = KERNEL_TEXT; 1003 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1004 npages -= len >> MMU_PAGESHIFT; 1005 if (va >= (uintptr_t)e_moddata) 1006 obp_pages += len >> MMU_PAGESHIFT; 1007 va += len; 1008 } 1009 PRM_DEBUG(npages); 1010 PRM_DEBUG(obp_pages); 1011 1012 /* 1013 * If physmem is patched to be non-zero, use it instead of the computed 1014 * value unless it is larger than the actual amount of memory on hand. 1015 */ 1016 if (physmem == 0 || physmem > npages) { 1017 physmem = npages; 1018 } else if (physmem < npages) { 1019 orig_npages = npages; 1020 npages = physmem; 1021 } 1022 PRM_DEBUG(physmem); 1023 1024 /* 1025 * We now compute the sizes of all the initial allocations for 1026 * structures the kernel needs in order do kmem_alloc(). These 1027 * include: 1028 * memsegs 1029 * memlists 1030 * page hash table 1031 * page_t's 1032 * page coloring data structs 1033 */ 1034 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1035 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1036 PRM_DEBUG(memseg_sz); 1037 1038 /* 1039 * Reserve space for memlists. There's no real good way to know exactly 1040 * how much room we'll need, but this should be a good upper bound. 1041 */ 1042 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1043 (memblocks + POSS_NEW_FRAGMENTS)); 1044 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1045 PRM_DEBUG(memlist_sz); 1046 1047 /* 1048 * The page structure hash table size is a power of 2 1049 * such that the average hash chain length is PAGE_HASHAVELEN. 1050 */ 1051 page_hashsz = npages / PAGE_HASHAVELEN; 1052 page_hashsz = 1 << highbit(page_hashsz); 1053 pagehash_sz = sizeof (struct page *) * page_hashsz; 1054 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1055 PRM_DEBUG(pagehash_sz); 1056 1057 /* 1058 * Set aside room for the page structures themselves. 1059 */ 1060 PRM_DEBUG(npages); 1061 pp_sz = sizeof (struct page) * npages; 1062 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1063 PRM_DEBUG(pp_sz); 1064 1065 /* 1066 * determine l2 cache info and memory size for page coloring 1067 */ 1068 (void) getl2cacheinfo(CPU, 1069 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1070 pagecolor_memsz = 1071 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1072 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1073 PRM_DEBUG(pagecolor_memsz); 1074 1075 page_ctrs_size = page_ctrs_sz(); 1076 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1077 PRM_DEBUG(page_ctrs_size); 1078 1079 /* 1080 * Allocate the array that protects pp->p_selock. 1081 */ 1082 pse_shift = size_pse_array(physmem, max_ncpus); 1083 pse_table_size = 1 << pse_shift; 1084 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1085 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1086 1087 #if defined(__amd64) 1088 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1089 valloc_base = VALLOC_BASE; 1090 1091 /* 1092 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1093 * for values of physmax up to 1 Terabyte. They need adjusting when 1094 * memory is at addresses above 1 TB. 1095 */ 1096 if (physmax + 1 > mmu_btop(TERABYTE)) { 1097 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1098 1099 /* Round to largest possible pagesize for now */ 1100 kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1101 1102 segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */ 1103 1104 /* make sure we leave some space for user apps above hole */ 1105 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1106 if (segkpm_base > SEGKPM_BASE) 1107 segkpm_base = SEGKPM_BASE; 1108 PRM_DEBUG(segkpm_base); 1109 1110 valloc_base = segkpm_base + kpm_resv_amount; 1111 PRM_DEBUG(valloc_base); 1112 } 1113 #else /* __i386 */ 1114 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1115 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1116 PRM_DEBUG(valloc_base); 1117 #endif /* __i386 */ 1118 1119 /* 1120 * do all the initial allocations 1121 */ 1122 perform_allocations(); 1123 1124 /* 1125 * Build phys_install and phys_avail in kernel memspace. 1126 * - phys_install should be all memory in the system. 1127 * - phys_avail is phys_install minus any memory mapped before this 1128 * point above KERNEL_TEXT. 1129 */ 1130 current = phys_install = memlist; 1131 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1132 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1133 panic("physinstalled was too big!"); 1134 if (prom_debug) 1135 print_memlist("phys_install", phys_install); 1136 1137 phys_avail = current; 1138 PRM_POINT("Building phys_avail:\n"); 1139 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1140 avail_filter); 1141 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1142 panic("physavail was too big!"); 1143 if (prom_debug) 1144 print_memlist("phys_avail", phys_avail); 1145 1146 /* 1147 * setup page coloring 1148 */ 1149 page_coloring_setup(pagecolor_mem); 1150 page_lock_init(); /* currently a no-op */ 1151 1152 /* 1153 * free page list counters 1154 */ 1155 (void) page_ctrs_alloc(page_ctrs_mem); 1156 1157 /* 1158 * Size the pcf array based on the number of cpus in the box at 1159 * boot time. 1160 */ 1161 1162 pcf_init(); 1163 1164 /* 1165 * Initialize the page structures from the memory lists. 1166 */ 1167 availrmem_initial = availrmem = freemem = 0; 1168 PRM_POINT("Calling kphysm_init()..."); 1169 npages = kphysm_init(pp_base, npages); 1170 PRM_POINT("kphysm_init() done"); 1171 PRM_DEBUG(npages); 1172 1173 init_debug_info(); 1174 1175 /* 1176 * Now that page_t's have been initialized, remove all the 1177 * initial allocation pages from the kernel free page lists. 1178 */ 1179 boot_mapin((caddr_t)valloc_base, valloc_sz); 1180 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1181 PRM_POINT("startup_memlist() done"); 1182 1183 PRM_DEBUG(valloc_sz); 1184 1185 #if defined(__amd64) 1186 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1187 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1188 extern size_t textrepl_size_thresh; 1189 textrepl_size_thresh = (16 << 20) - 1; 1190 } 1191 #endif 1192 } 1193 1194 /* 1195 * Layout the kernel's part of address space and initialize kmem allocator. 1196 */ 1197 static void 1198 startup_kmem(void) 1199 { 1200 extern void page_set_colorequiv_arr(void); 1201 1202 PRM_POINT("startup_kmem() starting..."); 1203 1204 #if defined(__amd64) 1205 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1206 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1207 "systems."); 1208 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1209 core_base = (uintptr_t)COREHEAP_BASE; 1210 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1211 #else /* __i386 */ 1212 /* 1213 * We configure kernelbase based on: 1214 * 1215 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1216 * KERNELBASE_MAX. we large page align eprom_kernelbase 1217 * 1218 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1219 * On large memory systems we must lower kernelbase to allow 1220 * enough room for page_t's for all of memory. 1221 * 1222 * The value set here, might be changed a little later. 1223 */ 1224 if (eprom_kernelbase) { 1225 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1226 if (kernelbase > KERNELBASE_MAX) 1227 kernelbase = KERNELBASE_MAX; 1228 } else { 1229 kernelbase = (uintptr_t)KERNELBASE; 1230 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1231 } 1232 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1233 core_base = valloc_base; 1234 core_size = 0; 1235 #endif /* __i386 */ 1236 1237 PRM_DEBUG(core_base); 1238 PRM_DEBUG(core_size); 1239 PRM_DEBUG(kernelbase); 1240 1241 #if defined(__i386) 1242 segkp_fromheap = 1; 1243 #endif /* __i386 */ 1244 1245 ekernelheap = (char *)core_base; 1246 PRM_DEBUG(ekernelheap); 1247 1248 /* 1249 * Now that we know the real value of kernelbase, 1250 * update variables that were initialized with a value of 1251 * KERNELBASE (in common/conf/param.c). 1252 * 1253 * XXX The problem with this sort of hackery is that the 1254 * compiler just may feel like putting the const declarations 1255 * (in param.c) into the .text section. Perhaps they should 1256 * just be declared as variables there? 1257 */ 1258 1259 *(uintptr_t *)&_kernelbase = kernelbase; 1260 *(uintptr_t *)&_userlimit = kernelbase; 1261 #if defined(__amd64) 1262 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1263 #else 1264 *(uintptr_t *)&_userlimit32 = _userlimit; 1265 #endif 1266 PRM_DEBUG(_kernelbase); 1267 PRM_DEBUG(_userlimit); 1268 PRM_DEBUG(_userlimit32); 1269 1270 layout_kernel_va(); 1271 1272 #if defined(__i386) 1273 /* 1274 * If segmap is too large we can push the bottom of the kernel heap 1275 * higher than the base. Or worse, it could exceed the top of the 1276 * VA space entirely, causing it to wrap around. 1277 */ 1278 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1279 panic("too little address space available for kernelheap," 1280 " use eeprom for lower kernelbase or smaller segmapsize"); 1281 #endif /* __i386 */ 1282 1283 /* 1284 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1285 */ 1286 kernelheap_init(kernelheap, ekernelheap, 1287 kernelheap + MMU_PAGESIZE, 1288 (void *)core_base, (void *)(core_base + core_size)); 1289 1290 #if defined(__xpv) 1291 /* 1292 * Link pending events struct into cpu struct 1293 */ 1294 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1295 #endif 1296 /* 1297 * Initialize kernel memory allocator. 1298 */ 1299 kmem_init(); 1300 1301 /* 1302 * Factor in colorequiv to check additional 'equivalent' bins 1303 */ 1304 page_set_colorequiv_arr(); 1305 1306 /* 1307 * print this out early so that we know what's going on 1308 */ 1309 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1310 1311 /* 1312 * Initialize bp_mapin(). 1313 */ 1314 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1315 1316 /* 1317 * orig_npages is non-zero if physmem has been configured for less 1318 * than the available memory. 1319 */ 1320 if (orig_npages) { 1321 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1322 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1323 npages, orig_npages); 1324 } 1325 #if defined(__i386) 1326 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1327 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1328 "System using 0x%lx", 1329 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1330 #endif 1331 1332 #ifdef KERNELBASE_ABI_MIN 1333 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1334 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1335 "i386 ABI compliant.", (uintptr_t)kernelbase); 1336 } 1337 #endif 1338 1339 #ifdef __xpv 1340 /* 1341 * Some of the xen start information has to be relocated up 1342 * into the kernel's permanent address space. 1343 */ 1344 PRM_POINT("calling xen_relocate_start_info()"); 1345 xen_relocate_start_info(); 1346 PRM_POINT("xen_relocate_start_info() done"); 1347 1348 /* 1349 * (Update the vcpu pointer in our cpu structure to point into 1350 * the relocated shared info.) 1351 */ 1352 CPU->cpu_m.mcpu_vcpu_info = 1353 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1354 #endif 1355 1356 PRM_POINT("startup_kmem() done"); 1357 } 1358 1359 #ifndef __xpv 1360 /* 1361 * If we have detected that we are running in an HVM environment, we need 1362 * to prepend the PV driver directory to the module search path. 1363 */ 1364 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1365 static void 1366 update_default_path() 1367 { 1368 char *current, *newpath; 1369 int newlen; 1370 1371 /* 1372 * We are about to resync with krtld. krtld will reset its 1373 * internal module search path iff Solaris has set default_path. 1374 * We want to be sure we're prepending this new directory to the 1375 * right search path. 1376 */ 1377 current = (default_path == NULL) ? kobj_module_path : default_path; 1378 1379 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 1; 1380 newpath = kmem_alloc(newlen, KM_SLEEP); 1381 (void) strcpy(newpath, HVM_MOD_DIR); 1382 (void) strcat(newpath, " "); 1383 (void) strcat(newpath, current); 1384 1385 default_path = newpath; 1386 } 1387 #endif 1388 1389 static void 1390 startup_modules(void) 1391 { 1392 unsigned int i; 1393 extern void prom_setup(void); 1394 1395 PRM_POINT("startup_modules() starting..."); 1396 1397 #ifndef __xpv 1398 /* 1399 * Initialize ten-micro second timer so that drivers will 1400 * not get short changed in their init phase. This was 1401 * not getting called until clkinit which, on fast cpu's 1402 * caused the drv_usecwait to be way too short. 1403 */ 1404 microfind(); 1405 1406 if (xpv_is_hvm) 1407 update_default_path(); 1408 #endif 1409 1410 /* 1411 * Read the GMT lag from /etc/rtc_config. 1412 */ 1413 sgmtl(process_rtc_config_file()); 1414 1415 /* 1416 * Calculate default settings of system parameters based upon 1417 * maxusers, yet allow to be overridden via the /etc/system file. 1418 */ 1419 param_calc(0); 1420 1421 mod_setup(); 1422 1423 /* 1424 * Initialize system parameters. 1425 */ 1426 param_init(); 1427 1428 /* 1429 * Initialize the default brands 1430 */ 1431 brand_init(); 1432 1433 /* 1434 * maxmem is the amount of physical memory we're playing with. 1435 */ 1436 maxmem = physmem; 1437 1438 /* 1439 * Initialize segment management stuff. 1440 */ 1441 seg_init(); 1442 1443 if (modload("fs", "specfs") == -1) 1444 halt("Can't load specfs"); 1445 1446 if (modload("fs", "devfs") == -1) 1447 halt("Can't load devfs"); 1448 1449 if (modload("fs", "dev") == -1) 1450 halt("Can't load dev"); 1451 1452 (void) modloadonly("sys", "lbl_edition"); 1453 1454 dispinit(); 1455 1456 /* 1457 * This is needed here to initialize hw_serial[] for cluster booting. 1458 */ 1459 if ((i = modload("misc", "sysinit")) != (unsigned int)-1) 1460 (void) modunload(i); 1461 else 1462 cmn_err(CE_CONT, "sysinit load failed"); 1463 1464 /* Read cluster configuration data. */ 1465 clconf_init(); 1466 1467 #if defined(__xpv) 1468 ec_init(); 1469 gnttab_init(); 1470 (void) xs_early_init(); 1471 #endif /* __xpv */ 1472 1473 /* 1474 * Create a kernel device tree. First, create rootnex and 1475 * then invoke bus specific code to probe devices. 1476 */ 1477 setup_ddi(); 1478 1479 #ifndef __xpv 1480 { 1481 /* 1482 * Set up the CPU module subsystem. Modifies the device tree, 1483 * so it must be done after setup_ddi(). 1484 */ 1485 1486 cmi_hdl_t hdl; 1487 1488 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1489 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) { 1490 if (x86_feature & X86_MCA) 1491 cmi_mca_init(hdl); 1492 } 1493 } 1494 #endif /* __xpv */ 1495 1496 /* 1497 * Fake a prom tree such that /dev/openprom continues to work 1498 */ 1499 PRM_POINT("startup_modules: calling prom_setup..."); 1500 prom_setup(); 1501 PRM_POINT("startup_modules: done"); 1502 1503 /* 1504 * Load all platform specific modules 1505 */ 1506 PRM_POINT("startup_modules: calling psm_modload..."); 1507 psm_modload(); 1508 1509 PRM_POINT("startup_modules() done"); 1510 } 1511 1512 /* 1513 * claim a "setaside" boot page for use in the kernel 1514 */ 1515 page_t * 1516 boot_claim_page(pfn_t pfn) 1517 { 1518 page_t *pp; 1519 1520 pp = page_numtopp_nolock(pfn); 1521 ASSERT(pp != NULL); 1522 1523 if (PP_ISBOOTPAGES(pp)) { 1524 if (pp->p_next != NULL) 1525 pp->p_next->p_prev = pp->p_prev; 1526 if (pp->p_prev == NULL) 1527 bootpages = pp->p_next; 1528 else 1529 pp->p_prev->p_next = pp->p_next; 1530 } else { 1531 /* 1532 * htable_attach() expects a base pagesize page 1533 */ 1534 if (pp->p_szc != 0) 1535 page_boot_demote(pp); 1536 pp = page_numtopp(pfn, SE_EXCL); 1537 } 1538 return (pp); 1539 } 1540 1541 /* 1542 * Walk through the pagetables looking for pages mapped in by boot. If the 1543 * setaside flag is set the pages are expected to be returned to the 1544 * kernel later in boot, so we add them to the bootpages list. 1545 */ 1546 static void 1547 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1548 { 1549 uintptr_t va = low; 1550 size_t len; 1551 uint_t prot; 1552 pfn_t pfn; 1553 page_t *pp; 1554 pgcnt_t boot_protect_cnt = 0; 1555 1556 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1557 if (va + len >= high) 1558 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1559 "legal range.", len, (void *)va); 1560 1561 while (len > 0) { 1562 pp = page_numtopp_alloc(pfn); 1563 if (pp != NULL) { 1564 if (setaside == 0) 1565 panic("Unexpected mapping by boot. " 1566 "addr=%p pfn=%lx\n", 1567 (void *)va, pfn); 1568 1569 pp->p_next = bootpages; 1570 pp->p_prev = NULL; 1571 PP_SETBOOTPAGES(pp); 1572 if (bootpages != NULL) { 1573 bootpages->p_prev = pp; 1574 } 1575 bootpages = pp; 1576 ++boot_protect_cnt; 1577 } 1578 1579 ++pfn; 1580 len -= MMU_PAGESIZE; 1581 va += MMU_PAGESIZE; 1582 } 1583 } 1584 PRM_DEBUG(boot_protect_cnt); 1585 } 1586 1587 /* 1588 * 1589 */ 1590 static void 1591 layout_kernel_va(void) 1592 { 1593 PRM_POINT("layout_kernel_va() starting..."); 1594 /* 1595 * Establish the final size of the kernel's heap, size of segmap, 1596 * segkp, etc. 1597 */ 1598 1599 #if defined(__amd64) 1600 1601 kpm_vbase = (caddr_t)segkpm_base; 1602 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1603 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1604 panic("not enough room for kpm!"); 1605 PRM_DEBUG(kpm_size); 1606 PRM_DEBUG(kpm_vbase); 1607 1608 /* 1609 * By default we create a seg_kp in 64 bit kernels, it's a little 1610 * faster to access than embedding it in the heap. 1611 */ 1612 segkp_base = (caddr_t)valloc_base + valloc_sz; 1613 if (!segkp_fromheap) { 1614 size_t sz = mmu_ptob(segkpsize); 1615 1616 /* 1617 * determine size of segkp 1618 */ 1619 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1620 sz = SEGKPDEFSIZE; 1621 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1622 "segkpsize has been reset to %ld pages", 1623 mmu_btop(sz)); 1624 } 1625 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1626 1627 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1628 } 1629 PRM_DEBUG(segkp_base); 1630 PRM_DEBUG(segkpsize); 1631 1632 /* 1633 * segzio is used for ZFS cached data. It uses a distinct VA 1634 * segment (from kernel heap) so that we can easily tell not to 1635 * include it in kernel crash dumps on 64 bit kernels. The trick is 1636 * to give it lots of VA, but not constrain the kernel heap. 1637 * We scale the size of segzio linearly with physmem up to 1638 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1639 */ 1640 segzio_base = segkp_base + mmu_ptob(segkpsize); 1641 if (segzio_fromheap) { 1642 segziosize = 0; 1643 } else { 1644 size_t physmem_size = mmu_ptob(physmem); 1645 size_t size = (segziosize == 0) ? 1646 physmem_size : mmu_ptob(segziosize); 1647 1648 if (size < SEGZIOMINSIZE) 1649 size = SEGZIOMINSIZE; 1650 if (size > SEGZIOMAXSIZE) { 1651 size = SEGZIOMAXSIZE; 1652 if (physmem_size > size) 1653 size += (physmem_size - size) / 2; 1654 } 1655 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1656 } 1657 PRM_DEBUG(segziosize); 1658 PRM_DEBUG(segzio_base); 1659 1660 /* 1661 * Put the range of VA for device mappings next, kmdb knows to not 1662 * grep in this range of addresses. 1663 */ 1664 toxic_addr = 1665 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1666 PRM_DEBUG(toxic_addr); 1667 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1668 #else /* __i386 */ 1669 segmap_start = ROUND_UP_LPAGE(kernelbase); 1670 #endif /* __i386 */ 1671 PRM_DEBUG(segmap_start); 1672 1673 /* 1674 * Users can change segmapsize through eeprom or /etc/system. 1675 * If the variable is tuned through eeprom, there is no upper 1676 * bound on the size of segmap. If it is tuned through 1677 * /etc/system on 32-bit systems, it must be no larger than we 1678 * planned for in startup_memlist(). 1679 */ 1680 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1681 1682 #if defined(__i386) 1683 /* 1684 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1685 * the bottom of the kernel's address range. Set aside space for a 1686 * small red zone just below the start of segmap. 1687 */ 1688 segmap_start += KERNEL_REDZONE_SIZE; 1689 segmapsize -= KERNEL_REDZONE_SIZE; 1690 #endif 1691 1692 PRM_DEBUG(segmap_start); 1693 PRM_DEBUG(segmapsize); 1694 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1695 PRM_DEBUG(kernelheap); 1696 PRM_POINT("layout_kernel_va() done..."); 1697 } 1698 1699 /* 1700 * Finish initializing the VM system, now that we are no longer 1701 * relying on the boot time memory allocators. 1702 */ 1703 static void 1704 startup_vm(void) 1705 { 1706 struct segmap_crargs a; 1707 1708 extern int use_brk_lpg, use_stk_lpg; 1709 1710 PRM_POINT("startup_vm() starting..."); 1711 1712 /* 1713 * Initialize the hat layer. 1714 */ 1715 hat_init(); 1716 1717 /* 1718 * Do final allocations of HAT data structures that need to 1719 * be allocated before quiescing the boot loader. 1720 */ 1721 PRM_POINT("Calling hat_kern_alloc()..."); 1722 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1723 PRM_POINT("hat_kern_alloc() done"); 1724 1725 #ifndef __xpv 1726 /* 1727 * Setup Page Attribute Table 1728 */ 1729 pat_sync(); 1730 #endif 1731 1732 /* 1733 * The next two loops are done in distinct steps in order 1734 * to be sure that any page that is doubly mapped (both above 1735 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1736 * Note this may never happen, but it might someday. 1737 */ 1738 bootpages = NULL; 1739 PRM_POINT("Protecting boot pages"); 1740 1741 /* 1742 * Protect any pages mapped above KERNEL_TEXT that somehow have 1743 * page_t's. This can only happen if something weird allocated 1744 * in this range (like kadb/kmdb). 1745 */ 1746 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1747 1748 /* 1749 * Before we can take over memory allocation/mapping from the boot 1750 * loader we must remove from our free page lists any boot allocated 1751 * pages that stay mapped until release_bootstrap(). 1752 */ 1753 protect_boot_range(0, kernelbase, 1); 1754 1755 1756 /* 1757 * Switch to running on regular HAT (not boot_mmu) 1758 */ 1759 PRM_POINT("Calling hat_kern_setup()..."); 1760 hat_kern_setup(); 1761 1762 /* 1763 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1764 */ 1765 bop_no_more_mem(); 1766 1767 PRM_POINT("hat_kern_setup() done"); 1768 1769 hat_cpu_online(CPU); 1770 1771 /* 1772 * Initialize VM system 1773 */ 1774 PRM_POINT("Calling kvm_init()..."); 1775 kvm_init(); 1776 PRM_POINT("kvm_init() done"); 1777 1778 /* 1779 * Tell kmdb that the VM system is now working 1780 */ 1781 if (boothowto & RB_DEBUG) 1782 kdi_dvec_vmready(); 1783 1784 #if defined(__xpv) 1785 /* 1786 * Populate the I/O pool on domain 0 1787 */ 1788 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1789 extern long populate_io_pool(void); 1790 long init_io_pool_cnt; 1791 1792 PRM_POINT("Populating reserve I/O page pool"); 1793 init_io_pool_cnt = populate_io_pool(); 1794 PRM_DEBUG(init_io_pool_cnt); 1795 } 1796 #endif 1797 /* 1798 * Mangle the brand string etc. 1799 */ 1800 cpuid_pass3(CPU); 1801 1802 #if defined(__amd64) 1803 1804 /* 1805 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1806 */ 1807 device_arena = vmem_create("device", (void *)toxic_addr, 1808 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1809 1810 #else /* __i386 */ 1811 1812 /* 1813 * allocate the bit map that tracks toxic pages 1814 */ 1815 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 1816 PRM_DEBUG(toxic_bit_map_len); 1817 toxic_bit_map = 1818 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1819 ASSERT(toxic_bit_map != NULL); 1820 PRM_DEBUG(toxic_bit_map); 1821 1822 #endif /* __i386 */ 1823 1824 1825 /* 1826 * Now that we've got more VA, as well as the ability to allocate from 1827 * it, tell the debugger. 1828 */ 1829 if (boothowto & RB_DEBUG) 1830 kdi_dvec_memavail(); 1831 1832 /* 1833 * The following code installs a special page fault handler (#pf) 1834 * to work around a pentium bug. 1835 */ 1836 #if !defined(__amd64) && !defined(__xpv) 1837 if (x86_type == X86_TYPE_P5) { 1838 desctbr_t idtr; 1839 gate_desc_t *newidt; 1840 1841 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1842 panic("failed to install pentium_pftrap"); 1843 1844 bcopy(idt0, newidt, NIDT * sizeof (*idt0)); 1845 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1846 KCS_SEL, SDT_SYSIGT, TRP_KPL); 1847 1848 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1849 PROT_READ | PROT_EXEC); 1850 1851 CPU->cpu_idt = newidt; 1852 idtr.dtr_base = (uintptr_t)CPU->cpu_idt; 1853 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1; 1854 wr_idtr(&idtr); 1855 } 1856 #endif /* !__amd64 */ 1857 1858 #if !defined(__xpv) 1859 /* 1860 * Map page pfn=0 for drivers, such as kd, that need to pick up 1861 * parameters left there by controllers/BIOS. 1862 */ 1863 PRM_POINT("setup up p0_va"); 1864 p0_va = i86devmap(0, 1, PROT_READ); 1865 PRM_DEBUG(p0_va); 1866 #endif 1867 1868 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1869 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1870 1871 /* 1872 * disable automatic large pages for small memory systems or 1873 * when the disable flag is set. 1874 * 1875 * Do not yet consider page sizes larger than 2m/4m. 1876 */ 1877 if (!auto_lpg_disable && mmu.max_page_level > 0) { 1878 max_uheap_lpsize = LEVEL_SIZE(1); 1879 max_ustack_lpsize = LEVEL_SIZE(1); 1880 max_privmap_lpsize = LEVEL_SIZE(1); 1881 max_uidata_lpsize = LEVEL_SIZE(1); 1882 max_utext_lpsize = LEVEL_SIZE(1); 1883 max_shm_lpsize = LEVEL_SIZE(1); 1884 } 1885 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 1886 auto_lpg_disable) { 1887 use_brk_lpg = 0; 1888 use_stk_lpg = 0; 1889 } 1890 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 1891 1892 PRM_POINT("Calling hat_init_finish()..."); 1893 hat_init_finish(); 1894 PRM_POINT("hat_init_finish() done"); 1895 1896 /* 1897 * Initialize the segkp segment type. 1898 */ 1899 rw_enter(&kas.a_lock, RW_WRITER); 1900 PRM_POINT("Attaching segkp"); 1901 if (segkp_fromheap) { 1902 segkp->s_as = &kas; 1903 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1904 segkp) < 0) { 1905 panic("startup: cannot attach segkp"); 1906 /*NOTREACHED*/ 1907 } 1908 PRM_POINT("Doing segkp_create()"); 1909 if (segkp_create(segkp) != 0) { 1910 panic("startup: segkp_create failed"); 1911 /*NOTREACHED*/ 1912 } 1913 PRM_DEBUG(segkp); 1914 rw_exit(&kas.a_lock); 1915 1916 /* 1917 * kpm segment 1918 */ 1919 segmap_kpm = 0; 1920 if (kpm_desired) { 1921 kpm_init(); 1922 kpm_enable = 1; 1923 vpm_enable = 1; 1924 } 1925 1926 /* 1927 * Now create segmap segment. 1928 */ 1929 rw_enter(&kas.a_lock, RW_WRITER); 1930 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 1931 panic("cannot attach segmap"); 1932 /*NOTREACHED*/ 1933 } 1934 PRM_DEBUG(segmap); 1935 1936 a.prot = PROT_READ | PROT_WRITE; 1937 a.shmsize = 0; 1938 a.nfreelist = segmapfreelists; 1939 1940 if (segmap_create(segmap, (caddr_t)&a) != 0) 1941 panic("segmap_create segmap"); 1942 rw_exit(&kas.a_lock); 1943 1944 setup_vaddr_for_ppcopy(CPU); 1945 1946 segdev_init(); 1947 #if defined(__xpv) 1948 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1949 #endif 1950 pmem_init(); 1951 1952 PRM_POINT("startup_vm() done"); 1953 } 1954 1955 /* 1956 * Load a tod module for the non-standard tod part found on this system. 1957 */ 1958 static void 1959 load_tod_module(char *todmod) 1960 { 1961 if (modload("tod", todmod) == -1) 1962 halt("Can't load TOD module"); 1963 } 1964 1965 static void 1966 startup_end(void) 1967 { 1968 int i; 1969 extern void setx86isalist(void); 1970 1971 PRM_POINT("startup_end() starting..."); 1972 1973 /* 1974 * Perform tasks that get done after most of the VM 1975 * initialization has been done but before the clock 1976 * and other devices get started. 1977 */ 1978 kern_setup1(); 1979 1980 /* 1981 * Perform CPC initialization for this CPU. 1982 */ 1983 kcpc_hw_init(CPU); 1984 1985 #if defined(OPTERON_WORKAROUND_6323525) 1986 if (opteron_workaround_6323525) 1987 patch_workaround_6323525(); 1988 #endif 1989 /* 1990 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 1991 * (For now, "needed" is defined as set tod_module_name in /etc/system) 1992 */ 1993 if (tod_module_name != NULL) { 1994 PRM_POINT("load_tod_module()"); 1995 load_tod_module(tod_module_name); 1996 } 1997 1998 #if defined(__xpv) 1999 /* 2000 * Forceload interposing TOD module for the hypervisor. 2001 */ 2002 PRM_POINT("load_tod_module()"); 2003 load_tod_module("xpvtod"); 2004 #endif 2005 2006 /* 2007 * Configure the system. 2008 */ 2009 PRM_POINT("Calling configure()..."); 2010 configure(); /* set up devices */ 2011 PRM_POINT("configure() done"); 2012 2013 /* 2014 * Set the isa_list string to the defined instruction sets we 2015 * support. 2016 */ 2017 setx86isalist(); 2018 cpu_intr_alloc(CPU, NINTR_THREADS); 2019 psm_install(); 2020 2021 /* 2022 * We're done with bootops. We don't unmap the bootstrap yet because 2023 * we're still using bootsvcs. 2024 */ 2025 PRM_POINT("NULLing out bootops"); 2026 *bootopsp = (struct bootops *)NULL; 2027 bootops = (struct bootops *)NULL; 2028 2029 #if defined(__xpv) 2030 ec_init_debug_irq(); 2031 xs_domu_init(); 2032 #endif 2033 PRM_POINT("Enabling interrupts"); 2034 (*picinitf)(); 2035 sti(); 2036 #if defined(__xpv) 2037 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2038 xen_late_startup(); 2039 #endif 2040 2041 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2042 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2043 2044 /* 2045 * Register these software interrupts for ddi timer. 2046 * Software interrupts up to the level 10 are supported. 2047 */ 2048 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2049 char name[sizeof ("timer_softintr") + 2]; 2050 (void) sprintf(name, "timer_softintr%02d", i); 2051 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2052 (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL); 2053 } 2054 2055 PRM_POINT("startup_end() done"); 2056 } 2057 2058 extern char hw_serial[]; 2059 char *_hs1107 = hw_serial; 2060 ulong_t _bdhs34; 2061 2062 void 2063 post_startup(void) 2064 { 2065 /* 2066 * Set the system wide, processor-specific flags to be passed 2067 * to userland via the aux vector for performance hints and 2068 * instruction set extensions. 2069 */ 2070 bind_hwcap(); 2071 2072 #ifdef __xpv 2073 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2074 #endif 2075 { 2076 /* 2077 * Load the System Management BIOS into the global ksmbios 2078 * handle, if an SMBIOS is present on this system. 2079 */ 2080 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 2081 2082 #if defined(__xpv) 2083 xpv_panic_init(); 2084 #else 2085 /* 2086 * Startup the memory scrubber. 2087 * XXPV This should be running somewhere .. 2088 */ 2089 memscrub_init(); 2090 #endif 2091 } 2092 2093 /* 2094 * Complete CPU module initialization 2095 */ 2096 cmi_post_startup(); 2097 2098 /* 2099 * Perform forceloading tasks for /etc/system. 2100 */ 2101 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2102 2103 /* 2104 * ON4.0: Force /proc module in until clock interrupt handle fixed 2105 * ON4.0: This must be fixed or restated in /etc/systems. 2106 */ 2107 (void) modload("fs", "procfs"); 2108 2109 (void) i_ddi_attach_hw_nodes("pit_beep"); 2110 2111 #if defined(__i386) 2112 /* 2113 * Check for required functional Floating Point hardware, 2114 * unless FP hardware explicitly disabled. 2115 */ 2116 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2117 halt("No working FP hardware found"); 2118 #endif 2119 2120 maxmem = freemem; 2121 2122 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 2123 } 2124 2125 static int 2126 pp_in_ramdisk(page_t *pp) 2127 { 2128 extern uint64_t ramdisk_start, ramdisk_end; 2129 2130 return ((pp->p_pagenum >= btop(ramdisk_start)) && 2131 (pp->p_pagenum < btopr(ramdisk_end))); 2132 } 2133 2134 void 2135 release_bootstrap(void) 2136 { 2137 int root_is_ramdisk; 2138 page_t *pp; 2139 extern void kobj_boot_unmountroot(void); 2140 extern dev_t rootdev; 2141 2142 /* unmount boot ramdisk and release kmem usage */ 2143 kobj_boot_unmountroot(); 2144 2145 /* 2146 * We're finished using the boot loader so free its pages. 2147 */ 2148 PRM_POINT("Unmapping lower boot pages"); 2149 clear_boot_mappings(0, _userlimit); 2150 postbootkernelbase = kernelbase; 2151 2152 /* 2153 * If root isn't on ramdisk, destroy the hardcoded 2154 * ramdisk node now and release the memory. Else, 2155 * ramdisk memory is kept in rd_pages. 2156 */ 2157 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2158 if (!root_is_ramdisk) { 2159 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2160 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2161 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2162 (void) ddi_remove_child(dip, 0); 2163 } 2164 2165 PRM_POINT("Releasing boot pages"); 2166 while (bootpages) { 2167 pp = bootpages; 2168 bootpages = pp->p_next; 2169 if (root_is_ramdisk && pp_in_ramdisk(pp)) { 2170 pp->p_next = rd_pages; 2171 rd_pages = pp; 2172 continue; 2173 } 2174 pp->p_next = (struct page *)0; 2175 pp->p_prev = (struct page *)0; 2176 PP_CLRBOOTPAGES(pp); 2177 page_free(pp, 1); 2178 } 2179 PRM_POINT("Boot pages released"); 2180 2181 #if !defined(__xpv) 2182 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2183 /* 2184 * Find 1 page below 1 MB so that other processors can boot up. 2185 * Make sure it has a kernel VA as well as a 1:1 mapping. 2186 * We should have just free'd one up. 2187 */ 2188 if (use_mp) { 2189 pfn_t pfn; 2190 2191 for (pfn = 1; pfn < btop(1*1024*1024); pfn++) { 2192 if (page_numtopp_alloc(pfn) == NULL) 2193 continue; 2194 rm_platter_va = i86devmap(pfn, 1, 2195 PROT_READ | PROT_WRITE | PROT_EXEC); 2196 rm_platter_pa = ptob(pfn); 2197 hat_devload(kas.a_hat, 2198 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2199 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2200 HAT_LOAD_NOCONSIST); 2201 break; 2202 } 2203 if (pfn == btop(1*1024*1024)) 2204 panic("No page available for starting " 2205 "other processors"); 2206 } 2207 #endif /* !__xpv */ 2208 } 2209 2210 /* 2211 * Initialize the platform-specific parts of a page_t. 2212 */ 2213 void 2214 add_physmem_cb(page_t *pp, pfn_t pnum) 2215 { 2216 pp->p_pagenum = pnum; 2217 pp->p_mapping = NULL; 2218 pp->p_embed = 0; 2219 pp->p_share = 0; 2220 pp->p_mlentry = 0; 2221 } 2222 2223 /* 2224 * kphysm_init() initializes physical memory. 2225 */ 2226 static pgcnt_t 2227 kphysm_init( 2228 page_t *pp, 2229 pgcnt_t npages) 2230 { 2231 struct memlist *pmem; 2232 struct memseg *cur_memseg; 2233 pfn_t base_pfn; 2234 pgcnt_t num; 2235 pgcnt_t pages_done = 0; 2236 uint64_t addr; 2237 uint64_t size; 2238 extern pfn_t ddiphysmin; 2239 2240 ASSERT(page_hash != NULL && page_hashsz != 0); 2241 2242 cur_memseg = memseg_base; 2243 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2244 /* 2245 * In a 32 bit kernel can't use higher memory if we're 2246 * not booting in PAE mode. This check takes care of that. 2247 */ 2248 addr = pmem->address; 2249 size = pmem->size; 2250 if (btop(addr) > physmax) 2251 continue; 2252 2253 /* 2254 * align addr and size - they may not be at page boundaries 2255 */ 2256 if ((addr & MMU_PAGEOFFSET) != 0) { 2257 addr += MMU_PAGEOFFSET; 2258 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2259 size -= addr - pmem->address; 2260 } 2261 2262 /* only process pages below or equal to physmax */ 2263 if ((btop(addr + size) - 1) > physmax) 2264 size = ptob(physmax - btop(addr) + 1); 2265 2266 num = btop(size); 2267 if (num == 0) 2268 continue; 2269 2270 if (num > npages) 2271 num = npages; 2272 2273 npages -= num; 2274 pages_done += num; 2275 base_pfn = btop(addr); 2276 2277 if (prom_debug) 2278 prom_printf("MEMSEG addr=0x%" PRIx64 2279 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2280 addr, num, base_pfn, base_pfn + num); 2281 2282 /* 2283 * Ignore pages below ddiphysmin to simplify ddi memory 2284 * allocation with non-zero addr_lo requests. 2285 */ 2286 if (base_pfn < ddiphysmin) { 2287 if (base_pfn + num <= ddiphysmin) 2288 continue; 2289 pp += (ddiphysmin - base_pfn); 2290 num -= (ddiphysmin - base_pfn); 2291 base_pfn = ddiphysmin; 2292 } 2293 2294 /* 2295 * Build the memsegs entry 2296 */ 2297 cur_memseg->pages = pp; 2298 cur_memseg->epages = pp + num; 2299 cur_memseg->pages_base = base_pfn; 2300 cur_memseg->pages_end = base_pfn + num; 2301 2302 /* 2303 * Insert into memseg list in decreasing pfn range order. 2304 * Low memory is typically more fragmented such that this 2305 * ordering keeps the larger ranges at the front of the list 2306 * for code that searches memseg. 2307 * This ASSERTS that the memsegs coming in from boot are in 2308 * increasing physical address order and not contiguous. 2309 */ 2310 if (memsegs != NULL) { 2311 ASSERT(cur_memseg->pages_base >= memsegs->pages_end); 2312 cur_memseg->next = memsegs; 2313 } 2314 memsegs = cur_memseg; 2315 2316 /* 2317 * add_physmem() initializes the PSM part of the page 2318 * struct by calling the PSM back with add_physmem_cb(). 2319 * In addition it coalesces pages into larger pages as 2320 * it initializes them. 2321 */ 2322 add_physmem(pp, num, base_pfn); 2323 cur_memseg++; 2324 availrmem_initial += num; 2325 availrmem += num; 2326 2327 pp += num; 2328 } 2329 2330 PRM_DEBUG(availrmem_initial); 2331 PRM_DEBUG(availrmem); 2332 PRM_DEBUG(freemem); 2333 build_pfn_hash(); 2334 return (pages_done); 2335 } 2336 2337 /* 2338 * Kernel VM initialization. 2339 */ 2340 static void 2341 kvm_init(void) 2342 { 2343 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2344 2345 /* 2346 * Put the kernel segments in kernel address space. 2347 */ 2348 rw_enter(&kas.a_lock, RW_WRITER); 2349 as_avlinit(&kas); 2350 2351 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2352 (void) segkmem_create(&ktextseg); 2353 2354 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2355 (void) segkmem_create(&kvalloc); 2356 2357 (void) seg_attach(&kas, kernelheap, 2358 ekernelheap - kernelheap, &kvseg); 2359 (void) segkmem_create(&kvseg); 2360 2361 if (core_size > 0) { 2362 PRM_POINT("attaching kvseg_core"); 2363 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2364 &kvseg_core); 2365 (void) segkmem_create(&kvseg_core); 2366 } 2367 2368 if (segziosize > 0) { 2369 PRM_POINT("attaching segzio"); 2370 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2371 &kzioseg); 2372 (void) segkmem_zio_create(&kzioseg); 2373 2374 /* create zio area covering new segment */ 2375 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2376 } 2377 2378 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2379 (void) segkmem_create(&kdebugseg); 2380 2381 rw_exit(&kas.a_lock); 2382 2383 /* 2384 * Ensure that the red zone at kernelbase is never accessible. 2385 */ 2386 PRM_POINT("protecting redzone"); 2387 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2388 2389 /* 2390 * Make the text writable so that it can be hot patched by DTrace. 2391 */ 2392 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2393 PROT_READ | PROT_WRITE | PROT_EXEC); 2394 2395 /* 2396 * Make data writable until end. 2397 */ 2398 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2399 PROT_READ | PROT_WRITE | PROT_EXEC); 2400 } 2401 2402 #ifndef __xpv 2403 /* 2404 * Solaris adds an entry for Write Combining caching to the PAT 2405 */ 2406 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2407 2408 void 2409 pat_sync(void) 2410 { 2411 ulong_t cr0, cr0_orig, cr4; 2412 2413 if (!(x86_feature & X86_PAT)) 2414 return; 2415 cr0_orig = cr0 = getcr0(); 2416 cr4 = getcr4(); 2417 2418 /* disable caching and flush all caches and TLBs */ 2419 cr0 |= CR0_CD; 2420 cr0 &= ~CR0_NW; 2421 setcr0(cr0); 2422 invalidate_cache(); 2423 if (cr4 & CR4_PGE) { 2424 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2425 setcr4(cr4); 2426 } else { 2427 reload_cr3(); 2428 } 2429 2430 /* add our entry to the PAT */ 2431 wrmsr(REG_PAT, pat_attr_reg); 2432 2433 /* flush TLBs and cache again, then reenable cr0 caching */ 2434 if (cr4 & CR4_PGE) { 2435 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2436 setcr4(cr4); 2437 } else { 2438 reload_cr3(); 2439 } 2440 invalidate_cache(); 2441 setcr0(cr0_orig); 2442 } 2443 2444 #endif /* !__xpv */ 2445 2446 void 2447 get_system_configuration(void) 2448 { 2449 char prop[32]; 2450 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2451 2452 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2453 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2454 kobj_getvalue(prop, &nodes_ll) == -1 || 2455 nodes_ll > MAXNODES || 2456 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2457 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2458 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2459 system_hardware.hd_nodes = 1; 2460 system_hardware.hd_cpus_per_node = 0; 2461 } else { 2462 system_hardware.hd_nodes = (int)nodes_ll; 2463 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2464 } 2465 2466 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2467 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2468 kobj_getvalue(prop, &lvalue) == -1) 2469 eprom_kernelbase = NULL; 2470 else 2471 eprom_kernelbase = (uintptr_t)lvalue; 2472 2473 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2474 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2475 kobj_getvalue(prop, &lvalue) == -1) 2476 segmapsize = SEGMAPDEFAULT; 2477 else 2478 segmapsize = (uintptr_t)lvalue; 2479 2480 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2481 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2482 kobj_getvalue(prop, &lvalue) == -1) 2483 segmapfreelists = 0; /* use segmap driver default */ 2484 else 2485 segmapfreelists = (int)lvalue; 2486 2487 /* physmem used to be here, but moved much earlier to fakebop.c */ 2488 } 2489 2490 /* 2491 * Add to a memory list. 2492 * start = start of new memory segment 2493 * len = length of new memory segment in bytes 2494 * new = pointer to a new struct memlist 2495 * memlistp = memory list to which to add segment. 2496 */ 2497 void 2498 memlist_add( 2499 uint64_t start, 2500 uint64_t len, 2501 struct memlist *new, 2502 struct memlist **memlistp) 2503 { 2504 struct memlist *cur; 2505 uint64_t end = start + len; 2506 2507 new->address = start; 2508 new->size = len; 2509 2510 cur = *memlistp; 2511 2512 while (cur) { 2513 if (cur->address >= end) { 2514 new->next = cur; 2515 *memlistp = new; 2516 new->prev = cur->prev; 2517 cur->prev = new; 2518 return; 2519 } 2520 ASSERT(cur->address + cur->size <= start); 2521 if (cur->next == NULL) { 2522 cur->next = new; 2523 new->prev = cur; 2524 new->next = NULL; 2525 return; 2526 } 2527 memlistp = &cur->next; 2528 cur = cur->next; 2529 } 2530 } 2531 2532 void 2533 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2534 { 2535 size_t tsize = e_modtext - modtext; 2536 size_t dsize = e_moddata - moddata; 2537 2538 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2539 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2540 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2541 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2542 } 2543 2544 caddr_t 2545 kobj_text_alloc(vmem_t *arena, size_t size) 2546 { 2547 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2548 } 2549 2550 /*ARGSUSED*/ 2551 caddr_t 2552 kobj_texthole_alloc(caddr_t addr, size_t size) 2553 { 2554 panic("unexpected call to kobj_texthole_alloc()"); 2555 /*NOTREACHED*/ 2556 return (0); 2557 } 2558 2559 /*ARGSUSED*/ 2560 void 2561 kobj_texthole_free(caddr_t addr, size_t size) 2562 { 2563 panic("unexpected call to kobj_texthole_free()"); 2564 } 2565 2566 /* 2567 * This is called just after configure() in startup(). 2568 * 2569 * The ISALIST concept is a bit hopeless on Intel, because 2570 * there's no guarantee of an ever-more-capable processor 2571 * given that various parts of the instruction set may appear 2572 * and disappear between different implementations. 2573 * 2574 * While it would be possible to correct it and even enhance 2575 * it somewhat, the explicit hardware capability bitmask allows 2576 * more flexibility. 2577 * 2578 * So, we just leave this alone. 2579 */ 2580 void 2581 setx86isalist(void) 2582 { 2583 char *tp; 2584 size_t len; 2585 extern char *isa_list; 2586 2587 #define TBUFSIZE 1024 2588 2589 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2590 *tp = '\0'; 2591 2592 #if defined(__amd64) 2593 (void) strcpy(tp, "amd64 "); 2594 #endif 2595 2596 switch (x86_vendor) { 2597 case X86_VENDOR_Intel: 2598 case X86_VENDOR_AMD: 2599 case X86_VENDOR_TM: 2600 if (x86_feature & X86_CMOV) { 2601 /* 2602 * Pentium Pro or later 2603 */ 2604 (void) strcat(tp, "pentium_pro"); 2605 (void) strcat(tp, x86_feature & X86_MMX ? 2606 "+mmx pentium_pro " : " "); 2607 } 2608 /*FALLTHROUGH*/ 2609 case X86_VENDOR_Cyrix: 2610 /* 2611 * The Cyrix 6x86 does not have any Pentium features 2612 * accessible while not at privilege level 0. 2613 */ 2614 if (x86_feature & X86_CPUID) { 2615 (void) strcat(tp, "pentium"); 2616 (void) strcat(tp, x86_feature & X86_MMX ? 2617 "+mmx pentium " : " "); 2618 } 2619 break; 2620 default: 2621 break; 2622 } 2623 (void) strcat(tp, "i486 i386 i86"); 2624 len = strlen(tp) + 1; /* account for NULL at end of string */ 2625 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2626 kmem_free(tp, TBUFSIZE); 2627 2628 #undef TBUFSIZE 2629 } 2630 2631 2632 #ifdef __amd64 2633 2634 void * 2635 device_arena_alloc(size_t size, int vm_flag) 2636 { 2637 return (vmem_alloc(device_arena, size, vm_flag)); 2638 } 2639 2640 void 2641 device_arena_free(void *vaddr, size_t size) 2642 { 2643 vmem_free(device_arena, vaddr, size); 2644 } 2645 2646 #else /* __i386 */ 2647 2648 void * 2649 device_arena_alloc(size_t size, int vm_flag) 2650 { 2651 caddr_t vaddr; 2652 uintptr_t v; 2653 size_t start; 2654 size_t end; 2655 2656 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2657 if (vaddr == NULL) 2658 return (NULL); 2659 2660 v = (uintptr_t)vaddr; 2661 ASSERT(v >= kernelbase); 2662 ASSERT(v + size <= valloc_base); 2663 2664 start = btop(v - kernelbase); 2665 end = btop(v + size - 1 - kernelbase); 2666 ASSERT(start < toxic_bit_map_len); 2667 ASSERT(end < toxic_bit_map_len); 2668 2669 while (start <= end) { 2670 BT_ATOMIC_SET(toxic_bit_map, start); 2671 ++start; 2672 } 2673 return (vaddr); 2674 } 2675 2676 void 2677 device_arena_free(void *vaddr, size_t size) 2678 { 2679 uintptr_t v = (uintptr_t)vaddr; 2680 size_t start; 2681 size_t end; 2682 2683 ASSERT(v >= kernelbase); 2684 ASSERT(v + size <= valloc_base); 2685 2686 start = btop(v - kernelbase); 2687 end = btop(v + size - 1 - kernelbase); 2688 ASSERT(start < toxic_bit_map_len); 2689 ASSERT(end < toxic_bit_map_len); 2690 2691 while (start <= end) { 2692 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2693 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2694 ++start; 2695 } 2696 vmem_free(heap_arena, vaddr, size); 2697 } 2698 2699 /* 2700 * returns 1st address in range that is in device arena, or NULL 2701 * if len is not NULL it returns the length of the toxic range 2702 */ 2703 void * 2704 device_arena_contains(void *vaddr, size_t size, size_t *len) 2705 { 2706 uintptr_t v = (uintptr_t)vaddr; 2707 uintptr_t eaddr = v + size; 2708 size_t start; 2709 size_t end; 2710 2711 /* 2712 * if called very early by kmdb, just return NULL 2713 */ 2714 if (toxic_bit_map == NULL) 2715 return (NULL); 2716 2717 /* 2718 * First check if we're completely outside the bitmap range. 2719 */ 2720 if (v >= valloc_base || eaddr < kernelbase) 2721 return (NULL); 2722 2723 /* 2724 * Trim ends of search to look at only what the bitmap covers. 2725 */ 2726 if (v < kernelbase) 2727 v = kernelbase; 2728 start = btop(v - kernelbase); 2729 end = btop(eaddr - kernelbase); 2730 if (end >= toxic_bit_map_len) 2731 end = toxic_bit_map_len; 2732 2733 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2734 return (NULL); 2735 2736 v = kernelbase + ptob(start); 2737 if (len != NULL) 2738 *len = ptob(end - start); 2739 return ((void *)v); 2740 } 2741 2742 #endif /* __i386 */ 2743