1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/t_lock.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/systm.h> 34 #include <sys/user.h> 35 #include <sys/mman.h> 36 #include <sys/vm.h> 37 #include <sys/conf.h> 38 #include <sys/avintr.h> 39 #include <sys/autoconf.h> 40 #include <sys/disp.h> 41 #include <sys/class.h> 42 #include <sys/bitmap.h> 43 44 #include <sys/privregs.h> 45 46 #include <sys/proc.h> 47 #include <sys/buf.h> 48 #include <sys/kmem.h> 49 #include <sys/mem.h> 50 #include <sys/kstat.h> 51 52 #include <sys/reboot.h> 53 54 #include <sys/cred.h> 55 #include <sys/vnode.h> 56 #include <sys/file.h> 57 58 #include <sys/procfs.h> 59 60 #include <sys/vfs.h> 61 #include <sys/cmn_err.h> 62 #include <sys/utsname.h> 63 #include <sys/debug.h> 64 #include <sys/kdi.h> 65 66 #include <sys/dumphdr.h> 67 #include <sys/bootconf.h> 68 #include <sys/varargs.h> 69 #include <sys/promif.h> 70 #include <sys/modctl.h> 71 72 #include <sys/sunddi.h> 73 #include <sys/sunndi.h> 74 #include <sys/ndi_impldefs.h> 75 #include <sys/ddidmareq.h> 76 #include <sys/psw.h> 77 #include <sys/regset.h> 78 #include <sys/clock.h> 79 #include <sys/pte.h> 80 #include <sys/tss.h> 81 #include <sys/stack.h> 82 #include <sys/trap.h> 83 #include <sys/fp.h> 84 #include <vm/anon.h> 85 #include <vm/as.h> 86 #include <vm/page.h> 87 #include <vm/seg.h> 88 #include <vm/seg_dev.h> 89 #include <vm/seg_kmem.h> 90 #include <vm/seg_kpm.h> 91 #include <vm/seg_map.h> 92 #include <vm/seg_vn.h> 93 #include <vm/seg_kp.h> 94 #include <sys/memnode.h> 95 #include <vm/vm_dep.h> 96 #include <sys/thread.h> 97 #include <sys/sysconf.h> 98 #include <sys/vm_machparam.h> 99 #include <sys/archsystm.h> 100 #include <sys/machsystm.h> 101 #include <vm/hat.h> 102 #include <vm/hat_i86.h> 103 #include <sys/pmem.h> 104 #include <sys/smp_impldefs.h> 105 #include <sys/x86_archext.h> 106 #include <sys/segments.h> 107 #include <sys/clconf.h> 108 #include <sys/kobj.h> 109 #include <sys/kobj_lex.h> 110 #include <sys/cpc_impl.h> 111 #include <sys/x86_archext.h> 112 #include <sys/cpu_module.h> 113 #include <sys/smbios.h> 114 #include <sys/debug_info.h> 115 116 #ifdef __xpv 117 #include <sys/hypervisor.h> 118 #include <sys/xen_mmu.h> 119 #include <sys/evtchn_impl.h> 120 #include <sys/gnttab.h> 121 #include <sys/xpv_panic.h> 122 #include <xen/sys/xenbus_comms.h> 123 #include <xen/public/physdev.h> 124 extern void xen_late_startup(void); 125 extern struct xen_evt_data cpu0_evt_data; 126 #endif 127 128 #include <sys/bootinfo.h> 129 #include <vm/kboot_mmu.h> 130 131 extern void progressbar_init(void); 132 extern void progressbar_start(void); 133 extern void brand_init(void); 134 135 extern int size_pse_array(pgcnt_t, int); 136 137 /* 138 * XXX make declaration below "static" when drivers no longer use this 139 * interface. 140 */ 141 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 142 143 /* 144 * segkp 145 */ 146 extern int segkp_fromheap; 147 148 static void kvm_init(void); 149 static void startup_init(void); 150 static void startup_memlist(void); 151 static void startup_kmem(void); 152 static void startup_modules(void); 153 static void startup_vm(void); 154 static void startup_end(void); 155 static void layout_kernel_va(void); 156 157 /* 158 * Declare these as initialized data so we can patch them. 159 */ 160 #ifdef __i386 161 162 /* 163 * Due to virtual address space limitations running in 32 bit mode, restrict 164 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 165 * 166 * If the physical max memory size of 64g were allowed to be configured, the 167 * size of user virtual address space will be less than 1g. A limited user 168 * address space greatly reduces the range of applications that can run. 169 * 170 * If more physical memory than PHYSMEM is required, users should preferably 171 * run in 64 bit mode which has far looser virtual address space limitations. 172 * 173 * If 64 bit mode is not available (as in IA32) and/or more physical memory 174 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 175 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 176 * should also be carefully tuned to balance out the need of the user 177 * application while minimizing the risk of kernel heap exhaustion due to 178 * kernelbase being set too high. 179 */ 180 #define PHYSMEM 0x400000 181 182 #else /* __amd64 */ 183 184 /* 185 * For now we can handle memory with physical addresses up to about 186 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 187 * half the VA space for seg_kpm. When systems get bigger than 64TB this 188 * code will need revisiting. There is an implicit assumption that there 189 * are no *huge* holes in the physical address space too. 190 */ 191 #define TERABYTE (1ul << 40) 192 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 193 #define PHYSMEM PHYSMEM_MAX64 194 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 195 196 #endif /* __amd64 */ 197 198 pgcnt_t physmem = PHYSMEM; 199 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 200 201 char *kobj_file_buf; 202 int kobj_file_bufsize; /* set in /etc/system */ 203 204 /* Global variables for MP support. Used in mp_startup */ 205 caddr_t rm_platter_va; 206 uint32_t rm_platter_pa; 207 208 int auto_lpg_disable = 1; 209 210 /* 211 * Some CPUs have holes in the middle of the 64-bit virtual address range. 212 */ 213 uintptr_t hole_start, hole_end; 214 215 /* 216 * kpm mapping window 217 */ 218 caddr_t kpm_vbase; 219 size_t kpm_size; 220 static int kpm_desired; 221 #ifdef __amd64 222 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 223 #endif 224 225 /* 226 * Configuration parameters set at boot time. 227 */ 228 229 caddr_t econtig; /* end of first block of contiguous kernel */ 230 231 struct bootops *bootops = 0; /* passed in from boot */ 232 struct bootops **bootopsp; 233 struct boot_syscalls *sysp; /* passed in from boot */ 234 235 char bootblock_fstype[16]; 236 237 char kern_bootargs[OBP_MAXPATHLEN]; 238 239 /* 240 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 241 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 242 * zio buffers from their own segment, otherwise they are allocated from the 243 * heap. The optimization of allocating zio buffers from their own segment is 244 * only valid on 64-bit kernels. 245 */ 246 #if defined(__amd64) 247 int segzio_fromheap = 0; 248 #else 249 int segzio_fromheap = 1; 250 #endif 251 252 /* 253 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 254 * depends on number of BOP_ALLOC calls made and requested size, memory size 255 * combination and whether boot.bin memory needs to be freed. 256 */ 257 #define POSS_NEW_FRAGMENTS 12 258 259 /* 260 * VM data structures 261 */ 262 long page_hashsz; /* Size of page hash table (power of two) */ 263 struct page *pp_base; /* Base of initial system page struct array */ 264 struct page **page_hash; /* Page hash table */ 265 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 266 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 267 int pse_shift; /* log2(pse_table_size) */ 268 struct seg ktextseg; /* Segment used for kernel executable image */ 269 struct seg kvalloc; /* Segment used for "valloc" mapping */ 270 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 271 struct seg kmapseg; /* Segment used for generic kernel mappings */ 272 struct seg kdebugseg; /* Segment used for the kernel debugger */ 273 274 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 275 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 276 277 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 278 279 #if defined(__amd64) 280 struct seg kvseg_core; /* Segment used for the core heap */ 281 struct seg kpmseg; /* Segment used for physical mapping */ 282 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 283 #else 284 struct seg *segkpm = NULL; /* Unused on IA32 */ 285 #endif 286 287 caddr_t segkp_base; /* Base address of segkp */ 288 caddr_t segzio_base; /* Base address of segzio */ 289 #if defined(__amd64) 290 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 291 #else 292 pgcnt_t segkpsize = 0; 293 #endif 294 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 295 296 /* 297 * VA range available to the debugger 298 */ 299 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 300 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 301 302 struct memseg *memseg_base; 303 struct vnode unused_pages_vp; 304 305 #define FOURGB 0x100000000LL 306 307 struct memlist *memlist; 308 309 caddr_t s_text; /* start of kernel text segment */ 310 caddr_t e_text; /* end of kernel text segment */ 311 caddr_t s_data; /* start of kernel data segment */ 312 caddr_t e_data; /* end of kernel data segment */ 313 caddr_t modtext; /* start of loadable module text reserved */ 314 caddr_t e_modtext; /* end of loadable module text reserved */ 315 caddr_t moddata; /* start of loadable module data reserved */ 316 caddr_t e_moddata; /* end of loadable module data reserved */ 317 318 struct memlist *phys_install; /* Total installed physical memory */ 319 struct memlist *phys_avail; /* Total available physical memory */ 320 321 /* 322 * kphysm_init returns the number of pages that were processed 323 */ 324 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 325 326 #define IO_PROP_SIZE 64 /* device property size */ 327 328 /* 329 * a couple useful roundup macros 330 */ 331 #define ROUND_UP_PAGE(x) \ 332 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 333 #define ROUND_UP_LPAGE(x) \ 334 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 335 #define ROUND_UP_4MEG(x) \ 336 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 337 #define ROUND_UP_TOPLEVEL(x) \ 338 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 339 340 /* 341 * 32-bit Kernel's Virtual memory layout. 342 * +-----------------------+ 343 * | | 344 * 0xFFC00000 -|-----------------------|- ARGSBASE 345 * | debugger | 346 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 347 * | Kernel Data | 348 * 0xFEC00000 -|-----------------------| 349 * | Kernel Text | 350 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 351 * |--- GDT ---|- GDT page (GDT_VA) 352 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 353 * | | 354 * | page_t structures | 355 * | memsegs, memlists, | 356 * | page hash, etc. | 357 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 358 * | | (segkp is just an arena in the heap) 359 * | | 360 * | kvseg | 361 * | | 362 * | | 363 * --- -|-----------------------|- kernelheap (floating) 364 * | Segkmap | 365 * 0xC3002000 -|-----------------------|- segmap_start (floating) 366 * | Red Zone | 367 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 368 * | | || 369 * | Shared objects | \/ 370 * | | 371 * : : 372 * | user data | 373 * |-----------------------| 374 * | user text | 375 * 0x08048000 -|-----------------------| 376 * | user stack | 377 * : : 378 * | invalid | 379 * 0x00000000 +-----------------------+ 380 * 381 * 382 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 383 * +-----------------------+ 384 * | | 385 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 386 * | debugger (?) | 387 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 388 * | unused | 389 * +-----------------------+ 390 * | Kernel Data | 391 * 0xFFFFFFFF.FBC00000 |-----------------------| 392 * | Kernel Text | 393 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 394 * |--- GDT ---|- GDT page (GDT_VA) 395 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 396 * | | 397 * | Core heap | (used for loadable modules) 398 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 399 * | Kernel | 400 * | heap | 401 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 402 * | segmap | 403 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 404 * | device mappings | 405 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 406 * | segzio | 407 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 408 * | segkp | 409 * --- |-----------------------|- segkp_base (floating) 410 * | page_t structures | valloc_base + valloc_sz 411 * | memsegs, memlists, | 412 * | page hash, etc. | 413 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 414 * | segkpm | 415 * 0xFFFFFE00.00000000 |-----------------------| 416 * | Red Zone | 417 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 418 * | User stack |- User space memory 419 * | | 420 * | shared objects, etc | (grows downwards) 421 * : : 422 * | | 423 * 0xFFFF8000.00000000 |-----------------------| 424 * | | 425 * | VA Hole / unused | 426 * | | 427 * 0x00008000.00000000 |-----------------------| 428 * | | 429 * | | 430 * : : 431 * | user heap | (grows upwards) 432 * | | 433 * | user data | 434 * |-----------------------| 435 * | user text | 436 * 0x00000000.04000000 |-----------------------| 437 * | invalid | 438 * 0x00000000.00000000 +-----------------------+ 439 * 440 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 441 * kernel, except that userlimit is raised to 0xfe000000 442 * 443 * Floating values: 444 * 445 * valloc_base: start of the kernel's memory management/tracking data 446 * structures. This region contains page_t structures for 447 * physical memory, memsegs, memlists, and the page hash. 448 * 449 * core_base: start of the kernel's "core" heap area on 64-bit systems. 450 * This area is intended to be used for global data as well as for module 451 * text/data that does not fit into the nucleus pages. The core heap is 452 * restricted to a 2GB range, allowing every address within it to be 453 * accessed using rip-relative addressing 454 * 455 * ekernelheap: end of kernelheap and start of segmap. 456 * 457 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 458 * above a red zone that separates the user's address space from the 459 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 460 * 461 * segmap_start: start of segmap. The length of segmap can be modified 462 * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated). 463 * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems. 464 * 465 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 466 * decreased by 2X the size required for page_t. This allows the kernel 467 * heap to grow in size with physical memory. With sizeof(page_t) == 80 468 * bytes, the following shows the values of kernelbase and kernel heap 469 * sizes for different memory configurations (assuming default segmap and 470 * segkp sizes). 471 * 472 * mem size for kernelbase kernel heap 473 * size page_t's size 474 * ---- --------- ---------- ----------- 475 * 1gb 0x01400000 0xd1800000 684MB 476 * 2gb 0x02800000 0xcf000000 704MB 477 * 4gb 0x05000000 0xca000000 744MB 478 * 6gb 0x07800000 0xc5000000 784MB 479 * 8gb 0x0a000000 0xc0000000 824MB 480 * 16gb 0x14000000 0xac000000 984MB 481 * 32gb 0x28000000 0x84000000 1304MB 482 * 64gb 0x50000000 0x34000000 1944MB (*) 483 * 484 * kernelbase is less than the abi minimum of 0xc0000000 for memory 485 * configurations above 8gb. 486 * 487 * (*) support for memory configurations above 32gb will require manual tuning 488 * of kernelbase to balance out the need of user applications. 489 */ 490 491 /* real-time-clock initialization parameters */ 492 extern time_t process_rtc_config_file(void); 493 494 uintptr_t kernelbase; 495 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 496 uintptr_t eprom_kernelbase; 497 size_t segmapsize; 498 uintptr_t segmap_start; 499 int segmapfreelists; 500 pgcnt_t npages; 501 pgcnt_t orig_npages; 502 size_t core_size; /* size of "core" heap */ 503 uintptr_t core_base; /* base address of "core" heap */ 504 505 /* 506 * List of bootstrap pages. We mark these as allocated in startup. 507 * release_bootstrap() will free them when we're completely done with 508 * the bootstrap. 509 */ 510 static page_t *bootpages; 511 512 /* 513 * boot time pages that have a vnode from the ramdisk will keep that forever. 514 */ 515 static page_t *rd_pages; 516 517 struct system_hardware system_hardware; 518 519 /* 520 * Enable some debugging messages concerning memory usage... 521 */ 522 static void 523 print_memlist(char *title, struct memlist *mp) 524 { 525 prom_printf("MEMLIST: %s:\n", title); 526 while (mp != NULL) { 527 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 528 mp->address, mp->size); 529 mp = mp->next; 530 } 531 } 532 533 /* 534 * XX64 need a comment here.. are these just default values, surely 535 * we read the "cpuid" type information to figure this out. 536 */ 537 int l2cache_sz = 0x80000; 538 int l2cache_linesz = 0x40; 539 int l2cache_assoc = 1; 540 541 static size_t textrepl_min_gb = 10; 542 543 /* 544 * on 64 bit we use a predifined VA range for mapping devices in the kernel 545 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 546 */ 547 #ifdef __amd64 548 549 vmem_t *device_arena; 550 uintptr_t toxic_addr = (uintptr_t)NULL; 551 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 552 553 #else /* __i386 */ 554 555 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 556 size_t toxic_bit_map_len = 0; /* in bits */ 557 558 #endif /* __i386 */ 559 560 /* 561 * Simple boot time debug facilities 562 */ 563 static char *prm_dbg_str[] = { 564 "%s:%d: '%s' is 0x%x\n", 565 "%s:%d: '%s' is 0x%llx\n" 566 }; 567 568 int prom_debug; 569 570 #define PRM_DEBUG(q) if (prom_debug) \ 571 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 572 #define PRM_POINT(q) if (prom_debug) \ 573 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 574 575 /* 576 * This structure is used to keep track of the intial allocations 577 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 578 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 579 */ 580 #define NUM_ALLOCATIONS 7 581 int num_allocations = 0; 582 struct { 583 void **al_ptr; 584 size_t al_size; 585 } allocations[NUM_ALLOCATIONS]; 586 size_t valloc_sz = 0; 587 uintptr_t valloc_base; 588 589 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 590 size = ROUND_UP_PAGE(size); \ 591 if (num_allocations == NUM_ALLOCATIONS) \ 592 panic("too many ADD_TO_ALLOCATIONS()"); \ 593 allocations[num_allocations].al_ptr = (void**)&ptr; \ 594 allocations[num_allocations].al_size = size; \ 595 valloc_sz += size; \ 596 ++num_allocations; \ 597 } 598 599 /* 600 * Allocate all the initial memory needed by the page allocator. 601 */ 602 static void 603 perform_allocations(void) 604 { 605 caddr_t mem; 606 int i; 607 int valloc_align; 608 609 PRM_DEBUG(valloc_base); 610 PRM_DEBUG(valloc_sz); 611 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 612 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 613 if (mem != (caddr_t)valloc_base) 614 panic("BOP_ALLOC() failed"); 615 bzero(mem, valloc_sz); 616 for (i = 0; i < num_allocations; ++i) { 617 *allocations[i].al_ptr = (void *)mem; 618 mem += allocations[i].al_size; 619 } 620 } 621 622 /* 623 * Our world looks like this at startup time. 624 * 625 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 626 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 627 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 628 * addresses are fixed in the binary at link time. 629 * 630 * On the text page: 631 * unix/genunix/krtld/module text loads. 632 * 633 * On the data page: 634 * unix/genunix/krtld/module data loads. 635 * 636 * Machine-dependent startup code 637 */ 638 void 639 startup(void) 640 { 641 #if !defined(__xpv) 642 extern void startup_bios_disk(void); 643 extern void startup_pci_bios(void); 644 #endif 645 /* 646 * Make sure that nobody tries to use sekpm until we have 647 * initialized it properly. 648 */ 649 #if defined(__amd64) 650 kpm_desired = 1; 651 #endif 652 kpm_enable = 0; 653 654 #if defined(__xpv) /* XXPV fix me! */ 655 { 656 extern int segvn_use_regions; 657 segvn_use_regions = 0; 658 } 659 #endif 660 progressbar_init(); 661 startup_init(); 662 startup_memlist(); 663 startup_kmem(); 664 startup_vm(); 665 #if !defined(__xpv) 666 startup_pci_bios(); 667 #endif 668 startup_modules(); 669 #if !defined(__xpv) 670 startup_bios_disk(); 671 #endif 672 startup_end(); 673 progressbar_start(); 674 } 675 676 static void 677 startup_init() 678 { 679 PRM_POINT("startup_init() starting..."); 680 681 /* 682 * Complete the extraction of cpuid data 683 */ 684 cpuid_pass2(CPU); 685 686 (void) check_boot_version(BOP_GETVERSION(bootops)); 687 688 /* 689 * Check for prom_debug in boot environment 690 */ 691 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 692 ++prom_debug; 693 PRM_POINT("prom_debug found in boot enviroment"); 694 } 695 696 /* 697 * Collect node, cpu and memory configuration information. 698 */ 699 get_system_configuration(); 700 701 /* 702 * Halt if this is an unsupported processor. 703 */ 704 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 705 printf("\n486 processor (\"%s\") detected.\n", 706 CPU->cpu_brandstr); 707 halt("This processor is not supported by this release " 708 "of Solaris."); 709 } 710 711 PRM_POINT("startup_init() done"); 712 } 713 714 /* 715 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 716 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 717 * also filters out physical page zero. There is some reliance on the 718 * boot loader allocating only a few contiguous physical memory chunks. 719 */ 720 static void 721 avail_filter(uint64_t *addr, uint64_t *size) 722 { 723 uintptr_t va; 724 uintptr_t next_va; 725 pfn_t pfn; 726 uint64_t pfn_addr; 727 uint64_t pfn_eaddr; 728 uint_t prot; 729 size_t len; 730 uint_t change; 731 732 if (prom_debug) 733 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 734 *addr, *size); 735 736 /* 737 * page zero is required for BIOS.. never make it available 738 */ 739 if (*addr == 0) { 740 *addr += MMU_PAGESIZE; 741 *size -= MMU_PAGESIZE; 742 } 743 744 /* 745 * First we trim from the front of the range. Since kbm_probe() 746 * walks ranges in virtual order, but addr/size are physical, we need 747 * to the list until no changes are seen. This deals with the case 748 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 749 * but w < v. 750 */ 751 do { 752 change = 0; 753 for (va = KERNEL_TEXT; 754 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 755 va = next_va) { 756 757 next_va = va + len; 758 pfn_addr = pfn_to_pa(pfn); 759 pfn_eaddr = pfn_addr + len; 760 761 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 762 change = 1; 763 while (*size > 0 && len > 0) { 764 *addr += MMU_PAGESIZE; 765 *size -= MMU_PAGESIZE; 766 len -= MMU_PAGESIZE; 767 } 768 } 769 } 770 if (change && prom_debug) 771 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 772 *addr, *size); 773 } while (change); 774 775 /* 776 * Trim pages from the end of the range. 777 */ 778 for (va = KERNEL_TEXT; 779 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 780 va = next_va) { 781 782 next_va = va + len; 783 pfn_addr = pfn_to_pa(pfn); 784 785 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 786 *size = pfn_addr - *addr; 787 } 788 789 if (prom_debug) 790 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 791 *addr, *size); 792 } 793 794 static void 795 kpm_init() 796 { 797 struct segkpm_crargs b; 798 799 /* 800 * These variables were all designed for sfmmu in which segkpm is 801 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 802 * might use 2+ page sizes on a single machine, so none of these 803 * variables have a single correct value. They are set up as if we 804 * always use a 4KB pagesize, which should do no harm. In the long 805 * run, we should get rid of KPM's assumption that only a single 806 * pagesize is used. 807 */ 808 kpm_pgshft = MMU_PAGESHIFT; 809 kpm_pgsz = MMU_PAGESIZE; 810 kpm_pgoff = MMU_PAGEOFFSET; 811 kpmp2pshft = 0; 812 kpmpnpgs = 1; 813 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 814 815 PRM_POINT("about to create segkpm"); 816 rw_enter(&kas.a_lock, RW_WRITER); 817 818 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 819 panic("cannot attach segkpm"); 820 821 b.prot = PROT_READ | PROT_WRITE; 822 b.nvcolors = 1; 823 824 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 825 panic("segkpm_create segkpm"); 826 827 rw_exit(&kas.a_lock); 828 } 829 830 /* 831 * The debug info page provides enough information to allow external 832 * inspectors (e.g. when running under a hypervisor) to bootstrap 833 * themselves into allowing full-blown kernel debugging. 834 */ 835 static void 836 init_debug_info(void) 837 { 838 caddr_t mem; 839 debug_info_t *di; 840 841 #ifndef __lint 842 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 843 #endif 844 845 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 846 MMU_PAGESIZE); 847 848 if (mem != (caddr_t)DEBUG_INFO_VA) 849 panic("BOP_ALLOC() failed"); 850 bzero(mem, MMU_PAGESIZE); 851 852 di = (debug_info_t *)mem; 853 854 di->di_magic = DEBUG_INFO_MAGIC; 855 di->di_version = DEBUG_INFO_VERSION; 856 di->di_modules = (uintptr_t)&modules; 857 di->di_s_text = (uintptr_t)s_text; 858 di->di_e_text = (uintptr_t)e_text; 859 di->di_s_data = (uintptr_t)s_data; 860 di->di_e_data = (uintptr_t)e_data; 861 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 862 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 863 } 864 865 /* 866 * Build the memlists and other kernel essential memory system data structures. 867 * This is everything at valloc_base. 868 */ 869 static void 870 startup_memlist(void) 871 { 872 size_t memlist_sz; 873 size_t memseg_sz; 874 size_t pagehash_sz; 875 size_t pp_sz; 876 uintptr_t va; 877 size_t len; 878 uint_t prot; 879 pfn_t pfn; 880 int memblocks; 881 caddr_t pagecolor_mem; 882 size_t pagecolor_memsz; 883 caddr_t page_ctrs_mem; 884 size_t page_ctrs_size; 885 size_t pse_table_alloc_size; 886 struct memlist *current; 887 extern void startup_build_mem_nodes(struct memlist *); 888 889 /* XX64 fix these - they should be in include files */ 890 extern size_t page_coloring_init(uint_t, int, int); 891 extern void page_coloring_setup(caddr_t); 892 893 PRM_POINT("startup_memlist() starting..."); 894 895 /* 896 * Use leftover large page nucleus text/data space for loadable modules. 897 * Use at most MODTEXT/MODDATA. 898 */ 899 len = kbm_nucleus_size; 900 ASSERT(len > MMU_PAGESIZE); 901 902 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 903 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 904 if (e_moddata - moddata > MODDATA) 905 e_moddata = moddata + MODDATA; 906 907 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 908 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 909 if (e_modtext - modtext > MODTEXT) 910 e_modtext = modtext + MODTEXT; 911 912 econtig = e_moddata; 913 914 PRM_DEBUG(modtext); 915 PRM_DEBUG(e_modtext); 916 PRM_DEBUG(moddata); 917 PRM_DEBUG(e_moddata); 918 PRM_DEBUG(econtig); 919 920 /* 921 * Examine the boot loader physical memory map to find out: 922 * - total memory in system - physinstalled 923 * - the max physical address - physmax 924 * - the number of discontiguous segments of memory. 925 */ 926 if (prom_debug) 927 print_memlist("boot physinstalled", 928 bootops->boot_mem->physinstalled); 929 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 930 &physinstalled, &memblocks); 931 PRM_DEBUG(physmax); 932 PRM_DEBUG(physinstalled); 933 PRM_DEBUG(memblocks); 934 935 /* 936 * Initialize hat's mmu parameters. 937 * Check for enforce-prot-exec in boot environment. It's used to 938 * enable/disable support for the page table entry NX bit. 939 * The default is to enforce PROT_EXEC on processors that support NX. 940 * Boot seems to round up the "len", but 8 seems to be big enough. 941 */ 942 mmu_init(); 943 944 #ifdef __i386 945 /* 946 * physmax is lowered if there is more memory than can be 947 * physically addressed in 32 bit (PAE/non-PAE) modes. 948 */ 949 if (mmu.pae_hat) { 950 if (PFN_ABOVE64G(physmax)) { 951 physinstalled -= (physmax - (PFN_64G - 1)); 952 physmax = PFN_64G - 1; 953 } 954 } else { 955 if (PFN_ABOVE4G(physmax)) { 956 physinstalled -= (physmax - (PFN_4G - 1)); 957 physmax = PFN_4G - 1; 958 } 959 } 960 #endif 961 962 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 963 964 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 965 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 966 char value[8]; 967 968 if (len < 8) 969 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 970 else 971 (void) strcpy(value, ""); 972 if (strcmp(value, "off") == 0) 973 mmu.pt_nx = 0; 974 } 975 PRM_DEBUG(mmu.pt_nx); 976 977 /* 978 * We will need page_t's for every page in the system, except for 979 * memory mapped at or above above the start of the kernel text segment. 980 * 981 * pages above e_modtext are attributed to kernel debugger (obp_pages) 982 */ 983 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 984 obp_pages = 0; 985 va = KERNEL_TEXT; 986 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 987 npages -= len >> MMU_PAGESHIFT; 988 if (va >= (uintptr_t)e_moddata) 989 obp_pages += len >> MMU_PAGESHIFT; 990 va += len; 991 } 992 PRM_DEBUG(npages); 993 PRM_DEBUG(obp_pages); 994 995 /* 996 * If physmem is patched to be non-zero, use it instead of the computed 997 * value unless it is larger than the actual amount of memory on hand. 998 */ 999 if (physmem == 0 || physmem > npages) { 1000 physmem = npages; 1001 } else if (physmem < npages) { 1002 orig_npages = npages; 1003 npages = physmem; 1004 } 1005 PRM_DEBUG(physmem); 1006 1007 /* 1008 * We now compute the sizes of all the initial allocations for 1009 * structures the kernel needs in order do kmem_alloc(). These 1010 * include: 1011 * memsegs 1012 * memlists 1013 * page hash table 1014 * page_t's 1015 * page coloring data structs 1016 */ 1017 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1018 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1019 PRM_DEBUG(memseg_sz); 1020 1021 /* 1022 * Reserve space for memlists. There's no real good way to know exactly 1023 * how much room we'll need, but this should be a good upper bound. 1024 */ 1025 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1026 (memblocks + POSS_NEW_FRAGMENTS)); 1027 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1028 PRM_DEBUG(memlist_sz); 1029 1030 /* 1031 * The page structure hash table size is a power of 2 1032 * such that the average hash chain length is PAGE_HASHAVELEN. 1033 */ 1034 page_hashsz = npages / PAGE_HASHAVELEN; 1035 page_hashsz = 1 << highbit(page_hashsz); 1036 pagehash_sz = sizeof (struct page *) * page_hashsz; 1037 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1038 PRM_DEBUG(pagehash_sz); 1039 1040 /* 1041 * Set aside room for the page structures themselves. 1042 */ 1043 PRM_DEBUG(npages); 1044 pp_sz = sizeof (struct page) * npages; 1045 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1046 PRM_DEBUG(pp_sz); 1047 1048 /* 1049 * determine l2 cache info and memory size for page coloring 1050 */ 1051 (void) getl2cacheinfo(CPU, 1052 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1053 pagecolor_memsz = 1054 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1055 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1056 PRM_DEBUG(pagecolor_memsz); 1057 1058 page_ctrs_size = page_ctrs_sz(); 1059 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1060 PRM_DEBUG(page_ctrs_size); 1061 1062 /* 1063 * Allocate the array that protects pp->p_selock. 1064 */ 1065 pse_shift = size_pse_array(physmem, max_ncpus); 1066 pse_table_size = 1 << pse_shift; 1067 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1068 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1069 1070 #if defined(__amd64) 1071 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1072 valloc_base = VALLOC_BASE; 1073 1074 /* 1075 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1076 * for values of physmax up to 1 Terabyte. They need adjusting when 1077 * memory is at addresses above 1 TB. 1078 */ 1079 if (physmax + 1 > mmu_btop(TERABYTE)) { 1080 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1081 1082 /* Round to largest possible pagesize for now */ 1083 kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1084 1085 segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */ 1086 1087 /* make sure we leave some space for user apps above hole */ 1088 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1089 if (segkpm_base > SEGKPM_BASE) 1090 segkpm_base = SEGKPM_BASE; 1091 PRM_DEBUG(segkpm_base); 1092 1093 valloc_base = segkpm_base + kpm_resv_amount; 1094 PRM_DEBUG(valloc_base); 1095 } 1096 #else /* __i386 */ 1097 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1098 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1099 PRM_DEBUG(valloc_base); 1100 #endif /* __i386 */ 1101 1102 /* 1103 * do all the initial allocations 1104 */ 1105 perform_allocations(); 1106 1107 /* 1108 * Build phys_install and phys_avail in kernel memspace. 1109 * - phys_install should be all memory in the system. 1110 * - phys_avail is phys_install minus any memory mapped before this 1111 * point above KERNEL_TEXT. 1112 */ 1113 current = phys_install = memlist; 1114 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1115 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1116 panic("physinstalled was too big!"); 1117 if (prom_debug) 1118 print_memlist("phys_install", phys_install); 1119 1120 phys_avail = current; 1121 PRM_POINT("Building phys_avail:\n"); 1122 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1123 avail_filter); 1124 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1125 panic("physavail was too big!"); 1126 if (prom_debug) 1127 print_memlist("phys_avail", phys_avail); 1128 1129 /* 1130 * setup page coloring 1131 */ 1132 page_coloring_setup(pagecolor_mem); 1133 page_lock_init(); /* currently a no-op */ 1134 1135 /* 1136 * free page list counters 1137 */ 1138 (void) page_ctrs_alloc(page_ctrs_mem); 1139 1140 /* 1141 * Initialize the page structures from the memory lists. 1142 */ 1143 availrmem_initial = availrmem = freemem = 0; 1144 PRM_POINT("Calling kphysm_init()..."); 1145 npages = kphysm_init(pp_base, npages); 1146 PRM_POINT("kphysm_init() done"); 1147 PRM_DEBUG(npages); 1148 1149 init_debug_info(); 1150 1151 /* 1152 * Now that page_t's have been initialized, remove all the 1153 * initial allocation pages from the kernel free page lists. 1154 */ 1155 boot_mapin((caddr_t)valloc_base, valloc_sz); 1156 boot_mapin((caddr_t)GDT_VA, MMU_PAGESIZE); 1157 boot_mapin((caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE); 1158 PRM_POINT("startup_memlist() done"); 1159 1160 PRM_DEBUG(valloc_sz); 1161 1162 #if defined(__amd64) 1163 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1164 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1165 extern size_t textrepl_size_thresh; 1166 textrepl_size_thresh = (16 << 20) - 1; 1167 } 1168 #endif 1169 } 1170 1171 /* 1172 * Layout the kernel's part of address space and initialize kmem allocator. 1173 */ 1174 static void 1175 startup_kmem(void) 1176 { 1177 extern void page_set_colorequiv_arr(void); 1178 1179 PRM_POINT("startup_kmem() starting..."); 1180 1181 #if defined(__amd64) 1182 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1183 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1184 "systems."); 1185 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1186 core_base = (uintptr_t)COREHEAP_BASE; 1187 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1188 #else /* __i386 */ 1189 /* 1190 * We configure kernelbase based on: 1191 * 1192 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1193 * KERNELBASE_MAX. we large page align eprom_kernelbase 1194 * 1195 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1196 * On large memory systems we must lower kernelbase to allow 1197 * enough room for page_t's for all of memory. 1198 * 1199 * The value set here, might be changed a little later. 1200 */ 1201 if (eprom_kernelbase) { 1202 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1203 if (kernelbase > KERNELBASE_MAX) 1204 kernelbase = KERNELBASE_MAX; 1205 } else { 1206 kernelbase = (uintptr_t)KERNELBASE; 1207 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1208 } 1209 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1210 core_base = valloc_base; 1211 core_size = 0; 1212 #endif /* __i386 */ 1213 1214 PRM_DEBUG(core_base); 1215 PRM_DEBUG(core_size); 1216 PRM_DEBUG(kernelbase); 1217 1218 #if defined(__i386) 1219 segkp_fromheap = 1; 1220 #endif /* __i386 */ 1221 1222 ekernelheap = (char *)core_base; 1223 PRM_DEBUG(ekernelheap); 1224 1225 /* 1226 * Now that we know the real value of kernelbase, 1227 * update variables that were initialized with a value of 1228 * KERNELBASE (in common/conf/param.c). 1229 * 1230 * XXX The problem with this sort of hackery is that the 1231 * compiler just may feel like putting the const declarations 1232 * (in param.c) into the .text section. Perhaps they should 1233 * just be declared as variables there? 1234 */ 1235 1236 *(uintptr_t *)&_kernelbase = kernelbase; 1237 *(uintptr_t *)&_userlimit = kernelbase; 1238 #if defined(__amd64) 1239 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1240 #else 1241 *(uintptr_t *)&_userlimit32 = _userlimit; 1242 #endif 1243 PRM_DEBUG(_kernelbase); 1244 PRM_DEBUG(_userlimit); 1245 PRM_DEBUG(_userlimit32); 1246 1247 layout_kernel_va(); 1248 1249 #if defined(__i386) 1250 /* 1251 * If segmap is too large we can push the bottom of the kernel heap 1252 * higher than the base. Or worse, it could exceed the top of the 1253 * VA space entirely, causing it to wrap around. 1254 */ 1255 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1256 panic("too little address space available for kernelheap," 1257 " use eeprom for lower kernelbase or smaller segmapsize"); 1258 #endif /* __i386 */ 1259 1260 /* 1261 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1262 */ 1263 kernelheap_init(kernelheap, ekernelheap, 1264 kernelheap + MMU_PAGESIZE, 1265 (void *)core_base, (void *)(core_base + core_size)); 1266 1267 #if defined(__xpv) 1268 /* 1269 * Link pending events struct into cpu struct 1270 */ 1271 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1272 #endif 1273 /* 1274 * Initialize kernel memory allocator. 1275 */ 1276 kmem_init(); 1277 1278 /* 1279 * Factor in colorequiv to check additional 'equivalent' bins 1280 */ 1281 page_set_colorequiv_arr(); 1282 1283 #if defined(__xpv) 1284 xen_version(); 1285 #endif 1286 1287 /* 1288 * print this out early so that we know what's going on 1289 */ 1290 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1291 1292 /* 1293 * Initialize bp_mapin(). 1294 */ 1295 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1296 1297 /* 1298 * orig_npages is non-zero if physmem has been configured for less 1299 * than the available memory. 1300 */ 1301 if (orig_npages) { 1302 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1303 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1304 npages, orig_npages); 1305 } 1306 #if defined(__i386) 1307 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1308 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1309 "System using 0x%lx", 1310 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1311 #endif 1312 1313 #ifdef KERNELBASE_ABI_MIN 1314 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1315 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1316 "i386 ABI compliant.", (uintptr_t)kernelbase); 1317 } 1318 #endif 1319 1320 #ifdef __xpv 1321 /* 1322 * Some of the xen start information has to be relocated up 1323 * into the kernel's permanent address space. 1324 */ 1325 PRM_POINT("calling xen_relocate_start_info()"); 1326 xen_relocate_start_info(); 1327 PRM_POINT("xen_relocate_start_info() done"); 1328 1329 /* 1330 * (Update the vcpu pointer in our cpu structure to point into 1331 * the relocated shared info.) 1332 */ 1333 CPU->cpu_m.mcpu_vcpu_info = 1334 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1335 #endif 1336 1337 PRM_POINT("startup_kmem() done"); 1338 } 1339 1340 static void 1341 startup_modules(void) 1342 { 1343 unsigned int i; 1344 extern void prom_setup(void); 1345 1346 PRM_POINT("startup_modules() starting..."); 1347 1348 #ifndef __xpv 1349 /* 1350 * Initialize ten-micro second timer so that drivers will 1351 * not get short changed in their init phase. This was 1352 * not getting called until clkinit which, on fast cpu's 1353 * caused the drv_usecwait to be way too short. 1354 */ 1355 microfind(); 1356 #endif 1357 1358 /* 1359 * Read the GMT lag from /etc/rtc_config. 1360 */ 1361 sgmtl(process_rtc_config_file()); 1362 1363 /* 1364 * Calculate default settings of system parameters based upon 1365 * maxusers, yet allow to be overridden via the /etc/system file. 1366 */ 1367 param_calc(0); 1368 1369 mod_setup(); 1370 1371 /* 1372 * Initialize system parameters. 1373 */ 1374 param_init(); 1375 1376 /* 1377 * Initialize the default brands 1378 */ 1379 brand_init(); 1380 1381 /* 1382 * maxmem is the amount of physical memory we're playing with. 1383 */ 1384 maxmem = physmem; 1385 1386 /* 1387 * Initialize segment management stuff. 1388 */ 1389 seg_init(); 1390 1391 if (modload("fs", "specfs") == -1) 1392 halt("Can't load specfs"); 1393 1394 if (modload("fs", "devfs") == -1) 1395 halt("Can't load devfs"); 1396 1397 if (modload("fs", "dev") == -1) 1398 halt("Can't load dev"); 1399 1400 (void) modloadonly("sys", "lbl_edition"); 1401 1402 dispinit(); 1403 1404 /* 1405 * This is needed here to initialize hw_serial[] for cluster booting. 1406 */ 1407 if ((i = modload("misc", "sysinit")) != (unsigned int)-1) 1408 (void) modunload(i); 1409 else 1410 cmn_err(CE_CONT, "sysinit load failed"); 1411 1412 /* Read cluster configuration data. */ 1413 clconf_init(); 1414 1415 #if defined(__xpv) 1416 ec_init(); 1417 gnttab_init(); 1418 (void) xs_early_init(); 1419 #endif /* __xpv */ 1420 1421 /* 1422 * Create a kernel device tree. First, create rootnex and 1423 * then invoke bus specific code to probe devices. 1424 */ 1425 setup_ddi(); 1426 1427 /* 1428 * Set up the CPU module subsystem. Modifies the device tree, so it 1429 * must be done after setup_ddi(). 1430 */ 1431 cmi_init(); 1432 1433 /* 1434 * Initialize the MCA handlers 1435 */ 1436 if (x86_feature & X86_MCA) 1437 cmi_mca_init(); 1438 1439 /* 1440 * Fake a prom tree such that /dev/openprom continues to work 1441 */ 1442 PRM_POINT("startup_modules: calling prom_setup..."); 1443 prom_setup(); 1444 PRM_POINT("startup_modules: done"); 1445 1446 /* 1447 * Load all platform specific modules 1448 */ 1449 PRM_POINT("startup_modules: calling psm_modload..."); 1450 psm_modload(); 1451 1452 PRM_POINT("startup_modules() done"); 1453 } 1454 1455 /* 1456 * claim a "setaside" boot page for use in the kernel 1457 */ 1458 page_t * 1459 boot_claim_page(pfn_t pfn) 1460 { 1461 page_t *pp; 1462 1463 pp = page_numtopp_nolock(pfn); 1464 ASSERT(pp != NULL); 1465 1466 if (PP_ISBOOTPAGES(pp)) { 1467 if (pp->p_next != NULL) 1468 pp->p_next->p_prev = pp->p_prev; 1469 if (pp->p_prev == NULL) 1470 bootpages = pp->p_next; 1471 else 1472 pp->p_prev->p_next = pp->p_next; 1473 } else { 1474 /* 1475 * htable_attach() expects a base pagesize page 1476 */ 1477 if (pp->p_szc != 0) 1478 page_boot_demote(pp); 1479 pp = page_numtopp(pfn, SE_EXCL); 1480 } 1481 return (pp); 1482 } 1483 1484 /* 1485 * Walk through the pagetables looking for pages mapped in by boot. If the 1486 * setaside flag is set the pages are expected to be returned to the 1487 * kernel later in boot, so we add them to the bootpages list. 1488 */ 1489 static void 1490 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1491 { 1492 uintptr_t va = low; 1493 size_t len; 1494 uint_t prot; 1495 pfn_t pfn; 1496 page_t *pp; 1497 pgcnt_t boot_protect_cnt = 0; 1498 1499 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1500 if (va + len >= high) 1501 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1502 "legal range.", len, (void *)va); 1503 1504 while (len > 0) { 1505 pp = page_numtopp_alloc(pfn); 1506 if (pp != NULL) { 1507 if (setaside == 0) 1508 panic("Unexpected mapping by boot. " 1509 "addr=%p pfn=%lx\n", 1510 (void *)va, pfn); 1511 1512 pp->p_next = bootpages; 1513 pp->p_prev = NULL; 1514 PP_SETBOOTPAGES(pp); 1515 if (bootpages != NULL) { 1516 bootpages->p_prev = pp; 1517 } 1518 bootpages = pp; 1519 ++boot_protect_cnt; 1520 } 1521 1522 ++pfn; 1523 len -= MMU_PAGESIZE; 1524 va += MMU_PAGESIZE; 1525 } 1526 } 1527 PRM_DEBUG(boot_protect_cnt); 1528 } 1529 1530 /* 1531 * 1532 */ 1533 static void 1534 layout_kernel_va(void) 1535 { 1536 PRM_POINT("layout_kernel_va() starting..."); 1537 /* 1538 * Establish the final size of the kernel's heap, size of segmap, 1539 * segkp, etc. 1540 */ 1541 1542 #if defined(__amd64) 1543 1544 kpm_vbase = (caddr_t)segkpm_base; 1545 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1546 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1547 panic("not enough room for kpm!"); 1548 PRM_DEBUG(kpm_size); 1549 PRM_DEBUG(kpm_vbase); 1550 1551 /* 1552 * By default we create a seg_kp in 64 bit kernels, it's a little 1553 * faster to access than embedding it in the heap. 1554 */ 1555 segkp_base = (caddr_t)valloc_base + valloc_sz; 1556 if (!segkp_fromheap) { 1557 size_t sz = mmu_ptob(segkpsize); 1558 1559 /* 1560 * determine size of segkp 1561 */ 1562 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1563 sz = SEGKPDEFSIZE; 1564 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1565 "segkpsize has been reset to %ld pages", 1566 mmu_btop(sz)); 1567 } 1568 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1569 1570 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1571 } 1572 PRM_DEBUG(segkp_base); 1573 PRM_DEBUG(segkpsize); 1574 1575 /* 1576 * segzio is used for ZFS cached data. It uses a distinct VA 1577 * segment (from kernel heap) so that we can easily tell not to 1578 * include it in kernel crash dumps on 64 bit kernels. The trick is 1579 * to give it lots of VA, but not constrain the kernel heap. 1580 * We scale the size of segzio linearly with physmem up to 1581 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1582 */ 1583 segzio_base = segkp_base + mmu_ptob(segkpsize); 1584 if (segzio_fromheap) { 1585 segziosize = 0; 1586 } else { 1587 size_t physmem_size = mmu_ptob(physmem); 1588 size_t size = (segziosize == 0) ? 1589 physmem_size : mmu_ptob(segziosize); 1590 1591 if (size < SEGZIOMINSIZE) 1592 size = SEGZIOMINSIZE; 1593 if (size > SEGZIOMAXSIZE) { 1594 size = SEGZIOMAXSIZE; 1595 if (physmem_size > size) 1596 size += (physmem_size - size) / 2; 1597 } 1598 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1599 } 1600 PRM_DEBUG(segziosize); 1601 PRM_DEBUG(segzio_base); 1602 1603 /* 1604 * Put the range of VA for device mappings next, kmdb knows to not 1605 * grep in this range of addresses. 1606 */ 1607 toxic_addr = 1608 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1609 PRM_DEBUG(toxic_addr); 1610 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1611 #else /* __i386 */ 1612 segmap_start = ROUND_UP_LPAGE(kernelbase); 1613 #endif /* __i386 */ 1614 PRM_DEBUG(segmap_start); 1615 1616 /* 1617 * Users can change segmapsize through eeprom or /etc/system. 1618 * If the variable is tuned through eeprom, there is no upper 1619 * bound on the size of segmap. If it is tuned through 1620 * /etc/system on 32-bit systems, it must be no larger than we 1621 * planned for in startup_memlist(). 1622 */ 1623 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1624 1625 #if defined(__i386) 1626 /* 1627 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1628 * the bottom of the kernel's address range. Set aside space for a 1629 * small red zone just below the start of segmap. 1630 */ 1631 segmap_start += KERNEL_REDZONE_SIZE; 1632 segmapsize -= KERNEL_REDZONE_SIZE; 1633 #endif 1634 1635 PRM_DEBUG(segmap_start); 1636 PRM_DEBUG(segmapsize); 1637 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1638 PRM_DEBUG(kernelheap); 1639 PRM_POINT("layout_kernel_va() done..."); 1640 } 1641 1642 /* 1643 * Finish initializing the VM system, now that we are no longer 1644 * relying on the boot time memory allocators. 1645 */ 1646 static void 1647 startup_vm(void) 1648 { 1649 struct segmap_crargs a; 1650 1651 extern int use_brk_lpg, use_stk_lpg; 1652 1653 PRM_POINT("startup_vm() starting..."); 1654 1655 /* 1656 * Initialize the hat layer. 1657 */ 1658 hat_init(); 1659 1660 /* 1661 * Do final allocations of HAT data structures that need to 1662 * be allocated before quiescing the boot loader. 1663 */ 1664 PRM_POINT("Calling hat_kern_alloc()..."); 1665 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1666 PRM_POINT("hat_kern_alloc() done"); 1667 1668 #ifndef __xpv 1669 /* 1670 * Setup MTRR (Memory type range registers) 1671 */ 1672 setup_mtrr(); 1673 #endif 1674 1675 /* 1676 * The next two loops are done in distinct steps in order 1677 * to be sure that any page that is doubly mapped (both above 1678 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1679 * Note this may never happen, but it might someday. 1680 */ 1681 bootpages = NULL; 1682 PRM_POINT("Protecting boot pages"); 1683 1684 /* 1685 * Protect any pages mapped above KERNEL_TEXT that somehow have 1686 * page_t's. This can only happen if something weird allocated 1687 * in this range (like kadb/kmdb). 1688 */ 1689 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1690 1691 /* 1692 * Before we can take over memory allocation/mapping from the boot 1693 * loader we must remove from our free page lists any boot allocated 1694 * pages that stay mapped until release_bootstrap(). 1695 */ 1696 protect_boot_range(0, kernelbase, 1); 1697 1698 1699 /* 1700 * Switch to running on regular HAT (not boot_mmu) 1701 */ 1702 PRM_POINT("Calling hat_kern_setup()..."); 1703 hat_kern_setup(); 1704 1705 /* 1706 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1707 */ 1708 bop_no_more_mem(); 1709 1710 PRM_POINT("hat_kern_setup() done"); 1711 1712 hat_cpu_online(CPU); 1713 1714 /* 1715 * Initialize VM system 1716 */ 1717 PRM_POINT("Calling kvm_init()..."); 1718 kvm_init(); 1719 PRM_POINT("kvm_init() done"); 1720 1721 /* 1722 * Tell kmdb that the VM system is now working 1723 */ 1724 if (boothowto & RB_DEBUG) 1725 kdi_dvec_vmready(); 1726 1727 #if defined(__xpv) 1728 /* 1729 * Populate the I/O pool on domain 0 1730 */ 1731 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1732 extern long populate_io_pool(void); 1733 long init_io_pool_cnt; 1734 1735 PRM_POINT("Populating reserve I/O page pool"); 1736 init_io_pool_cnt = populate_io_pool(); 1737 PRM_DEBUG(init_io_pool_cnt); 1738 } 1739 #endif 1740 /* 1741 * Mangle the brand string etc. 1742 */ 1743 cpuid_pass3(CPU); 1744 1745 #if defined(__amd64) 1746 1747 /* 1748 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1749 */ 1750 device_arena = vmem_create("device", (void *)toxic_addr, 1751 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1752 1753 #else /* __i386 */ 1754 1755 /* 1756 * allocate the bit map that tracks toxic pages 1757 */ 1758 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 1759 PRM_DEBUG(toxic_bit_map_len); 1760 toxic_bit_map = 1761 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1762 ASSERT(toxic_bit_map != NULL); 1763 PRM_DEBUG(toxic_bit_map); 1764 1765 #endif /* __i386 */ 1766 1767 1768 /* 1769 * Now that we've got more VA, as well as the ability to allocate from 1770 * it, tell the debugger. 1771 */ 1772 if (boothowto & RB_DEBUG) 1773 kdi_dvec_memavail(); 1774 1775 /* 1776 * The following code installs a special page fault handler (#pf) 1777 * to work around a pentium bug. 1778 */ 1779 #if !defined(__amd64) && !defined(__xpv) 1780 if (x86_type == X86_TYPE_P5) { 1781 desctbr_t idtr; 1782 gate_desc_t *newidt; 1783 struct machcpu *mcpu = &CPU->cpu_m; 1784 1785 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1786 panic("failed to install pentium_pftrap"); 1787 1788 bcopy(idt0, newidt, sizeof (idt0)); 1789 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1790 KCS_SEL, SDT_SYSIGT, TRP_KPL); 1791 1792 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1793 PROT_READ|PROT_EXEC); 1794 1795 mcpu->mcpu_idt = newidt; 1796 idtr.dtr_base = (uintptr_t)mcpu->mcpu_idt; 1797 idtr.dtr_limit = sizeof (idt0) - 1; 1798 wr_idtr(&idtr); 1799 } 1800 #endif /* !__amd64 */ 1801 1802 #if !defined(__xpv) 1803 /* 1804 * Map page pfn=0 for drivers, such as kd, that need to pick up 1805 * parameters left there by controllers/BIOS. 1806 */ 1807 PRM_POINT("setup up p0_va"); 1808 p0_va = i86devmap(0, 1, PROT_READ); 1809 PRM_DEBUG(p0_va); 1810 #endif 1811 1812 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1813 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1814 1815 /* 1816 * disable automatic large pages for small memory systems or 1817 * when the disable flag is set. 1818 */ 1819 if (!auto_lpg_disable && mmu.max_page_level > 0) { 1820 max_uheap_lpsize = LEVEL_SIZE(1); 1821 max_ustack_lpsize = LEVEL_SIZE(1); 1822 max_privmap_lpsize = LEVEL_SIZE(1); 1823 max_uidata_lpsize = LEVEL_SIZE(1); 1824 max_utext_lpsize = LEVEL_SIZE(1); 1825 max_shm_lpsize = LEVEL_SIZE(1); 1826 } 1827 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 1828 auto_lpg_disable) { 1829 use_brk_lpg = 0; 1830 use_stk_lpg = 0; 1831 } 1832 if (mmu.max_page_level > 0) { 1833 mcntl0_lpsize = LEVEL_SIZE(1); 1834 } 1835 1836 PRM_POINT("Calling hat_init_finish()..."); 1837 hat_init_finish(); 1838 PRM_POINT("hat_init_finish() done"); 1839 1840 /* 1841 * Initialize the segkp segment type. 1842 */ 1843 rw_enter(&kas.a_lock, RW_WRITER); 1844 PRM_POINT("Attaching segkp"); 1845 if (segkp_fromheap) { 1846 segkp->s_as = &kas; 1847 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1848 segkp) < 0) { 1849 panic("startup: cannot attach segkp"); 1850 /*NOTREACHED*/ 1851 } 1852 PRM_POINT("Doing segkp_create()"); 1853 if (segkp_create(segkp) != 0) { 1854 panic("startup: segkp_create failed"); 1855 /*NOTREACHED*/ 1856 } 1857 PRM_DEBUG(segkp); 1858 rw_exit(&kas.a_lock); 1859 1860 /* 1861 * kpm segment 1862 */ 1863 segmap_kpm = 0; 1864 if (kpm_desired) { 1865 kpm_init(); 1866 kpm_enable = 1; 1867 vpm_enable = 1; 1868 } 1869 1870 /* 1871 * Now create segmap segment. 1872 */ 1873 rw_enter(&kas.a_lock, RW_WRITER); 1874 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 1875 panic("cannot attach segmap"); 1876 /*NOTREACHED*/ 1877 } 1878 PRM_DEBUG(segmap); 1879 1880 a.prot = PROT_READ | PROT_WRITE; 1881 a.shmsize = 0; 1882 a.nfreelist = segmapfreelists; 1883 1884 if (segmap_create(segmap, (caddr_t)&a) != 0) 1885 panic("segmap_create segmap"); 1886 rw_exit(&kas.a_lock); 1887 1888 setup_vaddr_for_ppcopy(CPU); 1889 1890 segdev_init(); 1891 #if defined(__xpv) 1892 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1893 #endif 1894 pmem_init(); 1895 1896 PRM_POINT("startup_vm() done"); 1897 } 1898 1899 /* 1900 * Load a tod module for the non-standard tod part found on this system. 1901 */ 1902 static void 1903 load_tod_module(char *todmod) 1904 { 1905 if (modload("tod", todmod) == -1) 1906 halt("Can't load TOD module"); 1907 } 1908 1909 static void 1910 startup_end(void) 1911 { 1912 extern void setx86isalist(void); 1913 1914 PRM_POINT("startup_end() starting..."); 1915 1916 /* 1917 * Perform tasks that get done after most of the VM 1918 * initialization has been done but before the clock 1919 * and other devices get started. 1920 */ 1921 kern_setup1(); 1922 1923 /* 1924 * Perform CPC initialization for this CPU. 1925 */ 1926 kcpc_hw_init(CPU); 1927 1928 #if defined(OPTERON_WORKAROUND_6323525) 1929 if (opteron_workaround_6323525) 1930 patch_workaround_6323525(); 1931 #endif 1932 /* 1933 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 1934 * (For now, "needed" is defined as set tod_module_name in /etc/system) 1935 */ 1936 if (tod_module_name != NULL) { 1937 PRM_POINT("load_tod_module()"); 1938 load_tod_module(tod_module_name); 1939 } 1940 1941 #if defined(__xpv) 1942 /* 1943 * Forceload interposing TOD module for the hypervisor. 1944 */ 1945 PRM_POINT("load_tod_module()"); 1946 load_tod_module("xpvtod"); 1947 #endif 1948 1949 /* 1950 * Configure the system. 1951 */ 1952 PRM_POINT("Calling configure()..."); 1953 configure(); /* set up devices */ 1954 PRM_POINT("configure() done"); 1955 1956 /* 1957 * Set the isa_list string to the defined instruction sets we 1958 * support. 1959 */ 1960 setx86isalist(); 1961 cpu_intr_alloc(CPU, NINTR_THREADS); 1962 psm_install(); 1963 1964 /* 1965 * We're done with bootops. We don't unmap the bootstrap yet because 1966 * we're still using bootsvcs. 1967 */ 1968 PRM_POINT("NULLing out bootops"); 1969 *bootopsp = (struct bootops *)NULL; 1970 bootops = (struct bootops *)NULL; 1971 1972 #if defined(__xpv) 1973 ec_init_debug_irq(); 1974 xs_domu_init(); 1975 #endif 1976 PRM_POINT("Enabling interrupts"); 1977 (*picinitf)(); 1978 sti(); 1979 #if defined(__xpv) 1980 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 1981 xen_late_startup(); 1982 #endif 1983 1984 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 1985 "softlevel1", NULL, NULL); /* XXX to be moved later */ 1986 1987 PRM_POINT("startup_end() done"); 1988 } 1989 1990 extern char hw_serial[]; 1991 char *_hs1107 = hw_serial; 1992 ulong_t _bdhs34; 1993 1994 void 1995 post_startup(void) 1996 { 1997 /* 1998 * Set the system wide, processor-specific flags to be passed 1999 * to userland via the aux vector for performance hints and 2000 * instruction set extensions. 2001 */ 2002 bind_hwcap(); 2003 2004 #ifdef __xpv 2005 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2006 #endif 2007 { 2008 /* 2009 * Load the System Management BIOS into the global ksmbios 2010 * handle, if an SMBIOS is present on this system. 2011 */ 2012 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 2013 2014 #if defined(__xpv) 2015 xpv_panic_init(); 2016 #else 2017 /* 2018 * Startup the memory scrubber. 2019 * XXPV This should be running somewhere .. 2020 */ 2021 memscrub_init(); 2022 #endif 2023 } 2024 2025 /* 2026 * Complete CPU module initialization 2027 */ 2028 cmi_post_init(); 2029 2030 /* 2031 * Perform forceloading tasks for /etc/system. 2032 */ 2033 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2034 2035 /* 2036 * ON4.0: Force /proc module in until clock interrupt handle fixed 2037 * ON4.0: This must be fixed or restated in /etc/systems. 2038 */ 2039 (void) modload("fs", "procfs"); 2040 2041 #if defined(__i386) 2042 /* 2043 * Check for required functional Floating Point hardware, 2044 * unless FP hardware explicitly disabled. 2045 */ 2046 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2047 halt("No working FP hardware found"); 2048 #endif 2049 2050 maxmem = freemem; 2051 2052 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 2053 } 2054 2055 static int 2056 pp_in_ramdisk(page_t *pp) 2057 { 2058 extern uint64_t ramdisk_start, ramdisk_end; 2059 2060 return ((pp->p_pagenum >= btop(ramdisk_start)) && 2061 (pp->p_pagenum < btopr(ramdisk_end))); 2062 } 2063 2064 void 2065 release_bootstrap(void) 2066 { 2067 int root_is_ramdisk; 2068 page_t *pp; 2069 extern void kobj_boot_unmountroot(void); 2070 extern dev_t rootdev; 2071 2072 /* unmount boot ramdisk and release kmem usage */ 2073 kobj_boot_unmountroot(); 2074 2075 /* 2076 * We're finished using the boot loader so free its pages. 2077 */ 2078 PRM_POINT("Unmapping lower boot pages"); 2079 clear_boot_mappings(0, _userlimit); 2080 postbootkernelbase = kernelbase; 2081 2082 /* 2083 * If root isn't on ramdisk, destroy the hardcoded 2084 * ramdisk node now and release the memory. Else, 2085 * ramdisk memory is kept in rd_pages. 2086 */ 2087 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2088 if (!root_is_ramdisk) { 2089 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2090 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2091 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2092 (void) ddi_remove_child(dip, 0); 2093 } 2094 2095 PRM_POINT("Releasing boot pages"); 2096 while (bootpages) { 2097 pp = bootpages; 2098 bootpages = pp->p_next; 2099 if (root_is_ramdisk && pp_in_ramdisk(pp)) { 2100 pp->p_next = rd_pages; 2101 rd_pages = pp; 2102 continue; 2103 } 2104 pp->p_next = (struct page *)0; 2105 pp->p_prev = (struct page *)0; 2106 PP_CLRBOOTPAGES(pp); 2107 page_free(pp, 1); 2108 } 2109 PRM_POINT("Boot pages released"); 2110 2111 #if !defined(__xpv) 2112 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2113 /* 2114 * Find 1 page below 1 MB so that other processors can boot up. 2115 * Make sure it has a kernel VA as well as a 1:1 mapping. 2116 * We should have just free'd one up. 2117 */ 2118 if (use_mp) { 2119 pfn_t pfn; 2120 2121 for (pfn = 1; pfn < btop(1*1024*1024); pfn++) { 2122 if (page_numtopp_alloc(pfn) == NULL) 2123 continue; 2124 rm_platter_va = i86devmap(pfn, 1, 2125 PROT_READ | PROT_WRITE | PROT_EXEC); 2126 rm_platter_pa = ptob(pfn); 2127 hat_devload(kas.a_hat, 2128 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2129 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2130 HAT_LOAD_NOCONSIST); 2131 break; 2132 } 2133 if (pfn == btop(1*1024*1024)) 2134 panic("No page available for starting " 2135 "other processors"); 2136 } 2137 #endif /* !__xpv */ 2138 } 2139 2140 /* 2141 * Initialize the platform-specific parts of a page_t. 2142 */ 2143 void 2144 add_physmem_cb(page_t *pp, pfn_t pnum) 2145 { 2146 pp->p_pagenum = pnum; 2147 pp->p_mapping = NULL; 2148 pp->p_embed = 0; 2149 pp->p_share = 0; 2150 pp->p_mlentry = 0; 2151 } 2152 2153 /* 2154 * kphysm_init() initializes physical memory. 2155 */ 2156 static pgcnt_t 2157 kphysm_init( 2158 page_t *pp, 2159 pgcnt_t npages) 2160 { 2161 struct memlist *pmem; 2162 struct memseg *cur_memseg; 2163 pfn_t base_pfn; 2164 pgcnt_t num; 2165 pgcnt_t pages_done = 0; 2166 uint64_t addr; 2167 uint64_t size; 2168 extern pfn_t ddiphysmin; 2169 2170 ASSERT(page_hash != NULL && page_hashsz != 0); 2171 2172 cur_memseg = memseg_base; 2173 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2174 /* 2175 * In a 32 bit kernel can't use higher memory if we're 2176 * not booting in PAE mode. This check takes care of that. 2177 */ 2178 addr = pmem->address; 2179 size = pmem->size; 2180 if (btop(addr) > physmax) 2181 continue; 2182 2183 /* 2184 * align addr and size - they may not be at page boundaries 2185 */ 2186 if ((addr & MMU_PAGEOFFSET) != 0) { 2187 addr += MMU_PAGEOFFSET; 2188 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2189 size -= addr - pmem->address; 2190 } 2191 2192 /* only process pages below or equal to physmax */ 2193 if ((btop(addr + size) - 1) > physmax) 2194 size = ptob(physmax - btop(addr) + 1); 2195 2196 num = btop(size); 2197 if (num == 0) 2198 continue; 2199 2200 if (num > npages) 2201 num = npages; 2202 2203 npages -= num; 2204 pages_done += num; 2205 base_pfn = btop(addr); 2206 2207 if (prom_debug) 2208 prom_printf("MEMSEG addr=0x%" PRIx64 2209 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2210 addr, num, base_pfn, base_pfn + num); 2211 2212 /* 2213 * Ignore pages below ddiphysmin to simplify ddi memory 2214 * allocation with non-zero addr_lo requests. 2215 */ 2216 if (base_pfn < ddiphysmin) { 2217 if (base_pfn + num <= ddiphysmin) 2218 continue; 2219 pp += (ddiphysmin - base_pfn); 2220 num -= (ddiphysmin - base_pfn); 2221 base_pfn = ddiphysmin; 2222 } 2223 2224 /* 2225 * Build the memsegs entry 2226 */ 2227 cur_memseg->pages = pp; 2228 cur_memseg->epages = pp + num; 2229 cur_memseg->pages_base = base_pfn; 2230 cur_memseg->pages_end = base_pfn + num; 2231 2232 /* 2233 * Insert into memseg list in decreasing pfn range order. 2234 * Low memory is typically more fragmented such that this 2235 * ordering keeps the larger ranges at the front of the list 2236 * for code that searches memseg. 2237 * This ASSERTS that the memsegs coming in from boot are in 2238 * increasing physical address order and not contiguous. 2239 */ 2240 if (memsegs != NULL) { 2241 ASSERT(cur_memseg->pages_base >= memsegs->pages_end); 2242 cur_memseg->next = memsegs; 2243 } 2244 memsegs = cur_memseg; 2245 2246 /* 2247 * add_physmem() initializes the PSM part of the page 2248 * struct by calling the PSM back with add_physmem_cb(). 2249 * In addition it coalesces pages into larger pages as 2250 * it initializes them. 2251 */ 2252 add_physmem(pp, num, base_pfn); 2253 cur_memseg++; 2254 availrmem_initial += num; 2255 availrmem += num; 2256 2257 pp += num; 2258 } 2259 2260 PRM_DEBUG(availrmem_initial); 2261 PRM_DEBUG(availrmem); 2262 PRM_DEBUG(freemem); 2263 build_pfn_hash(); 2264 return (pages_done); 2265 } 2266 2267 /* 2268 * Kernel VM initialization. 2269 */ 2270 static void 2271 kvm_init(void) 2272 { 2273 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2274 2275 /* 2276 * Put the kernel segments in kernel address space. 2277 */ 2278 rw_enter(&kas.a_lock, RW_WRITER); 2279 as_avlinit(&kas); 2280 2281 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2282 (void) segkmem_create(&ktextseg); 2283 2284 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2285 (void) segkmem_create(&kvalloc); 2286 2287 (void) seg_attach(&kas, kernelheap, 2288 ekernelheap - kernelheap, &kvseg); 2289 (void) segkmem_create(&kvseg); 2290 2291 if (core_size > 0) { 2292 PRM_POINT("attaching kvseg_core"); 2293 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2294 &kvseg_core); 2295 (void) segkmem_create(&kvseg_core); 2296 } 2297 2298 if (segziosize > 0) { 2299 PRM_POINT("attaching segzio"); 2300 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2301 &kzioseg); 2302 (void) segkmem_zio_create(&kzioseg); 2303 2304 /* create zio area covering new segment */ 2305 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2306 } 2307 2308 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2309 (void) segkmem_create(&kdebugseg); 2310 2311 rw_exit(&kas.a_lock); 2312 2313 /* 2314 * Ensure that the red zone at kernelbase is never accessible. 2315 */ 2316 PRM_POINT("protecting redzone"); 2317 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2318 2319 /* 2320 * Make the text writable so that it can be hot patched by DTrace. 2321 */ 2322 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2323 PROT_READ | PROT_WRITE | PROT_EXEC); 2324 2325 /* 2326 * Make data writable until end. 2327 */ 2328 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2329 PROT_READ | PROT_WRITE | PROT_EXEC); 2330 } 2331 2332 #ifndef __xpv 2333 /* 2334 * These are MTTR registers supported by P6 2335 */ 2336 static struct mtrrvar mtrrphys_arr[MAX_MTRRVAR]; 2337 static uint64_t mtrr64k, mtrr16k1, mtrr16k2; 2338 static uint64_t mtrr4k1, mtrr4k2, mtrr4k3; 2339 static uint64_t mtrr4k4, mtrr4k5, mtrr4k6; 2340 static uint64_t mtrr4k7, mtrr4k8, mtrrcap; 2341 uint64_t mtrrdef, pat_attr_reg; 2342 2343 /* 2344 * Disable reprogramming of MTRRs by default. 2345 */ 2346 int enable_relaxed_mtrr = 0; 2347 2348 void 2349 setup_mtrr(void) 2350 { 2351 int i, ecx; 2352 int vcnt; 2353 struct mtrrvar *mtrrphys; 2354 2355 if (!(x86_feature & X86_MTRR)) 2356 return; 2357 2358 mtrrcap = rdmsr(REG_MTRRCAP); 2359 mtrrdef = rdmsr(REG_MTRRDEF); 2360 if (mtrrcap & MTRRCAP_FIX) { 2361 mtrr64k = rdmsr(REG_MTRR64K); 2362 mtrr16k1 = rdmsr(REG_MTRR16K1); 2363 mtrr16k2 = rdmsr(REG_MTRR16K2); 2364 mtrr4k1 = rdmsr(REG_MTRR4K1); 2365 mtrr4k2 = rdmsr(REG_MTRR4K2); 2366 mtrr4k3 = rdmsr(REG_MTRR4K3); 2367 mtrr4k4 = rdmsr(REG_MTRR4K4); 2368 mtrr4k5 = rdmsr(REG_MTRR4K5); 2369 mtrr4k6 = rdmsr(REG_MTRR4K6); 2370 mtrr4k7 = rdmsr(REG_MTRR4K7); 2371 mtrr4k8 = rdmsr(REG_MTRR4K8); 2372 } 2373 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2374 vcnt = MAX_MTRRVAR; 2375 2376 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2377 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2378 mtrrphys->mtrrphys_base = rdmsr(ecx); 2379 mtrrphys->mtrrphys_mask = rdmsr(ecx + 1); 2380 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) 2381 mtrrphys->mtrrphys_mask &= ~MTRRPHYSMASK_V; 2382 } 2383 if (x86_feature & X86_PAT) { 2384 if (enable_relaxed_mtrr) 2385 mtrrdef = MTRR_TYPE_WB|MTRRDEF_FE|MTRRDEF_E; 2386 pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2387 } 2388 2389 mtrr_sync(); 2390 } 2391 2392 /* 2393 * Sync current cpu mtrr with the incore copy of mtrr. 2394 * This function has to be invoked with interrupts disabled 2395 * Currently we do not capture other cpu's. This is invoked on cpu0 2396 * just after reading /etc/system. 2397 * On other cpu's its invoked from mp_startup(). 2398 */ 2399 void 2400 mtrr_sync(void) 2401 { 2402 uint_t crvalue, cr0_orig; 2403 int vcnt, i, ecx; 2404 struct mtrrvar *mtrrphys; 2405 2406 cr0_orig = crvalue = getcr0(); 2407 crvalue |= CR0_CD; 2408 crvalue &= ~CR0_NW; 2409 setcr0(crvalue); 2410 invalidate_cache(); 2411 2412 #if !defined(__xpv) 2413 reload_cr3(); 2414 #endif 2415 if (x86_feature & X86_PAT) 2416 wrmsr(REG_MTRRPAT, pat_attr_reg); 2417 2418 wrmsr(REG_MTRRDEF, rdmsr(REG_MTRRDEF) & 2419 ~((uint64_t)(uintptr_t)MTRRDEF_E)); 2420 2421 if (mtrrcap & MTRRCAP_FIX) { 2422 wrmsr(REG_MTRR64K, mtrr64k); 2423 wrmsr(REG_MTRR16K1, mtrr16k1); 2424 wrmsr(REG_MTRR16K2, mtrr16k2); 2425 wrmsr(REG_MTRR4K1, mtrr4k1); 2426 wrmsr(REG_MTRR4K2, mtrr4k2); 2427 wrmsr(REG_MTRR4K3, mtrr4k3); 2428 wrmsr(REG_MTRR4K4, mtrr4k4); 2429 wrmsr(REG_MTRR4K5, mtrr4k5); 2430 wrmsr(REG_MTRR4K6, mtrr4k6); 2431 wrmsr(REG_MTRR4K7, mtrr4k7); 2432 wrmsr(REG_MTRR4K8, mtrr4k8); 2433 } 2434 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2435 vcnt = MAX_MTRRVAR; 2436 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2437 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2438 wrmsr(ecx, mtrrphys->mtrrphys_base); 2439 wrmsr(ecx + 1, mtrrphys->mtrrphys_mask); 2440 } 2441 wrmsr(REG_MTRRDEF, mtrrdef); 2442 2443 #if !defined(__xpv) 2444 reload_cr3(); 2445 #endif 2446 invalidate_cache(); 2447 setcr0(cr0_orig); 2448 } 2449 2450 /* 2451 * resync mtrr so that BIOS is happy. Called from mdboot 2452 */ 2453 void 2454 mtrr_resync(void) 2455 { 2456 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2457 /* 2458 * We could have changed the default mtrr definition. 2459 * Put it back to uncached which is what it is at power on 2460 */ 2461 mtrrdef = MTRR_TYPE_UC|MTRRDEF_FE|MTRRDEF_E; 2462 mtrr_sync(); 2463 } 2464 } 2465 #endif 2466 2467 void 2468 get_system_configuration(void) 2469 { 2470 char prop[32]; 2471 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2472 2473 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2474 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2475 kobj_getvalue(prop, &nodes_ll) == -1 || 2476 nodes_ll > MAXNODES || 2477 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2478 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2479 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2480 system_hardware.hd_nodes = 1; 2481 system_hardware.hd_cpus_per_node = 0; 2482 } else { 2483 system_hardware.hd_nodes = (int)nodes_ll; 2484 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2485 } 2486 2487 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2488 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2489 kobj_getvalue(prop, &lvalue) == -1) 2490 eprom_kernelbase = NULL; 2491 else 2492 eprom_kernelbase = (uintptr_t)lvalue; 2493 2494 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2495 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2496 kobj_getvalue(prop, &lvalue) == -1) 2497 segmapsize = SEGMAPDEFAULT; 2498 else 2499 segmapsize = (uintptr_t)lvalue; 2500 2501 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2502 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2503 kobj_getvalue(prop, &lvalue) == -1) 2504 segmapfreelists = 0; /* use segmap driver default */ 2505 else 2506 segmapfreelists = (int)lvalue; 2507 2508 /* physmem used to be here, but moved much earlier to fakebop.c */ 2509 } 2510 2511 /* 2512 * Add to a memory list. 2513 * start = start of new memory segment 2514 * len = length of new memory segment in bytes 2515 * new = pointer to a new struct memlist 2516 * memlistp = memory list to which to add segment. 2517 */ 2518 void 2519 memlist_add( 2520 uint64_t start, 2521 uint64_t len, 2522 struct memlist *new, 2523 struct memlist **memlistp) 2524 { 2525 struct memlist *cur; 2526 uint64_t end = start + len; 2527 2528 new->address = start; 2529 new->size = len; 2530 2531 cur = *memlistp; 2532 2533 while (cur) { 2534 if (cur->address >= end) { 2535 new->next = cur; 2536 *memlistp = new; 2537 new->prev = cur->prev; 2538 cur->prev = new; 2539 return; 2540 } 2541 ASSERT(cur->address + cur->size <= start); 2542 if (cur->next == NULL) { 2543 cur->next = new; 2544 new->prev = cur; 2545 new->next = NULL; 2546 return; 2547 } 2548 memlistp = &cur->next; 2549 cur = cur->next; 2550 } 2551 } 2552 2553 void 2554 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2555 { 2556 size_t tsize = e_modtext - modtext; 2557 size_t dsize = e_moddata - moddata; 2558 2559 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2560 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2561 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2562 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2563 } 2564 2565 caddr_t 2566 kobj_text_alloc(vmem_t *arena, size_t size) 2567 { 2568 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2569 } 2570 2571 /*ARGSUSED*/ 2572 caddr_t 2573 kobj_texthole_alloc(caddr_t addr, size_t size) 2574 { 2575 panic("unexpected call to kobj_texthole_alloc()"); 2576 /*NOTREACHED*/ 2577 return (0); 2578 } 2579 2580 /*ARGSUSED*/ 2581 void 2582 kobj_texthole_free(caddr_t addr, size_t size) 2583 { 2584 panic("unexpected call to kobj_texthole_free()"); 2585 } 2586 2587 /* 2588 * This is called just after configure() in startup(). 2589 * 2590 * The ISALIST concept is a bit hopeless on Intel, because 2591 * there's no guarantee of an ever-more-capable processor 2592 * given that various parts of the instruction set may appear 2593 * and disappear between different implementations. 2594 * 2595 * While it would be possible to correct it and even enhance 2596 * it somewhat, the explicit hardware capability bitmask allows 2597 * more flexibility. 2598 * 2599 * So, we just leave this alone. 2600 */ 2601 void 2602 setx86isalist(void) 2603 { 2604 char *tp; 2605 size_t len; 2606 extern char *isa_list; 2607 2608 #define TBUFSIZE 1024 2609 2610 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2611 *tp = '\0'; 2612 2613 #if defined(__amd64) 2614 (void) strcpy(tp, "amd64 "); 2615 #endif 2616 2617 switch (x86_vendor) { 2618 case X86_VENDOR_Intel: 2619 case X86_VENDOR_AMD: 2620 case X86_VENDOR_TM: 2621 if (x86_feature & X86_CMOV) { 2622 /* 2623 * Pentium Pro or later 2624 */ 2625 (void) strcat(tp, "pentium_pro"); 2626 (void) strcat(tp, x86_feature & X86_MMX ? 2627 "+mmx pentium_pro " : " "); 2628 } 2629 /*FALLTHROUGH*/ 2630 case X86_VENDOR_Cyrix: 2631 /* 2632 * The Cyrix 6x86 does not have any Pentium features 2633 * accessible while not at privilege level 0. 2634 */ 2635 if (x86_feature & X86_CPUID) { 2636 (void) strcat(tp, "pentium"); 2637 (void) strcat(tp, x86_feature & X86_MMX ? 2638 "+mmx pentium " : " "); 2639 } 2640 break; 2641 default: 2642 break; 2643 } 2644 (void) strcat(tp, "i486 i386 i86"); 2645 len = strlen(tp) + 1; /* account for NULL at end of string */ 2646 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2647 kmem_free(tp, TBUFSIZE); 2648 2649 #undef TBUFSIZE 2650 } 2651 2652 2653 #ifdef __amd64 2654 2655 void * 2656 device_arena_alloc(size_t size, int vm_flag) 2657 { 2658 return (vmem_alloc(device_arena, size, vm_flag)); 2659 } 2660 2661 void 2662 device_arena_free(void *vaddr, size_t size) 2663 { 2664 vmem_free(device_arena, vaddr, size); 2665 } 2666 2667 #else /* __i386 */ 2668 2669 void * 2670 device_arena_alloc(size_t size, int vm_flag) 2671 { 2672 caddr_t vaddr; 2673 uintptr_t v; 2674 size_t start; 2675 size_t end; 2676 2677 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2678 if (vaddr == NULL) 2679 return (NULL); 2680 2681 v = (uintptr_t)vaddr; 2682 ASSERT(v >= kernelbase); 2683 ASSERT(v + size <= valloc_base); 2684 2685 start = btop(v - kernelbase); 2686 end = btop(v + size - 1 - kernelbase); 2687 ASSERT(start < toxic_bit_map_len); 2688 ASSERT(end < toxic_bit_map_len); 2689 2690 while (start <= end) { 2691 BT_ATOMIC_SET(toxic_bit_map, start); 2692 ++start; 2693 } 2694 return (vaddr); 2695 } 2696 2697 void 2698 device_arena_free(void *vaddr, size_t size) 2699 { 2700 uintptr_t v = (uintptr_t)vaddr; 2701 size_t start; 2702 size_t end; 2703 2704 ASSERT(v >= kernelbase); 2705 ASSERT(v + size <= valloc_base); 2706 2707 start = btop(v - kernelbase); 2708 end = btop(v + size - 1 - kernelbase); 2709 ASSERT(start < toxic_bit_map_len); 2710 ASSERT(end < toxic_bit_map_len); 2711 2712 while (start <= end) { 2713 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2714 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2715 ++start; 2716 } 2717 vmem_free(heap_arena, vaddr, size); 2718 } 2719 2720 /* 2721 * returns 1st address in range that is in device arena, or NULL 2722 * if len is not NULL it returns the length of the toxic range 2723 */ 2724 void * 2725 device_arena_contains(void *vaddr, size_t size, size_t *len) 2726 { 2727 uintptr_t v = (uintptr_t)vaddr; 2728 uintptr_t eaddr = v + size; 2729 size_t start; 2730 size_t end; 2731 2732 /* 2733 * if called very early by kmdb, just return NULL 2734 */ 2735 if (toxic_bit_map == NULL) 2736 return (NULL); 2737 2738 /* 2739 * First check if we're completely outside the bitmap range. 2740 */ 2741 if (v >= valloc_base || eaddr < kernelbase) 2742 return (NULL); 2743 2744 /* 2745 * Trim ends of search to look at only what the bitmap covers. 2746 */ 2747 if (v < kernelbase) 2748 v = kernelbase; 2749 start = btop(v - kernelbase); 2750 end = btop(eaddr - kernelbase); 2751 if (end >= toxic_bit_map_len) 2752 end = toxic_bit_map_len; 2753 2754 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2755 return (NULL); 2756 2757 v = kernelbase + ptob(start); 2758 if (len != NULL) 2759 *len = ptob(end - start); 2760 return ((void *)v); 2761 } 2762 2763 #endif /* __i386 */ 2764