1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/systm.h> 35 #include <sys/user.h> 36 #include <sys/mman.h> 37 #include <sys/vm.h> 38 #include <sys/conf.h> 39 #include <sys/avintr.h> 40 #include <sys/autoconf.h> 41 #include <sys/disp.h> 42 #include <sys/class.h> 43 #include <sys/bitmap.h> 44 45 #include <sys/privregs.h> 46 47 #include <sys/proc.h> 48 #include <sys/buf.h> 49 #include <sys/kmem.h> 50 #include <sys/kstat.h> 51 52 #include <sys/reboot.h> 53 #include <sys/uadmin.h> 54 55 #include <sys/cred.h> 56 #include <sys/vnode.h> 57 #include <sys/file.h> 58 59 #include <sys/procfs.h> 60 #include <sys/acct.h> 61 62 #include <sys/vfs.h> 63 #include <sys/dnlc.h> 64 #include <sys/var.h> 65 #include <sys/cmn_err.h> 66 #include <sys/utsname.h> 67 #include <sys/debug.h> 68 #include <sys/kdi.h> 69 70 #include <sys/dumphdr.h> 71 #include <sys/bootconf.h> 72 #include <sys/varargs.h> 73 #include <sys/promif.h> 74 #include <sys/prom_emul.h> /* for create_prom_prop */ 75 #include <sys/modctl.h> /* for "procfs" hack */ 76 77 #include <sys/consdev.h> 78 #include <sys/frame.h> 79 80 #include <sys/sunddi.h> 81 #include <sys/sunndi.h> 82 #include <sys/ndi_impldefs.h> 83 #include <sys/ddidmareq.h> 84 #include <sys/psw.h> 85 #include <sys/regset.h> 86 #include <sys/clock.h> 87 #include <sys/pte.h> 88 #include <sys/mmu.h> 89 #include <sys/tss.h> 90 #include <sys/stack.h> 91 #include <sys/trap.h> 92 #include <sys/pic.h> 93 #include <sys/fp.h> 94 #include <vm/anon.h> 95 #include <vm/as.h> 96 #include <vm/page.h> 97 #include <vm/seg.h> 98 #include <vm/seg_dev.h> 99 #include <vm/seg_kmem.h> 100 #include <vm/seg_kpm.h> 101 #include <vm/seg_map.h> 102 #include <vm/seg_vn.h> 103 #include <vm/seg_kp.h> 104 #include <sys/memnode.h> 105 #include <vm/vm_dep.h> 106 #include <sys/swap.h> 107 #include <sys/thread.h> 108 #include <sys/sysconf.h> 109 #include <sys/vm_machparam.h> 110 #include <sys/archsystm.h> 111 #include <sys/machsystm.h> 112 #include <vm/hat.h> 113 #include <vm/hat_i86.h> 114 #include <sys/pmem.h> 115 #include <sys/instance.h> 116 #include <sys/smp_impldefs.h> 117 #include <sys/x86_archext.h> 118 #include <sys/segments.h> 119 #include <sys/clconf.h> 120 #include <sys/kobj.h> 121 #include <sys/kobj_lex.h> 122 #include <sys/prom_emul.h> 123 #include <sys/cpc_impl.h> 124 #include <sys/chip.h> 125 #include <sys/x86_archext.h> 126 #include <sys/cpu_module.h> 127 #include <sys/smbios.h> 128 129 extern void progressbar_init(void); 130 extern void progressbar_start(void); 131 132 /* 133 * XXX make declaration below "static" when drivers no longer use this 134 * interface. 135 */ 136 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 137 138 /* 139 * segkp 140 */ 141 extern int segkp_fromheap; 142 143 static void kvm_init(void); 144 static void startup_init(void); 145 static void startup_memlist(void); 146 static void startup_modules(void); 147 static void startup_bop_gone(void); 148 static void startup_vm(void); 149 static void startup_end(void); 150 151 /* 152 * Declare these as initialized data so we can patch them. 153 */ 154 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */ 155 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 156 157 char *kobj_file_buf; 158 int kobj_file_bufsize; /* set in /etc/system */ 159 160 /* Global variables for MP support. Used in mp_startup */ 161 caddr_t rm_platter_va; 162 uint32_t rm_platter_pa; 163 164 int auto_lpg_disable = 1; 165 166 /* 167 * Some CPUs have holes in the middle of the 64-bit virtual address range. 168 */ 169 uintptr_t hole_start, hole_end; 170 171 /* 172 * kpm mapping window 173 */ 174 caddr_t kpm_vbase; 175 size_t kpm_size; 176 static int kpm_desired = 0; /* Do we want to try to use segkpm? */ 177 178 /* 179 * VA range that must be preserved for boot until we release all of its 180 * mappings. 181 */ 182 #if defined(__amd64) 183 static void *kmem_setaside; 184 #endif 185 186 /* 187 * Configuration parameters set at boot time. 188 */ 189 190 caddr_t econtig; /* end of first block of contiguous kernel */ 191 192 struct bootops *bootops = 0; /* passed in from boot */ 193 struct bootops **bootopsp; 194 struct boot_syscalls *sysp; /* passed in from boot */ 195 196 char bootblock_fstype[16]; 197 198 char kern_bootargs[OBP_MAXPATHLEN]; 199 200 /* 201 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 202 * depends on number of BOP_ALLOC calls made and requested size, memory size 203 * combination and whether boot.bin memory needs to be freed. 204 */ 205 #define POSS_NEW_FRAGMENTS 12 206 207 /* 208 * VM data structures 209 */ 210 long page_hashsz; /* Size of page hash table (power of two) */ 211 struct page *pp_base; /* Base of initial system page struct array */ 212 struct page **page_hash; /* Page hash table */ 213 struct seg ktextseg; /* Segment used for kernel executable image */ 214 struct seg kvalloc; /* Segment used for "valloc" mapping */ 215 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 216 struct seg kmapseg; /* Segment used for generic kernel mappings */ 217 struct seg kdebugseg; /* Segment used for the kernel debugger */ 218 219 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 220 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 221 222 #if defined(__amd64) 223 struct seg kvseg_core; /* Segment used for the core heap */ 224 struct seg kpmseg; /* Segment used for physical mapping */ 225 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 226 #else 227 struct seg *segkpm = NULL; /* Unused on IA32 */ 228 #endif 229 230 caddr_t segkp_base; /* Base address of segkp */ 231 #if defined(__amd64) 232 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 233 #else 234 pgcnt_t segkpsize = 0; 235 #endif 236 237 struct memseg *memseg_base; 238 struct vnode unused_pages_vp; 239 240 #define FOURGB 0x100000000LL 241 242 struct memlist *memlist; 243 244 caddr_t s_text; /* start of kernel text segment */ 245 caddr_t e_text; /* end of kernel text segment */ 246 caddr_t s_data; /* start of kernel data segment */ 247 caddr_t e_data; /* end of kernel data segment */ 248 caddr_t modtext; /* start of loadable module text reserved */ 249 caddr_t e_modtext; /* end of loadable module text reserved */ 250 caddr_t moddata; /* start of loadable module data reserved */ 251 caddr_t e_moddata; /* end of loadable module data reserved */ 252 253 struct memlist *phys_install; /* Total installed physical memory */ 254 struct memlist *phys_avail; /* Total available physical memory */ 255 256 static void memlist_add(uint64_t, uint64_t, struct memlist *, 257 struct memlist **); 258 259 /* 260 * kphysm_init returns the number of pages that were processed 261 */ 262 static pgcnt_t kphysm_init(page_t *, struct memseg *, pgcnt_t, pgcnt_t); 263 264 #define IO_PROP_SIZE 64 /* device property size */ 265 266 /* 267 * a couple useful roundup macros 268 */ 269 #define ROUND_UP_PAGE(x) \ 270 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 271 #define ROUND_UP_LPAGE(x) \ 272 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 273 #define ROUND_UP_4MEG(x) \ 274 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOURMB_PAGESIZE)) 275 #define ROUND_UP_TOPLEVEL(x) \ 276 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 277 278 /* 279 * 32-bit Kernel's Virtual memory layout. 280 * +-----------------------+ 281 * | psm 1-1 map | 282 * | exec args area | 283 * 0xFFC00000 -|-----------------------|- ARGSBASE 284 * | debugger | 285 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 286 * | Kernel Data | 287 * 0xFEC00000 -|-----------------------| 288 * | Kernel Text | 289 * 0xFE800000 -|-----------------------|- KERNEL_TEXT 290 * | LUFS sinkhole | 291 * 0xFE000000 -|-----------------------|- lufs_addr 292 * --- -|-----------------------|- valloc_base + valloc_sz 293 * | early pp structures | 294 * | memsegs, memlists, | 295 * | page hash, etc. | 296 * --- -|-----------------------|- valloc_base (floating) 297 * | ptable_va | 298 * 0xFDFFE000 -|-----------------------|- ekernelheap, ptable_va 299 * | | (segkp is an arena under the heap) 300 * | | 301 * | kvseg | 302 * | | 303 * | | 304 * --- -|-----------------------|- kernelheap (floating) 305 * | Segkmap | 306 * 0xC3002000 -|-----------------------|- segkmap_start (floating) 307 * | Red Zone | 308 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 309 * | | || 310 * | Shared objects | \/ 311 * | | 312 * : : 313 * | user data | 314 * |-----------------------| 315 * | user text | 316 * 0x08048000 -|-----------------------| 317 * | user stack | 318 * : : 319 * | invalid | 320 * 0x00000000 +-----------------------+ 321 * 322 * 323 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 324 * +-----------------------+ 325 * | psm 1-1 map | 326 * | exec args area | 327 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 328 * | debugger (?) | 329 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 330 * | unused | 331 * +-----------------------+ 332 * | Kernel Data | 333 * 0xFFFFFFFF.FBC00000 |-----------------------| 334 * | Kernel Text | 335 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 336 * | LUFS sinkhole | 337 * 0xFFFFFFFF.FB000000 -|-----------------------|- lufs_addr 338 * --- |-----------------------|- valloc_base + valloc_sz 339 * | early pp structures | 340 * | memsegs, memlists, | 341 * | page hash, etc. | 342 * --- |-----------------------|- valloc_base 343 * | ptable_va | 344 * --- |-----------------------|- ptable_va 345 * | Core heap | (used for loadable modules) 346 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 347 * | Kernel | 348 * | heap | 349 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 350 * | segkmap | 351 * 0xFFFFFXXX.XXX00000 |-----------------------|- segkmap_start (floating) 352 * | device mappings | 353 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 354 * | segkp | 355 * --- |-----------------------|- segkp_base 356 * | segkpm | 357 * 0xFFFFFE00.00000000 |-----------------------| 358 * | Red Zone | 359 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE 360 * | User stack |- User space memory 361 * | | 362 * | shared objects, etc | (grows downwards) 363 * : : 364 * | | 365 * 0xFFFF8000.00000000 |-----------------------| 366 * | | 367 * | VA Hole / unused | 368 * | | 369 * 0x00008000.00000000 |-----------------------| 370 * | | 371 * | | 372 * : : 373 * | user heap | (grows upwards) 374 * | | 375 * | user data | 376 * |-----------------------| 377 * | user text | 378 * 0x00000000.04000000 |-----------------------| 379 * | invalid | 380 * 0x00000000.00000000 +-----------------------+ 381 * 382 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 383 * kernel, except that userlimit is raised to 0xfe000000 384 * 385 * Floating values: 386 * 387 * valloc_base: start of the kernel's memory management/tracking data 388 * structures. This region contains page_t structures for the lowest 4GB 389 * of physical memory, memsegs, memlists, and the page hash. 390 * 391 * core_base: start of the kernel's "core" heap area on 64-bit systems. 392 * This area is intended to be used for global data as well as for module 393 * text/data that does not fit into the nucleus pages. The core heap is 394 * restricted to a 2GB range, allowing every address within it to be 395 * accessed using rip-relative addressing 396 * 397 * ekernelheap: end of kernelheap and start of segmap. 398 * 399 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 400 * above a red zone that separates the user's address space from the 401 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 402 * 403 * segkmap_start: start of segmap. The length of segmap can be modified 404 * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated). 405 * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems. 406 * 407 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 408 * decreased by 2X the size required for page_t. This allows the kernel 409 * heap to grow in size with physical memory. With sizeof(page_t) == 80 410 * bytes, the following shows the values of kernelbase and kernel heap 411 * sizes for different memory configurations (assuming default segmap and 412 * segkp sizes). 413 * 414 * mem size for kernelbase kernel heap 415 * size page_t's size 416 * ---- --------- ---------- ----------- 417 * 1gb 0x01400000 0xd1800000 684MB 418 * 2gb 0x02800000 0xcf000000 704MB 419 * 4gb 0x05000000 0xca000000 744MB 420 * 6gb 0x07800000 0xc5000000 784MB 421 * 8gb 0x0a000000 0xc0000000 824MB 422 * 16gb 0x14000000 0xac000000 984MB 423 * 32gb 0x28000000 0x84000000 1304MB 424 * 64gb 0x50000000 0x34000000 1944MB (*) 425 * 426 * kernelbase is less than the abi minimum of 0xc0000000 for memory 427 * configurations above 8gb. 428 * 429 * (*) support for memory configurations above 32gb will require manual tuning 430 * of kernelbase to balance out the need of user applications. 431 */ 432 433 void init_intr_threads(struct cpu *); 434 435 /* real-time-clock initialization parameters */ 436 long gmt_lag; /* offset in seconds of gmt to local time */ 437 extern long process_rtc_config_file(void); 438 439 char *final_kernelheap; 440 char *boot_kernelheap; 441 uintptr_t kernelbase; 442 uintptr_t eprom_kernelbase; 443 size_t segmapsize; 444 static uintptr_t segmap_reserved; 445 uintptr_t segkmap_start; 446 int segmapfreelists; 447 pgcnt_t boot_npages; 448 pgcnt_t npages; 449 size_t core_size; /* size of "core" heap */ 450 uintptr_t core_base; /* base address of "core" heap */ 451 452 /* 453 * List of bootstrap pages. We mark these as allocated in startup. 454 * release_bootstrap() will free them when we're completely done with 455 * the bootstrap. 456 */ 457 static page_t *bootpages, *rd_pages; 458 459 struct system_hardware system_hardware; 460 461 /* 462 * Enable some debugging messages concerning memory usage... 463 * 464 * XX64 There should only be one print routine once memlist usage between 465 * vmx and the kernel is cleaned up and there is a single memlist structure 466 * shared between kernel and boot. 467 */ 468 static void 469 print_boot_memlist(char *title, struct memlist *mp) 470 { 471 prom_printf("MEMLIST: %s:\n", title); 472 while (mp != NULL) { 473 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 474 mp->address, mp->size); 475 mp = mp->next; 476 } 477 } 478 479 static void 480 print_kernel_memlist(char *title, struct memlist *mp) 481 { 482 prom_printf("MEMLIST: %s:\n", title); 483 while (mp != NULL) { 484 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 485 mp->address, mp->size); 486 mp = mp->next; 487 } 488 } 489 490 /* 491 * XX64 need a comment here.. are these just default values, surely 492 * we read the "cpuid" type information to figure this out. 493 */ 494 int l2cache_sz = 0x80000; 495 int l2cache_linesz = 0x40; 496 int l2cache_assoc = 1; 497 498 /* 499 * on 64 bit we use a predifined VA range for mapping devices in the kernel 500 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 501 */ 502 #ifdef __amd64 503 504 vmem_t *device_arena; 505 uintptr_t toxic_addr = (uintptr_t)NULL; 506 size_t toxic_size = 1 * 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 507 508 #else /* __i386 */ 509 510 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 511 size_t toxic_bit_map_len = 0; /* in bits */ 512 513 #endif /* __i386 */ 514 515 /* 516 * Simple boot time debug facilities 517 */ 518 static char *prm_dbg_str[] = { 519 "%s:%d: '%s' is 0x%x\n", 520 "%s:%d: '%s' is 0x%llx\n" 521 }; 522 523 int prom_debug; 524 525 #define PRM_DEBUG(q) if (prom_debug) \ 526 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 527 #define PRM_POINT(q) if (prom_debug) \ 528 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 529 530 /* 531 * This structure is used to keep track of the intial allocations 532 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 533 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 534 */ 535 #define NUM_ALLOCATIONS 7 536 int num_allocations = 0; 537 struct { 538 void **al_ptr; 539 size_t al_size; 540 } allocations[NUM_ALLOCATIONS]; 541 size_t valloc_sz = 0; 542 uintptr_t valloc_base; 543 extern uintptr_t ptable_va; 544 extern size_t ptable_sz; 545 546 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 547 size = ROUND_UP_PAGE(size); \ 548 if (num_allocations == NUM_ALLOCATIONS) \ 549 panic("too many ADD_TO_ALLOCATIONS()"); \ 550 allocations[num_allocations].al_ptr = (void**)&ptr; \ 551 allocations[num_allocations].al_size = size; \ 552 valloc_sz += size; \ 553 ++num_allocations; \ 554 } 555 556 static void 557 perform_allocations(void) 558 { 559 caddr_t mem; 560 int i; 561 562 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, BO_NO_ALIGN); 563 if (mem != (caddr_t)valloc_base) 564 panic("BOP_ALLOC() failed"); 565 bzero(mem, valloc_sz); 566 for (i = 0; i < num_allocations; ++i) { 567 *allocations[i].al_ptr = (void *)mem; 568 mem += allocations[i].al_size; 569 } 570 } 571 572 /* 573 * Our world looks like this at startup time. 574 * 575 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 576 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 577 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 578 * addresses are fixed in the binary at link time. 579 * 580 * On the text page: 581 * unix/genunix/krtld/module text loads. 582 * 583 * On the data page: 584 * unix/genunix/krtld/module data loads and space for page_t's. 585 */ 586 /* 587 * Machine-dependent startup code 588 */ 589 void 590 startup(void) 591 { 592 extern void startup_bios_disk(); 593 /* 594 * Make sure that nobody tries to use sekpm until we have 595 * initialized it properly. 596 */ 597 #if defined(__amd64) 598 kpm_desired = kpm_enable; 599 #endif 600 kpm_enable = 0; 601 602 progressbar_init(); 603 startup_init(); 604 startup_memlist(); 605 startup_modules(); 606 startup_bios_disk(); 607 startup_bop_gone(); 608 startup_vm(); 609 startup_end(); 610 progressbar_start(); 611 } 612 613 static void 614 startup_init() 615 { 616 PRM_POINT("startup_init() starting..."); 617 618 /* 619 * Complete the extraction of cpuid data 620 */ 621 cpuid_pass2(CPU); 622 623 (void) check_boot_version(BOP_GETVERSION(bootops)); 624 625 /* 626 * Check for prom_debug in boot environment 627 */ 628 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 629 ++prom_debug; 630 PRM_POINT("prom_debug found in boot enviroment"); 631 } 632 633 /* 634 * Collect node, cpu and memory configuration information. 635 */ 636 get_system_configuration(); 637 638 /* 639 * Halt if this is an unsupported processor. 640 */ 641 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 642 printf("\n486 processor (\"%s\") detected.\n", 643 CPU->cpu_brandstr); 644 halt("This processor is not supported by this release " 645 "of Solaris."); 646 } 647 648 PRM_POINT("startup_init() done"); 649 } 650 651 /* 652 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 653 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 654 * also filters out physical page zero. There is some reliance on the 655 * boot loader allocating only a few contiguous physical memory chunks. 656 */ 657 static void 658 avail_filter(uint64_t *addr, uint64_t *size) 659 { 660 uintptr_t va; 661 uintptr_t next_va; 662 pfn_t pfn; 663 uint64_t pfn_addr; 664 uint64_t pfn_eaddr; 665 uint_t prot; 666 size_t len; 667 uint_t change; 668 669 if (prom_debug) 670 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 671 *addr, *size); 672 673 /* 674 * page zero is required for BIOS.. never make it available 675 */ 676 if (*addr == 0) { 677 *addr += MMU_PAGESIZE; 678 *size -= MMU_PAGESIZE; 679 } 680 681 /* 682 * First we trim from the front of the range. Since hat_boot_probe() 683 * walks ranges in virtual order, but addr/size are physical, we need 684 * to the list until no changes are seen. This deals with the case 685 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 686 * but w < v. 687 */ 688 do { 689 change = 0; 690 for (va = KERNEL_TEXT; 691 *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; 692 va = next_va) { 693 694 next_va = va + len; 695 pfn_addr = ptob((uint64_t)pfn); 696 pfn_eaddr = pfn_addr + len; 697 698 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 699 change = 1; 700 while (*size > 0 && len > 0) { 701 *addr += MMU_PAGESIZE; 702 *size -= MMU_PAGESIZE; 703 len -= MMU_PAGESIZE; 704 } 705 } 706 } 707 if (change && prom_debug) 708 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 709 *addr, *size); 710 } while (change); 711 712 /* 713 * Trim pages from the end of the range. 714 */ 715 for (va = KERNEL_TEXT; 716 *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; 717 va = next_va) { 718 719 next_va = va + len; 720 pfn_addr = ptob((uint64_t)pfn); 721 722 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 723 *size = pfn_addr - *addr; 724 } 725 726 if (prom_debug) 727 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 728 *addr, *size); 729 } 730 731 static void 732 kpm_init() 733 { 734 struct segkpm_crargs b; 735 uintptr_t start, end; 736 struct memlist *pmem; 737 738 /* 739 * These variables were all designed for sfmmu in which segkpm is 740 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 741 * might use 2+ page sizes on a single machine, so none of these 742 * variables have a single correct value. They are set up as if we 743 * always use a 4KB pagesize, which should do no harm. In the long 744 * run, we should get rid of KPM's assumption that only a single 745 * pagesize is used. 746 */ 747 kpm_pgshft = MMU_PAGESHIFT; 748 kpm_pgsz = MMU_PAGESIZE; 749 kpm_pgoff = MMU_PAGEOFFSET; 750 kpmp2pshft = 0; 751 kpmpnpgs = 1; 752 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 753 754 PRM_POINT("about to create segkpm"); 755 rw_enter(&kas.a_lock, RW_WRITER); 756 757 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 758 panic("cannot attach segkpm"); 759 760 b.prot = PROT_READ | PROT_WRITE; 761 b.nvcolors = 1; 762 763 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 764 panic("segkpm_create segkpm"); 765 766 rw_exit(&kas.a_lock); 767 768 /* 769 * Map each of the memsegs into the kpm segment, coalesing adjacent 770 * memsegs to allow mapping with the largest possible pages. 771 */ 772 pmem = phys_install; 773 start = pmem->address; 774 end = start + pmem->size; 775 for (;;) { 776 if (pmem == NULL || pmem->address > end) { 777 hat_devload(kas.a_hat, kpm_vbase + start, 778 end - start, mmu_btop(start), 779 PROT_READ | PROT_WRITE, 780 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 781 if (pmem == NULL) 782 break; 783 start = pmem->address; 784 } 785 end = pmem->address + pmem->size; 786 pmem = pmem->next; 787 } 788 } 789 790 /* 791 * The purpose of startup memlist is to get the system to the 792 * point where it can use kmem_alloc()'s that operate correctly 793 * relying on BOP_ALLOC(). This includes allocating page_ts, 794 * page hash table, vmem initialized, etc. 795 * 796 * Boot's versions of physinstalled and physavail are insufficient for 797 * the kernel's purposes. Specifically we don't know which pages that 798 * are not in physavail can be reclaimed after boot is gone. 799 * 800 * This code solves the problem by dividing the address space 801 * into 3 regions as it takes over the MMU from the booter. 802 * 803 * 1) Any (non-nucleus) pages that are mapped at addresses above KERNEL_TEXT 804 * can not be used by the kernel. 805 * 806 * 2) Any free page that happens to be mapped below kernelbase 807 * is protected until the boot loader is released, but will then be reclaimed. 808 * 809 * 3) Boot shouldn't use any address in the remaining area between kernelbase 810 * and KERNEL_TEXT. 811 * 812 * In the case of multiple mappings to the same page, region 1 has precedence 813 * over region 2. 814 */ 815 static void 816 startup_memlist(void) 817 { 818 size_t memlist_sz; 819 size_t memseg_sz; 820 size_t pagehash_sz; 821 size_t pp_sz; 822 uintptr_t va; 823 size_t len; 824 uint_t prot; 825 pfn_t pfn; 826 int memblocks; 827 caddr_t pagecolor_mem; 828 size_t pagecolor_memsz; 829 caddr_t page_ctrs_mem; 830 size_t page_ctrs_size; 831 struct memlist *current; 832 extern void startup_build_mem_nodes(struct memlist *); 833 834 /* XX64 fix these - they should be in include files */ 835 extern ulong_t cr4_value; 836 extern size_t page_coloring_init(uint_t, int, int); 837 extern void page_coloring_setup(caddr_t); 838 839 PRM_POINT("startup_memlist() starting..."); 840 841 /* 842 * Take the most current snapshot we can by calling mem-update. 843 * For this to work properly, we first have to ask boot for its 844 * end address. 845 */ 846 if (BOP_GETPROPLEN(bootops, "memory-update") == 0) 847 (void) BOP_GETPROP(bootops, "memory-update", NULL); 848 849 /* 850 * find if the kernel is mapped on a large page 851 */ 852 va = KERNEL_TEXT; 853 if (hat_boot_probe(&va, &len, &pfn, &prot) == 0) 854 panic("Couldn't find kernel text boot mapping"); 855 856 /* 857 * Use leftover large page nucleus text/data space for loadable modules. 858 * Use at most MODTEXT/MODDATA. 859 */ 860 if (len > MMU_PAGESIZE) { 861 862 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 863 e_moddata = (caddr_t)ROUND_UP_4MEG(e_data); 864 if (e_moddata - moddata > MODDATA) 865 e_moddata = moddata + MODDATA; 866 867 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 868 e_modtext = (caddr_t)ROUND_UP_4MEG(e_text); 869 if (e_modtext - modtext > MODTEXT) 870 e_modtext = modtext + MODTEXT; 871 872 873 } else { 874 875 PRM_POINT("Kernel NOT loaded on Large Page!"); 876 e_moddata = moddata = (caddr_t)ROUND_UP_PAGE(e_data); 877 e_modtext = modtext = (caddr_t)ROUND_UP_PAGE(e_text); 878 879 } 880 econtig = e_moddata; 881 882 PRM_DEBUG(modtext); 883 PRM_DEBUG(e_modtext); 884 PRM_DEBUG(moddata); 885 PRM_DEBUG(e_moddata); 886 PRM_DEBUG(econtig); 887 888 /* 889 * For MP machines cr4_value must be set or the non-boot 890 * CPUs will not be able to start. 891 */ 892 if (x86_feature & X86_LARGEPAGE) 893 cr4_value = getcr4(); 894 PRM_DEBUG(cr4_value); 895 896 /* 897 * Examine the boot loaders physical memory map to find out: 898 * - total memory in system - physinstalled 899 * - the max physical address - physmax 900 * - the number of segments the intsalled memory comes in 901 */ 902 if (prom_debug) 903 print_boot_memlist("boot physinstalled", 904 bootops->boot_mem->physinstalled); 905 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 906 &physinstalled, &memblocks); 907 PRM_DEBUG(physmax); 908 PRM_DEBUG(physinstalled); 909 PRM_DEBUG(memblocks); 910 911 if (prom_debug) 912 print_boot_memlist("boot physavail", 913 bootops->boot_mem->physavail); 914 915 /* 916 * Initialize hat's mmu parameters. 917 * Check for enforce-prot-exec in boot environment. It's used to 918 * enable/disable support for the page table entry NX bit. 919 * The default is to enforce PROT_EXEC on processors that support NX. 920 * Boot seems to round up the "len", but 8 seems to be big enough. 921 */ 922 mmu_init(); 923 924 #ifdef __i386 925 /* 926 * physmax is lowered if there is more memory than can be 927 * physically addressed in 32 bit (PAE/non-PAE) modes. 928 */ 929 if (mmu.pae_hat) { 930 if (PFN_ABOVE64G(physmax)) { 931 physinstalled -= (physmax - (PFN_64G - 1)); 932 physmax = PFN_64G - 1; 933 } 934 } else { 935 if (PFN_ABOVE4G(physmax)) { 936 physinstalled -= (physmax - (PFN_4G - 1)); 937 physmax = PFN_4G - 1; 938 } 939 } 940 #endif 941 942 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 943 944 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 945 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 946 char value[8]; 947 948 if (len < 8) 949 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 950 else 951 (void) strcpy(value, ""); 952 if (strcmp(value, "off") == 0) 953 mmu.pt_nx = 0; 954 } 955 PRM_DEBUG(mmu.pt_nx); 956 957 /* 958 * We will need page_t's for every page in the system, except for 959 * memory mapped at or above above the start of the kernel text segment. 960 * 961 * pages above e_modtext are attributed to kernel debugger (obp_pages) 962 */ 963 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 964 obp_pages = 0; 965 va = KERNEL_TEXT; 966 while (hat_boot_probe(&va, &len, &pfn, &prot) != 0) { 967 npages -= len >> MMU_PAGESHIFT; 968 if (va >= (uintptr_t)e_moddata) 969 obp_pages += len >> MMU_PAGESHIFT; 970 va += len; 971 } 972 PRM_DEBUG(npages); 973 PRM_DEBUG(obp_pages); 974 975 /* 976 * If physmem is patched to be non-zero, use it instead of 977 * the computed value unless it is larger than the real 978 * amount of memory on hand. 979 */ 980 if (physmem == 0 || physmem > npages) 981 physmem = npages; 982 else 983 npages = physmem; 984 PRM_DEBUG(physmem); 985 986 /* 987 * We now compute the sizes of all the initial allocations for 988 * structures the kernel needs in order do kmem_alloc(). These 989 * include: 990 * memsegs 991 * memlists 992 * page hash table 993 * page_t's 994 * page coloring data structs 995 */ 996 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 997 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 998 PRM_DEBUG(memseg_sz); 999 1000 /* 1001 * Reserve space for phys_avail/phys_install memlists. 1002 * There's no real good way to know exactly how much room we'll need, 1003 * but this should be a good upper bound. 1004 */ 1005 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1006 (memblocks + POSS_NEW_FRAGMENTS)); 1007 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1008 PRM_DEBUG(memlist_sz); 1009 1010 /* 1011 * The page structure hash table size is a power of 2 1012 * such that the average hash chain length is PAGE_HASHAVELEN. 1013 */ 1014 page_hashsz = npages / PAGE_HASHAVELEN; 1015 page_hashsz = 1 << highbit(page_hashsz); 1016 pagehash_sz = sizeof (struct page *) * page_hashsz; 1017 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1018 PRM_DEBUG(pagehash_sz); 1019 1020 /* 1021 * Set aside room for the page structures themselves. Note: on 1022 * 64-bit systems we don't allocate page_t's for every page here. 1023 * We just allocate enough to map the lowest 4GB of physical 1024 * memory, minus those pages that are used for the "nucleus" kernel 1025 * text and data. The remaining pages are allocated once we can 1026 * map around boot. 1027 * 1028 * boot_npages is used to allocate an area big enough for our 1029 * initial page_t's. kphym_init may use less than that. 1030 */ 1031 boot_npages = npages; 1032 #if defined(__amd64) 1033 if (npages > mmu_btop(FOURGB - (econtig - s_text))) 1034 boot_npages = mmu_btop(FOURGB - (econtig - s_text)); 1035 #endif 1036 PRM_DEBUG(boot_npages); 1037 pp_sz = sizeof (struct page) * boot_npages; 1038 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1039 PRM_DEBUG(pp_sz); 1040 1041 /* 1042 * determine l2 cache info and memory size for page coloring 1043 */ 1044 (void) getl2cacheinfo(CPU, 1045 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1046 pagecolor_memsz = 1047 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1048 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1049 PRM_DEBUG(pagecolor_memsz); 1050 1051 page_ctrs_size = page_ctrs_sz(); 1052 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1053 PRM_DEBUG(page_ctrs_size); 1054 1055 /* 1056 * valloc_base will be below kernel text 1057 * The extra pages are for the HAT and kmdb to map page tables. 1058 */ 1059 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1060 valloc_base = KERNEL_TEXT - valloc_sz; 1061 PRM_DEBUG(valloc_base); 1062 ptable_va = valloc_base - ptable_sz; 1063 1064 #if defined(__amd64) 1065 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1066 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1067 "systems."); 1068 kernelbase = (uintptr_t)KERNELBASE; 1069 core_base = (uintptr_t)COREHEAP_BASE; 1070 core_size = ptable_va - core_base; 1071 #else /* __i386 */ 1072 /* 1073 * We configure kernelbase based on: 1074 * 1075 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1076 * KERNELBASE_MAX. we large page align eprom_kernelbase 1077 * 1078 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1079 * On large memory systems we must lower kernelbase to allow 1080 * enough room for page_t's for all of memory. 1081 * 1082 * The value set here, might be changed a little later. 1083 */ 1084 if (eprom_kernelbase) { 1085 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1086 if (kernelbase > KERNELBASE_MAX) 1087 kernelbase = KERNELBASE_MAX; 1088 } else { 1089 kernelbase = (uintptr_t)KERNELBASE; 1090 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1091 } 1092 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1093 core_base = ptable_va; 1094 core_size = 0; 1095 #endif 1096 1097 PRM_DEBUG(kernelbase); 1098 PRM_DEBUG(core_base); 1099 PRM_DEBUG(core_size); 1100 1101 /* 1102 * At this point, we can only use a portion of the kernelheap that 1103 * will be available after we boot. Both 32-bit and 64-bit systems 1104 * have this limitation, although the reasons are completely 1105 * different. 1106 * 1107 * On 64-bit systems, the booter only supports allocations in the 1108 * upper 4GB of memory, so we have to work with a reduced kernel 1109 * heap until we take over all allocations. The booter also sits 1110 * in the lower portion of that 4GB range, so we have to raise the 1111 * bottom of the heap even further. 1112 * 1113 * On 32-bit systems we have to leave room to place segmap below 1114 * the heap. We don't yet know how large segmap will be, so we 1115 * have to be very conservative. 1116 */ 1117 #if defined(__amd64) 1118 /* 1119 * XX64: For now, we let boot have the lower 2GB of the top 4GB 1120 * address range. In the long run, that should be fixed. It's 1121 * insane for a booter to need 2 2GB address ranges. 1122 */ 1123 boot_kernelheap = (caddr_t)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); 1124 segmap_reserved = 0; 1125 1126 #else /* __i386 */ 1127 segkp_fromheap = 1; 1128 segmap_reserved = ROUND_UP_LPAGE(MAX(segmapsize, SEGMAPMAX)); 1129 boot_kernelheap = (caddr_t)(ROUND_UP_LPAGE(kernelbase) + 1130 segmap_reserved); 1131 #endif 1132 PRM_DEBUG(boot_kernelheap); 1133 kernelheap = boot_kernelheap; 1134 ekernelheap = (char *)core_base; 1135 1136 /* 1137 * If segmap is too large we can push the bottom of the kernel heap 1138 * higher than the base. Or worse, it could exceed the top of the 1139 * VA space entirely, causing it to wrap around. 1140 */ 1141 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1142 panic("too little memory available for kernelheap," 1143 " use a different kernelbase"); 1144 1145 /* 1146 * Now that we know the real value of kernelbase, 1147 * update variables that were initialized with a value of 1148 * KERNELBASE (in common/conf/param.c). 1149 * 1150 * XXX The problem with this sort of hackery is that the 1151 * compiler just may feel like putting the const declarations 1152 * (in param.c) into the .text section. Perhaps they should 1153 * just be declared as variables there? 1154 */ 1155 1156 #if defined(__amd64) 1157 ASSERT(_kernelbase == KERNELBASE); 1158 ASSERT(_userlimit == USERLIMIT); 1159 /* 1160 * As one final sanity check, verify that the "red zone" between 1161 * kernel and userspace is exactly the size we expected. 1162 */ 1163 ASSERT(_kernelbase == (_userlimit + (2 * 1024 * 1024))); 1164 #else 1165 *(uintptr_t *)&_kernelbase = kernelbase; 1166 *(uintptr_t *)&_userlimit = kernelbase; 1167 *(uintptr_t *)&_userlimit32 = _userlimit; 1168 #endif 1169 PRM_DEBUG(_kernelbase); 1170 PRM_DEBUG(_userlimit); 1171 PRM_DEBUG(_userlimit32); 1172 1173 /* 1174 * do all the initial allocations 1175 */ 1176 perform_allocations(); 1177 1178 /* 1179 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1180 */ 1181 kernelheap_init(kernelheap, ekernelheap, kernelheap + MMU_PAGESIZE, 1182 (void *)core_base, (void *)ptable_va); 1183 1184 /* 1185 * Build phys_install and phys_avail in kernel memspace. 1186 * - phys_install should be all memory in the system. 1187 * - phys_avail is phys_install minus any memory mapped before this 1188 * point above KERNEL_TEXT. 1189 */ 1190 current = phys_install = memlist; 1191 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1192 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1193 panic("physinstalled was too big!"); 1194 if (prom_debug) 1195 print_kernel_memlist("phys_install", phys_install); 1196 1197 phys_avail = current; 1198 PRM_POINT("Building phys_avail:\n"); 1199 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1200 avail_filter); 1201 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1202 panic("physavail was too big!"); 1203 if (prom_debug) 1204 print_kernel_memlist("phys_avail", phys_avail); 1205 1206 /* 1207 * setup page coloring 1208 */ 1209 page_coloring_setup(pagecolor_mem); 1210 page_lock_init(); /* currently a no-op */ 1211 1212 /* 1213 * free page list counters 1214 */ 1215 (void) page_ctrs_alloc(page_ctrs_mem); 1216 1217 /* 1218 * Initialize the page structures from the memory lists. 1219 */ 1220 availrmem_initial = availrmem = freemem = 0; 1221 PRM_POINT("Calling kphysm_init()..."); 1222 boot_npages = kphysm_init(pp_base, memseg_base, 0, boot_npages); 1223 PRM_POINT("kphysm_init() done"); 1224 PRM_DEBUG(boot_npages); 1225 1226 /* 1227 * Now that page_t's have been initialized, remove all the 1228 * initial allocation pages from the kernel free page lists. 1229 */ 1230 boot_mapin((caddr_t)valloc_base, valloc_sz); 1231 1232 /* 1233 * Initialize kernel memory allocator. 1234 */ 1235 kmem_init(); 1236 1237 /* 1238 * print this out early so that we know what's going on 1239 */ 1240 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1241 1242 /* 1243 * Initialize bp_mapin(). 1244 */ 1245 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1246 1247 #if defined(__i386) 1248 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1249 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1250 "System using 0x%lx", 1251 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1252 #endif 1253 1254 #ifdef KERNELBASE_ABI_MIN 1255 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1256 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1257 "i386 ABI compliant.", (uintptr_t)kernelbase); 1258 } 1259 #endif 1260 1261 PRM_POINT("startup_memlist() done"); 1262 } 1263 1264 static void 1265 startup_modules(void) 1266 { 1267 unsigned int i; 1268 extern void prom_setup(void); 1269 1270 PRM_POINT("startup_modules() starting..."); 1271 /* 1272 * Initialize ten-micro second timer so that drivers will 1273 * not get short changed in their init phase. This was 1274 * not getting called until clkinit which, on fast cpu's 1275 * caused the drv_usecwait to be way too short. 1276 */ 1277 microfind(); 1278 1279 /* 1280 * Read the GMT lag from /etc/rtc_config. 1281 */ 1282 gmt_lag = process_rtc_config_file(); 1283 1284 /* 1285 * Calculate default settings of system parameters based upon 1286 * maxusers, yet allow to be overridden via the /etc/system file. 1287 */ 1288 param_calc(0); 1289 1290 mod_setup(); 1291 1292 /* 1293 * Initialize system parameters. 1294 */ 1295 param_init(); 1296 1297 /* 1298 * maxmem is the amount of physical memory we're playing with. 1299 */ 1300 maxmem = physmem; 1301 1302 /* 1303 * Initialize the hat layer. 1304 */ 1305 hat_init(); 1306 1307 /* 1308 * Initialize segment management stuff. 1309 */ 1310 seg_init(); 1311 1312 if (modload("fs", "specfs") == -1) 1313 halt("Can't load specfs"); 1314 1315 if (modload("fs", "devfs") == -1) 1316 halt("Can't load devfs"); 1317 1318 dispinit(); 1319 1320 /* 1321 * This is needed here to initialize hw_serial[] for cluster booting. 1322 */ 1323 if ((i = modload("misc", "sysinit")) != (unsigned int)-1) 1324 (void) modunload(i); 1325 else 1326 cmn_err(CE_CONT, "sysinit load failed"); 1327 1328 /* Read cluster configuration data. */ 1329 clconf_init(); 1330 1331 /* 1332 * Create a kernel device tree. First, create rootnex and 1333 * then invoke bus specific code to probe devices. 1334 */ 1335 setup_ddi(); 1336 1337 /* 1338 * Set up the CPU module subsystem. Modifies the device tree, so it 1339 * must be done after setup_ddi(). 1340 */ 1341 cmi_init(); 1342 1343 /* 1344 * Initialize the MCA handlers 1345 */ 1346 if (x86_feature & X86_MCA) 1347 cmi_mca_init(); 1348 1349 /* 1350 * Fake a prom tree such that /dev/openprom continues to work 1351 */ 1352 prom_setup(); 1353 1354 /* 1355 * Load all platform specific modules 1356 */ 1357 psm_modload(); 1358 1359 PRM_POINT("startup_modules() done"); 1360 } 1361 1362 static void 1363 startup_bop_gone(void) 1364 { 1365 PRM_POINT("startup_bop_gone() starting..."); 1366 1367 /* 1368 * Do final allocations of HAT data structures that need to 1369 * be allocated before quiescing the boot loader. 1370 */ 1371 PRM_POINT("Calling hat_kern_alloc()..."); 1372 hat_kern_alloc(); 1373 PRM_POINT("hat_kern_alloc() done"); 1374 1375 /* 1376 * Setup MTRR (Memory type range registers) 1377 */ 1378 setup_mtrr(); 1379 PRM_POINT("startup_bop_gone() done"); 1380 } 1381 1382 /* 1383 * Walk through the pagetables looking for pages mapped in by boot. If the 1384 * setaside flag is set the pages are expected to be returned to the 1385 * kernel later in boot, so we add them to the bootpages list. 1386 */ 1387 static void 1388 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1389 { 1390 uintptr_t va = low; 1391 size_t len; 1392 uint_t prot; 1393 pfn_t pfn; 1394 page_t *pp; 1395 pgcnt_t boot_protect_cnt = 0; 1396 1397 while (hat_boot_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1398 if (va + len >= high) 1399 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1400 "legal range.", len, (void *)va); 1401 1402 while (len > 0) { 1403 pp = page_numtopp_alloc(pfn); 1404 if (pp != NULL) { 1405 if (setaside == 0) 1406 panic("Unexpected mapping by boot. " 1407 "addr=%p pfn=%lx\n", 1408 (void *)va, pfn); 1409 1410 pp->p_next = bootpages; 1411 bootpages = pp; 1412 ++boot_protect_cnt; 1413 } 1414 1415 ++pfn; 1416 len -= MMU_PAGESIZE; 1417 va += MMU_PAGESIZE; 1418 } 1419 } 1420 PRM_DEBUG(boot_protect_cnt); 1421 } 1422 1423 static void 1424 startup_vm(void) 1425 { 1426 struct segmap_crargs a; 1427 extern void hat_kern_setup(void); 1428 pgcnt_t pages_left; 1429 1430 extern int exec_lpg_disable, use_brk_lpg, use_stk_lpg, use_zmap_lpg; 1431 extern pgcnt_t auto_lpg_min_physmem; 1432 1433 PRM_POINT("startup_vm() starting..."); 1434 1435 /* 1436 * The next two loops are done in distinct steps in order 1437 * to be sure that any page that is doubly mapped (both above 1438 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1439 * Note this may never happen, but it might someday. 1440 */ 1441 1442 bootpages = NULL; 1443 PRM_POINT("Protecting boot pages"); 1444 /* 1445 * Protect any pages mapped above KERNEL_TEXT that somehow have 1446 * page_t's. This can only happen if something weird allocated 1447 * in this range (like kadb/kmdb). 1448 */ 1449 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1450 1451 /* 1452 * Before we can take over memory allocation/mapping from the boot 1453 * loader we must remove from our free page lists any boot pages that 1454 * will stay mapped until release_bootstrap(). 1455 */ 1456 protect_boot_range(0, kernelbase, 1); 1457 #if defined(__amd64) 1458 protect_boot_range(BOOT_DOUBLEMAP_BASE, 1459 BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE, 0); 1460 #endif 1461 1462 /* 1463 * Copy in boot's page tables, set up extra page tables for the kernel, 1464 * and switch to the kernel's context. 1465 */ 1466 PRM_POINT("Calling hat_kern_setup()..."); 1467 hat_kern_setup(); 1468 1469 /* 1470 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1471 */ 1472 bootops->bsys_alloc = NULL; 1473 PRM_POINT("hat_kern_setup() done"); 1474 1475 hat_cpu_online(CPU); 1476 1477 /* 1478 * Before we call kvm_init(), we need to establish the final size 1479 * of the kernel's heap. So, we need to figure out how much space 1480 * to set aside for segkp, segkpm, and segmap. 1481 */ 1482 final_kernelheap = (caddr_t)ROUND_UP_LPAGE(kernelbase); 1483 #if defined(__amd64) 1484 if (kpm_desired) { 1485 /* 1486 * Segkpm appears at the bottom of the kernel's address 1487 * range. To detect accidental overruns of the user 1488 * address space, we leave a "red zone" of unmapped memory 1489 * between kernelbase and the beginning of segkpm. 1490 */ 1491 kpm_vbase = final_kernelheap + KERNEL_REDZONE_SIZE; 1492 kpm_size = mmu_ptob(physmax); 1493 PRM_DEBUG(kpm_vbase); 1494 PRM_DEBUG(kpm_size); 1495 final_kernelheap = 1496 (caddr_t)ROUND_UP_TOPLEVEL(kpm_vbase + kpm_size); 1497 } 1498 1499 if (!segkp_fromheap) { 1500 size_t sz = mmu_ptob(segkpsize); 1501 1502 /* 1503 * determine size of segkp and adjust the bottom of the 1504 * kernel's heap. 1505 */ 1506 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1507 sz = SEGKPDEFSIZE; 1508 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1509 "segkpsize has been reset to %ld pages", 1510 mmu_btop(sz)); 1511 } 1512 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1513 1514 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1515 segkp_base = final_kernelheap; 1516 PRM_DEBUG(segkpsize); 1517 PRM_DEBUG(segkp_base); 1518 final_kernelheap = segkp_base + mmu_ptob(segkpsize); 1519 PRM_DEBUG(final_kernelheap); 1520 } 1521 1522 /* 1523 * put the range of VA for device mappings next 1524 */ 1525 toxic_addr = (uintptr_t)final_kernelheap; 1526 PRM_DEBUG(toxic_addr); 1527 final_kernelheap = (char *)toxic_addr + toxic_size; 1528 #endif 1529 PRM_DEBUG(final_kernelheap); 1530 ASSERT(final_kernelheap < boot_kernelheap); 1531 1532 /* 1533 * Users can change segmapsize through eeprom or /etc/system. 1534 * If the variable is tuned through eeprom, there is no upper 1535 * bound on the size of segmap. If it is tuned through 1536 * /etc/system on 32-bit systems, it must be no larger than we 1537 * planned for in startup_memlist(). 1538 */ 1539 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1540 segkmap_start = ROUND_UP_LPAGE((uintptr_t)final_kernelheap); 1541 1542 #if defined(__i386) 1543 if (segmapsize > segmap_reserved) { 1544 cmn_err(CE_NOTE, "!segmapsize may not be set > 0x%lx in " 1545 "/etc/system. Use eeprom.", (long)SEGMAPMAX); 1546 segmapsize = segmap_reserved; 1547 } 1548 /* 1549 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1550 * the bottom of the kernel's address range. Set aside space for a 1551 * red zone just below the start of segmap. 1552 */ 1553 segkmap_start += KERNEL_REDZONE_SIZE; 1554 segmapsize -= KERNEL_REDZONE_SIZE; 1555 #endif 1556 final_kernelheap = (char *)(segkmap_start + segmapsize); 1557 1558 PRM_DEBUG(segkmap_start); 1559 PRM_DEBUG(segmapsize); 1560 PRM_DEBUG(final_kernelheap); 1561 1562 /* 1563 * Initialize VM system 1564 */ 1565 PRM_POINT("Calling kvm_init()..."); 1566 kvm_init(); 1567 PRM_POINT("kvm_init() done"); 1568 1569 /* 1570 * Tell kmdb that the VM system is now working 1571 */ 1572 if (boothowto & RB_DEBUG) 1573 kdi_dvec_vmready(); 1574 1575 /* 1576 * Mangle the brand string etc. 1577 */ 1578 cpuid_pass3(CPU); 1579 1580 PRM_DEBUG(final_kernelheap); 1581 1582 /* 1583 * Now that we can use memory outside the top 4GB (on 64-bit 1584 * systems) and we know the size of segmap, we can set the final 1585 * size of the kernel's heap. Note: on 64-bit systems we still 1586 * can't touch anything in the bottom half of the top 4GB range 1587 * because boot still has pages mapped there. 1588 */ 1589 if (final_kernelheap < boot_kernelheap) { 1590 kernelheap_extend(final_kernelheap, boot_kernelheap); 1591 #if defined(__amd64) 1592 kmem_setaside = vmem_xalloc(heap_arena, BOOT_DOUBLEMAP_SIZE, 1593 MMU_PAGESIZE, 0, 0, (void *)(BOOT_DOUBLEMAP_BASE), 1594 (void *)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE), 1595 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1596 PRM_DEBUG(kmem_setaside); 1597 if (kmem_setaside == NULL) 1598 panic("Could not protect boot's memory"); 1599 #endif 1600 } 1601 /* 1602 * Now that the kernel heap may have grown significantly, we need 1603 * to make all the remaining page_t's available to back that memory. 1604 * 1605 * XX64 this should probably wait till after release boot-strap too. 1606 */ 1607 pages_left = npages - boot_npages; 1608 if (pages_left > 0) { 1609 PRM_DEBUG(pages_left); 1610 (void) kphysm_init(NULL, memseg_base, boot_npages, pages_left); 1611 } 1612 1613 #if defined(__amd64) 1614 1615 /* 1616 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1617 */ 1618 device_arena = vmem_create("device", (void *)toxic_addr, 1619 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1620 1621 #else /* __i386 */ 1622 1623 /* 1624 * allocate the bit map that tracks toxic pages 1625 */ 1626 toxic_bit_map_len = btop((ulong_t)(ptable_va - kernelbase)); 1627 PRM_DEBUG(toxic_bit_map_len); 1628 toxic_bit_map = 1629 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1630 ASSERT(toxic_bit_map != NULL); 1631 PRM_DEBUG(toxic_bit_map); 1632 1633 #endif /* __i386 */ 1634 1635 1636 /* 1637 * Now that we've got more VA, as well as the ability to allocate from 1638 * it, tell the debugger. 1639 */ 1640 if (boothowto & RB_DEBUG) 1641 kdi_dvec_memavail(); 1642 1643 /* 1644 * The following code installs a special page fault handler (#pf) 1645 * to work around a pentium bug. 1646 */ 1647 #if !defined(__amd64) 1648 if (x86_type == X86_TYPE_P5) { 1649 gate_desc_t *newidt; 1650 desctbr_t newidt_r; 1651 1652 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1653 panic("failed to install pentium_pftrap"); 1654 1655 bcopy(idt0, newidt, sizeof (idt0)); 1656 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1657 KCS_SEL, 0, SDT_SYSIGT, SEL_KPL); 1658 1659 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1660 PROT_READ|PROT_EXEC); 1661 1662 newidt_r.dtr_limit = sizeof (idt0) - 1; 1663 newidt_r.dtr_base = (uintptr_t)newidt; 1664 CPU->cpu_idt = newidt; 1665 wr_idtr(&newidt_r); 1666 } 1667 #endif /* !__amd64 */ 1668 1669 /* 1670 * Map page pfn=0 for drivers, such as kd, that need to pick up 1671 * parameters left there by controllers/BIOS. 1672 */ 1673 PRM_POINT("setup up p0_va"); 1674 p0_va = i86devmap(0, 1, PROT_READ); 1675 PRM_DEBUG(p0_va); 1676 1677 /* 1678 * If the following is true, someone has patched phsymem to be less 1679 * than the number of pages that the system actually has. Remove 1680 * pages until system memory is limited to the requested amount. 1681 * Since we have allocated page structures for all pages, we 1682 * correct the amount of memory we want to remove by the size of 1683 * the memory used to hold page structures for the non-used pages. 1684 */ 1685 if (physmem < npages) { 1686 uint_t diff; 1687 offset_t off; 1688 struct page *pp; 1689 caddr_t rand_vaddr; 1690 struct seg kseg; 1691 1692 cmn_err(CE_WARN, "limiting physmem to %lu pages", physmem); 1693 1694 off = 0; 1695 diff = npages - physmem; 1696 diff -= mmu_btopr(diff * sizeof (struct page)); 1697 kseg.s_as = &kas; 1698 while (diff--) { 1699 rand_vaddr = (caddr_t) 1700 (((uintptr_t)&unused_pages_vp >> 7) ^ 1701 (uintptr_t)((u_offset_t)off >> MMU_PAGESHIFT)); 1702 pp = page_create_va(&unused_pages_vp, off, MMU_PAGESIZE, 1703 PG_WAIT | PG_EXCL, &kseg, rand_vaddr); 1704 if (pp == NULL) { 1705 panic("limited physmem too much!"); 1706 /*NOTREACHED*/ 1707 } 1708 page_io_unlock(pp); 1709 page_downgrade(pp); 1710 availrmem--; 1711 off += MMU_PAGESIZE; 1712 } 1713 } 1714 1715 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1716 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1717 1718 /* 1719 * disable automatic large pages for small memory systems or 1720 * when the disable flag is set. 1721 */ 1722 if (physmem < auto_lpg_min_physmem || auto_lpg_disable) { 1723 exec_lpg_disable = 1; 1724 use_brk_lpg = 0; 1725 use_stk_lpg = 0; 1726 use_zmap_lpg = 0; 1727 } 1728 1729 PRM_POINT("Calling hat_init_finish()..."); 1730 hat_init_finish(); 1731 PRM_POINT("hat_init_finish() done"); 1732 1733 /* 1734 * Initialize the segkp segment type. 1735 */ 1736 rw_enter(&kas.a_lock, RW_WRITER); 1737 if (!segkp_fromheap) { 1738 if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1739 segkp) < 0) { 1740 panic("startup: cannot attach segkp"); 1741 /*NOTREACHED*/ 1742 } 1743 } else { 1744 /* 1745 * For 32 bit x86 systems, we will have segkp under the heap. 1746 * There will not be a segkp segment. We do, however, need 1747 * to fill in the seg structure. 1748 */ 1749 segkp->s_as = &kas; 1750 } 1751 if (segkp_create(segkp) != 0) { 1752 panic("startup: segkp_create failed"); 1753 /*NOTREACHED*/ 1754 } 1755 PRM_DEBUG(segkp); 1756 rw_exit(&kas.a_lock); 1757 1758 /* 1759 * kpm segment 1760 */ 1761 segmap_kpm = 0; 1762 if (kpm_desired) { 1763 kpm_init(); 1764 kpm_enable = 1; 1765 } 1766 1767 /* 1768 * Now create segmap segment. 1769 */ 1770 rw_enter(&kas.a_lock, RW_WRITER); 1771 if (seg_attach(&kas, (caddr_t)segkmap_start, segmapsize, segkmap) < 0) { 1772 panic("cannot attach segkmap"); 1773 /*NOTREACHED*/ 1774 } 1775 PRM_DEBUG(segkmap); 1776 1777 /* 1778 * The 64 bit HAT permanently maps only segmap's page tables. 1779 * The 32 bit HAT maps the heap's page tables too. 1780 */ 1781 #if defined(__amd64) 1782 hat_kmap_init(segkmap_start, segmapsize); 1783 #else /* __i386 */ 1784 ASSERT(segkmap_start + segmapsize == (uintptr_t)final_kernelheap); 1785 hat_kmap_init(segkmap_start, (uintptr_t)ekernelheap - segkmap_start); 1786 #endif /* __i386 */ 1787 1788 a.prot = PROT_READ | PROT_WRITE; 1789 a.shmsize = 0; 1790 a.nfreelist = segmapfreelists; 1791 1792 if (segmap_create(segkmap, (caddr_t)&a) != 0) 1793 panic("segmap_create segkmap"); 1794 rw_exit(&kas.a_lock); 1795 1796 setup_vaddr_for_ppcopy(CPU); 1797 1798 segdev_init(); 1799 pmem_init(); 1800 PRM_POINT("startup_vm() done"); 1801 } 1802 1803 static void 1804 startup_end(void) 1805 { 1806 extern void setx86isalist(void); 1807 1808 PRM_POINT("startup_end() starting..."); 1809 1810 /* 1811 * Perform tasks that get done after most of the VM 1812 * initialization has been done but before the clock 1813 * and other devices get started. 1814 */ 1815 kern_setup1(); 1816 1817 /* 1818 * Perform CPC initialization for this CPU. 1819 */ 1820 kcpc_hw_init(CPU); 1821 1822 #if defined(__amd64) 1823 /* 1824 * Validate support for syscall/sysret 1825 * XX64 -- include SSE, SSE2, etc. here too? 1826 */ 1827 if ((x86_feature & X86_ASYSC) == 0) { 1828 cmn_err(CE_WARN, 1829 "cpu%d does not support syscall/sysret", CPU->cpu_id); 1830 } 1831 #endif 1832 /* 1833 * Configure the system. 1834 */ 1835 PRM_POINT("Calling configure()..."); 1836 configure(); /* set up devices */ 1837 PRM_POINT("configure() done"); 1838 1839 /* 1840 * Set the isa_list string to the defined instruction sets we 1841 * support. 1842 */ 1843 setx86isalist(); 1844 init_intr_threads(CPU); 1845 psm_install(); 1846 1847 /* 1848 * We're done with bootops. We don't unmap the bootstrap yet because 1849 * we're still using bootsvcs. 1850 */ 1851 PRM_POINT("zeroing out bootops"); 1852 *bootopsp = (struct bootops *)0; 1853 bootops = (struct bootops *)NULL; 1854 1855 PRM_POINT("Enabling interrupts"); 1856 (*picinitf)(); 1857 sti(); 1858 1859 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 1860 "softlevel1", NULL, NULL); /* XXX to be moved later */ 1861 1862 PRM_POINT("startup_end() done"); 1863 } 1864 1865 extern char hw_serial[]; 1866 char *_hs1107 = hw_serial; 1867 ulong_t _bdhs34; 1868 1869 void 1870 post_startup(void) 1871 { 1872 /* 1873 * Set the system wide, processor-specific flags to be passed 1874 * to userland via the aux vector for performance hints and 1875 * instruction set extensions. 1876 */ 1877 bind_hwcap(); 1878 1879 /* 1880 * Load the System Management BIOS into the global ksmbios handle, 1881 * if an SMBIOS is present on this system. 1882 */ 1883 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1884 1885 /* 1886 * Startup memory scrubber. 1887 */ 1888 memscrub_init(); 1889 1890 /* 1891 * Complete CPU module initialization 1892 */ 1893 cmi_post_init(); 1894 1895 /* 1896 * Perform forceloading tasks for /etc/system. 1897 */ 1898 (void) mod_sysctl(SYS_FORCELOAD, NULL); 1899 1900 /* 1901 * ON4.0: Force /proc module in until clock interrupt handle fixed 1902 * ON4.0: This must be fixed or restated in /etc/systems. 1903 */ 1904 (void) modload("fs", "procfs"); 1905 1906 #if defined(__i386) 1907 /* 1908 * Check for required functional Floating Point hardware, 1909 * unless FP hardware explicitly disabled. 1910 */ 1911 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 1912 halt("No working FP hardware found"); 1913 #endif 1914 1915 maxmem = freemem; 1916 1917 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 1918 1919 /* 1920 * Perform the formal initialization of the boot chip, 1921 * and associate the boot cpu with it. 1922 * This must be done after the cpu node for CPU has been 1923 * added to the device tree, when the necessary probing to 1924 * know the chip type and chip "id" is performed. 1925 */ 1926 chip_cpu_init(CPU); 1927 chip_cpu_assign(CPU); 1928 } 1929 1930 static int 1931 pp_in_ramdisk(page_t *pp) 1932 { 1933 extern uint64_t ramdisk_start, ramdisk_end; 1934 1935 return ((pp->p_pagenum >= btop(ramdisk_start)) && 1936 (pp->p_pagenum < btopr(ramdisk_end))); 1937 } 1938 1939 void 1940 release_bootstrap(void) 1941 { 1942 int root_is_ramdisk; 1943 pfn_t pfn; 1944 page_t *pp; 1945 extern void kobj_boot_unmountroot(void); 1946 extern dev_t rootdev; 1947 1948 /* unmount boot ramdisk and release kmem usage */ 1949 kobj_boot_unmountroot(); 1950 1951 /* 1952 * We're finished using the boot loader so free its pages. 1953 */ 1954 PRM_POINT("Unmapping lower boot pages"); 1955 clear_boot_mappings(0, kernelbase); 1956 #if defined(__amd64) 1957 PRM_POINT("Unmapping upper boot pages"); 1958 clear_boot_mappings(BOOT_DOUBLEMAP_BASE, 1959 BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); 1960 #endif 1961 1962 /* 1963 * If root isn't on ramdisk, destroy the hardcoded 1964 * ramdisk node now and release the memory. Else, 1965 * ramdisk memory is kept in rd_pages. 1966 */ 1967 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 1968 if (!root_is_ramdisk) { 1969 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 1970 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 1971 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 1972 (void) ddi_remove_child(dip, 0); 1973 } 1974 1975 PRM_POINT("Releasing boot pages"); 1976 while (bootpages) { 1977 pp = bootpages; 1978 bootpages = pp->p_next; 1979 if (root_is_ramdisk && pp_in_ramdisk(pp)) { 1980 pp->p_next = rd_pages; 1981 rd_pages = pp; 1982 continue; 1983 } 1984 pp->p_next = (struct page *)0; 1985 page_free(pp, 1); 1986 } 1987 1988 /* 1989 * Find 1 page below 1 MB so that other processors can boot up. 1990 * Make sure it has a kernel VA as well as a 1:1 mapping. 1991 * We should have just free'd one up. 1992 */ 1993 if (use_mp) { 1994 for (pfn = 1; pfn < btop(1*1024*1024); pfn++) { 1995 if (page_numtopp_alloc(pfn) == NULL) 1996 continue; 1997 rm_platter_va = i86devmap(pfn, 1, 1998 PROT_READ | PROT_WRITE | PROT_EXEC); 1999 rm_platter_pa = ptob(pfn); 2000 hat_devload(kas.a_hat, 2001 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2002 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2003 HAT_LOAD_NOCONSIST); 2004 break; 2005 } 2006 if (pfn == btop(1*1024*1024)) 2007 panic("No page available for starting " 2008 "other processors"); 2009 } 2010 2011 #if defined(__amd64) 2012 PRM_POINT("Returning boot's VA space to kernel heap"); 2013 if (kmem_setaside != NULL) 2014 vmem_free(heap_arena, kmem_setaside, BOOT_DOUBLEMAP_SIZE); 2015 #endif 2016 } 2017 2018 /* 2019 * Initialize the platform-specific parts of a page_t. 2020 */ 2021 void 2022 add_physmem_cb(page_t *pp, pfn_t pnum) 2023 { 2024 pp->p_pagenum = pnum; 2025 pp->p_mapping = NULL; 2026 pp->p_embed = 0; 2027 pp->p_share = 0; 2028 pp->p_mlentry = 0; 2029 } 2030 2031 /* 2032 * kphysm_init() initializes physical memory. 2033 */ 2034 static pgcnt_t 2035 kphysm_init( 2036 page_t *inpp, 2037 struct memseg *memsegp, 2038 pgcnt_t start, 2039 pgcnt_t npages) 2040 { 2041 struct memlist *pmem; 2042 struct memseg *cur_memseg; 2043 struct memseg **memsegpp; 2044 pfn_t base_pfn; 2045 pgcnt_t num; 2046 pgcnt_t total_skipped = 0; 2047 pgcnt_t skipping = 0; 2048 pgcnt_t pages_done = 0; 2049 pgcnt_t largepgcnt; 2050 uint64_t addr; 2051 uint64_t size; 2052 page_t *pp = inpp; 2053 int dobreak = 0; 2054 extern pfn_t ddiphysmin; 2055 2056 ASSERT(page_hash != NULL && page_hashsz != 0); 2057 2058 for (cur_memseg = memsegp; cur_memseg->pages != NULL; cur_memseg++); 2059 ASSERT(cur_memseg == memsegp || start > 0); 2060 2061 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2062 /* 2063 * In a 32 bit kernel can't use higher memory if we're 2064 * not booting in PAE mode. This check takes care of that. 2065 */ 2066 addr = pmem->address; 2067 size = pmem->size; 2068 if (btop(addr) > physmax) 2069 continue; 2070 2071 /* 2072 * align addr and size - they may not be at page boundaries 2073 */ 2074 if ((addr & MMU_PAGEOFFSET) != 0) { 2075 addr += MMU_PAGEOFFSET; 2076 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2077 size -= addr - pmem->address; 2078 } 2079 2080 /* only process pages below or equal to physmax */ 2081 if ((btop(addr + size) - 1) > physmax) 2082 size = ptob(physmax - btop(addr) + 1); 2083 2084 num = btop(size); 2085 if (num == 0) 2086 continue; 2087 2088 if (total_skipped < start) { 2089 if (start - total_skipped > num) { 2090 total_skipped += num; 2091 continue; 2092 } 2093 skipping = start - total_skipped; 2094 num -= skipping; 2095 addr += (MMU_PAGESIZE * skipping); 2096 total_skipped = start; 2097 } 2098 if (num == 0) 2099 continue; 2100 2101 if (num > npages) 2102 num = npages; 2103 2104 npages -= num; 2105 pages_done += num; 2106 base_pfn = btop(addr); 2107 2108 /* 2109 * If the caller didn't provide space for the page 2110 * structures, carve them out of the memseg they will 2111 * represent. 2112 */ 2113 if (pp == NULL) { 2114 pgcnt_t pp_pgs; 2115 2116 if (num <= 1) 2117 continue; 2118 2119 /* 2120 * Compute how many of the pages we need to use for 2121 * page_ts 2122 */ 2123 pp_pgs = (num * sizeof (page_t)) / MMU_PAGESIZE + 1; 2124 while (mmu_ptob(pp_pgs - 1) / sizeof (page_t) >= 2125 num - pp_pgs + 1) 2126 --pp_pgs; 2127 PRM_DEBUG(pp_pgs); 2128 2129 pp = vmem_alloc(heap_arena, mmu_ptob(pp_pgs), 2130 VM_NOSLEEP); 2131 if (pp == NULL) { 2132 cmn_err(CE_WARN, "Unable to add %ld pages to " 2133 "the system.", num); 2134 continue; 2135 } 2136 2137 hat_devload(kas.a_hat, (void *)pp, mmu_ptob(pp_pgs), 2138 base_pfn, PROT_READ | PROT_WRITE | HAT_UNORDERED_OK, 2139 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 2140 bzero(pp, mmu_ptob(pp_pgs)); 2141 num -= pp_pgs; 2142 base_pfn += pp_pgs; 2143 } 2144 2145 if (prom_debug) 2146 prom_printf("MEMSEG addr=0x%" PRIx64 2147 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2148 addr, num, base_pfn, base_pfn + num); 2149 2150 /* 2151 * drop pages below ddiphysmin to simplify ddi memory 2152 * allocation with non-zero addr_lo requests. 2153 */ 2154 if (base_pfn < ddiphysmin) { 2155 if (base_pfn + num <= ddiphysmin) { 2156 /* drop entire range below ddiphysmin */ 2157 continue; 2158 } 2159 /* adjust range to ddiphysmin */ 2160 pp += (ddiphysmin - base_pfn); 2161 num -= (ddiphysmin - base_pfn); 2162 base_pfn = ddiphysmin; 2163 } 2164 /* 2165 * Build the memsegs entry 2166 */ 2167 cur_memseg->pages = pp; 2168 cur_memseg->epages = pp + num; 2169 cur_memseg->pages_base = base_pfn; 2170 cur_memseg->pages_end = base_pfn + num; 2171 2172 /* 2173 * insert in memseg list in decreasing pfn range order. 2174 * Low memory is typically more fragmented such that this 2175 * ordering keeps the larger ranges at the front of the list 2176 * for code that searches memseg. 2177 */ 2178 memsegpp = &memsegs; 2179 for (;;) { 2180 if (*memsegpp == NULL) { 2181 /* empty memsegs */ 2182 memsegs = cur_memseg; 2183 break; 2184 } 2185 /* check for continuity with start of memsegpp */ 2186 if (cur_memseg->pages_end == (*memsegpp)->pages_base) { 2187 if (cur_memseg->epages == (*memsegpp)->pages) { 2188 /* 2189 * contiguous pfn and page_t's. Merge 2190 * cur_memseg into *memsegpp. Drop 2191 * cur_memseg 2192 */ 2193 (*memsegpp)->pages_base = 2194 cur_memseg->pages_base; 2195 (*memsegpp)->pages = 2196 cur_memseg->pages; 2197 /* 2198 * check if contiguous with the end of 2199 * the next memseg. 2200 */ 2201 if ((*memsegpp)->next && 2202 ((*memsegpp)->pages_base == 2203 (*memsegpp)->next->pages_end)) { 2204 cur_memseg = *memsegpp; 2205 memsegpp = &((*memsegpp)->next); 2206 dobreak = 1; 2207 } else { 2208 break; 2209 } 2210 } else { 2211 /* 2212 * contiguous pfn but not page_t's. 2213 * drop last pfn/page_t in cur_memseg 2214 * to prevent creation of large pages 2215 * with noncontiguous page_t's if not 2216 * aligned to largest page boundary. 2217 */ 2218 largepgcnt = page_get_pagecnt( 2219 page_num_pagesizes() - 1); 2220 2221 if (cur_memseg->pages_end & 2222 (largepgcnt - 1)) { 2223 num--; 2224 cur_memseg->epages--; 2225 cur_memseg->pages_end--; 2226 } 2227 } 2228 } 2229 2230 /* check for continuity with end of memsegpp */ 2231 if (cur_memseg->pages_base == (*memsegpp)->pages_end) { 2232 if (cur_memseg->pages == (*memsegpp)->epages) { 2233 /* 2234 * contiguous pfn and page_t's. Merge 2235 * cur_memseg into *memsegpp. Drop 2236 * cur_memseg. 2237 */ 2238 if (dobreak) { 2239 /* merge previously done */ 2240 cur_memseg->pages = 2241 (*memsegpp)->pages; 2242 cur_memseg->pages_base = 2243 (*memsegpp)->pages_base; 2244 cur_memseg->next = 2245 (*memsegpp)->next; 2246 } else { 2247 (*memsegpp)->pages_end = 2248 cur_memseg->pages_end; 2249 (*memsegpp)->epages = 2250 cur_memseg->epages; 2251 } 2252 break; 2253 } 2254 /* 2255 * contiguous pfn but not page_t's. 2256 * drop first pfn/page_t in cur_memseg 2257 * to prevent creation of large pages 2258 * with noncontiguous page_t's if not 2259 * aligned to largest page boundary. 2260 */ 2261 largepgcnt = page_get_pagecnt( 2262 page_num_pagesizes() - 1); 2263 if (base_pfn & (largepgcnt - 1)) { 2264 num--; 2265 base_pfn++; 2266 cur_memseg->pages++; 2267 cur_memseg->pages_base++; 2268 pp = cur_memseg->pages; 2269 } 2270 if (dobreak) 2271 break; 2272 } 2273 2274 if (cur_memseg->pages_base >= 2275 (*memsegpp)->pages_end) { 2276 cur_memseg->next = *memsegpp; 2277 *memsegpp = cur_memseg; 2278 break; 2279 } 2280 if ((*memsegpp)->next == NULL) { 2281 cur_memseg->next = NULL; 2282 (*memsegpp)->next = cur_memseg; 2283 break; 2284 } 2285 memsegpp = &((*memsegpp)->next); 2286 ASSERT(*memsegpp != NULL); 2287 } 2288 2289 /* 2290 * add_physmem() initializes the PSM part of the page 2291 * struct by calling the PSM back with add_physmem_cb(). 2292 * In addition it coalesces pages into larger pages as 2293 * it initializes them. 2294 */ 2295 add_physmem(pp, num, base_pfn); 2296 cur_memseg++; 2297 availrmem_initial += num; 2298 availrmem += num; 2299 2300 /* 2301 * If the caller provided the page frames to us, then 2302 * advance in that list. Otherwise, prepare to allocate 2303 * our own page frames for the next memseg. 2304 */ 2305 pp = (inpp == NULL) ? NULL : pp + num; 2306 } 2307 2308 PRM_DEBUG(availrmem_initial); 2309 PRM_DEBUG(availrmem); 2310 PRM_DEBUG(freemem); 2311 build_pfn_hash(); 2312 return (pages_done); 2313 } 2314 2315 /* 2316 * Kernel VM initialization. 2317 */ 2318 static void 2319 kvm_init(void) 2320 { 2321 #ifdef DEBUG 2322 extern void _start(); 2323 2324 ASSERT((caddr_t)_start == s_text); 2325 #endif 2326 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2327 2328 /* 2329 * Put the kernel segments in kernel address space. 2330 */ 2331 rw_enter(&kas.a_lock, RW_WRITER); 2332 as_avlinit(&kas); 2333 2334 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2335 (void) segkmem_create(&ktextseg); 2336 2337 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2338 (void) segkmem_create(&kvalloc); 2339 2340 /* 2341 * We're about to map out /boot. This is the beginning of the 2342 * system resource management transition. We can no longer 2343 * call into /boot for I/O or memory allocations. 2344 * 2345 * XX64 - Is this still correct with kernelheap_extend() being called 2346 * later than this???? 2347 */ 2348 (void) seg_attach(&kas, final_kernelheap, 2349 ekernelheap - final_kernelheap, &kvseg); 2350 (void) segkmem_create(&kvseg); 2351 2352 #if defined(__amd64) 2353 (void) seg_attach(&kas, (caddr_t)core_base, core_size, &kvseg_core); 2354 (void) segkmem_create(&kvseg_core); 2355 #endif 2356 2357 (void) seg_attach(&kas, (caddr_t)SEGDEBUGBASE, (size_t)SEGDEBUGSIZE, 2358 &kdebugseg); 2359 (void) segkmem_create(&kdebugseg); 2360 2361 rw_exit(&kas.a_lock); 2362 2363 /* 2364 * Ensure that the red zone at kernelbase is never accessible. 2365 */ 2366 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2367 2368 /* 2369 * Make the text writable so that it can be hot patched by DTrace. 2370 */ 2371 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2372 PROT_READ | PROT_WRITE | PROT_EXEC); 2373 2374 /* 2375 * Make data writable until end. 2376 */ 2377 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2378 PROT_READ | PROT_WRITE | PROT_EXEC); 2379 } 2380 2381 /* 2382 * These are MTTR registers supported by P6 2383 */ 2384 static struct mtrrvar mtrrphys_arr[MAX_MTRRVAR]; 2385 static uint64_t mtrr64k, mtrr16k1, mtrr16k2; 2386 static uint64_t mtrr4k1, mtrr4k2, mtrr4k3; 2387 static uint64_t mtrr4k4, mtrr4k5, mtrr4k6; 2388 static uint64_t mtrr4k7, mtrr4k8, mtrrcap; 2389 uint64_t mtrrdef, pat_attr_reg; 2390 2391 /* 2392 * Disable reprogramming of MTRRs by default. 2393 */ 2394 int enable_relaxed_mtrr = 0; 2395 2396 void 2397 setup_mtrr() 2398 { 2399 int i, ecx; 2400 int vcnt; 2401 struct mtrrvar *mtrrphys; 2402 2403 if (!(x86_feature & X86_MTRR)) 2404 return; 2405 2406 mtrrcap = rdmsr(REG_MTRRCAP); 2407 mtrrdef = rdmsr(REG_MTRRDEF); 2408 if (mtrrcap & MTRRCAP_FIX) { 2409 mtrr64k = rdmsr(REG_MTRR64K); 2410 mtrr16k1 = rdmsr(REG_MTRR16K1); 2411 mtrr16k2 = rdmsr(REG_MTRR16K2); 2412 mtrr4k1 = rdmsr(REG_MTRR4K1); 2413 mtrr4k2 = rdmsr(REG_MTRR4K2); 2414 mtrr4k3 = rdmsr(REG_MTRR4K3); 2415 mtrr4k4 = rdmsr(REG_MTRR4K4); 2416 mtrr4k5 = rdmsr(REG_MTRR4K5); 2417 mtrr4k6 = rdmsr(REG_MTRR4K6); 2418 mtrr4k7 = rdmsr(REG_MTRR4K7); 2419 mtrr4k8 = rdmsr(REG_MTRR4K8); 2420 } 2421 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2422 vcnt = MAX_MTRRVAR; 2423 2424 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2425 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2426 mtrrphys->mtrrphys_base = rdmsr(ecx); 2427 mtrrphys->mtrrphys_mask = rdmsr(ecx + 1); 2428 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2429 mtrrphys->mtrrphys_mask &= ~MTRRPHYSMASK_V; 2430 } 2431 } 2432 if (x86_feature & X86_PAT) { 2433 if (enable_relaxed_mtrr) 2434 mtrrdef = MTRR_TYPE_WB|MTRRDEF_FE|MTRRDEF_E; 2435 pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2436 } 2437 2438 mtrr_sync(); 2439 } 2440 2441 /* 2442 * Sync current cpu mtrr with the incore copy of mtrr. 2443 * This function has to be invoked with interrupts disabled 2444 * Currently we do not capture other cpu's. This is invoked on cpu0 2445 * just after reading /etc/system. 2446 * On other cpu's its invoked from mp_startup(). 2447 */ 2448 void 2449 mtrr_sync() 2450 { 2451 uint_t crvalue, cr0_orig; 2452 int vcnt, i, ecx; 2453 struct mtrrvar *mtrrphys; 2454 2455 cr0_orig = crvalue = getcr0(); 2456 crvalue |= CR0_CD; 2457 crvalue &= ~CR0_NW; 2458 setcr0(crvalue); 2459 invalidate_cache(); 2460 setcr3(getcr3()); 2461 2462 if (x86_feature & X86_PAT) 2463 wrmsr(REG_MTRRPAT, pat_attr_reg); 2464 2465 wrmsr(REG_MTRRDEF, rdmsr(REG_MTRRDEF) & 2466 ~((uint64_t)(uintptr_t)MTRRDEF_E)); 2467 2468 if (mtrrcap & MTRRCAP_FIX) { 2469 wrmsr(REG_MTRR64K, mtrr64k); 2470 wrmsr(REG_MTRR16K1, mtrr16k1); 2471 wrmsr(REG_MTRR16K2, mtrr16k2); 2472 wrmsr(REG_MTRR4K1, mtrr4k1); 2473 wrmsr(REG_MTRR4K2, mtrr4k2); 2474 wrmsr(REG_MTRR4K3, mtrr4k3); 2475 wrmsr(REG_MTRR4K4, mtrr4k4); 2476 wrmsr(REG_MTRR4K5, mtrr4k5); 2477 wrmsr(REG_MTRR4K6, mtrr4k6); 2478 wrmsr(REG_MTRR4K7, mtrr4k7); 2479 wrmsr(REG_MTRR4K8, mtrr4k8); 2480 } 2481 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2482 vcnt = MAX_MTRRVAR; 2483 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2484 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2485 wrmsr(ecx, mtrrphys->mtrrphys_base); 2486 wrmsr(ecx + 1, mtrrphys->mtrrphys_mask); 2487 } 2488 wrmsr(REG_MTRRDEF, mtrrdef); 2489 setcr3(getcr3()); 2490 invalidate_cache(); 2491 setcr0(cr0_orig); 2492 } 2493 2494 /* 2495 * resync mtrr so that BIOS is happy. Called from mdboot 2496 */ 2497 void 2498 mtrr_resync() 2499 { 2500 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2501 /* 2502 * We could have changed the default mtrr definition. 2503 * Put it back to uncached which is what it is at power on 2504 */ 2505 mtrrdef = MTRR_TYPE_UC|MTRRDEF_FE|MTRRDEF_E; 2506 mtrr_sync(); 2507 } 2508 } 2509 2510 void 2511 get_system_configuration() 2512 { 2513 char prop[32]; 2514 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2515 2516 if (((BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop)) || 2517 (BOP_GETPROP(bootops, "nodes", prop) < 0) || 2518 (kobj_getvalue(prop, &nodes_ll) == -1) || 2519 (nodes_ll > MAXNODES)) || 2520 ((BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop)) || 2521 (BOP_GETPROP(bootops, "cpus_pernode", prop) < 0) || 2522 (kobj_getvalue(prop, &cpus_pernode_ll) == -1))) { 2523 2524 system_hardware.hd_nodes = 1; 2525 system_hardware.hd_cpus_per_node = 0; 2526 } else { 2527 system_hardware.hd_nodes = (int)nodes_ll; 2528 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2529 } 2530 if ((BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop)) || 2531 (BOP_GETPROP(bootops, "kernelbase", prop) < 0) || 2532 (kobj_getvalue(prop, &lvalue) == -1)) 2533 eprom_kernelbase = NULL; 2534 else 2535 eprom_kernelbase = (uintptr_t)lvalue; 2536 2537 if ((BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop)) || 2538 (BOP_GETPROP(bootops, "segmapsize", prop) < 0) || 2539 (kobj_getvalue(prop, &lvalue) == -1)) { 2540 segmapsize = SEGMAPDEFAULT; 2541 } else { 2542 segmapsize = (uintptr_t)lvalue; 2543 } 2544 2545 if ((BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop)) || 2546 (BOP_GETPROP(bootops, "segmapfreelists", prop) < 0) || 2547 (kobj_getvalue(prop, &lvalue) == -1)) { 2548 segmapfreelists = 0; /* use segmap driver default */ 2549 } else { 2550 segmapfreelists = (int)lvalue; 2551 } 2552 } 2553 2554 /* 2555 * Add to a memory list. 2556 * start = start of new memory segment 2557 * len = length of new memory segment in bytes 2558 * new = pointer to a new struct memlist 2559 * memlistp = memory list to which to add segment. 2560 */ 2561 static void 2562 memlist_add( 2563 uint64_t start, 2564 uint64_t len, 2565 struct memlist *new, 2566 struct memlist **memlistp) 2567 { 2568 struct memlist *cur; 2569 uint64_t end = start + len; 2570 2571 new->address = start; 2572 new->size = len; 2573 2574 cur = *memlistp; 2575 2576 while (cur) { 2577 if (cur->address >= end) { 2578 new->next = cur; 2579 *memlistp = new; 2580 new->prev = cur->prev; 2581 cur->prev = new; 2582 return; 2583 } 2584 ASSERT(cur->address + cur->size <= start); 2585 if (cur->next == NULL) { 2586 cur->next = new; 2587 new->prev = cur; 2588 new->next = NULL; 2589 return; 2590 } 2591 memlistp = &cur->next; 2592 cur = cur->next; 2593 } 2594 } 2595 2596 void 2597 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2598 { 2599 size_t tsize = e_modtext - modtext; 2600 size_t dsize = e_moddata - moddata; 2601 2602 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2603 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2604 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2605 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2606 } 2607 2608 caddr_t 2609 kobj_text_alloc(vmem_t *arena, size_t size) 2610 { 2611 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2612 } 2613 2614 /*ARGSUSED*/ 2615 caddr_t 2616 kobj_texthole_alloc(caddr_t addr, size_t size) 2617 { 2618 panic("unexpected call to kobj_texthole_alloc()"); 2619 /*NOTREACHED*/ 2620 return (0); 2621 } 2622 2623 /*ARGSUSED*/ 2624 void 2625 kobj_texthole_free(caddr_t addr, size_t size) 2626 { 2627 panic("unexpected call to kobj_texthole_free()"); 2628 } 2629 2630 /* 2631 * This is called just after configure() in startup(). 2632 * 2633 * The ISALIST concept is a bit hopeless on Intel, because 2634 * there's no guarantee of an ever-more-capable processor 2635 * given that various parts of the instruction set may appear 2636 * and disappear between different implementations. 2637 * 2638 * While it would be possible to correct it and even enhance 2639 * it somewhat, the explicit hardware capability bitmask allows 2640 * more flexibility. 2641 * 2642 * So, we just leave this alone. 2643 */ 2644 void 2645 setx86isalist(void) 2646 { 2647 char *tp; 2648 size_t len; 2649 extern char *isa_list; 2650 2651 #define TBUFSIZE 1024 2652 2653 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2654 *tp = '\0'; 2655 2656 #if defined(__amd64) 2657 (void) strcpy(tp, "amd64 "); 2658 #endif 2659 2660 switch (x86_vendor) { 2661 case X86_VENDOR_Intel: 2662 case X86_VENDOR_AMD: 2663 case X86_VENDOR_TM: 2664 if (x86_feature & X86_CMOV) { 2665 /* 2666 * Pentium Pro or later 2667 */ 2668 (void) strcat(tp, "pentium_pro"); 2669 (void) strcat(tp, x86_feature & X86_MMX ? 2670 "+mmx pentium_pro " : " "); 2671 } 2672 /*FALLTHROUGH*/ 2673 case X86_VENDOR_Cyrix: 2674 /* 2675 * The Cyrix 6x86 does not have any Pentium features 2676 * accessible while not at privilege level 0. 2677 */ 2678 if (x86_feature & X86_CPUID) { 2679 (void) strcat(tp, "pentium"); 2680 (void) strcat(tp, x86_feature & X86_MMX ? 2681 "+mmx pentium " : " "); 2682 } 2683 break; 2684 default: 2685 break; 2686 } 2687 (void) strcat(tp, "i486 i386 i86"); 2688 len = strlen(tp) + 1; /* account for NULL at end of string */ 2689 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2690 kmem_free(tp, TBUFSIZE); 2691 2692 #undef TBUFSIZE 2693 } 2694 2695 2696 #ifdef __amd64 2697 2698 void * 2699 device_arena_alloc(size_t size, int vm_flag) 2700 { 2701 return (vmem_alloc(device_arena, size, vm_flag)); 2702 } 2703 2704 void 2705 device_arena_free(void *vaddr, size_t size) 2706 { 2707 vmem_free(device_arena, vaddr, size); 2708 } 2709 2710 #else 2711 2712 void * 2713 device_arena_alloc(size_t size, int vm_flag) 2714 { 2715 caddr_t vaddr; 2716 uintptr_t v; 2717 size_t start; 2718 size_t end; 2719 2720 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2721 if (vaddr == NULL) 2722 return (NULL); 2723 2724 v = (uintptr_t)vaddr; 2725 ASSERT(v >= kernelbase); 2726 ASSERT(v + size <= ptable_va); 2727 2728 start = btop(v - kernelbase); 2729 end = btop(v + size - 1 - kernelbase); 2730 ASSERT(start < toxic_bit_map_len); 2731 ASSERT(end < toxic_bit_map_len); 2732 2733 while (start <= end) { 2734 BT_ATOMIC_SET(toxic_bit_map, start); 2735 ++start; 2736 } 2737 return (vaddr); 2738 } 2739 2740 void 2741 device_arena_free(void *vaddr, size_t size) 2742 { 2743 uintptr_t v = (uintptr_t)vaddr; 2744 size_t start; 2745 size_t end; 2746 2747 ASSERT(v >= kernelbase); 2748 ASSERT(v + size <= ptable_va); 2749 2750 start = btop(v - kernelbase); 2751 end = btop(v + size - 1 - kernelbase); 2752 ASSERT(start < toxic_bit_map_len); 2753 ASSERT(end < toxic_bit_map_len); 2754 2755 while (start <= end) { 2756 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2757 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2758 ++start; 2759 } 2760 vmem_free(heap_arena, vaddr, size); 2761 } 2762 2763 /* 2764 * returns 1st address in range that is in device arena, or NULL 2765 * if len is not NULL it returns the length of the toxic range 2766 */ 2767 void * 2768 device_arena_contains(void *vaddr, size_t size, size_t *len) 2769 { 2770 uintptr_t v = (uintptr_t)vaddr; 2771 uintptr_t eaddr = v + size; 2772 size_t start; 2773 size_t end; 2774 2775 /* 2776 * if called very early by kmdb, just return NULL 2777 */ 2778 if (toxic_bit_map == NULL) 2779 return (NULL); 2780 2781 /* 2782 * First check if we're completely outside the bitmap range. 2783 */ 2784 if (v >= ptable_va || eaddr < kernelbase) 2785 return (NULL); 2786 2787 /* 2788 * Trim ends of search to look at only what the bitmap covers. 2789 */ 2790 if (v < kernelbase) 2791 v = kernelbase; 2792 start = btop(v - kernelbase); 2793 end = btop(eaddr - kernelbase); 2794 if (end >= toxic_bit_map_len) 2795 end = toxic_bit_map_len; 2796 2797 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2798 return (NULL); 2799 2800 v = kernelbase + ptob(start); 2801 if (len != NULL) 2802 *len = ptob(end - start); 2803 return ((void *)v); 2804 } 2805 2806 #endif 2807