xref: /titanic_41/usr/src/uts/i86pc/os/startup.c (revision 8d483882aa3390058094b043f3d62187b5d1de03)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/t_lock.h>
30 #include <sys/param.h>
31 #include <sys/sysmacros.h>
32 #include <sys/signal.h>
33 #include <sys/systm.h>
34 #include <sys/user.h>
35 #include <sys/mman.h>
36 #include <sys/vm.h>
37 #include <sys/conf.h>
38 #include <sys/avintr.h>
39 #include <sys/autoconf.h>
40 #include <sys/disp.h>
41 #include <sys/class.h>
42 #include <sys/bitmap.h>
43 
44 #include <sys/privregs.h>
45 
46 #include <sys/proc.h>
47 #include <sys/buf.h>
48 #include <sys/kmem.h>
49 #include <sys/mem.h>
50 #include <sys/kstat.h>
51 
52 #include <sys/reboot.h>
53 
54 #include <sys/cred.h>
55 #include <sys/vnode.h>
56 #include <sys/file.h>
57 
58 #include <sys/procfs.h>
59 
60 #include <sys/vfs.h>
61 #include <sys/cmn_err.h>
62 #include <sys/utsname.h>
63 #include <sys/debug.h>
64 #include <sys/kdi.h>
65 
66 #include <sys/dumphdr.h>
67 #include <sys/bootconf.h>
68 #include <sys/varargs.h>
69 #include <sys/promif.h>
70 #include <sys/modctl.h>		/* for "procfs" hack */
71 
72 #include <sys/sunddi.h>
73 #include <sys/sunndi.h>
74 #include <sys/ndi_impldefs.h>
75 #include <sys/ddidmareq.h>
76 #include <sys/psw.h>
77 #include <sys/regset.h>
78 #include <sys/clock.h>
79 #include <sys/pte.h>
80 #include <sys/tss.h>
81 #include <sys/stack.h>
82 #include <sys/trap.h>
83 #include <sys/fp.h>
84 #include <vm/anon.h>
85 #include <vm/as.h>
86 #include <vm/page.h>
87 #include <vm/seg.h>
88 #include <vm/seg_dev.h>
89 #include <vm/seg_kmem.h>
90 #include <vm/seg_kpm.h>
91 #include <vm/seg_map.h>
92 #include <vm/seg_vn.h>
93 #include <vm/seg_kp.h>
94 #include <sys/memnode.h>
95 #include <vm/vm_dep.h>
96 #include <sys/thread.h>
97 #include <sys/sysconf.h>
98 #include <sys/vm_machparam.h>
99 #include <sys/archsystm.h>
100 #include <sys/machsystm.h>
101 #include <vm/hat.h>
102 #include <vm/hat_i86.h>
103 #include <sys/pmem.h>
104 #include <sys/smp_impldefs.h>
105 #include <sys/x86_archext.h>
106 #include <sys/segments.h>
107 #include <sys/clconf.h>
108 #include <sys/kobj.h>
109 #include <sys/kobj_lex.h>
110 #include <sys/cpc_impl.h>
111 #include <sys/pg.h>
112 #include <sys/x86_archext.h>
113 #include <sys/cpu_module.h>
114 #include <sys/smbios.h>
115 #include <sys/debug_info.h>
116 
117 
118 #include <sys/bootinfo.h>
119 #include <vm/kboot_mmu.h>
120 
121 extern void progressbar_init(void);
122 extern void progressbar_start(void);
123 extern void brand_init(void);
124 
125 /*
126  * XXX make declaration below "static" when drivers no longer use this
127  * interface.
128  */
129 extern caddr_t p0_va;	/* Virtual address for accessing physical page 0 */
130 
131 /*
132  * segkp
133  */
134 extern int segkp_fromheap;
135 
136 static void kvm_init(void);
137 static void startup_init(void);
138 static void startup_memlist(void);
139 static void startup_kmem(void);
140 static void startup_modules(void);
141 static void startup_vm(void);
142 static void startup_end(void);
143 static void layout_kernel_va(void);
144 
145 /*
146  * Declare these as initialized data so we can patch them.
147  */
148 #ifdef __i386
149 
150 /*
151  * Due to virtual address space limitations running in 32 bit mode, restrict
152  * the amount of physical memory configured to a max of PHYSMEM pages (16g).
153  *
154  * If the physical max memory size of 64g were allowed to be configured, the
155  * size of user virtual address space will be less than 1g. A limited user
156  * address space greatly reduces the range of applications that can run.
157  *
158  * If more physical memory than PHYSMEM is required, users should preferably
159  * run in 64 bit mode which has far looser virtual address space limitations.
160  *
161  * If 64 bit mode is not available (as in IA32) and/or more physical memory
162  * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired
163  * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase
164  * should also be carefully tuned to balance out the need of the user
165  * application while minimizing the risk of kernel heap exhaustion due to
166  * kernelbase being set too high.
167  */
168 #define	PHYSMEM	0x400000
169 
170 #else /* __amd64 */
171 
172 /*
173  * For now we can handle memory with physical addresses up to about
174  * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly
175  * half the VA space for seg_kpm. When systems get bigger than 64TB this
176  * code will need revisiting. There is an implicit assumption that there
177  * are no *huge* holes in the physical address space too.
178  */
179 #define	TERABYTE		(1ul << 40)
180 #define	PHYSMEM_MAX64		mmu_btop(64 * TERABYTE)
181 #define	PHYSMEM			PHYSMEM_MAX64
182 #define	AMD64_VA_HOLE_END	0xFFFF800000000000ul
183 
184 #endif /* __amd64 */
185 
186 pgcnt_t physmem = PHYSMEM;
187 pgcnt_t obp_pages;	/* Memory used by PROM for its text and data */
188 
189 char *kobj_file_buf;
190 int kobj_file_bufsize;	/* set in /etc/system */
191 
192 /* Global variables for MP support. Used in mp_startup */
193 caddr_t	rm_platter_va;
194 uint32_t rm_platter_pa;
195 
196 int	auto_lpg_disable = 1;
197 
198 /*
199  * Some CPUs have holes in the middle of the 64-bit virtual address range.
200  */
201 uintptr_t hole_start, hole_end;
202 
203 /*
204  * kpm mapping window
205  */
206 caddr_t kpm_vbase;
207 size_t  kpm_size;
208 static int kpm_desired;
209 #ifdef __amd64
210 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE;
211 #endif
212 
213 /*
214  * Configuration parameters set at boot time.
215  */
216 
217 caddr_t econtig;		/* end of first block of contiguous kernel */
218 
219 struct bootops		*bootops = 0;	/* passed in from boot */
220 struct bootops		**bootopsp;
221 struct boot_syscalls	*sysp;		/* passed in from boot */
222 
223 char bootblock_fstype[16];
224 
225 char kern_bootargs[OBP_MAXPATHLEN];
226 
227 /*
228  * ZFS zio segment.  This allows us to exclude large portions of ZFS data that
229  * gets cached in kmem caches on the heap.  If this is set to zero, we allocate
230  * zio buffers from their own segment, otherwise they are allocated from the
231  * heap.  The optimization of allocating zio buffers from their own segment is
232  * only valid on 64-bit kernels.
233  */
234 #if defined(__amd64)
235 int segzio_fromheap = 0;
236 #else
237 int segzio_fromheap = 1;
238 #endif
239 
240 /*
241  * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
242  * depends on number of BOP_ALLOC calls made and requested size, memory size
243  * combination and whether boot.bin memory needs to be freed.
244  */
245 #define	POSS_NEW_FRAGMENTS	12
246 
247 /*
248  * VM data structures
249  */
250 long page_hashsz;		/* Size of page hash table (power of two) */
251 struct page *pp_base;		/* Base of initial system page struct array */
252 struct page **page_hash;	/* Page hash table */
253 struct seg ktextseg;		/* Segment used for kernel executable image */
254 struct seg kvalloc;		/* Segment used for "valloc" mapping */
255 struct seg kpseg;		/* Segment used for pageable kernel virt mem */
256 struct seg kmapseg;		/* Segment used for generic kernel mappings */
257 struct seg kdebugseg;		/* Segment used for the kernel debugger */
258 
259 struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
260 static struct seg *segmap = &kmapseg;	/* easier to use name for in here */
261 
262 struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
263 
264 #if defined(__amd64)
265 struct seg kvseg_core;		/* Segment used for the core heap */
266 struct seg kpmseg;		/* Segment used for physical mapping */
267 struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
268 #else
269 struct seg *segkpm = NULL;	/* Unused on IA32 */
270 #endif
271 
272 caddr_t segkp_base;		/* Base address of segkp */
273 caddr_t segzio_base;		/* Base address of segzio */
274 #if defined(__amd64)
275 pgcnt_t segkpsize = btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
276 #else
277 pgcnt_t segkpsize = 0;
278 #endif
279 pgcnt_t segziosize = 0;		/* size of zio segment in pages */
280 
281 /*
282  * VA range available to the debugger
283  */
284 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
285 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
286 
287 struct memseg *memseg_base;
288 struct vnode unused_pages_vp;
289 
290 #define	FOURGB	0x100000000LL
291 
292 struct memlist *memlist;
293 
294 caddr_t s_text;		/* start of kernel text segment */
295 caddr_t e_text;		/* end of kernel text segment */
296 caddr_t s_data;		/* start of kernel data segment */
297 caddr_t e_data;		/* end of kernel data segment */
298 caddr_t modtext;	/* start of loadable module text reserved */
299 caddr_t e_modtext;	/* end of loadable module text reserved */
300 caddr_t moddata;	/* start of loadable module data reserved */
301 caddr_t e_moddata;	/* end of loadable module data reserved */
302 
303 struct memlist *phys_install;	/* Total installed physical memory */
304 struct memlist *phys_avail;	/* Total available physical memory */
305 
306 /*
307  * kphysm_init returns the number of pages that were processed
308  */
309 static pgcnt_t kphysm_init(page_t *, pgcnt_t);
310 
311 #define	IO_PROP_SIZE	64	/* device property size */
312 
313 /*
314  * a couple useful roundup macros
315  */
316 #define	ROUND_UP_PAGE(x)	\
317 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
318 #define	ROUND_UP_LPAGE(x)	\
319 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
320 #define	ROUND_UP_4MEG(x)	\
321 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG))
322 #define	ROUND_UP_TOPLEVEL(x)	\
323 	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
324 
325 /*
326  *	32-bit Kernel's Virtual memory layout.
327  *		+-----------------------+
328  *		|			|
329  * 0xFFC00000  -|-----------------------|- ARGSBASE
330  *		|	debugger	|
331  * 0xFF800000  -|-----------------------|- SEGDEBUGBASE
332  *		|      Kernel Data	|
333  * 0xFEC00000  -|-----------------------|
334  *              |      Kernel Text	|
335  * 0xFE800000  -|-----------------------|- KERNEL_TEXT
336  *		|---       GDT       ---|- GDT page (GDT_VA)
337  *		|---    debug info   ---|- debug info (DEBUG_INFO_VA)
338  *		|			|
339  * 		|   page_t structures	|
340  * 		|   memsegs, memlists, 	|
341  * 		|   page hash, etc.	|
342  * ---	       -|-----------------------|- ekernelheap, valloc_base (floating)
343  *		|			|  (segkp is just an arena in the heap)
344  *		|			|
345  *		|	kvseg		|
346  *		|			|
347  *		|			|
348  * ---         -|-----------------------|- kernelheap (floating)
349  * 		|        Segkmap	|
350  * 0xC3002000  -|-----------------------|- segmap_start (floating)
351  *		|	Red Zone	|
352  * 0xC3000000  -|-----------------------|- kernelbase / userlimit (floating)
353  *		|			|			||
354  *		|     Shared objects	|			\/
355  *		|			|
356  *		:			:
357  *		|	user data	|
358  *		|-----------------------|
359  *		|	user text	|
360  * 0x08048000  -|-----------------------|
361  *		|	user stack	|
362  *		:			:
363  *		|	invalid		|
364  * 0x00000000	+-----------------------+
365  *
366  *
367  *		64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
368  *			+-----------------------+
369  *			|			|
370  * 0xFFFFFFFF.FFC00000  |-----------------------|- ARGSBASE
371  *			|	debugger (?)	|
372  * 0xFFFFFFFF.FF800000  |-----------------------|- SEGDEBUGBASE
373  *			|      unused    	|
374  *			+-----------------------+
375  *			|      Kernel Data	|
376  * 0xFFFFFFFF.FBC00000  |-----------------------|
377  *			|      Kernel Text	|
378  * 0xFFFFFFFF.FB800000  |-----------------------|- KERNEL_TEXT
379  *			|---       GDT       ---|- GDT page (GDT_VA)
380  *			|---    debug info   ---|- debug info (DEBUG_INFO_VA)
381  *			|			|
382  * 			|      Core heap	| (used for loadable modules)
383  * 0xFFFFFFFF.C0000000  |-----------------------|- core_base / ekernelheap
384  *			|	 Kernel		|
385  *			|	  heap		|
386  * 0xFFFFFXXX.XXX00000  |-----------------------|- kernelheap (floating)
387  *			|	 segmap		|
388  * 0xFFFFFXXX.XXX00000  |-----------------------|- segmap_start (floating)
389  *			|    device mappings	|
390  * 0xFFFFFXXX.XXX00000  |-----------------------|- toxic_addr (floating)
391  *			|	  segzio	|
392  * 0xFFFFFXXX.XXX00000  |-----------------------|- segzio_base (floating)
393  *			|	  segkp		|
394  * ---                  |-----------------------|- segkp_base (floating)
395  * 			|   page_t structures	|  valloc_base + valloc_sz
396  * 			|   memsegs, memlists, 	|
397  * 			|   page hash, etc.	|
398  * 0xFFFFFF00.00000000  |-----------------------|- valloc_base (lower if > 1TB)
399  *			|	 segkpm		|
400  * 0xFFFFFE00.00000000  |-----------------------|
401  *			|	Red Zone	|
402  * 0xFFFFFD80.00000000  |-----------------------|- KERNELBASE (lower if > 1TB)
403  *			|     User stack	|- User space memory
404  * 			|			|
405  * 			| shared objects, etc	|	(grows downwards)
406  *			:			:
407  * 			|			|
408  * 0xFFFF8000.00000000  |-----------------------|
409  * 			|			|
410  * 			| VA Hole / unused	|
411  * 			|			|
412  * 0x00008000.00000000  |-----------------------|
413  *			|			|
414  *			|			|
415  *			:			:
416  *			|	user heap	|	(grows upwards)
417  *			|			|
418  *			|	user data	|
419  *			|-----------------------|
420  *			|	user text	|
421  * 0x00000000.04000000  |-----------------------|
422  *			|	invalid		|
423  * 0x00000000.00000000	+-----------------------+
424  *
425  * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
426  * kernel, except that userlimit is raised to 0xfe000000
427  *
428  * Floating values:
429  *
430  * valloc_base: start of the kernel's memory management/tracking data
431  * structures.  This region contains page_t structures for
432  * physical memory, memsegs, memlists, and the page hash.
433  *
434  * core_base: start of the kernel's "core" heap area on 64-bit systems.
435  * This area is intended to be used for global data as well as for module
436  * text/data that does not fit into the nucleus pages.  The core heap is
437  * restricted to a 2GB range, allowing every address within it to be
438  * accessed using rip-relative addressing
439  *
440  * ekernelheap: end of kernelheap and start of segmap.
441  *
442  * kernelheap: start of kernel heap.  On 32-bit systems, this starts right
443  * above a red zone that separates the user's address space from the
444  * kernel's.  On 64-bit systems, it sits above segkp and segkpm.
445  *
446  * segmap_start: start of segmap. The length of segmap can be modified
447  * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated).
448  * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems.
449  *
450  * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
451  * decreased by 2X the size required for page_t.  This allows the kernel
452  * heap to grow in size with physical memory.  With sizeof(page_t) == 80
453  * bytes, the following shows the values of kernelbase and kernel heap
454  * sizes for different memory configurations (assuming default segmap and
455  * segkp sizes).
456  *
457  *	mem	size for	kernelbase	kernel heap
458  *	size	page_t's			size
459  *	----	---------	----------	-----------
460  *	1gb	0x01400000	0xd1800000	684MB
461  *	2gb	0x02800000	0xcf000000	704MB
462  *	4gb	0x05000000	0xca000000	744MB
463  *	6gb	0x07800000	0xc5000000	784MB
464  *	8gb	0x0a000000	0xc0000000	824MB
465  *	16gb	0x14000000	0xac000000	984MB
466  *	32gb	0x28000000	0x84000000	1304MB
467  *	64gb	0x50000000	0x34000000	1944MB (*)
468  *
469  * kernelbase is less than the abi minimum of 0xc0000000 for memory
470  * configurations above 8gb.
471  *
472  * (*) support for memory configurations above 32gb will require manual tuning
473  * of kernelbase to balance out the need of user applications.
474  */
475 
476 /* real-time-clock initialization parameters */
477 extern time_t process_rtc_config_file(void);
478 
479 uintptr_t	kernelbase;
480 uintptr_t	postbootkernelbase;	/* not set till boot loader is gone */
481 uintptr_t	eprom_kernelbase;
482 size_t		segmapsize;
483 uintptr_t	segmap_start;
484 int		segmapfreelists;
485 pgcnt_t		npages;
486 pgcnt_t		orig_npages;
487 size_t		core_size;		/* size of "core" heap */
488 uintptr_t	core_base;		/* base address of "core" heap */
489 
490 /*
491  * List of bootstrap pages. We mark these as allocated in startup.
492  * release_bootstrap() will free them when we're completely done with
493  * the bootstrap.
494  */
495 static page_t *bootpages;
496 
497 /*
498  * boot time pages that have a vnode from the ramdisk will keep that forever.
499  */
500 static page_t *rd_pages;
501 
502 struct system_hardware system_hardware;
503 
504 /*
505  * Enable some debugging messages concerning memory usage...
506  */
507 static void
508 print_memlist(char *title, struct memlist *mp)
509 {
510 	prom_printf("MEMLIST: %s:\n", title);
511 	while (mp != NULL)  {
512 		prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
513 		    mp->address, mp->size);
514 		mp = mp->next;
515 	}
516 }
517 
518 /*
519  * XX64 need a comment here.. are these just default values, surely
520  * we read the "cpuid" type information to figure this out.
521  */
522 int	l2cache_sz = 0x80000;
523 int	l2cache_linesz = 0x40;
524 int	l2cache_assoc = 1;
525 
526 static size_t	textrepl_min_gb = 10;
527 
528 /*
529  * on 64 bit we use a predifined VA range for mapping devices in the kernel
530  * on 32 bit the mappings are intermixed in the heap, so we use a bit map
531  */
532 #ifdef __amd64
533 
534 vmem_t		*device_arena;
535 uintptr_t	toxic_addr = (uintptr_t)NULL;
536 size_t		toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
537 
538 #else	/* __i386 */
539 
540 ulong_t		*toxic_bit_map;	/* one bit for each 4k of VA in heap_arena */
541 size_t		toxic_bit_map_len = 0;	/* in bits */
542 
543 #endif	/* __i386 */
544 
545 /*
546  * Simple boot time debug facilities
547  */
548 static char *prm_dbg_str[] = {
549 	"%s:%d: '%s' is 0x%x\n",
550 	"%s:%d: '%s' is 0x%llx\n"
551 };
552 
553 int prom_debug;
554 
555 #define	PRM_DEBUG(q)	if (prom_debug) 	\
556 	prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
557 #define	PRM_POINT(q)	if (prom_debug) 	\
558 	prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
559 
560 /*
561  * This structure is used to keep track of the intial allocations
562  * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
563  * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
564  */
565 #define	NUM_ALLOCATIONS 7
566 int num_allocations = 0;
567 struct {
568 	void **al_ptr;
569 	size_t al_size;
570 } allocations[NUM_ALLOCATIONS];
571 size_t valloc_sz = 0;
572 uintptr_t valloc_base;
573 
574 #define	ADD_TO_ALLOCATIONS(ptr, size) {					\
575 		size = ROUND_UP_PAGE(size);		 		\
576 		if (num_allocations == NUM_ALLOCATIONS)			\
577 			panic("too many ADD_TO_ALLOCATIONS()");		\
578 		allocations[num_allocations].al_ptr = (void**)&ptr;	\
579 		allocations[num_allocations].al_size = size;		\
580 		valloc_sz += size;					\
581 		++num_allocations;				 	\
582 	}
583 
584 /*
585  * Allocate all the initial memory needed by the page allocator.
586  */
587 static void
588 perform_allocations(void)
589 {
590 	caddr_t mem;
591 	int i;
592 	int valloc_align;
593 
594 	PRM_DEBUG(valloc_base);
595 	PRM_DEBUG(valloc_sz);
596 	valloc_align = mmu.level_size[mmu.max_page_level > 0];
597 	mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align);
598 	if (mem != (caddr_t)valloc_base)
599 		panic("BOP_ALLOC() failed");
600 	bzero(mem, valloc_sz);
601 	for (i = 0; i < num_allocations; ++i) {
602 		*allocations[i].al_ptr = (void *)mem;
603 		mem += allocations[i].al_size;
604 	}
605 }
606 
607 /*
608  * Our world looks like this at startup time.
609  *
610  * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
611  * at 0xfec00000.  On a 64-bit OS, kernel text and data are loaded at
612  * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively.  Those
613  * addresses are fixed in the binary at link time.
614  *
615  * On the text page:
616  * unix/genunix/krtld/module text loads.
617  *
618  * On the data page:
619  * unix/genunix/krtld/module data loads.
620  *
621  * Machine-dependent startup code
622  */
623 void
624 startup(void)
625 {
626 	extern void startup_bios_disk(void);
627 	extern void startup_pci_bios(void);
628 #if defined(__amd64)
629 	kpm_desired = 1;
630 #endif
631 	kpm_enable = 0;
632 
633 	progressbar_init();
634 	startup_init();
635 	startup_memlist();
636 	startup_kmem();
637 	startup_vm();
638 	startup_pci_bios();
639 	startup_modules();
640 	startup_bios_disk();
641 	startup_end();
642 	progressbar_start();
643 }
644 
645 static void
646 startup_init()
647 {
648 	PRM_POINT("startup_init() starting...");
649 
650 	/*
651 	 * Complete the extraction of cpuid data
652 	 */
653 	cpuid_pass2(CPU);
654 
655 	(void) check_boot_version(BOP_GETVERSION(bootops));
656 
657 	/*
658 	 * Check for prom_debug in boot environment
659 	 */
660 	if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
661 		++prom_debug;
662 		PRM_POINT("prom_debug found in boot enviroment");
663 	}
664 
665 	/*
666 	 * Collect node, cpu and memory configuration information.
667 	 */
668 	get_system_configuration();
669 
670 	/*
671 	 * Halt if this is an unsupported processor.
672 	 */
673 	if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
674 		printf("\n486 processor (\"%s\") detected.\n",
675 		    CPU->cpu_brandstr);
676 		halt("This processor is not supported by this release "
677 		    "of Solaris.");
678 	}
679 
680 	PRM_POINT("startup_init() done");
681 }
682 
683 /*
684  * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
685  * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
686  * also filters out physical page zero.  There is some reliance on the
687  * boot loader allocating only a few contiguous physical memory chunks.
688  */
689 static void
690 avail_filter(uint64_t *addr, uint64_t *size)
691 {
692 	uintptr_t va;
693 	uintptr_t next_va;
694 	pfn_t pfn;
695 	uint64_t pfn_addr;
696 	uint64_t pfn_eaddr;
697 	uint_t prot;
698 	size_t len;
699 	uint_t change;
700 
701 	if (prom_debug)
702 		prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
703 		    *addr, *size);
704 
705 	/*
706 	 * page zero is required for BIOS.. never make it available
707 	 */
708 	if (*addr == 0) {
709 		*addr += MMU_PAGESIZE;
710 		*size -= MMU_PAGESIZE;
711 	}
712 
713 	/*
714 	 * First we trim from the front of the range. Since kbm_probe()
715 	 * walks ranges in virtual order, but addr/size are physical, we need
716 	 * to the list until no changes are seen.  This deals with the case
717 	 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
718 	 * but w < v.
719 	 */
720 	do {
721 		change = 0;
722 		for (va = KERNEL_TEXT;
723 		    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
724 		    va = next_va) {
725 
726 			next_va = va + len;
727 			pfn_addr = pfn_to_pa(pfn);
728 			pfn_eaddr = pfn_addr + len;
729 
730 			if (pfn_addr <= *addr && pfn_eaddr > *addr) {
731 				change = 1;
732 				while (*size > 0 && len > 0) {
733 					*addr += MMU_PAGESIZE;
734 					*size -= MMU_PAGESIZE;
735 					len -= MMU_PAGESIZE;
736 				}
737 			}
738 		}
739 		if (change && prom_debug)
740 			prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
741 			    *addr, *size);
742 	} while (change);
743 
744 	/*
745 	 * Trim pages from the end of the range.
746 	 */
747 	for (va = KERNEL_TEXT;
748 	    *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
749 	    va = next_va) {
750 
751 		next_va = va + len;
752 		pfn_addr = pfn_to_pa(pfn);
753 
754 		if (pfn_addr >= *addr && pfn_addr < *addr + *size)
755 			*size = pfn_addr - *addr;
756 	}
757 
758 	if (prom_debug)
759 		prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
760 		    *addr, *size);
761 }
762 
763 static void
764 kpm_init()
765 {
766 	struct segkpm_crargs b;
767 
768 	/*
769 	 * These variables were all designed for sfmmu in which segkpm is
770 	 * mapped using a single pagesize - either 8KB or 4MB.  On x86, we
771 	 * might use 2+ page sizes on a single machine, so none of these
772 	 * variables have a single correct value.  They are set up as if we
773 	 * always use a 4KB pagesize, which should do no harm.  In the long
774 	 * run, we should get rid of KPM's assumption that only a single
775 	 * pagesize is used.
776 	 */
777 	kpm_pgshft = MMU_PAGESHIFT;
778 	kpm_pgsz =  MMU_PAGESIZE;
779 	kpm_pgoff = MMU_PAGEOFFSET;
780 	kpmp2pshft = 0;
781 	kpmpnpgs = 1;
782 	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
783 
784 	PRM_POINT("about to create segkpm");
785 	rw_enter(&kas.a_lock, RW_WRITER);
786 
787 	if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
788 		panic("cannot attach segkpm");
789 
790 	b.prot = PROT_READ | PROT_WRITE;
791 	b.nvcolors = 1;
792 
793 	if (segkpm_create(segkpm, (caddr_t)&b) != 0)
794 		panic("segkpm_create segkpm");
795 
796 	rw_exit(&kas.a_lock);
797 }
798 
799 /*
800  * The debug info page provides enough information to allow external
801  * inspectors (e.g. when running under a hypervisor) to bootstrap
802  * themselves into allowing full-blown kernel debugging.
803  */
804 static void
805 init_debug_info(void)
806 {
807 	caddr_t mem;
808 	debug_info_t *di;
809 
810 #ifndef __lint
811 	ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE);
812 #endif
813 
814 	mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE,
815 	    MMU_PAGESIZE);
816 
817 	if (mem != (caddr_t)DEBUG_INFO_VA)
818 		panic("BOP_ALLOC() failed");
819 	bzero(mem, MMU_PAGESIZE);
820 
821 	di = (debug_info_t *)mem;
822 
823 	di->di_magic = DEBUG_INFO_MAGIC;
824 	di->di_version = DEBUG_INFO_VERSION;
825 }
826 
827 /*
828  * Build the memlists and other kernel essential memory system data structures.
829  * This is everything at valloc_base.
830  */
831 static void
832 startup_memlist(void)
833 {
834 	size_t memlist_sz;
835 	size_t memseg_sz;
836 	size_t pagehash_sz;
837 	size_t pp_sz;
838 	uintptr_t va;
839 	size_t len;
840 	uint_t prot;
841 	pfn_t pfn;
842 	int memblocks;
843 	caddr_t pagecolor_mem;
844 	size_t pagecolor_memsz;
845 	caddr_t page_ctrs_mem;
846 	size_t page_ctrs_size;
847 	struct memlist *current;
848 	extern void startup_build_mem_nodes(struct memlist *);
849 
850 	/* XX64 fix these - they should be in include files */
851 	extern size_t page_coloring_init(uint_t, int, int);
852 	extern void page_coloring_setup(caddr_t);
853 
854 	PRM_POINT("startup_memlist() starting...");
855 
856 	/*
857 	 * Use leftover large page nucleus text/data space for loadable modules.
858 	 * Use at most MODTEXT/MODDATA.
859 	 */
860 	len = kbm_nucleus_size;
861 	ASSERT(len > MMU_PAGESIZE);
862 
863 	moddata = (caddr_t)ROUND_UP_PAGE(e_data);
864 	e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len);
865 	if (e_moddata - moddata > MODDATA)
866 		e_moddata = moddata + MODDATA;
867 
868 	modtext = (caddr_t)ROUND_UP_PAGE(e_text);
869 	e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len);
870 	if (e_modtext - modtext > MODTEXT)
871 		e_modtext = modtext + MODTEXT;
872 
873 	econtig = e_moddata;
874 
875 	PRM_DEBUG(modtext);
876 	PRM_DEBUG(e_modtext);
877 	PRM_DEBUG(moddata);
878 	PRM_DEBUG(e_moddata);
879 	PRM_DEBUG(econtig);
880 
881 	/*
882 	 * Examine the boot loader physical memory map to find out:
883 	 * - total memory in system - physinstalled
884 	 * - the max physical address - physmax
885 	 * - the number of discontiguous segments of memory.
886 	 */
887 	if (prom_debug)
888 		print_memlist("boot physinstalled",
889 		    bootops->boot_mem->physinstalled);
890 	installed_top_size(bootops->boot_mem->physinstalled, &physmax,
891 	    &physinstalled, &memblocks);
892 	PRM_DEBUG(physmax);
893 	PRM_DEBUG(physinstalled);
894 	PRM_DEBUG(memblocks);
895 
896 	/*
897 	 * Initialize hat's mmu parameters.
898 	 * Check for enforce-prot-exec in boot environment. It's used to
899 	 * enable/disable support for the page table entry NX bit.
900 	 * The default is to enforce PROT_EXEC on processors that support NX.
901 	 * Boot seems to round up the "len", but 8 seems to be big enough.
902 	 */
903 	mmu_init();
904 
905 #ifdef	__i386
906 	/*
907 	 * physmax is lowered if there is more memory than can be
908 	 * physically addressed in 32 bit (PAE/non-PAE) modes.
909 	 */
910 	if (mmu.pae_hat) {
911 		if (PFN_ABOVE64G(physmax)) {
912 			physinstalled -= (physmax - (PFN_64G - 1));
913 			physmax = PFN_64G - 1;
914 		}
915 	} else {
916 		if (PFN_ABOVE4G(physmax)) {
917 			physinstalled -= (physmax - (PFN_4G - 1));
918 			physmax = PFN_4G - 1;
919 		}
920 	}
921 #endif
922 
923 	startup_build_mem_nodes(bootops->boot_mem->physinstalled);
924 
925 	if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
926 		int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
927 		char value[8];
928 
929 		if (len < 8)
930 			(void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
931 		else
932 			(void) strcpy(value, "");
933 		if (strcmp(value, "off") == 0)
934 			mmu.pt_nx = 0;
935 	}
936 	PRM_DEBUG(mmu.pt_nx);
937 
938 	/*
939 	 * We will need page_t's for every page in the system, except for
940 	 * memory mapped at or above above the start of the kernel text segment.
941 	 *
942 	 * pages above e_modtext are attributed to kernel debugger (obp_pages)
943 	 */
944 	npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
945 	obp_pages = 0;
946 	va = KERNEL_TEXT;
947 	while (kbm_probe(&va, &len, &pfn, &prot) != 0) {
948 		npages -= len >> MMU_PAGESHIFT;
949 		if (va >= (uintptr_t)e_moddata)
950 			obp_pages += len >> MMU_PAGESHIFT;
951 		va += len;
952 	}
953 	PRM_DEBUG(npages);
954 	PRM_DEBUG(obp_pages);
955 
956 	/*
957 	 * If physmem is patched to be non-zero, use it instead of the computed
958 	 * value unless it is larger than the actual amount of memory on hand.
959 	 */
960 	if (physmem == 0 || physmem > npages) {
961 		physmem = npages;
962 	} else if (physmem < npages) {
963 		orig_npages = npages;
964 		npages = physmem;
965 	}
966 	PRM_DEBUG(physmem);
967 
968 	/*
969 	 * We now compute the sizes of all the  initial allocations for
970 	 * structures the kernel needs in order do kmem_alloc(). These
971 	 * include:
972 	 *	memsegs
973 	 *	memlists
974 	 *	page hash table
975 	 *	page_t's
976 	 *	page coloring data structs
977 	 */
978 	memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
979 	ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
980 	PRM_DEBUG(memseg_sz);
981 
982 	/*
983 	 * Reserve space for memlists. There's no real good way to know exactly
984 	 * how much room we'll need, but this should be a good upper bound.
985 	 */
986 	memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
987 	    (memblocks + POSS_NEW_FRAGMENTS));
988 	ADD_TO_ALLOCATIONS(memlist, memlist_sz);
989 	PRM_DEBUG(memlist_sz);
990 
991 	/*
992 	 * The page structure hash table size is a power of 2
993 	 * such that the average hash chain length is PAGE_HASHAVELEN.
994 	 */
995 	page_hashsz = npages / PAGE_HASHAVELEN;
996 	page_hashsz = 1 << highbit(page_hashsz);
997 	pagehash_sz = sizeof (struct page *) * page_hashsz;
998 	ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
999 	PRM_DEBUG(pagehash_sz);
1000 
1001 	/*
1002 	 * Set aside room for the page structures themselves.
1003 	 */
1004 	PRM_DEBUG(npages);
1005 	pp_sz = sizeof (struct page) * npages;
1006 	ADD_TO_ALLOCATIONS(pp_base, pp_sz);
1007 	PRM_DEBUG(pp_sz);
1008 
1009 	/*
1010 	 * determine l2 cache info and memory size for page coloring
1011 	 */
1012 	(void) getl2cacheinfo(CPU,
1013 	    &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
1014 	pagecolor_memsz =
1015 	    page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
1016 	ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
1017 	PRM_DEBUG(pagecolor_memsz);
1018 
1019 	page_ctrs_size = page_ctrs_sz();
1020 	ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
1021 	PRM_DEBUG(page_ctrs_size);
1022 
1023 #if defined(__amd64)
1024 	valloc_sz = ROUND_UP_LPAGE(valloc_sz);
1025 	valloc_base = VALLOC_BASE;
1026 
1027 	/*
1028 	 * The default values of VALLOC_BASE and SEGKPM_BASE should work
1029 	 * for values of physmax up to 1 Terabyte. They need adjusting when
1030 	 * memory is at addresses above 1 TB.
1031 	 */
1032 	if (physmax + 1 > mmu_btop(TERABYTE)) {
1033 		uint64_t kpm_resv_amount = mmu_ptob(physmax + 1);
1034 
1035 		/* Round to largest possible pagesize for now */
1036 		kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG);
1037 
1038 		segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */
1039 
1040 		/* make sure we leave some space for user apps above hole */
1041 		segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE);
1042 		if (segkpm_base > SEGKPM_BASE)
1043 			segkpm_base = SEGKPM_BASE;
1044 		PRM_DEBUG(segkpm_base);
1045 
1046 		valloc_base = segkpm_base + kpm_resv_amount;
1047 		PRM_DEBUG(valloc_base);
1048 	}
1049 #else	/* __i386 */
1050 	valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz);
1051 	valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]);
1052 	PRM_DEBUG(valloc_base);
1053 #endif	/* __i386 */
1054 
1055 	/*
1056 	 * do all the initial allocations
1057 	 */
1058 	perform_allocations();
1059 
1060 	/*
1061 	 * Build phys_install and phys_avail in kernel memspace.
1062 	 * - phys_install should be all memory in the system.
1063 	 * - phys_avail is phys_install minus any memory mapped before this
1064 	 *    point above KERNEL_TEXT.
1065 	 */
1066 	current = phys_install = memlist;
1067 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current, NULL);
1068 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1069 		panic("physinstalled was too big!");
1070 	if (prom_debug)
1071 		print_memlist("phys_install", phys_install);
1072 
1073 	phys_avail = current;
1074 	PRM_POINT("Building phys_avail:\n");
1075 	copy_memlist_filter(bootops->boot_mem->physinstalled, &current,
1076 	    avail_filter);
1077 	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1078 		panic("physavail was too big!");
1079 	if (prom_debug)
1080 		print_memlist("phys_avail", phys_avail);
1081 
1082 	/*
1083 	 * setup page coloring
1084 	 */
1085 	page_coloring_setup(pagecolor_mem);
1086 	page_lock_init();	/* currently a no-op */
1087 
1088 	/*
1089 	 * free page list counters
1090 	 */
1091 	(void) page_ctrs_alloc(page_ctrs_mem);
1092 
1093 	/*
1094 	 * Initialize the page structures from the memory lists.
1095 	 */
1096 	availrmem_initial = availrmem = freemem = 0;
1097 	PRM_POINT("Calling kphysm_init()...");
1098 	npages = kphysm_init(pp_base, npages);
1099 	PRM_POINT("kphysm_init() done");
1100 	PRM_DEBUG(npages);
1101 
1102 	init_debug_info();
1103 
1104 	/*
1105 	 * Now that page_t's have been initialized, remove all the
1106 	 * initial allocation pages from the kernel free page lists.
1107 	 */
1108 	boot_mapin((caddr_t)valloc_base, valloc_sz);
1109 	boot_mapin((caddr_t)GDT_VA, MMU_PAGESIZE);
1110 	boot_mapin((caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE);
1111 	PRM_POINT("startup_memlist() done");
1112 
1113 	PRM_DEBUG(valloc_sz);
1114 
1115 #if defined(__amd64)
1116 	if ((availrmem >> (30 - MMU_PAGESHIFT)) >=
1117 	    textrepl_min_gb && l2cache_sz <= 2 << 20) {
1118 		extern size_t textrepl_size_thresh;
1119 		textrepl_size_thresh = (16 << 20) - 1;
1120 	}
1121 #endif
1122 }
1123 
1124 /*
1125  * Layout the kernel's part of address space and initialize kmem allocator.
1126  */
1127 static void
1128 startup_kmem(void)
1129 {
1130 	extern void page_set_colorequiv_arr(void);
1131 
1132 	PRM_POINT("startup_kmem() starting...");
1133 
1134 #if defined(__amd64)
1135 	if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
1136 		cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
1137 		    "systems.");
1138 	kernelbase = segkpm_base - KERNEL_REDZONE_SIZE;
1139 	core_base = (uintptr_t)COREHEAP_BASE;
1140 	core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE;
1141 #else	/* __i386 */
1142 	/*
1143 	 * We configure kernelbase based on:
1144 	 *
1145 	 * 1. user specified kernelbase via eeprom command. Value cannot exceed
1146 	 *    KERNELBASE_MAX. we large page align eprom_kernelbase
1147 	 *
1148 	 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
1149 	 *    On large memory systems we must lower kernelbase to allow
1150 	 *    enough room for page_t's for all of memory.
1151 	 *
1152 	 * The value set here, might be changed a little later.
1153 	 */
1154 	if (eprom_kernelbase) {
1155 		kernelbase = eprom_kernelbase & mmu.level_mask[1];
1156 		if (kernelbase > KERNELBASE_MAX)
1157 			kernelbase = KERNELBASE_MAX;
1158 	} else {
1159 		kernelbase = (uintptr_t)KERNELBASE;
1160 		kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
1161 	}
1162 	ASSERT((kernelbase & mmu.level_offset[1]) == 0);
1163 	core_base = valloc_base;
1164 	core_size = 0;
1165 #endif	/* __i386 */
1166 
1167 	PRM_DEBUG(core_base);
1168 	PRM_DEBUG(core_size);
1169 	PRM_DEBUG(kernelbase);
1170 
1171 #if defined(__i386)
1172 	segkp_fromheap = 1;
1173 #endif	/* __i386 */
1174 
1175 	ekernelheap = (char *)core_base;
1176 	PRM_DEBUG(ekernelheap);
1177 
1178 	/*
1179 	 * Now that we know the real value of kernelbase,
1180 	 * update variables that were initialized with a value of
1181 	 * KERNELBASE (in common/conf/param.c).
1182 	 *
1183 	 * XXX	The problem with this sort of hackery is that the
1184 	 *	compiler just may feel like putting the const declarations
1185 	 *	(in param.c) into the .text section.  Perhaps they should
1186 	 *	just be declared as variables there?
1187 	 */
1188 
1189 	*(uintptr_t *)&_kernelbase = kernelbase;
1190 	*(uintptr_t *)&_userlimit = kernelbase;
1191 #if defined(__amd64)
1192 	*(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT;
1193 #else
1194 	*(uintptr_t *)&_userlimit32 = _userlimit;
1195 #endif
1196 	PRM_DEBUG(_kernelbase);
1197 	PRM_DEBUG(_userlimit);
1198 	PRM_DEBUG(_userlimit32);
1199 
1200 	layout_kernel_va();
1201 
1202 #if defined(__i386)
1203 	/*
1204 	 * If segmap is too large we can push the bottom of the kernel heap
1205 	 * higher than the base.  Or worse, it could exceed the top of the
1206 	 * VA space entirely, causing it to wrap around.
1207 	 */
1208 	if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
1209 		panic("too little address space available for kernelheap,"
1210 		    " use eeprom for lower kernelbase or smaller segmapsize");
1211 #endif	/* __i386 */
1212 
1213 	/*
1214 	 * Initialize the kernel heap. Note 3rd argument must be > 1st.
1215 	 */
1216 	kernelheap_init(kernelheap, ekernelheap,
1217 	    kernelheap + MMU_PAGESIZE,
1218 	    (void *)core_base, (void *)(core_base + core_size));
1219 
1220 	/*
1221 	 * Initialize kernel memory allocator.
1222 	 */
1223 	kmem_init();
1224 
1225 	/*
1226 	 * Factor in colorequiv to check additional 'equivalent' bins
1227 	 */
1228 	page_set_colorequiv_arr();
1229 
1230 	/*
1231 	 * print this out early so that we know what's going on
1232 	 */
1233 	cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE);
1234 
1235 	/*
1236 	 * Initialize bp_mapin().
1237 	 */
1238 	bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
1239 
1240 	/*
1241 	 * orig_npages is non-zero if physmem has been configured for less
1242 	 * than the available memory.
1243 	 */
1244 	if (orig_npages) {
1245 		cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages",
1246 		    (npages == PHYSMEM ? "Due to virtual address space " : ""),
1247 		    npages, orig_npages);
1248 	}
1249 #if defined(__i386)
1250 	if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
1251 		cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
1252 		    "System using 0x%lx",
1253 		    (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
1254 #endif
1255 
1256 #ifdef	KERNELBASE_ABI_MIN
1257 	if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
1258 		cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
1259 		    "i386 ABI compliant.", (uintptr_t)kernelbase);
1260 	}
1261 #endif
1262 
1263 	PRM_POINT("startup_kmem() done");
1264 }
1265 
1266 static void
1267 startup_modules(void)
1268 {
1269 	unsigned int i;
1270 	extern void prom_setup(void);
1271 
1272 	PRM_POINT("startup_modules() starting...");
1273 	/*
1274 	 * Initialize ten-micro second timer so that drivers will
1275 	 * not get short changed in their init phase. This was
1276 	 * not getting called until clkinit which, on fast cpu's
1277 	 * caused the drv_usecwait to be way too short.
1278 	 */
1279 	microfind();
1280 
1281 	/*
1282 	 * Read the GMT lag from /etc/rtc_config.
1283 	 */
1284 	sgmtl(process_rtc_config_file());
1285 
1286 	/*
1287 	 * Calculate default settings of system parameters based upon
1288 	 * maxusers, yet allow to be overridden via the /etc/system file.
1289 	 */
1290 	param_calc(0);
1291 
1292 	mod_setup();
1293 
1294 	/*
1295 	 * Initialize system parameters.
1296 	 */
1297 	param_init();
1298 
1299 	/*
1300 	 * Initialize the default brands
1301 	 */
1302 	brand_init();
1303 
1304 	/*
1305 	 * maxmem is the amount of physical memory we're playing with.
1306 	 */
1307 	maxmem = physmem;
1308 
1309 	/*
1310 	 * Initialize segment management stuff.
1311 	 */
1312 	seg_init();
1313 
1314 	if (modload("fs", "specfs") == -1)
1315 		halt("Can't load specfs");
1316 
1317 	if (modload("fs", "devfs") == -1)
1318 		halt("Can't load devfs");
1319 
1320 	if (modload("fs", "dev") == -1)
1321 		halt("Can't load dev");
1322 
1323 	(void) modloadonly("sys", "lbl_edition");
1324 
1325 	dispinit();
1326 
1327 	/*
1328 	 * This is needed here to initialize hw_serial[] for cluster booting.
1329 	 */
1330 	if ((i = modload("misc", "sysinit")) != (unsigned int)-1)
1331 		(void) modunload(i);
1332 	else
1333 		cmn_err(CE_CONT, "sysinit load failed");
1334 
1335 	/* Read cluster configuration data. */
1336 	clconf_init();
1337 
1338 	/*
1339 	 * Create a kernel device tree. First, create rootnex and
1340 	 * then invoke bus specific code to probe devices.
1341 	 */
1342 	setup_ddi();
1343 
1344 	/*
1345 	 * Set up the CPU module subsystem.  Modifies the device tree, so it
1346 	 * must be done after setup_ddi().
1347 	 */
1348 	cmi_init();
1349 
1350 	/*
1351 	 * Initialize the MCA handlers
1352 	 */
1353 	if (x86_feature & X86_MCA)
1354 		cmi_mca_init();
1355 
1356 	/*
1357 	 * Fake a prom tree such that /dev/openprom continues to work
1358 	 */
1359 	PRM_POINT("startup_modules: calling prom_setup...");
1360 	prom_setup();
1361 	PRM_POINT("startup_modules: done");
1362 
1363 	/*
1364 	 * Load all platform specific modules
1365 	 */
1366 	PRM_POINT("startup_modules: calling psm_modload...");
1367 	psm_modload();
1368 
1369 	PRM_POINT("startup_modules() done");
1370 }
1371 
1372 /*
1373  * claim a "setaside" boot page for use in the kernel
1374  */
1375 page_t *
1376 boot_claim_page(pfn_t pfn)
1377 {
1378 	page_t *pp;
1379 
1380 	pp = page_numtopp_nolock(pfn);
1381 	ASSERT(pp != NULL);
1382 
1383 	if (PP_ISBOOTPAGES(pp)) {
1384 		if (pp->p_next != NULL)
1385 			pp->p_next->p_prev = pp->p_prev;
1386 		if (pp->p_prev == NULL)
1387 			bootpages = pp->p_next;
1388 		else
1389 			pp->p_prev->p_next = pp->p_next;
1390 	} else {
1391 		/*
1392 		 * htable_attach() expects a base pagesize page
1393 		 */
1394 		if (pp->p_szc != 0)
1395 			page_boot_demote(pp);
1396 		pp = page_numtopp(pfn, SE_EXCL);
1397 	}
1398 	return (pp);
1399 }
1400 
1401 /*
1402  * Walk through the pagetables looking for pages mapped in by boot.  If the
1403  * setaside flag is set the pages are expected to be returned to the
1404  * kernel later in boot, so we add them to the bootpages list.
1405  */
1406 static void
1407 protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
1408 {
1409 	uintptr_t va = low;
1410 	size_t len;
1411 	uint_t prot;
1412 	pfn_t pfn;
1413 	page_t *pp;
1414 	pgcnt_t boot_protect_cnt = 0;
1415 
1416 	while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
1417 		if (va + len >= high)
1418 			panic("0x%lx byte mapping at 0x%p exceeds boot's "
1419 			    "legal range.", len, (void *)va);
1420 
1421 		while (len > 0) {
1422 			pp = page_numtopp_alloc(pfn);
1423 			if (pp != NULL) {
1424 				if (setaside == 0)
1425 					panic("Unexpected mapping by boot.  "
1426 					    "addr=%p pfn=%lx\n",
1427 					    (void *)va, pfn);
1428 
1429 				pp->p_next = bootpages;
1430 				pp->p_prev = NULL;
1431 				PP_SETBOOTPAGES(pp);
1432 				if (bootpages != NULL) {
1433 					bootpages->p_prev = pp;
1434 				}
1435 				bootpages = pp;
1436 				++boot_protect_cnt;
1437 			}
1438 
1439 			++pfn;
1440 			len -= MMU_PAGESIZE;
1441 			va += MMU_PAGESIZE;
1442 		}
1443 	}
1444 	PRM_DEBUG(boot_protect_cnt);
1445 }
1446 
1447 /*
1448  *
1449  */
1450 static void
1451 layout_kernel_va(void)
1452 {
1453 	PRM_POINT("layout_kernel_va() starting...");
1454 	/*
1455 	 * Establish the final size of the kernel's heap, size of segmap,
1456 	 * segkp, etc.
1457 	 */
1458 
1459 #if defined(__amd64)
1460 
1461 	kpm_vbase = (caddr_t)segkpm_base;
1462 	kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1));
1463 	if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base)
1464 		panic("not enough room for kpm!");
1465 	PRM_DEBUG(kpm_size);
1466 	PRM_DEBUG(kpm_vbase);
1467 
1468 	/*
1469 	 * By default we create a seg_kp in 64 bit kernels, it's a little
1470 	 * faster to access than embedding it in the heap.
1471 	 */
1472 	segkp_base = (caddr_t)valloc_base + valloc_sz;
1473 	if (!segkp_fromheap) {
1474 		size_t sz = mmu_ptob(segkpsize);
1475 
1476 		/*
1477 		 * determine size of segkp
1478 		 */
1479 		if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
1480 			sz = SEGKPDEFSIZE;
1481 			cmn_err(CE_WARN, "!Illegal value for segkpsize. "
1482 			    "segkpsize has been reset to %ld pages",
1483 			    mmu_btop(sz));
1484 		}
1485 		sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
1486 
1487 		segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
1488 	}
1489 	PRM_DEBUG(segkp_base);
1490 	PRM_DEBUG(segkpsize);
1491 
1492 	/*
1493 	 * segzio is used for ZFS cached data. It uses a distinct VA
1494 	 * segment (from kernel heap) so that we can easily tell not to
1495 	 * include it in kernel crash dumps on 64 bit kernels. The trick is
1496 	 * to give it lots of VA, but not constrain the kernel heap.
1497 	 * We scale the size of segzio linearly with physmem up to
1498 	 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem.
1499 	 */
1500 	segzio_base = segkp_base + mmu_ptob(segkpsize);
1501 	if (segzio_fromheap) {
1502 		segziosize = 0;
1503 	} else {
1504 		size_t physmem_size = mmu_ptob(physmem);
1505 		size_t size = (segziosize == 0) ?
1506 		    physmem_size : mmu_ptob(segziosize);
1507 
1508 		if (size < SEGZIOMINSIZE)
1509 			size = SEGZIOMINSIZE;
1510 		if (size > SEGZIOMAXSIZE) {
1511 			size = SEGZIOMAXSIZE;
1512 			if (physmem_size > size)
1513 				size += (physmem_size - size) / 2;
1514 		}
1515 		segziosize = mmu_btop(ROUND_UP_LPAGE(size));
1516 	}
1517 	PRM_DEBUG(segziosize);
1518 	PRM_DEBUG(segzio_base);
1519 
1520 	/*
1521 	 * Put the range of VA for device mappings next, kmdb knows to not
1522 	 * grep in this range of addresses.
1523 	 */
1524 	toxic_addr =
1525 	    ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize));
1526 	PRM_DEBUG(toxic_addr);
1527 	segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size);
1528 #else /* __i386 */
1529 	segmap_start = ROUND_UP_LPAGE(kernelbase);
1530 #endif /* __i386 */
1531 	PRM_DEBUG(segmap_start);
1532 
1533 	/*
1534 	 * Users can change segmapsize through eeprom or /etc/system.
1535 	 * If the variable is tuned through eeprom, there is no upper
1536 	 * bound on the size of segmap.  If it is tuned through
1537 	 * /etc/system on 32-bit systems, it must be no larger than we
1538 	 * planned for in startup_memlist().
1539 	 */
1540 	segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
1541 
1542 #if defined(__i386)
1543 	/*
1544 	 * 32-bit systems don't have segkpm or segkp, so segmap appears at
1545 	 * the bottom of the kernel's address range.  Set aside space for a
1546 	 * small red zone just below the start of segmap.
1547 	 */
1548 	segmap_start += KERNEL_REDZONE_SIZE;
1549 	segmapsize -= KERNEL_REDZONE_SIZE;
1550 #endif
1551 
1552 	PRM_DEBUG(segmap_start);
1553 	PRM_DEBUG(segmapsize);
1554 	kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize);
1555 	PRM_DEBUG(kernelheap);
1556 	PRM_POINT("layout_kernel_va() done...");
1557 }
1558 
1559 /*
1560  * Finish initializing the VM system, now that we are no longer
1561  * relying on the boot time memory allocators.
1562  */
1563 static void
1564 startup_vm(void)
1565 {
1566 	struct segmap_crargs a;
1567 
1568 	extern int use_brk_lpg, use_stk_lpg;
1569 
1570 	PRM_POINT("startup_vm() starting...");
1571 
1572 	/*
1573 	 * Initialize the hat layer.
1574 	 */
1575 	hat_init();
1576 
1577 	/*
1578 	 * Do final allocations of HAT data structures that need to
1579 	 * be allocated before quiescing the boot loader.
1580 	 */
1581 	PRM_POINT("Calling hat_kern_alloc()...");
1582 	hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap);
1583 	PRM_POINT("hat_kern_alloc() done");
1584 
1585 	/*
1586 	 * Setup MTRR (Memory type range registers)
1587 	 */
1588 	setup_mtrr();
1589 
1590 	/*
1591 	 * The next two loops are done in distinct steps in order
1592 	 * to be sure that any page that is doubly mapped (both above
1593 	 * KERNEL_TEXT and below kernelbase) is dealt with correctly.
1594 	 * Note this may never happen, but it might someday.
1595 	 */
1596 	bootpages = NULL;
1597 	PRM_POINT("Protecting boot pages");
1598 
1599 	/*
1600 	 * Protect any pages mapped above KERNEL_TEXT that somehow have
1601 	 * page_t's. This can only happen if something weird allocated
1602 	 * in this range (like kadb/kmdb).
1603 	 */
1604 	protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
1605 
1606 	/*
1607 	 * Before we can take over memory allocation/mapping from the boot
1608 	 * loader we must remove from our free page lists any boot allocated
1609 	 * pages that stay mapped until release_bootstrap().
1610 	 */
1611 	protect_boot_range(0, kernelbase, 1);
1612 
1613 	/*
1614 	 * Switch to running on regular HAT (not boot_mmu)
1615 	 */
1616 	PRM_POINT("Calling hat_kern_setup()...");
1617 	hat_kern_setup();
1618 
1619 	/*
1620 	 * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
1621 	 */
1622 	bop_no_more_mem();
1623 
1624 	PRM_POINT("hat_kern_setup() done");
1625 
1626 	hat_cpu_online(CPU);
1627 
1628 	/*
1629 	 * Initialize VM system
1630 	 */
1631 	PRM_POINT("Calling kvm_init()...");
1632 	kvm_init();
1633 	PRM_POINT("kvm_init() done");
1634 
1635 	/*
1636 	 * Tell kmdb that the VM system is now working
1637 	 */
1638 	if (boothowto & RB_DEBUG)
1639 		kdi_dvec_vmready();
1640 
1641 	/*
1642 	 * Mangle the brand string etc.
1643 	 */
1644 	cpuid_pass3(CPU);
1645 
1646 #if defined(__amd64)
1647 
1648 	/*
1649 	 * Create the device arena for toxic (to dtrace/kmdb) mappings.
1650 	 */
1651 	device_arena = vmem_create("device", (void *)toxic_addr,
1652 	    toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
1653 
1654 #else	/* __i386 */
1655 
1656 	/*
1657 	 * allocate the bit map that tracks toxic pages
1658 	 */
1659 	toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase));
1660 	PRM_DEBUG(toxic_bit_map_len);
1661 	toxic_bit_map =
1662 	    kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
1663 	ASSERT(toxic_bit_map != NULL);
1664 	PRM_DEBUG(toxic_bit_map);
1665 
1666 #endif	/* __i386 */
1667 
1668 
1669 	/*
1670 	 * Now that we've got more VA, as well as the ability to allocate from
1671 	 * it, tell the debugger.
1672 	 */
1673 	if (boothowto & RB_DEBUG)
1674 		kdi_dvec_memavail();
1675 
1676 	/*
1677 	 * The following code installs a special page fault handler (#pf)
1678 	 * to work around a pentium bug.
1679 	 */
1680 #if !defined(__amd64)
1681 	if (x86_type == X86_TYPE_P5) {
1682 		desctbr_t idtr;
1683 		gate_desc_t *newidt;
1684 		struct machcpu *mcpu = &CPU->cpu_m;
1685 
1686 		if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL)
1687 			panic("failed to install pentium_pftrap");
1688 
1689 		bcopy(idt0, newidt, sizeof (idt0));
1690 		set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap,
1691 		    KCS_SEL, SDT_SYSIGT, SEL_KPL);
1692 
1693 		(void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE,
1694 		    PROT_READ|PROT_EXEC);
1695 
1696 		mcpu->mcpu_idt = newidt;
1697 		idtr.dtr_base = (uintptr_t)mcpu->mcpu_idt;
1698 		idtr.dtr_limit = sizeof (idt0) - 1;
1699 		wr_idtr(&idtr);
1700 	}
1701 #endif	/* !__amd64 */
1702 
1703 	/*
1704 	 * Map page pfn=0 for drivers, such as kd, that need to pick up
1705 	 * parameters left there by controllers/BIOS.
1706 	 */
1707 	PRM_POINT("setup up p0_va");
1708 	p0_va = i86devmap(0, 1, PROT_READ);
1709 	PRM_DEBUG(p0_va);
1710 
1711 	cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
1712 	    physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
1713 
1714 	/*
1715 	 * disable automatic large pages for small memory systems or
1716 	 * when the disable flag is set.
1717 	 */
1718 	if (!auto_lpg_disable && mmu.max_page_level > 0) {
1719 		max_uheap_lpsize = LEVEL_SIZE(1);
1720 		max_ustack_lpsize = LEVEL_SIZE(1);
1721 		max_privmap_lpsize = LEVEL_SIZE(1);
1722 		max_uidata_lpsize = LEVEL_SIZE(1);
1723 		max_utext_lpsize = LEVEL_SIZE(1);
1724 		max_shm_lpsize = LEVEL_SIZE(1);
1725 	}
1726 	if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 ||
1727 	    auto_lpg_disable) {
1728 		use_brk_lpg = 0;
1729 		use_stk_lpg = 0;
1730 	}
1731 	if (mmu.max_page_level > 0) {
1732 		mcntl0_lpsize = LEVEL_SIZE(1);
1733 	}
1734 
1735 	PRM_POINT("Calling hat_init_finish()...");
1736 	hat_init_finish();
1737 	PRM_POINT("hat_init_finish() done");
1738 
1739 	/*
1740 	 * Initialize the segkp segment type.
1741 	 */
1742 	rw_enter(&kas.a_lock, RW_WRITER);
1743 	PRM_POINT("Attaching segkp");
1744 	if (segkp_fromheap) {
1745 		segkp->s_as = &kas;
1746 	} else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
1747 	    segkp) < 0) {
1748 		panic("startup: cannot attach segkp");
1749 		/*NOTREACHED*/
1750 	}
1751 	PRM_POINT("Doing segkp_create()");
1752 	if (segkp_create(segkp) != 0) {
1753 		panic("startup: segkp_create failed");
1754 		/*NOTREACHED*/
1755 	}
1756 	PRM_DEBUG(segkp);
1757 	rw_exit(&kas.a_lock);
1758 
1759 	/*
1760 	 * kpm segment
1761 	 */
1762 	segmap_kpm = 0;
1763 	if (kpm_desired) {
1764 		kpm_init();
1765 		kpm_enable = 1;
1766 		vpm_enable = 1;
1767 	}
1768 
1769 	/*
1770 	 * Now create segmap segment.
1771 	 */
1772 	rw_enter(&kas.a_lock, RW_WRITER);
1773 	if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) {
1774 		panic("cannot attach segmap");
1775 		/*NOTREACHED*/
1776 	}
1777 	PRM_DEBUG(segmap);
1778 
1779 	a.prot = PROT_READ | PROT_WRITE;
1780 	a.shmsize = 0;
1781 	a.nfreelist = segmapfreelists;
1782 
1783 	if (segmap_create(segmap, (caddr_t)&a) != 0)
1784 		panic("segmap_create segmap");
1785 	rw_exit(&kas.a_lock);
1786 
1787 	setup_vaddr_for_ppcopy(CPU);
1788 
1789 	segdev_init();
1790 	pmem_init();
1791 
1792 	PRM_POINT("startup_vm() done");
1793 }
1794 
1795 /*
1796  * Load a tod module for the non-standard tod part found on this system.
1797  */
1798 static void
1799 load_tod_module(char *todmod)
1800 {
1801 	if (modload("tod", todmod) == -1)
1802 		halt("Can't load TOD module");
1803 }
1804 
1805 static void
1806 startup_end(void)
1807 {
1808 	extern void setx86isalist(void);
1809 
1810 	PRM_POINT("startup_end() starting...");
1811 
1812 	/*
1813 	 * Perform tasks that get done after most of the VM
1814 	 * initialization has been done but before the clock
1815 	 * and other devices get started.
1816 	 */
1817 	kern_setup1();
1818 
1819 	/*
1820 	 * Perform CPC initialization for this CPU.
1821 	 */
1822 	kcpc_hw_init(CPU);
1823 
1824 #if defined(OPTERON_WORKAROUND_6323525)
1825 	if (opteron_workaround_6323525)
1826 		patch_workaround_6323525();
1827 #endif
1828 	/*
1829 	 * If needed, load TOD module now so that ddi_get_time(9F) etc. work
1830 	 * (For now, "needed" is defined as set tod_module_name in /etc/system)
1831 	 */
1832 	if (tod_module_name != NULL) {
1833 		PRM_POINT("load_tod_module()");
1834 		load_tod_module(tod_module_name);
1835 	}
1836 
1837 	/*
1838 	 * Configure the system.
1839 	 */
1840 	PRM_POINT("Calling configure()...");
1841 	configure();		/* set up devices */
1842 	PRM_POINT("configure() done");
1843 
1844 	/*
1845 	 * Set the isa_list string to the defined instruction sets we
1846 	 * support.
1847 	 */
1848 	setx86isalist();
1849 	cpu_intr_alloc(CPU, NINTR_THREADS);
1850 	psm_install();
1851 
1852 	/*
1853 	 * We're done with bootops.  We don't unmap the bootstrap yet because
1854 	 * we're still using bootsvcs.
1855 	 */
1856 	PRM_POINT("NULLing out bootops");
1857 	*bootopsp = (struct bootops *)NULL;
1858 	bootops = (struct bootops *)NULL;
1859 
1860 	PRM_POINT("Enabling interrupts");
1861 	(*picinitf)();
1862 	sti();
1863 
1864 	(void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
1865 	    "softlevel1", NULL, NULL); /* XXX to be moved later */
1866 
1867 	PRM_POINT("startup_end() done");
1868 }
1869 
1870 extern char hw_serial[];
1871 char *_hs1107 = hw_serial;
1872 ulong_t  _bdhs34;
1873 
1874 void
1875 post_startup(void)
1876 {
1877 	/*
1878 	 * Set the system wide, processor-specific flags to be passed
1879 	 * to userland via the aux vector for performance hints and
1880 	 * instruction set extensions.
1881 	 */
1882 	bind_hwcap();
1883 
1884 	/*
1885 	 * Load the System Management BIOS into the global ksmbios
1886 	 * handle, if an SMBIOS is present on this system.
1887 	 */
1888 	ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
1889 
1890 	/*
1891 	 * Startup the memory scrubber.
1892 	 */
1893 	memscrub_init();
1894 
1895 	/*
1896 	 * Complete CPU module initialization
1897 	 */
1898 	cmi_post_init();
1899 
1900 	/*
1901 	 * Perform forceloading tasks for /etc/system.
1902 	 */
1903 	(void) mod_sysctl(SYS_FORCELOAD, NULL);
1904 
1905 	/*
1906 	 * ON4.0: Force /proc module in until clock interrupt handle fixed
1907 	 * ON4.0: This must be fixed or restated in /etc/systems.
1908 	 */
1909 	(void) modload("fs", "procfs");
1910 
1911 #if defined(__i386)
1912 	/*
1913 	 * Check for required functional Floating Point hardware,
1914 	 * unless FP hardware explicitly disabled.
1915 	 */
1916 	if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
1917 		halt("No working FP hardware found");
1918 #endif
1919 
1920 	maxmem = freemem;
1921 
1922 	add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi);
1923 }
1924 
1925 static int
1926 pp_in_ramdisk(page_t *pp)
1927 {
1928 	extern uint64_t ramdisk_start, ramdisk_end;
1929 
1930 	return ((pp->p_pagenum >= btop(ramdisk_start)) &&
1931 	    (pp->p_pagenum < btopr(ramdisk_end)));
1932 }
1933 
1934 void
1935 release_bootstrap(void)
1936 {
1937 	int root_is_ramdisk;
1938 	page_t *pp;
1939 	extern void kobj_boot_unmountroot(void);
1940 	extern dev_t rootdev;
1941 
1942 	/* unmount boot ramdisk and release kmem usage */
1943 	kobj_boot_unmountroot();
1944 
1945 	/*
1946 	 * We're finished using the boot loader so free its pages.
1947 	 */
1948 	PRM_POINT("Unmapping lower boot pages");
1949 	clear_boot_mappings(0, _userlimit);
1950 	postbootkernelbase = kernelbase;
1951 
1952 	/*
1953 	 * If root isn't on ramdisk, destroy the hardcoded
1954 	 * ramdisk node now and release the memory. Else,
1955 	 * ramdisk memory is kept in rd_pages.
1956 	 */
1957 	root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
1958 	if (!root_is_ramdisk) {
1959 		dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
1960 		ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
1961 		ndi_rele_devi(dip);	/* held from ddi_find_devinfo */
1962 		(void) ddi_remove_child(dip, 0);
1963 	}
1964 
1965 	PRM_POINT("Releasing boot pages");
1966 	while (bootpages) {
1967 		pp = bootpages;
1968 		bootpages = pp->p_next;
1969 		if (root_is_ramdisk && pp_in_ramdisk(pp)) {
1970 			pp->p_next = rd_pages;
1971 			rd_pages = pp;
1972 			continue;
1973 		}
1974 		pp->p_next = (struct page *)0;
1975 		pp->p_prev = (struct page *)0;
1976 		PP_CLRBOOTPAGES(pp);
1977 		page_free(pp, 1);
1978 	}
1979 	PRM_POINT("Boot pages released");
1980 
1981 	/*
1982 	 * Find 1 page below 1 MB so that other processors can boot up.
1983 	 * Make sure it has a kernel VA as well as a 1:1 mapping.
1984 	 * We should have just free'd one up.
1985 	 */
1986 	if (use_mp) {
1987 		pfn_t pfn;
1988 
1989 		for (pfn = 1; pfn < btop(1*1024*1024); pfn++) {
1990 			if (page_numtopp_alloc(pfn) == NULL)
1991 				continue;
1992 			rm_platter_va = i86devmap(pfn, 1,
1993 			    PROT_READ | PROT_WRITE | PROT_EXEC);
1994 			rm_platter_pa = ptob(pfn);
1995 			hat_devload(kas.a_hat,
1996 			    (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
1997 			    pfn, PROT_READ | PROT_WRITE | PROT_EXEC,
1998 			    HAT_LOAD_NOCONSIST);
1999 			break;
2000 		}
2001 		if (pfn == btop(1*1024*1024))
2002 			panic("No page available for starting "
2003 			    "other processors");
2004 	}
2005 
2006 }
2007 
2008 /*
2009  * Initialize the platform-specific parts of a page_t.
2010  */
2011 void
2012 add_physmem_cb(page_t *pp, pfn_t pnum)
2013 {
2014 	pp->p_pagenum = pnum;
2015 	pp->p_mapping = NULL;
2016 	pp->p_embed = 0;
2017 	pp->p_share = 0;
2018 	pp->p_mlentry = 0;
2019 }
2020 
2021 /*
2022  * kphysm_init() initializes physical memory.
2023  */
2024 static pgcnt_t
2025 kphysm_init(
2026 	page_t *pp,
2027 	pgcnt_t npages)
2028 {
2029 	struct memlist	*pmem;
2030 	struct memseg	*cur_memseg;
2031 	pfn_t		base_pfn;
2032 	pgcnt_t		num;
2033 	pgcnt_t		pages_done = 0;
2034 	uint64_t	addr;
2035 	uint64_t	size;
2036 	extern pfn_t	ddiphysmin;
2037 
2038 	ASSERT(page_hash != NULL && page_hashsz != 0);
2039 
2040 	cur_memseg = memseg_base;
2041 	for (pmem = phys_avail; pmem && npages; pmem = pmem->next) {
2042 		/*
2043 		 * In a 32 bit kernel can't use higher memory if we're
2044 		 * not booting in PAE mode. This check takes care of that.
2045 		 */
2046 		addr = pmem->address;
2047 		size = pmem->size;
2048 		if (btop(addr) > physmax)
2049 			continue;
2050 
2051 		/*
2052 		 * align addr and size - they may not be at page boundaries
2053 		 */
2054 		if ((addr & MMU_PAGEOFFSET) != 0) {
2055 			addr += MMU_PAGEOFFSET;
2056 			addr &= ~(uint64_t)MMU_PAGEOFFSET;
2057 			size -= addr - pmem->address;
2058 		}
2059 
2060 		/* only process pages below or equal to physmax */
2061 		if ((btop(addr + size) - 1) > physmax)
2062 			size = ptob(physmax - btop(addr) + 1);
2063 
2064 		num = btop(size);
2065 		if (num == 0)
2066 			continue;
2067 
2068 		if (num > npages)
2069 			num = npages;
2070 
2071 		npages -= num;
2072 		pages_done += num;
2073 		base_pfn = btop(addr);
2074 
2075 		if (prom_debug)
2076 			prom_printf("MEMSEG addr=0x%" PRIx64
2077 			    " pgs=0x%lx pfn 0x%lx-0x%lx\n",
2078 			    addr, num, base_pfn, base_pfn + num);
2079 
2080 		/*
2081 		 * Ignore pages below ddiphysmin to simplify ddi memory
2082 		 * allocation with non-zero addr_lo requests.
2083 		 */
2084 		if (base_pfn < ddiphysmin) {
2085 			if (base_pfn + num <= ddiphysmin)
2086 				continue;
2087 			pp += (ddiphysmin - base_pfn);
2088 			num -= (ddiphysmin - base_pfn);
2089 			base_pfn = ddiphysmin;
2090 		}
2091 
2092 		/*
2093 		 * Build the memsegs entry
2094 		 */
2095 		cur_memseg->pages = pp;
2096 		cur_memseg->epages = pp + num;
2097 		cur_memseg->pages_base = base_pfn;
2098 		cur_memseg->pages_end = base_pfn + num;
2099 
2100 		/*
2101 		 * Insert into memseg list in decreasing pfn range order.
2102 		 * Low memory is typically more fragmented such that this
2103 		 * ordering keeps the larger ranges at the front of the list
2104 		 * for code that searches memseg.
2105 		 * This ASSERTS that the memsegs coming in from boot are in
2106 		 * increasing physical address order and not contiguous.
2107 		 */
2108 		if (memsegs != NULL) {
2109 			ASSERT(cur_memseg->pages_base >= memsegs->pages_end);
2110 			cur_memseg->next = memsegs;
2111 		}
2112 		memsegs = cur_memseg;
2113 
2114 		/*
2115 		 * add_physmem() initializes the PSM part of the page
2116 		 * struct by calling the PSM back with add_physmem_cb().
2117 		 * In addition it coalesces pages into larger pages as
2118 		 * it initializes them.
2119 		 */
2120 		add_physmem(pp, num, base_pfn);
2121 		cur_memseg++;
2122 		availrmem_initial += num;
2123 		availrmem += num;
2124 
2125 		pp += num;
2126 	}
2127 
2128 	PRM_DEBUG(availrmem_initial);
2129 	PRM_DEBUG(availrmem);
2130 	PRM_DEBUG(freemem);
2131 	build_pfn_hash();
2132 	return (pages_done);
2133 }
2134 
2135 /*
2136  * Kernel VM initialization.
2137  */
2138 static void
2139 kvm_init(void)
2140 {
2141 	ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
2142 
2143 	/*
2144 	 * Put the kernel segments in kernel address space.
2145 	 */
2146 	rw_enter(&kas.a_lock, RW_WRITER);
2147 	as_avlinit(&kas);
2148 
2149 	(void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
2150 	(void) segkmem_create(&ktextseg);
2151 
2152 	(void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
2153 	(void) segkmem_create(&kvalloc);
2154 
2155 	(void) seg_attach(&kas, kernelheap,
2156 	    ekernelheap - kernelheap, &kvseg);
2157 	(void) segkmem_create(&kvseg);
2158 
2159 	if (core_size > 0) {
2160 		PRM_POINT("attaching kvseg_core");
2161 		(void) seg_attach(&kas, (caddr_t)core_base, core_size,
2162 		    &kvseg_core);
2163 		(void) segkmem_create(&kvseg_core);
2164 	}
2165 
2166 	if (segziosize > 0) {
2167 		PRM_POINT("attaching segzio");
2168 		(void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2169 		    &kzioseg);
2170 		(void) segkmem_zio_create(&kzioseg);
2171 
2172 		/* create zio area covering new segment */
2173 		segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2174 	}
2175 
2176 	(void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2177 	(void) segkmem_create(&kdebugseg);
2178 
2179 	rw_exit(&kas.a_lock);
2180 
2181 	/*
2182 	 * Ensure that the red zone at kernelbase is never accessible.
2183 	 */
2184 	PRM_POINT("protecting redzone");
2185 	(void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
2186 
2187 	/*
2188 	 * Make the text writable so that it can be hot patched by DTrace.
2189 	 */
2190 	(void) as_setprot(&kas, s_text, e_modtext - s_text,
2191 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2192 
2193 	/*
2194 	 * Make data writable until end.
2195 	 */
2196 	(void) as_setprot(&kas, s_data, e_moddata - s_data,
2197 	    PROT_READ | PROT_WRITE | PROT_EXEC);
2198 }
2199 
2200 /*
2201  * These are MTTR registers supported by P6
2202  */
2203 static struct	mtrrvar	mtrrphys_arr[MAX_MTRRVAR];
2204 static uint64_t mtrr64k, mtrr16k1, mtrr16k2;
2205 static uint64_t mtrr4k1, mtrr4k2, mtrr4k3;
2206 static uint64_t mtrr4k4, mtrr4k5, mtrr4k6;
2207 static uint64_t mtrr4k7, mtrr4k8, mtrrcap;
2208 uint64_t mtrrdef, pat_attr_reg;
2209 
2210 /*
2211  * Disable reprogramming of MTRRs by default.
2212  */
2213 int	enable_relaxed_mtrr = 0;
2214 
2215 void
2216 setup_mtrr(void)
2217 {
2218 	int i, ecx;
2219 	int vcnt;
2220 	struct	mtrrvar	*mtrrphys;
2221 
2222 	if (!(x86_feature & X86_MTRR))
2223 		return;
2224 
2225 	mtrrcap = rdmsr(REG_MTRRCAP);
2226 	mtrrdef = rdmsr(REG_MTRRDEF);
2227 	if (mtrrcap & MTRRCAP_FIX) {
2228 		mtrr64k = rdmsr(REG_MTRR64K);
2229 		mtrr16k1 = rdmsr(REG_MTRR16K1);
2230 		mtrr16k2 = rdmsr(REG_MTRR16K2);
2231 		mtrr4k1 = rdmsr(REG_MTRR4K1);
2232 		mtrr4k2 = rdmsr(REG_MTRR4K2);
2233 		mtrr4k3 = rdmsr(REG_MTRR4K3);
2234 		mtrr4k4 = rdmsr(REG_MTRR4K4);
2235 		mtrr4k5 = rdmsr(REG_MTRR4K5);
2236 		mtrr4k6 = rdmsr(REG_MTRR4K6);
2237 		mtrr4k7 = rdmsr(REG_MTRR4K7);
2238 		mtrr4k8 = rdmsr(REG_MTRR4K8);
2239 	}
2240 	if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR)
2241 		vcnt = MAX_MTRRVAR;
2242 
2243 	for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr;
2244 	    i <  vcnt - 1; i++, ecx += 2, mtrrphys++) {
2245 		mtrrphys->mtrrphys_base = rdmsr(ecx);
2246 		mtrrphys->mtrrphys_mask = rdmsr(ecx + 1);
2247 		if ((x86_feature & X86_PAT) && enable_relaxed_mtrr)
2248 			mtrrphys->mtrrphys_mask &= ~MTRRPHYSMASK_V;
2249 	}
2250 	if (x86_feature & X86_PAT) {
2251 		if (enable_relaxed_mtrr)
2252 			mtrrdef = MTRR_TYPE_WB|MTRRDEF_FE|MTRRDEF_E;
2253 		pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
2254 	}
2255 
2256 	mtrr_sync();
2257 }
2258 
2259 /*
2260  * Sync current cpu mtrr with the incore copy of mtrr.
2261  * This function has to be invoked with interrupts disabled
2262  * Currently we do not capture other cpu's. This is invoked on cpu0
2263  * just after reading /etc/system.
2264  * On other cpu's its invoked from mp_startup().
2265  */
2266 void
2267 mtrr_sync(void)
2268 {
2269 	uint_t	crvalue, cr0_orig;
2270 	int	vcnt, i, ecx;
2271 	struct	mtrrvar	*mtrrphys;
2272 
2273 	cr0_orig = crvalue = getcr0();
2274 	crvalue |= CR0_CD;
2275 	crvalue &= ~CR0_NW;
2276 	setcr0(crvalue);
2277 	invalidate_cache();
2278 
2279 	reload_cr3();
2280 	if (x86_feature & X86_PAT)
2281 		wrmsr(REG_MTRRPAT, pat_attr_reg);
2282 
2283 	wrmsr(REG_MTRRDEF, rdmsr(REG_MTRRDEF) &
2284 	    ~((uint64_t)(uintptr_t)MTRRDEF_E));
2285 
2286 	if (mtrrcap & MTRRCAP_FIX) {
2287 		wrmsr(REG_MTRR64K, mtrr64k);
2288 		wrmsr(REG_MTRR16K1, mtrr16k1);
2289 		wrmsr(REG_MTRR16K2, mtrr16k2);
2290 		wrmsr(REG_MTRR4K1, mtrr4k1);
2291 		wrmsr(REG_MTRR4K2, mtrr4k2);
2292 		wrmsr(REG_MTRR4K3, mtrr4k3);
2293 		wrmsr(REG_MTRR4K4, mtrr4k4);
2294 		wrmsr(REG_MTRR4K5, mtrr4k5);
2295 		wrmsr(REG_MTRR4K6, mtrr4k6);
2296 		wrmsr(REG_MTRR4K7, mtrr4k7);
2297 		wrmsr(REG_MTRR4K8, mtrr4k8);
2298 	}
2299 	if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR)
2300 		vcnt = MAX_MTRRVAR;
2301 	for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr;
2302 	    i <  vcnt - 1; i++, ecx += 2, mtrrphys++) {
2303 		wrmsr(ecx, mtrrphys->mtrrphys_base);
2304 		wrmsr(ecx + 1, mtrrphys->mtrrphys_mask);
2305 	}
2306 	wrmsr(REG_MTRRDEF, mtrrdef);
2307 
2308 	reload_cr3();
2309 	invalidate_cache();
2310 	setcr0(cr0_orig);
2311 }
2312 
2313 /*
2314  * resync mtrr so that BIOS is happy. Called from mdboot
2315  */
2316 void
2317 mtrr_resync(void)
2318 {
2319 	if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) {
2320 		/*
2321 		 * We could have changed the default mtrr definition.
2322 		 * Put it back to uncached which is what it is at power on
2323 		 */
2324 		mtrrdef = MTRR_TYPE_UC|MTRRDEF_FE|MTRRDEF_E;
2325 		mtrr_sync();
2326 	}
2327 }
2328 
2329 void
2330 get_system_configuration(void)
2331 {
2332 	char	prop[32];
2333 	u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
2334 
2335 	if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) ||
2336 	    BOP_GETPROP(bootops, "nodes", prop) < 0 ||
2337 	    kobj_getvalue(prop, &nodes_ll) == -1 ||
2338 	    nodes_ll > MAXNODES ||
2339 	    BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) ||
2340 	    BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 ||
2341 	    kobj_getvalue(prop, &cpus_pernode_ll) == -1) {
2342 		system_hardware.hd_nodes = 1;
2343 		system_hardware.hd_cpus_per_node = 0;
2344 	} else {
2345 		system_hardware.hd_nodes = (int)nodes_ll;
2346 		system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
2347 	}
2348 
2349 	if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) ||
2350 	    BOP_GETPROP(bootops, "kernelbase", prop) < 0 ||
2351 	    kobj_getvalue(prop, &lvalue) == -1)
2352 		eprom_kernelbase = NULL;
2353 	else
2354 		eprom_kernelbase = (uintptr_t)lvalue;
2355 
2356 	if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) ||
2357 	    BOP_GETPROP(bootops, "segmapsize", prop) < 0 ||
2358 	    kobj_getvalue(prop, &lvalue) == -1)
2359 		segmapsize = SEGMAPDEFAULT;
2360 	else
2361 		segmapsize = (uintptr_t)lvalue;
2362 
2363 	if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) ||
2364 	    BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 ||
2365 	    kobj_getvalue(prop, &lvalue) == -1)
2366 		segmapfreelists = 0;	/* use segmap driver default */
2367 	else
2368 		segmapfreelists = (int)lvalue;
2369 
2370 	/* physmem used to be here, but moved much earlier to fakebop.c */
2371 }
2372 
2373 /*
2374  * Add to a memory list.
2375  * start = start of new memory segment
2376  * len = length of new memory segment in bytes
2377  * new = pointer to a new struct memlist
2378  * memlistp = memory list to which to add segment.
2379  */
2380 void
2381 memlist_add(
2382 	uint64_t start,
2383 	uint64_t len,
2384 	struct memlist *new,
2385 	struct memlist **memlistp)
2386 {
2387 	struct memlist *cur;
2388 	uint64_t end = start + len;
2389 
2390 	new->address = start;
2391 	new->size = len;
2392 
2393 	cur = *memlistp;
2394 
2395 	while (cur) {
2396 		if (cur->address >= end) {
2397 			new->next = cur;
2398 			*memlistp = new;
2399 			new->prev = cur->prev;
2400 			cur->prev = new;
2401 			return;
2402 		}
2403 		ASSERT(cur->address + cur->size <= start);
2404 		if (cur->next == NULL) {
2405 			cur->next = new;
2406 			new->prev = cur;
2407 			new->next = NULL;
2408 			return;
2409 		}
2410 		memlistp = &cur->next;
2411 		cur = cur->next;
2412 	}
2413 }
2414 
2415 void
2416 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
2417 {
2418 	size_t tsize = e_modtext - modtext;
2419 	size_t dsize = e_moddata - moddata;
2420 
2421 	*text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
2422 	    1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
2423 	*data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
2424 	    1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
2425 }
2426 
2427 caddr_t
2428 kobj_text_alloc(vmem_t *arena, size_t size)
2429 {
2430 	return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
2431 }
2432 
2433 /*ARGSUSED*/
2434 caddr_t
2435 kobj_texthole_alloc(caddr_t addr, size_t size)
2436 {
2437 	panic("unexpected call to kobj_texthole_alloc()");
2438 	/*NOTREACHED*/
2439 	return (0);
2440 }
2441 
2442 /*ARGSUSED*/
2443 void
2444 kobj_texthole_free(caddr_t addr, size_t size)
2445 {
2446 	panic("unexpected call to kobj_texthole_free()");
2447 }
2448 
2449 /*
2450  * This is called just after configure() in startup().
2451  *
2452  * The ISALIST concept is a bit hopeless on Intel, because
2453  * there's no guarantee of an ever-more-capable processor
2454  * given that various parts of the instruction set may appear
2455  * and disappear between different implementations.
2456  *
2457  * While it would be possible to correct it and even enhance
2458  * it somewhat, the explicit hardware capability bitmask allows
2459  * more flexibility.
2460  *
2461  * So, we just leave this alone.
2462  */
2463 void
2464 setx86isalist(void)
2465 {
2466 	char *tp;
2467 	size_t len;
2468 	extern char *isa_list;
2469 
2470 #define	TBUFSIZE	1024
2471 
2472 	tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
2473 	*tp = '\0';
2474 
2475 #if defined(__amd64)
2476 	(void) strcpy(tp, "amd64 ");
2477 #endif
2478 
2479 	switch (x86_vendor) {
2480 	case X86_VENDOR_Intel:
2481 	case X86_VENDOR_AMD:
2482 	case X86_VENDOR_TM:
2483 		if (x86_feature & X86_CMOV) {
2484 			/*
2485 			 * Pentium Pro or later
2486 			 */
2487 			(void) strcat(tp, "pentium_pro");
2488 			(void) strcat(tp, x86_feature & X86_MMX ?
2489 			    "+mmx pentium_pro " : " ");
2490 		}
2491 		/*FALLTHROUGH*/
2492 	case X86_VENDOR_Cyrix:
2493 		/*
2494 		 * The Cyrix 6x86 does not have any Pentium features
2495 		 * accessible while not at privilege level 0.
2496 		 */
2497 		if (x86_feature & X86_CPUID) {
2498 			(void) strcat(tp, "pentium");
2499 			(void) strcat(tp, x86_feature & X86_MMX ?
2500 			    "+mmx pentium " : " ");
2501 		}
2502 		break;
2503 	default:
2504 		break;
2505 	}
2506 	(void) strcat(tp, "i486 i386 i86");
2507 	len = strlen(tp) + 1;   /* account for NULL at end of string */
2508 	isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
2509 	kmem_free(tp, TBUFSIZE);
2510 
2511 #undef TBUFSIZE
2512 }
2513 
2514 
2515 #ifdef __amd64
2516 
2517 void *
2518 device_arena_alloc(size_t size, int vm_flag)
2519 {
2520 	return (vmem_alloc(device_arena, size, vm_flag));
2521 }
2522 
2523 void
2524 device_arena_free(void *vaddr, size_t size)
2525 {
2526 	vmem_free(device_arena, vaddr, size);
2527 }
2528 
2529 #else /* __i386 */
2530 
2531 void *
2532 device_arena_alloc(size_t size, int vm_flag)
2533 {
2534 	caddr_t	vaddr;
2535 	uintptr_t v;
2536 	size_t	start;
2537 	size_t	end;
2538 
2539 	vaddr = vmem_alloc(heap_arena, size, vm_flag);
2540 	if (vaddr == NULL)
2541 		return (NULL);
2542 
2543 	v = (uintptr_t)vaddr;
2544 	ASSERT(v >= kernelbase);
2545 	ASSERT(v + size <= valloc_base);
2546 
2547 	start = btop(v - kernelbase);
2548 	end = btop(v + size - 1 - kernelbase);
2549 	ASSERT(start < toxic_bit_map_len);
2550 	ASSERT(end < toxic_bit_map_len);
2551 
2552 	while (start <= end) {
2553 		BT_ATOMIC_SET(toxic_bit_map, start);
2554 		++start;
2555 	}
2556 	return (vaddr);
2557 }
2558 
2559 void
2560 device_arena_free(void *vaddr, size_t size)
2561 {
2562 	uintptr_t v = (uintptr_t)vaddr;
2563 	size_t	start;
2564 	size_t	end;
2565 
2566 	ASSERT(v >= kernelbase);
2567 	ASSERT(v + size <= valloc_base);
2568 
2569 	start = btop(v - kernelbase);
2570 	end = btop(v + size - 1 - kernelbase);
2571 	ASSERT(start < toxic_bit_map_len);
2572 	ASSERT(end < toxic_bit_map_len);
2573 
2574 	while (start <= end) {
2575 		ASSERT(BT_TEST(toxic_bit_map, start) != 0);
2576 		BT_ATOMIC_CLEAR(toxic_bit_map, start);
2577 		++start;
2578 	}
2579 	vmem_free(heap_arena, vaddr, size);
2580 }
2581 
2582 /*
2583  * returns 1st address in range that is in device arena, or NULL
2584  * if len is not NULL it returns the length of the toxic range
2585  */
2586 void *
2587 device_arena_contains(void *vaddr, size_t size, size_t *len)
2588 {
2589 	uintptr_t v = (uintptr_t)vaddr;
2590 	uintptr_t eaddr = v + size;
2591 	size_t start;
2592 	size_t end;
2593 
2594 	/*
2595 	 * if called very early by kmdb, just return NULL
2596 	 */
2597 	if (toxic_bit_map == NULL)
2598 		return (NULL);
2599 
2600 	/*
2601 	 * First check if we're completely outside the bitmap range.
2602 	 */
2603 	if (v >= valloc_base || eaddr < kernelbase)
2604 		return (NULL);
2605 
2606 	/*
2607 	 * Trim ends of search to look at only what the bitmap covers.
2608 	 */
2609 	if (v < kernelbase)
2610 		v = kernelbase;
2611 	start = btop(v - kernelbase);
2612 	end = btop(eaddr - kernelbase);
2613 	if (end >= toxic_bit_map_len)
2614 		end = toxic_bit_map_len;
2615 
2616 	if (bt_range(toxic_bit_map, &start, &end, end) == 0)
2617 		return (NULL);
2618 
2619 	v = kernelbase + ptob(start);
2620 	if (len != NULL)
2621 		*len = ptob(end - start);
2622 	return ((void *)v);
2623 }
2624 
2625 #endif	/* __i386 */
2626