1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/t_lock.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/signal.h> 31 #include <sys/systm.h> 32 #include <sys/user.h> 33 #include <sys/mman.h> 34 #include <sys/vm.h> 35 #include <sys/conf.h> 36 #include <sys/avintr.h> 37 #include <sys/autoconf.h> 38 #include <sys/disp.h> 39 #include <sys/class.h> 40 #include <sys/bitmap.h> 41 42 #include <sys/privregs.h> 43 44 #include <sys/proc.h> 45 #include <sys/buf.h> 46 #include <sys/kmem.h> 47 #include <sys/mem.h> 48 #include <sys/kstat.h> 49 50 #include <sys/reboot.h> 51 52 #include <sys/cred.h> 53 #include <sys/vnode.h> 54 #include <sys/file.h> 55 56 #include <sys/procfs.h> 57 58 #include <sys/vfs.h> 59 #include <sys/cmn_err.h> 60 #include <sys/utsname.h> 61 #include <sys/debug.h> 62 #include <sys/kdi.h> 63 64 #include <sys/dumphdr.h> 65 #include <sys/bootconf.h> 66 #include <sys/varargs.h> 67 #include <sys/promif.h> 68 #include <sys/modctl.h> 69 70 #include <sys/sunddi.h> 71 #include <sys/sunndi.h> 72 #include <sys/ndi_impldefs.h> 73 #include <sys/ddidmareq.h> 74 #include <sys/psw.h> 75 #include <sys/regset.h> 76 #include <sys/clock.h> 77 #include <sys/pte.h> 78 #include <sys/tss.h> 79 #include <sys/stack.h> 80 #include <sys/trap.h> 81 #include <sys/fp.h> 82 #include <vm/kboot_mmu.h> 83 #include <vm/anon.h> 84 #include <vm/as.h> 85 #include <vm/page.h> 86 #include <vm/seg.h> 87 #include <vm/seg_dev.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_kpm.h> 90 #include <vm/seg_map.h> 91 #include <vm/seg_vn.h> 92 #include <vm/seg_kp.h> 93 #include <sys/memnode.h> 94 #include <vm/vm_dep.h> 95 #include <sys/thread.h> 96 #include <sys/sysconf.h> 97 #include <sys/vm_machparam.h> 98 #include <sys/archsystm.h> 99 #include <sys/machsystm.h> 100 #include <vm/hat.h> 101 #include <vm/hat_i86.h> 102 #include <sys/pmem.h> 103 #include <sys/smp_impldefs.h> 104 #include <sys/x86_archext.h> 105 #include <sys/cpuvar.h> 106 #include <sys/segments.h> 107 #include <sys/clconf.h> 108 #include <sys/kobj.h> 109 #include <sys/kobj_lex.h> 110 #include <sys/cpc_impl.h> 111 #include <sys/cpu_module.h> 112 #include <sys/smbios.h> 113 #include <sys/debug_info.h> 114 #include <sys/bootinfo.h> 115 #include <sys/ddi_timer.h> 116 #include <sys/systeminfo.h> 117 #include <sys/multiboot.h> 118 119 #ifdef __xpv 120 121 #include <sys/hypervisor.h> 122 #include <sys/xen_mmu.h> 123 #include <sys/evtchn_impl.h> 124 #include <sys/gnttab.h> 125 #include <sys/xpv_panic.h> 126 #include <xen/sys/xenbus_comms.h> 127 #include <xen/public/physdev.h> 128 129 extern void xen_late_startup(void); 130 131 struct xen_evt_data cpu0_evt_data; 132 133 #endif /* __xpv */ 134 135 extern void progressbar_init(void); 136 extern void progressbar_start(void); 137 extern void brand_init(void); 138 extern void pcf_init(void); 139 extern void pg_init(void); 140 141 extern int size_pse_array(pgcnt_t, int); 142 143 #if defined(_SOFT_HOSTID) 144 145 #include <sys/rtc.h> 146 147 static int32_t set_soft_hostid(void); 148 static char hostid_file[] = "/etc/hostid"; 149 150 #endif 151 152 void *gfx_devinfo_list; 153 154 /* 155 * XXX make declaration below "static" when drivers no longer use this 156 * interface. 157 */ 158 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 159 160 /* 161 * segkp 162 */ 163 extern int segkp_fromheap; 164 165 static void kvm_init(void); 166 static void startup_init(void); 167 static void startup_memlist(void); 168 static void startup_kmem(void); 169 static void startup_modules(void); 170 static void startup_vm(void); 171 static void startup_end(void); 172 static void layout_kernel_va(void); 173 174 #if !defined(__xpv) 175 void (*rootnex_iommu_init)(void) = NULL; 176 #endif 177 178 /* 179 * Declare these as initialized data so we can patch them. 180 */ 181 #ifdef __i386 182 183 /* 184 * Due to virtual address space limitations running in 32 bit mode, restrict 185 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 186 * 187 * If the physical max memory size of 64g were allowed to be configured, the 188 * size of user virtual address space will be less than 1g. A limited user 189 * address space greatly reduces the range of applications that can run. 190 * 191 * If more physical memory than PHYSMEM is required, users should preferably 192 * run in 64 bit mode which has far looser virtual address space limitations. 193 * 194 * If 64 bit mode is not available (as in IA32) and/or more physical memory 195 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 196 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 197 * should also be carefully tuned to balance out the need of the user 198 * application while minimizing the risk of kernel heap exhaustion due to 199 * kernelbase being set too high. 200 */ 201 #define PHYSMEM 0x400000 202 203 #else /* __amd64 */ 204 205 /* 206 * For now we can handle memory with physical addresses up to about 207 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 208 * half the VA space for seg_kpm. When systems get bigger than 64TB this 209 * code will need revisiting. There is an implicit assumption that there 210 * are no *huge* holes in the physical address space too. 211 */ 212 #define TERABYTE (1ul << 40) 213 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 214 #define PHYSMEM PHYSMEM_MAX64 215 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 216 217 #endif /* __amd64 */ 218 219 pgcnt_t physmem = PHYSMEM; 220 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 221 222 char *kobj_file_buf; 223 int kobj_file_bufsize; /* set in /etc/system */ 224 225 /* Global variables for MP support. Used in mp_startup */ 226 caddr_t rm_platter_va = 0; 227 uint32_t rm_platter_pa; 228 229 int auto_lpg_disable = 1; 230 231 /* 232 * Some CPUs have holes in the middle of the 64-bit virtual address range. 233 */ 234 uintptr_t hole_start, hole_end; 235 236 /* 237 * kpm mapping window 238 */ 239 caddr_t kpm_vbase; 240 size_t kpm_size; 241 static int kpm_desired; 242 #ifdef __amd64 243 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 244 #endif 245 246 /* 247 * Configuration parameters set at boot time. 248 */ 249 250 caddr_t econtig; /* end of first block of contiguous kernel */ 251 252 struct bootops *bootops = 0; /* passed in from boot */ 253 struct bootops **bootopsp; 254 struct boot_syscalls *sysp; /* passed in from boot */ 255 256 char bootblock_fstype[16]; 257 258 char kern_bootargs[OBP_MAXPATHLEN]; 259 char kern_bootfile[OBP_MAXPATHLEN]; 260 261 /* 262 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 263 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 264 * zio buffers from their own segment, otherwise they are allocated from the 265 * heap. The optimization of allocating zio buffers from their own segment is 266 * only valid on 64-bit kernels. 267 */ 268 #if defined(__amd64) 269 int segzio_fromheap = 0; 270 #else 271 int segzio_fromheap = 1; 272 #endif 273 274 /* 275 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 276 * depends on number of BOP_ALLOC calls made and requested size, memory size 277 * combination and whether boot.bin memory needs to be freed. 278 */ 279 #define POSS_NEW_FRAGMENTS 12 280 281 /* 282 * VM data structures 283 */ 284 long page_hashsz; /* Size of page hash table (power of two) */ 285 struct page *pp_base; /* Base of initial system page struct array */ 286 struct page **page_hash; /* Page hash table */ 287 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 288 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 289 int pse_shift; /* log2(pse_table_size) */ 290 struct seg ktextseg; /* Segment used for kernel executable image */ 291 struct seg kvalloc; /* Segment used for "valloc" mapping */ 292 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 293 struct seg kmapseg; /* Segment used for generic kernel mappings */ 294 struct seg kdebugseg; /* Segment used for the kernel debugger */ 295 296 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 297 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 298 299 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 300 301 #if defined(__amd64) 302 struct seg kvseg_core; /* Segment used for the core heap */ 303 struct seg kpmseg; /* Segment used for physical mapping */ 304 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 305 #else 306 struct seg *segkpm = NULL; /* Unused on IA32 */ 307 #endif 308 309 caddr_t segkp_base; /* Base address of segkp */ 310 caddr_t segzio_base; /* Base address of segzio */ 311 #if defined(__amd64) 312 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 313 #else 314 pgcnt_t segkpsize = 0; 315 #endif 316 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 317 318 /* 319 * VA range available to the debugger 320 */ 321 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 322 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 323 324 struct memseg *memseg_base; 325 struct vnode unused_pages_vp; 326 327 #define FOURGB 0x100000000LL 328 329 struct memlist *memlist; 330 331 caddr_t s_text; /* start of kernel text segment */ 332 caddr_t e_text; /* end of kernel text segment */ 333 caddr_t s_data; /* start of kernel data segment */ 334 caddr_t e_data; /* end of kernel data segment */ 335 caddr_t modtext; /* start of loadable module text reserved */ 336 caddr_t e_modtext; /* end of loadable module text reserved */ 337 caddr_t moddata; /* start of loadable module data reserved */ 338 caddr_t e_moddata; /* end of loadable module data reserved */ 339 340 struct memlist *phys_install; /* Total installed physical memory */ 341 struct memlist *phys_avail; /* Total available physical memory */ 342 struct memlist *bios_rsvd; /* Bios reserved memory */ 343 344 /* 345 * kphysm_init returns the number of pages that were processed 346 */ 347 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 348 349 #define IO_PROP_SIZE 64 /* device property size */ 350 351 /* 352 * a couple useful roundup macros 353 */ 354 #define ROUND_UP_PAGE(x) \ 355 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 356 #define ROUND_UP_LPAGE(x) \ 357 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 358 #define ROUND_UP_4MEG(x) \ 359 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 360 #define ROUND_UP_TOPLEVEL(x) \ 361 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 362 363 /* 364 * 32-bit Kernel's Virtual memory layout. 365 * +-----------------------+ 366 * | | 367 * 0xFFC00000 -|-----------------------|- ARGSBASE 368 * | debugger | 369 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 370 * | Kernel Data | 371 * 0xFEC00000 -|-----------------------| 372 * | Kernel Text | 373 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 374 * |--- GDT ---|- GDT page (GDT_VA) 375 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 376 * | | 377 * | page_t structures | 378 * | memsegs, memlists, | 379 * | page hash, etc. | 380 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 381 * | | (segkp is just an arena in the heap) 382 * | | 383 * | kvseg | 384 * | | 385 * | | 386 * --- -|-----------------------|- kernelheap (floating) 387 * | Segkmap | 388 * 0xC3002000 -|-----------------------|- segmap_start (floating) 389 * | Red Zone | 390 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 391 * | | || 392 * | Shared objects | \/ 393 * | | 394 * : : 395 * | user data | 396 * |-----------------------| 397 * | user text | 398 * 0x08048000 -|-----------------------| 399 * | user stack | 400 * : : 401 * | invalid | 402 * 0x00000000 +-----------------------+ 403 * 404 * 405 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 406 * +-----------------------+ 407 * | | 408 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 409 * | debugger (?) | 410 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 411 * | unused | 412 * +-----------------------+ 413 * | Kernel Data | 414 * 0xFFFFFFFF.FBC00000 |-----------------------| 415 * | Kernel Text | 416 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 417 * |--- GDT ---|- GDT page (GDT_VA) 418 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 419 * | | 420 * | Core heap | (used for loadable modules) 421 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 422 * | Kernel | 423 * | heap | 424 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 425 * | segmap | 426 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 427 * | device mappings | 428 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 429 * | segzio | 430 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 431 * | segkp | 432 * --- |-----------------------|- segkp_base (floating) 433 * | page_t structures | valloc_base + valloc_sz 434 * | memsegs, memlists, | 435 * | page hash, etc. | 436 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 437 * | segkpm | 438 * 0xFFFFFE00.00000000 |-----------------------| 439 * | Red Zone | 440 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 441 * | User stack |- User space memory 442 * | | 443 * | shared objects, etc | (grows downwards) 444 * : : 445 * | | 446 * 0xFFFF8000.00000000 |-----------------------| 447 * | | 448 * | VA Hole / unused | 449 * | | 450 * 0x00008000.00000000 |-----------------------| 451 * | | 452 * | | 453 * : : 454 * | user heap | (grows upwards) 455 * | | 456 * | user data | 457 * |-----------------------| 458 * | user text | 459 * 0x00000000.04000000 |-----------------------| 460 * | invalid | 461 * 0x00000000.00000000 +-----------------------+ 462 * 463 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 464 * kernel, except that userlimit is raised to 0xfe000000 465 * 466 * Floating values: 467 * 468 * valloc_base: start of the kernel's memory management/tracking data 469 * structures. This region contains page_t structures for 470 * physical memory, memsegs, memlists, and the page hash. 471 * 472 * core_base: start of the kernel's "core" heap area on 64-bit systems. 473 * This area is intended to be used for global data as well as for module 474 * text/data that does not fit into the nucleus pages. The core heap is 475 * restricted to a 2GB range, allowing every address within it to be 476 * accessed using rip-relative addressing 477 * 478 * ekernelheap: end of kernelheap and start of segmap. 479 * 480 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 481 * above a red zone that separates the user's address space from the 482 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 483 * 484 * segmap_start: start of segmap. The length of segmap can be modified 485 * through eeprom. The default length is 16MB on 32-bit systems and 64MB 486 * on 64-bit systems. 487 * 488 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 489 * decreased by 2X the size required for page_t. This allows the kernel 490 * heap to grow in size with physical memory. With sizeof(page_t) == 80 491 * bytes, the following shows the values of kernelbase and kernel heap 492 * sizes for different memory configurations (assuming default segmap and 493 * segkp sizes). 494 * 495 * mem size for kernelbase kernel heap 496 * size page_t's size 497 * ---- --------- ---------- ----------- 498 * 1gb 0x01400000 0xd1800000 684MB 499 * 2gb 0x02800000 0xcf000000 704MB 500 * 4gb 0x05000000 0xca000000 744MB 501 * 6gb 0x07800000 0xc5000000 784MB 502 * 8gb 0x0a000000 0xc0000000 824MB 503 * 16gb 0x14000000 0xac000000 984MB 504 * 32gb 0x28000000 0x84000000 1304MB 505 * 64gb 0x50000000 0x34000000 1944MB (*) 506 * 507 * kernelbase is less than the abi minimum of 0xc0000000 for memory 508 * configurations above 8gb. 509 * 510 * (*) support for memory configurations above 32gb will require manual tuning 511 * of kernelbase to balance out the need of user applications. 512 */ 513 514 /* real-time-clock initialization parameters */ 515 extern time_t process_rtc_config_file(void); 516 517 uintptr_t kernelbase; 518 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 519 uintptr_t eprom_kernelbase; 520 size_t segmapsize; 521 uintptr_t segmap_start; 522 int segmapfreelists; 523 pgcnt_t npages; 524 pgcnt_t orig_npages; 525 size_t core_size; /* size of "core" heap */ 526 uintptr_t core_base; /* base address of "core" heap */ 527 528 /* 529 * List of bootstrap pages. We mark these as allocated in startup. 530 * release_bootstrap() will free them when we're completely done with 531 * the bootstrap. 532 */ 533 static page_t *bootpages; 534 535 /* 536 * boot time pages that have a vnode from the ramdisk will keep that forever. 537 */ 538 static page_t *rd_pages; 539 540 /* 541 * Lower 64K 542 */ 543 static page_t *lower_pages = NULL; 544 static int lower_pages_count = 0; 545 546 struct system_hardware system_hardware; 547 548 /* 549 * Enable some debugging messages concerning memory usage... 550 */ 551 static void 552 print_memlist(char *title, struct memlist *mp) 553 { 554 prom_printf("MEMLIST: %s:\n", title); 555 while (mp != NULL) { 556 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 557 mp->address, mp->size); 558 mp = mp->next; 559 } 560 } 561 562 /* 563 * XX64 need a comment here.. are these just default values, surely 564 * we read the "cpuid" type information to figure this out. 565 */ 566 int l2cache_sz = 0x80000; 567 int l2cache_linesz = 0x40; 568 int l2cache_assoc = 1; 569 570 static size_t textrepl_min_gb = 10; 571 572 /* 573 * on 64 bit we use a predifined VA range for mapping devices in the kernel 574 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 575 */ 576 #ifdef __amd64 577 578 vmem_t *device_arena; 579 uintptr_t toxic_addr = (uintptr_t)NULL; 580 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 581 582 #else /* __i386 */ 583 584 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 585 size_t toxic_bit_map_len = 0; /* in bits */ 586 587 #endif /* __i386 */ 588 589 /* 590 * Simple boot time debug facilities 591 */ 592 static char *prm_dbg_str[] = { 593 "%s:%d: '%s' is 0x%x\n", 594 "%s:%d: '%s' is 0x%llx\n" 595 }; 596 597 int prom_debug; 598 599 #define PRM_DEBUG(q) if (prom_debug) \ 600 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 601 #define PRM_POINT(q) if (prom_debug) \ 602 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 603 604 /* 605 * This structure is used to keep track of the intial allocations 606 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 607 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 608 */ 609 #define NUM_ALLOCATIONS 8 610 int num_allocations = 0; 611 struct { 612 void **al_ptr; 613 size_t al_size; 614 } allocations[NUM_ALLOCATIONS]; 615 size_t valloc_sz = 0; 616 uintptr_t valloc_base; 617 618 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 619 size = ROUND_UP_PAGE(size); \ 620 if (num_allocations == NUM_ALLOCATIONS) \ 621 panic("too many ADD_TO_ALLOCATIONS()"); \ 622 allocations[num_allocations].al_ptr = (void**)&ptr; \ 623 allocations[num_allocations].al_size = size; \ 624 valloc_sz += size; \ 625 ++num_allocations; \ 626 } 627 628 /* 629 * Allocate all the initial memory needed by the page allocator. 630 */ 631 static void 632 perform_allocations(void) 633 { 634 caddr_t mem; 635 int i; 636 int valloc_align; 637 638 PRM_DEBUG(valloc_base); 639 PRM_DEBUG(valloc_sz); 640 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 641 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 642 if (mem != (caddr_t)valloc_base) 643 panic("BOP_ALLOC() failed"); 644 bzero(mem, valloc_sz); 645 for (i = 0; i < num_allocations; ++i) { 646 *allocations[i].al_ptr = (void *)mem; 647 mem += allocations[i].al_size; 648 } 649 } 650 651 /* 652 * Our world looks like this at startup time. 653 * 654 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 655 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 656 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 657 * addresses are fixed in the binary at link time. 658 * 659 * On the text page: 660 * unix/genunix/krtld/module text loads. 661 * 662 * On the data page: 663 * unix/genunix/krtld/module data loads. 664 * 665 * Machine-dependent startup code 666 */ 667 void 668 startup(void) 669 { 670 #if !defined(__xpv) 671 extern void startup_bios_disk(void); 672 extern void startup_pci_bios(void); 673 extern int post_fastreboot; 674 #endif 675 extern cpuset_t cpu_ready_set; 676 677 /* 678 * Make sure that nobody tries to use sekpm until we have 679 * initialized it properly. 680 */ 681 #if defined(__amd64) 682 kpm_desired = 1; 683 #endif 684 kpm_enable = 0; 685 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 686 687 #if defined(__xpv) /* XXPV fix me! */ 688 { 689 extern int segvn_use_regions; 690 segvn_use_regions = 0; 691 } 692 #endif 693 progressbar_init(); 694 startup_init(); 695 #if defined(__xpv) 696 startup_xen_version(); 697 #endif 698 startup_memlist(); 699 startup_kmem(); 700 startup_vm(); 701 #if !defined(__xpv) 702 if (!post_fastreboot) 703 startup_pci_bios(); 704 #endif 705 #if defined(__xpv) 706 startup_xen_mca(); 707 #endif 708 startup_modules(); 709 #if !defined(__xpv) 710 if (!post_fastreboot) 711 startup_bios_disk(); 712 #endif 713 startup_end(); 714 progressbar_start(); 715 } 716 717 static void 718 startup_init() 719 { 720 PRM_POINT("startup_init() starting..."); 721 722 /* 723 * Complete the extraction of cpuid data 724 */ 725 cpuid_pass2(CPU); 726 727 (void) check_boot_version(BOP_GETVERSION(bootops)); 728 729 /* 730 * Check for prom_debug in boot environment 731 */ 732 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 733 ++prom_debug; 734 PRM_POINT("prom_debug found in boot enviroment"); 735 } 736 737 /* 738 * Collect node, cpu and memory configuration information. 739 */ 740 get_system_configuration(); 741 742 /* 743 * Halt if this is an unsupported processor. 744 */ 745 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 746 printf("\n486 processor (\"%s\") detected.\n", 747 CPU->cpu_brandstr); 748 halt("This processor is not supported by this release " 749 "of Solaris."); 750 } 751 752 PRM_POINT("startup_init() done"); 753 } 754 755 /* 756 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 757 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 758 * also filters out physical page zero. There is some reliance on the 759 * boot loader allocating only a few contiguous physical memory chunks. 760 */ 761 static void 762 avail_filter(uint64_t *addr, uint64_t *size) 763 { 764 uintptr_t va; 765 uintptr_t next_va; 766 pfn_t pfn; 767 uint64_t pfn_addr; 768 uint64_t pfn_eaddr; 769 uint_t prot; 770 size_t len; 771 uint_t change; 772 773 if (prom_debug) 774 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 775 *addr, *size); 776 777 /* 778 * page zero is required for BIOS.. never make it available 779 */ 780 if (*addr == 0) { 781 *addr += MMU_PAGESIZE; 782 *size -= MMU_PAGESIZE; 783 } 784 785 /* 786 * First we trim from the front of the range. Since kbm_probe() 787 * walks ranges in virtual order, but addr/size are physical, we need 788 * to the list until no changes are seen. This deals with the case 789 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 790 * but w < v. 791 */ 792 do { 793 change = 0; 794 for (va = KERNEL_TEXT; 795 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 796 va = next_va) { 797 798 next_va = va + len; 799 pfn_addr = pfn_to_pa(pfn); 800 pfn_eaddr = pfn_addr + len; 801 802 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 803 change = 1; 804 while (*size > 0 && len > 0) { 805 *addr += MMU_PAGESIZE; 806 *size -= MMU_PAGESIZE; 807 len -= MMU_PAGESIZE; 808 } 809 } 810 } 811 if (change && prom_debug) 812 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 813 *addr, *size); 814 } while (change); 815 816 /* 817 * Trim pages from the end of the range. 818 */ 819 for (va = KERNEL_TEXT; 820 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 821 va = next_va) { 822 823 next_va = va + len; 824 pfn_addr = pfn_to_pa(pfn); 825 826 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 827 *size = pfn_addr - *addr; 828 } 829 830 if (prom_debug) 831 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 832 *addr, *size); 833 } 834 835 static void 836 kpm_init() 837 { 838 struct segkpm_crargs b; 839 840 /* 841 * These variables were all designed for sfmmu in which segkpm is 842 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 843 * might use 2+ page sizes on a single machine, so none of these 844 * variables have a single correct value. They are set up as if we 845 * always use a 4KB pagesize, which should do no harm. In the long 846 * run, we should get rid of KPM's assumption that only a single 847 * pagesize is used. 848 */ 849 kpm_pgshft = MMU_PAGESHIFT; 850 kpm_pgsz = MMU_PAGESIZE; 851 kpm_pgoff = MMU_PAGEOFFSET; 852 kpmp2pshft = 0; 853 kpmpnpgs = 1; 854 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 855 856 PRM_POINT("about to create segkpm"); 857 rw_enter(&kas.a_lock, RW_WRITER); 858 859 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 860 panic("cannot attach segkpm"); 861 862 b.prot = PROT_READ | PROT_WRITE; 863 b.nvcolors = 1; 864 865 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 866 panic("segkpm_create segkpm"); 867 868 rw_exit(&kas.a_lock); 869 } 870 871 /* 872 * The debug info page provides enough information to allow external 873 * inspectors (e.g. when running under a hypervisor) to bootstrap 874 * themselves into allowing full-blown kernel debugging. 875 */ 876 static void 877 init_debug_info(void) 878 { 879 caddr_t mem; 880 debug_info_t *di; 881 882 #ifndef __lint 883 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 884 #endif 885 886 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 887 MMU_PAGESIZE); 888 889 if (mem != (caddr_t)DEBUG_INFO_VA) 890 panic("BOP_ALLOC() failed"); 891 bzero(mem, MMU_PAGESIZE); 892 893 di = (debug_info_t *)mem; 894 895 di->di_magic = DEBUG_INFO_MAGIC; 896 di->di_version = DEBUG_INFO_VERSION; 897 di->di_modules = (uintptr_t)&modules; 898 di->di_s_text = (uintptr_t)s_text; 899 di->di_e_text = (uintptr_t)e_text; 900 di->di_s_data = (uintptr_t)s_data; 901 di->di_e_data = (uintptr_t)e_data; 902 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 903 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 904 } 905 906 /* 907 * Build the memlists and other kernel essential memory system data structures. 908 * This is everything at valloc_base. 909 */ 910 static void 911 startup_memlist(void) 912 { 913 size_t memlist_sz; 914 size_t memseg_sz; 915 size_t pagehash_sz; 916 size_t pp_sz; 917 uintptr_t va; 918 size_t len; 919 uint_t prot; 920 pfn_t pfn; 921 int memblocks; 922 pfn_t rsvd_high_pfn; 923 pgcnt_t rsvd_pgcnt; 924 size_t rsvdmemlist_sz; 925 int rsvdmemblocks; 926 caddr_t pagecolor_mem; 927 size_t pagecolor_memsz; 928 caddr_t page_ctrs_mem; 929 size_t page_ctrs_size; 930 size_t pse_table_alloc_size; 931 struct memlist *current; 932 extern void startup_build_mem_nodes(struct memlist *); 933 934 /* XX64 fix these - they should be in include files */ 935 extern size_t page_coloring_init(uint_t, int, int); 936 extern void page_coloring_setup(caddr_t); 937 938 PRM_POINT("startup_memlist() starting..."); 939 940 /* 941 * Use leftover large page nucleus text/data space for loadable modules. 942 * Use at most MODTEXT/MODDATA. 943 */ 944 len = kbm_nucleus_size; 945 ASSERT(len > MMU_PAGESIZE); 946 947 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 948 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 949 if (e_moddata - moddata > MODDATA) 950 e_moddata = moddata + MODDATA; 951 952 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 953 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 954 if (e_modtext - modtext > MODTEXT) 955 e_modtext = modtext + MODTEXT; 956 957 econtig = e_moddata; 958 959 PRM_DEBUG(modtext); 960 PRM_DEBUG(e_modtext); 961 PRM_DEBUG(moddata); 962 PRM_DEBUG(e_moddata); 963 PRM_DEBUG(econtig); 964 965 /* 966 * Examine the boot loader physical memory map to find out: 967 * - total memory in system - physinstalled 968 * - the max physical address - physmax 969 * - the number of discontiguous segments of memory. 970 */ 971 if (prom_debug) 972 print_memlist("boot physinstalled", 973 bootops->boot_mem->physinstalled); 974 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 975 &physinstalled, &memblocks); 976 PRM_DEBUG(physmax); 977 PRM_DEBUG(physinstalled); 978 PRM_DEBUG(memblocks); 979 980 /* 981 * Examine the bios reserved memory to find out: 982 * - the number of discontiguous segments of memory. 983 */ 984 if (prom_debug) 985 print_memlist("boot reserved mem", 986 bootops->boot_mem->rsvdmem); 987 installed_top_size(bootops->boot_mem->rsvdmem, &rsvd_high_pfn, 988 &rsvd_pgcnt, &rsvdmemblocks); 989 PRM_DEBUG(rsvd_high_pfn); 990 PRM_DEBUG(rsvd_pgcnt); 991 PRM_DEBUG(rsvdmemblocks); 992 993 /* 994 * Initialize hat's mmu parameters. 995 * Check for enforce-prot-exec in boot environment. It's used to 996 * enable/disable support for the page table entry NX bit. 997 * The default is to enforce PROT_EXEC on processors that support NX. 998 * Boot seems to round up the "len", but 8 seems to be big enough. 999 */ 1000 mmu_init(); 1001 1002 #ifdef __i386 1003 /* 1004 * physmax is lowered if there is more memory than can be 1005 * physically addressed in 32 bit (PAE/non-PAE) modes. 1006 */ 1007 if (mmu.pae_hat) { 1008 if (PFN_ABOVE64G(physmax)) { 1009 physinstalled -= (physmax - (PFN_64G - 1)); 1010 physmax = PFN_64G - 1; 1011 } 1012 } else { 1013 if (PFN_ABOVE4G(physmax)) { 1014 physinstalled -= (physmax - (PFN_4G - 1)); 1015 physmax = PFN_4G - 1; 1016 } 1017 } 1018 #endif 1019 1020 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 1021 1022 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 1023 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 1024 char value[8]; 1025 1026 if (len < 8) 1027 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 1028 else 1029 (void) strcpy(value, ""); 1030 if (strcmp(value, "off") == 0) 1031 mmu.pt_nx = 0; 1032 } 1033 PRM_DEBUG(mmu.pt_nx); 1034 1035 /* 1036 * We will need page_t's for every page in the system, except for 1037 * memory mapped at or above above the start of the kernel text segment. 1038 * 1039 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1040 */ 1041 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1042 obp_pages = 0; 1043 va = KERNEL_TEXT; 1044 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1045 npages -= len >> MMU_PAGESHIFT; 1046 if (va >= (uintptr_t)e_moddata) 1047 obp_pages += len >> MMU_PAGESHIFT; 1048 va += len; 1049 } 1050 PRM_DEBUG(npages); 1051 PRM_DEBUG(obp_pages); 1052 1053 /* 1054 * If physmem is patched to be non-zero, use it instead of the computed 1055 * value unless it is larger than the actual amount of memory on hand. 1056 */ 1057 if (physmem == 0 || physmem > npages) { 1058 physmem = npages; 1059 } else if (physmem < npages) { 1060 orig_npages = npages; 1061 npages = physmem; 1062 } 1063 PRM_DEBUG(physmem); 1064 1065 /* 1066 * We now compute the sizes of all the initial allocations for 1067 * structures the kernel needs in order do kmem_alloc(). These 1068 * include: 1069 * memsegs 1070 * memlists 1071 * page hash table 1072 * page_t's 1073 * page coloring data structs 1074 */ 1075 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1076 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1077 PRM_DEBUG(memseg_sz); 1078 1079 /* 1080 * Reserve space for memlists. There's no real good way to know exactly 1081 * how much room we'll need, but this should be a good upper bound. 1082 */ 1083 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1084 (memblocks + POSS_NEW_FRAGMENTS)); 1085 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1086 PRM_DEBUG(memlist_sz); 1087 1088 /* 1089 * Reserve space for bios reserved memlists. 1090 */ 1091 rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1092 (rsvdmemblocks + POSS_NEW_FRAGMENTS)); 1093 ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz); 1094 PRM_DEBUG(rsvdmemlist_sz); 1095 1096 /* 1097 * The page structure hash table size is a power of 2 1098 * such that the average hash chain length is PAGE_HASHAVELEN. 1099 */ 1100 page_hashsz = npages / PAGE_HASHAVELEN; 1101 page_hashsz = 1 << highbit(page_hashsz); 1102 pagehash_sz = sizeof (struct page *) * page_hashsz; 1103 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1104 PRM_DEBUG(pagehash_sz); 1105 1106 /* 1107 * Set aside room for the page structures themselves. 1108 */ 1109 PRM_DEBUG(npages); 1110 pp_sz = sizeof (struct page) * npages; 1111 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1112 PRM_DEBUG(pp_sz); 1113 1114 /* 1115 * determine l2 cache info and memory size for page coloring 1116 */ 1117 (void) getl2cacheinfo(CPU, 1118 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1119 pagecolor_memsz = 1120 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1121 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1122 PRM_DEBUG(pagecolor_memsz); 1123 1124 page_ctrs_size = page_ctrs_sz(); 1125 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1126 PRM_DEBUG(page_ctrs_size); 1127 1128 /* 1129 * Allocate the array that protects pp->p_selock. 1130 */ 1131 pse_shift = size_pse_array(physmem, max_ncpus); 1132 pse_table_size = 1 << pse_shift; 1133 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1134 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1135 1136 #if defined(__amd64) 1137 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1138 valloc_base = VALLOC_BASE; 1139 1140 /* 1141 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1142 * for values of physmax up to 1 Terabyte. They need adjusting when 1143 * memory is at addresses above 1 TB. 1144 */ 1145 if (physmax + 1 > mmu_btop(TERABYTE)) { 1146 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1147 1148 /* Round to largest possible pagesize for now */ 1149 kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1150 1151 segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */ 1152 1153 /* make sure we leave some space for user apps above hole */ 1154 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1155 if (segkpm_base > SEGKPM_BASE) 1156 segkpm_base = SEGKPM_BASE; 1157 PRM_DEBUG(segkpm_base); 1158 1159 valloc_base = segkpm_base + kpm_resv_amount; 1160 PRM_DEBUG(valloc_base); 1161 } 1162 #else /* __i386 */ 1163 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1164 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1165 PRM_DEBUG(valloc_base); 1166 #endif /* __i386 */ 1167 1168 /* 1169 * do all the initial allocations 1170 */ 1171 perform_allocations(); 1172 1173 /* 1174 * Build phys_install and phys_avail in kernel memspace. 1175 * - phys_install should be all memory in the system. 1176 * - phys_avail is phys_install minus any memory mapped before this 1177 * point above KERNEL_TEXT. 1178 */ 1179 current = phys_install = memlist; 1180 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1181 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1182 panic("physinstalled was too big!"); 1183 if (prom_debug) 1184 print_memlist("phys_install", phys_install); 1185 1186 phys_avail = current; 1187 PRM_POINT("Building phys_avail:\n"); 1188 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1189 avail_filter); 1190 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1191 panic("physavail was too big!"); 1192 if (prom_debug) 1193 print_memlist("phys_avail", phys_avail); 1194 1195 /* 1196 * Build bios reserved memspace 1197 */ 1198 current = bios_rsvd; 1199 copy_memlist_filter(bootops->boot_mem->rsvdmem, ¤t, NULL); 1200 if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz) 1201 panic("bios_rsvd was too big!"); 1202 if (prom_debug) 1203 print_memlist("bios_rsvd", bios_rsvd); 1204 1205 /* 1206 * setup page coloring 1207 */ 1208 page_coloring_setup(pagecolor_mem); 1209 page_lock_init(); /* currently a no-op */ 1210 1211 /* 1212 * free page list counters 1213 */ 1214 (void) page_ctrs_alloc(page_ctrs_mem); 1215 1216 /* 1217 * Size the pcf array based on the number of cpus in the box at 1218 * boot time. 1219 */ 1220 1221 pcf_init(); 1222 1223 /* 1224 * Initialize the page structures from the memory lists. 1225 */ 1226 availrmem_initial = availrmem = freemem = 0; 1227 PRM_POINT("Calling kphysm_init()..."); 1228 npages = kphysm_init(pp_base, npages); 1229 PRM_POINT("kphysm_init() done"); 1230 PRM_DEBUG(npages); 1231 1232 init_debug_info(); 1233 1234 /* 1235 * Now that page_t's have been initialized, remove all the 1236 * initial allocation pages from the kernel free page lists. 1237 */ 1238 boot_mapin((caddr_t)valloc_base, valloc_sz); 1239 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1240 PRM_POINT("startup_memlist() done"); 1241 1242 PRM_DEBUG(valloc_sz); 1243 1244 #if defined(__amd64) 1245 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1246 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1247 extern size_t textrepl_size_thresh; 1248 textrepl_size_thresh = (16 << 20) - 1; 1249 } 1250 #endif 1251 } 1252 1253 /* 1254 * Layout the kernel's part of address space and initialize kmem allocator. 1255 */ 1256 static void 1257 startup_kmem(void) 1258 { 1259 extern void page_set_colorequiv_arr(void); 1260 const char *fmt = "?features: %b\n"; 1261 1262 PRM_POINT("startup_kmem() starting..."); 1263 1264 #if defined(__amd64) 1265 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1266 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1267 "systems."); 1268 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1269 core_base = (uintptr_t)COREHEAP_BASE; 1270 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1271 #else /* __i386 */ 1272 /* 1273 * We configure kernelbase based on: 1274 * 1275 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1276 * KERNELBASE_MAX. we large page align eprom_kernelbase 1277 * 1278 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1279 * On large memory systems we must lower kernelbase to allow 1280 * enough room for page_t's for all of memory. 1281 * 1282 * The value set here, might be changed a little later. 1283 */ 1284 if (eprom_kernelbase) { 1285 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1286 if (kernelbase > KERNELBASE_MAX) 1287 kernelbase = KERNELBASE_MAX; 1288 } else { 1289 kernelbase = (uintptr_t)KERNELBASE; 1290 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1291 } 1292 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1293 core_base = valloc_base; 1294 core_size = 0; 1295 #endif /* __i386 */ 1296 1297 PRM_DEBUG(core_base); 1298 PRM_DEBUG(core_size); 1299 PRM_DEBUG(kernelbase); 1300 1301 #if defined(__i386) 1302 segkp_fromheap = 1; 1303 #endif /* __i386 */ 1304 1305 ekernelheap = (char *)core_base; 1306 PRM_DEBUG(ekernelheap); 1307 1308 /* 1309 * Now that we know the real value of kernelbase, 1310 * update variables that were initialized with a value of 1311 * KERNELBASE (in common/conf/param.c). 1312 * 1313 * XXX The problem with this sort of hackery is that the 1314 * compiler just may feel like putting the const declarations 1315 * (in param.c) into the .text section. Perhaps they should 1316 * just be declared as variables there? 1317 */ 1318 1319 *(uintptr_t *)&_kernelbase = kernelbase; 1320 *(uintptr_t *)&_userlimit = kernelbase; 1321 #if defined(__amd64) 1322 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1323 #else 1324 *(uintptr_t *)&_userlimit32 = _userlimit; 1325 #endif 1326 PRM_DEBUG(_kernelbase); 1327 PRM_DEBUG(_userlimit); 1328 PRM_DEBUG(_userlimit32); 1329 1330 layout_kernel_va(); 1331 1332 #if defined(__i386) 1333 /* 1334 * If segmap is too large we can push the bottom of the kernel heap 1335 * higher than the base. Or worse, it could exceed the top of the 1336 * VA space entirely, causing it to wrap around. 1337 */ 1338 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1339 panic("too little address space available for kernelheap," 1340 " use eeprom for lower kernelbase or smaller segmapsize"); 1341 #endif /* __i386 */ 1342 1343 /* 1344 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1345 */ 1346 kernelheap_init(kernelheap, ekernelheap, 1347 kernelheap + MMU_PAGESIZE, 1348 (void *)core_base, (void *)(core_base + core_size)); 1349 1350 #if defined(__xpv) 1351 /* 1352 * Link pending events struct into cpu struct 1353 */ 1354 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1355 #endif 1356 /* 1357 * Initialize kernel memory allocator. 1358 */ 1359 kmem_init(); 1360 1361 /* 1362 * Factor in colorequiv to check additional 'equivalent' bins 1363 */ 1364 page_set_colorequiv_arr(); 1365 1366 /* 1367 * print this out early so that we know what's going on 1368 */ 1369 cmn_err(CE_CONT, fmt, x86_feature, FMT_X86_FEATURE); 1370 1371 /* 1372 * Initialize bp_mapin(). 1373 */ 1374 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1375 1376 /* 1377 * orig_npages is non-zero if physmem has been configured for less 1378 * than the available memory. 1379 */ 1380 if (orig_npages) { 1381 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1382 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1383 npages, orig_npages); 1384 } 1385 #if defined(__i386) 1386 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1387 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1388 "System using 0x%lx", 1389 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1390 #endif 1391 1392 #ifdef KERNELBASE_ABI_MIN 1393 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1394 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1395 "i386 ABI compliant.", (uintptr_t)kernelbase); 1396 } 1397 #endif 1398 1399 #ifdef __xpv 1400 /* 1401 * Some of the xen start information has to be relocated up 1402 * into the kernel's permanent address space. 1403 */ 1404 PRM_POINT("calling xen_relocate_start_info()"); 1405 xen_relocate_start_info(); 1406 PRM_POINT("xen_relocate_start_info() done"); 1407 1408 /* 1409 * (Update the vcpu pointer in our cpu structure to point into 1410 * the relocated shared info.) 1411 */ 1412 CPU->cpu_m.mcpu_vcpu_info = 1413 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1414 #endif 1415 1416 PRM_POINT("startup_kmem() done"); 1417 } 1418 1419 #ifndef __xpv 1420 /* 1421 * If we have detected that we are running in an HVM environment, we need 1422 * to prepend the PV driver directory to the module search path. 1423 */ 1424 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1425 static void 1426 update_default_path() 1427 { 1428 char *current, *newpath; 1429 int newlen; 1430 1431 /* 1432 * We are about to resync with krtld. krtld will reset its 1433 * internal module search path iff Solaris has set default_path. 1434 * We want to be sure we're prepending this new directory to the 1435 * right search path. 1436 */ 1437 current = (default_path == NULL) ? kobj_module_path : default_path; 1438 1439 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 1; 1440 newpath = kmem_alloc(newlen, KM_SLEEP); 1441 (void) strcpy(newpath, HVM_MOD_DIR); 1442 (void) strcat(newpath, " "); 1443 (void) strcat(newpath, current); 1444 1445 default_path = newpath; 1446 } 1447 #endif 1448 1449 static void 1450 startup_modules(void) 1451 { 1452 int cnt; 1453 extern void prom_setup(void); 1454 int32_t v, h; 1455 char d[11]; 1456 char *cp; 1457 cmi_hdl_t hdl; 1458 1459 PRM_POINT("startup_modules() starting..."); 1460 1461 #ifndef __xpv 1462 /* 1463 * Initialize ten-micro second timer so that drivers will 1464 * not get short changed in their init phase. This was 1465 * not getting called until clkinit which, on fast cpu's 1466 * caused the drv_usecwait to be way too short. 1467 */ 1468 microfind(); 1469 1470 if (get_hwenv() == HW_XEN_HVM) 1471 update_default_path(); 1472 #endif 1473 1474 /* 1475 * Read the GMT lag from /etc/rtc_config. 1476 */ 1477 sgmtl(process_rtc_config_file()); 1478 1479 /* 1480 * Calculate default settings of system parameters based upon 1481 * maxusers, yet allow to be overridden via the /etc/system file. 1482 */ 1483 param_calc(0); 1484 1485 mod_setup(); 1486 1487 /* 1488 * Initialize system parameters. 1489 */ 1490 param_init(); 1491 1492 /* 1493 * Initialize the default brands 1494 */ 1495 brand_init(); 1496 1497 /* 1498 * maxmem is the amount of physical memory we're playing with. 1499 */ 1500 maxmem = physmem; 1501 1502 /* 1503 * Initialize segment management stuff. 1504 */ 1505 seg_init(); 1506 1507 if (modload("fs", "specfs") == -1) 1508 halt("Can't load specfs"); 1509 1510 if (modload("fs", "devfs") == -1) 1511 halt("Can't load devfs"); 1512 1513 if (modload("fs", "dev") == -1) 1514 halt("Can't load dev"); 1515 1516 (void) modloadonly("sys", "lbl_edition"); 1517 1518 dispinit(); 1519 1520 /* 1521 * This is needed here to initialize hw_serial[] for cluster booting. 1522 */ 1523 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) { 1524 cmn_err(CE_WARN, "Unable to set hostid"); 1525 } else { 1526 for (v = h, cnt = 0; cnt < 10; cnt++) { 1527 d[cnt] = (char)(v % 10); 1528 v /= 10; 1529 if (v == 0) 1530 break; 1531 } 1532 for (cp = hw_serial; cnt >= 0; cnt--) 1533 *cp++ = d[cnt] + '0'; 1534 *cp = 0; 1535 } 1536 1537 /* Read cluster configuration data. */ 1538 clconf_init(); 1539 1540 #if defined(__xpv) 1541 ec_init(); 1542 gnttab_init(); 1543 (void) xs_early_init(); 1544 #endif /* __xpv */ 1545 1546 /* 1547 * Create a kernel device tree. First, create rootnex and 1548 * then invoke bus specific code to probe devices. 1549 */ 1550 setup_ddi(); 1551 1552 /* 1553 * Set up the CPU module subsystem for the boot cpu in the native 1554 * case, and all physical cpu resource in the xpv dom0 case. 1555 * Modifies the device tree, so this must be done after 1556 * setup_ddi(). 1557 */ 1558 #ifdef __xpv 1559 /* 1560 * If paravirtualized and on dom0 then we initialize all physical 1561 * cpu handles now; if paravirtualized on a domU then do not 1562 * initialize. 1563 */ 1564 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1565 xen_mc_lcpu_cookie_t cpi; 1566 1567 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1568 cpi = xen_physcpu_next(cpi)) { 1569 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1570 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1571 xen_physcpu_strandid(cpi))) != NULL && 1572 (x86_feature & X86_MCA)) 1573 cmi_mca_init(hdl); 1574 } 1575 } 1576 #else 1577 /* 1578 * Initialize a handle for the boot cpu - others will initialize 1579 * as they startup. Do not do this if we know we are in an HVM domU. 1580 */ 1581 if ((get_hwenv() != HW_XEN_HVM) && 1582 (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1583 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL && 1584 (x86_feature & X86_MCA)) 1585 cmi_mca_init(hdl); 1586 #endif /* __xpv */ 1587 1588 /* 1589 * Fake a prom tree such that /dev/openprom continues to work 1590 */ 1591 PRM_POINT("startup_modules: calling prom_setup..."); 1592 prom_setup(); 1593 PRM_POINT("startup_modules: done"); 1594 1595 /* 1596 * Load all platform specific modules 1597 */ 1598 PRM_POINT("startup_modules: calling psm_modload..."); 1599 psm_modload(); 1600 1601 PRM_POINT("startup_modules() done"); 1602 } 1603 1604 /* 1605 * claim a "setaside" boot page for use in the kernel 1606 */ 1607 page_t * 1608 boot_claim_page(pfn_t pfn) 1609 { 1610 page_t *pp; 1611 1612 pp = page_numtopp_nolock(pfn); 1613 ASSERT(pp != NULL); 1614 1615 if (PP_ISBOOTPAGES(pp)) { 1616 if (pp->p_next != NULL) 1617 pp->p_next->p_prev = pp->p_prev; 1618 if (pp->p_prev == NULL) 1619 bootpages = pp->p_next; 1620 else 1621 pp->p_prev->p_next = pp->p_next; 1622 } else { 1623 /* 1624 * htable_attach() expects a base pagesize page 1625 */ 1626 if (pp->p_szc != 0) 1627 page_boot_demote(pp); 1628 pp = page_numtopp(pfn, SE_EXCL); 1629 } 1630 return (pp); 1631 } 1632 1633 /* 1634 * Walk through the pagetables looking for pages mapped in by boot. If the 1635 * setaside flag is set the pages are expected to be returned to the 1636 * kernel later in boot, so we add them to the bootpages list. 1637 */ 1638 static void 1639 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1640 { 1641 uintptr_t va = low; 1642 size_t len; 1643 uint_t prot; 1644 pfn_t pfn; 1645 page_t *pp; 1646 pgcnt_t boot_protect_cnt = 0; 1647 1648 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1649 if (va + len >= high) 1650 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1651 "legal range.", len, (void *)va); 1652 1653 while (len > 0) { 1654 pp = page_numtopp_alloc(pfn); 1655 if (pp != NULL) { 1656 if (setaside == 0) 1657 panic("Unexpected mapping by boot. " 1658 "addr=%p pfn=%lx\n", 1659 (void *)va, pfn); 1660 1661 pp->p_next = bootpages; 1662 pp->p_prev = NULL; 1663 PP_SETBOOTPAGES(pp); 1664 if (bootpages != NULL) { 1665 bootpages->p_prev = pp; 1666 } 1667 bootpages = pp; 1668 ++boot_protect_cnt; 1669 } 1670 1671 ++pfn; 1672 len -= MMU_PAGESIZE; 1673 va += MMU_PAGESIZE; 1674 } 1675 } 1676 PRM_DEBUG(boot_protect_cnt); 1677 } 1678 1679 /* 1680 * 1681 */ 1682 static void 1683 layout_kernel_va(void) 1684 { 1685 PRM_POINT("layout_kernel_va() starting..."); 1686 /* 1687 * Establish the final size of the kernel's heap, size of segmap, 1688 * segkp, etc. 1689 */ 1690 1691 #if defined(__amd64) 1692 1693 kpm_vbase = (caddr_t)segkpm_base; 1694 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1695 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1696 panic("not enough room for kpm!"); 1697 PRM_DEBUG(kpm_size); 1698 PRM_DEBUG(kpm_vbase); 1699 1700 /* 1701 * By default we create a seg_kp in 64 bit kernels, it's a little 1702 * faster to access than embedding it in the heap. 1703 */ 1704 segkp_base = (caddr_t)valloc_base + valloc_sz; 1705 if (!segkp_fromheap) { 1706 size_t sz = mmu_ptob(segkpsize); 1707 1708 /* 1709 * determine size of segkp 1710 */ 1711 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1712 sz = SEGKPDEFSIZE; 1713 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1714 "segkpsize has been reset to %ld pages", 1715 mmu_btop(sz)); 1716 } 1717 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1718 1719 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1720 } 1721 PRM_DEBUG(segkp_base); 1722 PRM_DEBUG(segkpsize); 1723 1724 /* 1725 * segzio is used for ZFS cached data. It uses a distinct VA 1726 * segment (from kernel heap) so that we can easily tell not to 1727 * include it in kernel crash dumps on 64 bit kernels. The trick is 1728 * to give it lots of VA, but not constrain the kernel heap. 1729 * We scale the size of segzio linearly with physmem up to 1730 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1731 */ 1732 segzio_base = segkp_base + mmu_ptob(segkpsize); 1733 if (segzio_fromheap) { 1734 segziosize = 0; 1735 } else { 1736 size_t physmem_size = mmu_ptob(physmem); 1737 size_t size = (segziosize == 0) ? 1738 physmem_size : mmu_ptob(segziosize); 1739 1740 if (size < SEGZIOMINSIZE) 1741 size = SEGZIOMINSIZE; 1742 if (size > SEGZIOMAXSIZE) { 1743 size = SEGZIOMAXSIZE; 1744 if (physmem_size > size) 1745 size += (physmem_size - size) / 2; 1746 } 1747 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1748 } 1749 PRM_DEBUG(segziosize); 1750 PRM_DEBUG(segzio_base); 1751 1752 /* 1753 * Put the range of VA for device mappings next, kmdb knows to not 1754 * grep in this range of addresses. 1755 */ 1756 toxic_addr = 1757 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1758 PRM_DEBUG(toxic_addr); 1759 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1760 #else /* __i386 */ 1761 segmap_start = ROUND_UP_LPAGE(kernelbase); 1762 #endif /* __i386 */ 1763 PRM_DEBUG(segmap_start); 1764 1765 /* 1766 * Users can change segmapsize through eeprom. If the variable 1767 * is tuned through eeprom, there is no upper bound on the 1768 * size of segmap. 1769 */ 1770 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1771 1772 #if defined(__i386) 1773 /* 1774 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1775 * the bottom of the kernel's address range. Set aside space for a 1776 * small red zone just below the start of segmap. 1777 */ 1778 segmap_start += KERNEL_REDZONE_SIZE; 1779 segmapsize -= KERNEL_REDZONE_SIZE; 1780 #endif 1781 1782 PRM_DEBUG(segmap_start); 1783 PRM_DEBUG(segmapsize); 1784 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1785 PRM_DEBUG(kernelheap); 1786 PRM_POINT("layout_kernel_va() done..."); 1787 } 1788 1789 /* 1790 * Finish initializing the VM system, now that we are no longer 1791 * relying on the boot time memory allocators. 1792 */ 1793 static void 1794 startup_vm(void) 1795 { 1796 struct segmap_crargs a; 1797 1798 extern int use_brk_lpg, use_stk_lpg; 1799 1800 PRM_POINT("startup_vm() starting..."); 1801 1802 /* 1803 * Initialize the hat layer. 1804 */ 1805 hat_init(); 1806 1807 /* 1808 * Do final allocations of HAT data structures that need to 1809 * be allocated before quiescing the boot loader. 1810 */ 1811 PRM_POINT("Calling hat_kern_alloc()..."); 1812 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1813 PRM_POINT("hat_kern_alloc() done"); 1814 1815 #ifndef __xpv 1816 /* 1817 * Setup Page Attribute Table 1818 */ 1819 pat_sync(); 1820 #endif 1821 1822 /* 1823 * The next two loops are done in distinct steps in order 1824 * to be sure that any page that is doubly mapped (both above 1825 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1826 * Note this may never happen, but it might someday. 1827 */ 1828 bootpages = NULL; 1829 PRM_POINT("Protecting boot pages"); 1830 1831 /* 1832 * Protect any pages mapped above KERNEL_TEXT that somehow have 1833 * page_t's. This can only happen if something weird allocated 1834 * in this range (like kadb/kmdb). 1835 */ 1836 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1837 1838 /* 1839 * Before we can take over memory allocation/mapping from the boot 1840 * loader we must remove from our free page lists any boot allocated 1841 * pages that stay mapped until release_bootstrap(). 1842 */ 1843 protect_boot_range(0, kernelbase, 1); 1844 1845 1846 /* 1847 * Switch to running on regular HAT (not boot_mmu) 1848 */ 1849 PRM_POINT("Calling hat_kern_setup()..."); 1850 hat_kern_setup(); 1851 1852 /* 1853 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1854 */ 1855 bop_no_more_mem(); 1856 1857 PRM_POINT("hat_kern_setup() done"); 1858 1859 hat_cpu_online(CPU); 1860 1861 /* 1862 * Initialize VM system 1863 */ 1864 PRM_POINT("Calling kvm_init()..."); 1865 kvm_init(); 1866 PRM_POINT("kvm_init() done"); 1867 1868 /* 1869 * Tell kmdb that the VM system is now working 1870 */ 1871 if (boothowto & RB_DEBUG) 1872 kdi_dvec_vmready(); 1873 1874 #if defined(__xpv) 1875 /* 1876 * Populate the I/O pool on domain 0 1877 */ 1878 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1879 extern long populate_io_pool(void); 1880 long init_io_pool_cnt; 1881 1882 PRM_POINT("Populating reserve I/O page pool"); 1883 init_io_pool_cnt = populate_io_pool(); 1884 PRM_DEBUG(init_io_pool_cnt); 1885 } 1886 #endif 1887 /* 1888 * Mangle the brand string etc. 1889 */ 1890 cpuid_pass3(CPU); 1891 1892 #if defined(__amd64) 1893 1894 /* 1895 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1896 */ 1897 device_arena = vmem_create("device", (void *)toxic_addr, 1898 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1899 1900 #else /* __i386 */ 1901 1902 /* 1903 * allocate the bit map that tracks toxic pages 1904 */ 1905 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 1906 PRM_DEBUG(toxic_bit_map_len); 1907 toxic_bit_map = 1908 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1909 ASSERT(toxic_bit_map != NULL); 1910 PRM_DEBUG(toxic_bit_map); 1911 1912 #endif /* __i386 */ 1913 1914 1915 /* 1916 * Now that we've got more VA, as well as the ability to allocate from 1917 * it, tell the debugger. 1918 */ 1919 if (boothowto & RB_DEBUG) 1920 kdi_dvec_memavail(); 1921 1922 /* 1923 * The following code installs a special page fault handler (#pf) 1924 * to work around a pentium bug. 1925 */ 1926 #if !defined(__amd64) && !defined(__xpv) 1927 if (x86_type == X86_TYPE_P5) { 1928 desctbr_t idtr; 1929 gate_desc_t *newidt; 1930 1931 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1932 panic("failed to install pentium_pftrap"); 1933 1934 bcopy(idt0, newidt, NIDT * sizeof (*idt0)); 1935 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1936 KCS_SEL, SDT_SYSIGT, TRP_KPL, 0); 1937 1938 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1939 PROT_READ | PROT_EXEC); 1940 1941 CPU->cpu_idt = newidt; 1942 idtr.dtr_base = (uintptr_t)CPU->cpu_idt; 1943 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1; 1944 wr_idtr(&idtr); 1945 } 1946 #endif /* !__amd64 */ 1947 1948 #if !defined(__xpv) 1949 /* 1950 * Map page pfn=0 for drivers, such as kd, that need to pick up 1951 * parameters left there by controllers/BIOS. 1952 */ 1953 PRM_POINT("setup up p0_va"); 1954 p0_va = i86devmap(0, 1, PROT_READ); 1955 PRM_DEBUG(p0_va); 1956 #endif 1957 1958 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1959 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1960 1961 /* 1962 * disable automatic large pages for small memory systems or 1963 * when the disable flag is set. 1964 * 1965 * Do not yet consider page sizes larger than 2m/4m. 1966 */ 1967 if (!auto_lpg_disable && mmu.max_page_level > 0) { 1968 max_uheap_lpsize = LEVEL_SIZE(1); 1969 max_ustack_lpsize = LEVEL_SIZE(1); 1970 max_privmap_lpsize = LEVEL_SIZE(1); 1971 max_uidata_lpsize = LEVEL_SIZE(1); 1972 max_utext_lpsize = LEVEL_SIZE(1); 1973 max_shm_lpsize = LEVEL_SIZE(1); 1974 } 1975 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 1976 auto_lpg_disable) { 1977 use_brk_lpg = 0; 1978 use_stk_lpg = 0; 1979 } 1980 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 1981 1982 PRM_POINT("Calling hat_init_finish()..."); 1983 hat_init_finish(); 1984 PRM_POINT("hat_init_finish() done"); 1985 1986 /* 1987 * Initialize the segkp segment type. 1988 */ 1989 rw_enter(&kas.a_lock, RW_WRITER); 1990 PRM_POINT("Attaching segkp"); 1991 if (segkp_fromheap) { 1992 segkp->s_as = &kas; 1993 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1994 segkp) < 0) { 1995 panic("startup: cannot attach segkp"); 1996 /*NOTREACHED*/ 1997 } 1998 PRM_POINT("Doing segkp_create()"); 1999 if (segkp_create(segkp) != 0) { 2000 panic("startup: segkp_create failed"); 2001 /*NOTREACHED*/ 2002 } 2003 PRM_DEBUG(segkp); 2004 rw_exit(&kas.a_lock); 2005 2006 /* 2007 * kpm segment 2008 */ 2009 segmap_kpm = 0; 2010 if (kpm_desired) { 2011 kpm_init(); 2012 kpm_enable = 1; 2013 } 2014 2015 /* 2016 * Now create segmap segment. 2017 */ 2018 rw_enter(&kas.a_lock, RW_WRITER); 2019 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 2020 panic("cannot attach segmap"); 2021 /*NOTREACHED*/ 2022 } 2023 PRM_DEBUG(segmap); 2024 2025 a.prot = PROT_READ | PROT_WRITE; 2026 a.shmsize = 0; 2027 a.nfreelist = segmapfreelists; 2028 2029 if (segmap_create(segmap, (caddr_t)&a) != 0) 2030 panic("segmap_create segmap"); 2031 rw_exit(&kas.a_lock); 2032 2033 setup_vaddr_for_ppcopy(CPU); 2034 2035 segdev_init(); 2036 #if defined(__xpv) 2037 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2038 #endif 2039 pmem_init(); 2040 2041 PRM_POINT("startup_vm() done"); 2042 } 2043 2044 /* 2045 * Load a tod module for the non-standard tod part found on this system. 2046 */ 2047 static void 2048 load_tod_module(char *todmod) 2049 { 2050 if (modload("tod", todmod) == -1) 2051 halt("Can't load TOD module"); 2052 } 2053 2054 static void 2055 startup_end(void) 2056 { 2057 int i; 2058 extern void setx86isalist(void); 2059 extern void cpu_event_init(void); 2060 2061 PRM_POINT("startup_end() starting..."); 2062 2063 /* 2064 * Perform tasks that get done after most of the VM 2065 * initialization has been done but before the clock 2066 * and other devices get started. 2067 */ 2068 kern_setup1(); 2069 2070 /* 2071 * Perform CPC initialization for this CPU. 2072 */ 2073 kcpc_hw_init(CPU); 2074 2075 /* 2076 * Initialize cpu event framework. 2077 */ 2078 cpu_event_init(); 2079 2080 #if defined(OPTERON_WORKAROUND_6323525) 2081 if (opteron_workaround_6323525) 2082 patch_workaround_6323525(); 2083 #endif 2084 /* 2085 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2086 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2087 */ 2088 if (tod_module_name != NULL) { 2089 PRM_POINT("load_tod_module()"); 2090 load_tod_module(tod_module_name); 2091 } 2092 2093 #if defined(__xpv) 2094 /* 2095 * Forceload interposing TOD module for the hypervisor. 2096 */ 2097 PRM_POINT("load_tod_module()"); 2098 load_tod_module("xpvtod"); 2099 #endif 2100 2101 /* 2102 * Configure the system. 2103 */ 2104 PRM_POINT("Calling configure()..."); 2105 configure(); /* set up devices */ 2106 PRM_POINT("configure() done"); 2107 2108 /* 2109 * Set the isa_list string to the defined instruction sets we 2110 * support. 2111 */ 2112 setx86isalist(); 2113 cpu_intr_alloc(CPU, NINTR_THREADS); 2114 psm_install(); 2115 2116 /* 2117 * We're done with bootops. We don't unmap the bootstrap yet because 2118 * we're still using bootsvcs. 2119 */ 2120 PRM_POINT("NULLing out bootops"); 2121 *bootopsp = (struct bootops *)NULL; 2122 bootops = (struct bootops *)NULL; 2123 2124 #if defined(__xpv) 2125 ec_init_debug_irq(); 2126 xs_domu_init(); 2127 #endif 2128 2129 #if !defined(__xpv) 2130 if (rootnex_iommu_init != NULL) { 2131 rootnex_iommu_init(); 2132 } 2133 #endif 2134 PRM_POINT("Enabling interrupts"); 2135 (*picinitf)(); 2136 sti(); 2137 #if defined(__xpv) 2138 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2139 xen_late_startup(); 2140 #endif 2141 2142 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2143 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2144 2145 /* 2146 * Register these software interrupts for ddi timer. 2147 * Software interrupts up to the level 10 are supported. 2148 */ 2149 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2150 char name[sizeof ("timer_softintr") + 2]; 2151 (void) sprintf(name, "timer_softintr%02d", i); 2152 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2153 (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL); 2154 } 2155 2156 #if !defined(__xpv) 2157 if (modload("drv", "amd_iommu") < 0) { 2158 PRM_POINT("No AMD IOMMU present\n"); 2159 } else if (ddi_hold_installed_driver(ddi_name_to_major( 2160 "amd_iommu")) == NULL) { 2161 prom_printf("ERROR: failed to attach AMD IOMMU\n"); 2162 } 2163 #endif 2164 post_startup_cpu_fixups(); 2165 2166 PRM_POINT("startup_end() done"); 2167 } 2168 2169 /* 2170 * Don't remove the following 2 variables. They are necessary 2171 * for reading the hostid from the legacy file (/kernel/misc/sysinit). 2172 */ 2173 char *_hs1107 = hw_serial; 2174 ulong_t _bdhs34; 2175 2176 void 2177 post_startup(void) 2178 { 2179 extern void cpupm_init(cpu_t *); 2180 extern void cpu_event_init_cpu(cpu_t *); 2181 2182 /* 2183 * Set the system wide, processor-specific flags to be passed 2184 * to userland via the aux vector for performance hints and 2185 * instruction set extensions. 2186 */ 2187 bind_hwcap(); 2188 2189 #ifdef __xpv 2190 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2191 #endif 2192 { 2193 /* 2194 * Load the System Management BIOS into the global ksmbios 2195 * handle, if an SMBIOS is present on this system. 2196 */ 2197 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 2198 2199 #if defined(__xpv) 2200 xpv_panic_init(); 2201 #else 2202 /* 2203 * Startup the memory scrubber. 2204 * XXPV This should be running somewhere .. 2205 */ 2206 if (get_hwenv() != HW_XEN_HVM) 2207 memscrub_init(); 2208 #endif 2209 } 2210 2211 /* 2212 * Complete CPU module initialization 2213 */ 2214 cmi_post_startup(); 2215 2216 /* 2217 * Perform forceloading tasks for /etc/system. 2218 */ 2219 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2220 2221 /* 2222 * ON4.0: Force /proc module in until clock interrupt handle fixed 2223 * ON4.0: This must be fixed or restated in /etc/systems. 2224 */ 2225 (void) modload("fs", "procfs"); 2226 2227 (void) i_ddi_attach_hw_nodes("pit_beep"); 2228 2229 #if defined(__i386) 2230 /* 2231 * Check for required functional Floating Point hardware, 2232 * unless FP hardware explicitly disabled. 2233 */ 2234 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2235 halt("No working FP hardware found"); 2236 #endif 2237 2238 maxmem = freemem; 2239 2240 cpu_event_init_cpu(CPU); 2241 cpupm_init(CPU); 2242 (void) mach_cpu_create_device_node(CPU, NULL); 2243 2244 pg_init(); 2245 } 2246 2247 static int 2248 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) 2249 { 2250 return ((pp->p_pagenum >= btop(low_addr)) && 2251 (pp->p_pagenum < btopr(high_addr))); 2252 } 2253 2254 void 2255 release_bootstrap(void) 2256 { 2257 int root_is_ramdisk; 2258 page_t *pp; 2259 extern void kobj_boot_unmountroot(void); 2260 extern dev_t rootdev; 2261 #if !defined(__xpv) 2262 pfn_t pfn; 2263 #endif 2264 2265 /* unmount boot ramdisk and release kmem usage */ 2266 kobj_boot_unmountroot(); 2267 2268 /* 2269 * We're finished using the boot loader so free its pages. 2270 */ 2271 PRM_POINT("Unmapping lower boot pages"); 2272 2273 clear_boot_mappings(0, _userlimit); 2274 2275 postbootkernelbase = kernelbase; 2276 2277 /* 2278 * If root isn't on ramdisk, destroy the hardcoded 2279 * ramdisk node now and release the memory. Else, 2280 * ramdisk memory is kept in rd_pages. 2281 */ 2282 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2283 if (!root_is_ramdisk) { 2284 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2285 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2286 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2287 (void) ddi_remove_child(dip, 0); 2288 } 2289 2290 PRM_POINT("Releasing boot pages"); 2291 while (bootpages) { 2292 extern uint64_t ramdisk_start, ramdisk_end; 2293 pp = bootpages; 2294 bootpages = pp->p_next; 2295 2296 2297 /* Keep pages for the lower 64K */ 2298 if (pp_in_range(pp, 0, 0x40000)) { 2299 pp->p_next = lower_pages; 2300 lower_pages = pp; 2301 lower_pages_count++; 2302 continue; 2303 } 2304 2305 2306 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start, 2307 ramdisk_end)) { 2308 pp->p_next = rd_pages; 2309 rd_pages = pp; 2310 continue; 2311 } 2312 pp->p_next = (struct page *)0; 2313 pp->p_prev = (struct page *)0; 2314 PP_CLRBOOTPAGES(pp); 2315 page_free(pp, 1); 2316 } 2317 PRM_POINT("Boot pages released"); 2318 2319 #if !defined(__xpv) 2320 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2321 /* 2322 * Find 1 page below 1 MB so that other processors can boot up or 2323 * so that any processor can resume. 2324 * Make sure it has a kernel VA as well as a 1:1 mapping. 2325 * We should have just free'd one up. 2326 */ 2327 2328 /* 2329 * 0x10 pages is 64K. Leave the bottom 64K alone 2330 * for BIOS. 2331 */ 2332 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { 2333 if (page_numtopp_alloc(pfn) == NULL) 2334 continue; 2335 rm_platter_va = i86devmap(pfn, 1, 2336 PROT_READ | PROT_WRITE | PROT_EXEC); 2337 rm_platter_pa = ptob(pfn); 2338 hat_devload(kas.a_hat, 2339 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2340 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2341 HAT_LOAD_NOCONSIST); 2342 break; 2343 } 2344 if (pfn == btop(1*1024*1024) && use_mp) 2345 panic("No page below 1M available for starting " 2346 "other processors or for resuming from system-suspend"); 2347 #endif /* !__xpv */ 2348 } 2349 2350 /* 2351 * Initialize the platform-specific parts of a page_t. 2352 */ 2353 void 2354 add_physmem_cb(page_t *pp, pfn_t pnum) 2355 { 2356 pp->p_pagenum = pnum; 2357 pp->p_mapping = NULL; 2358 pp->p_embed = 0; 2359 pp->p_share = 0; 2360 pp->p_mlentry = 0; 2361 } 2362 2363 /* 2364 * kphysm_init() initializes physical memory. 2365 */ 2366 static pgcnt_t 2367 kphysm_init( 2368 page_t *pp, 2369 pgcnt_t npages) 2370 { 2371 struct memlist *pmem; 2372 struct memseg *cur_memseg; 2373 pfn_t base_pfn; 2374 pfn_t end_pfn; 2375 pgcnt_t num; 2376 pgcnt_t pages_done = 0; 2377 uint64_t addr; 2378 uint64_t size; 2379 extern pfn_t ddiphysmin; 2380 extern int mnode_xwa; 2381 int ms = 0, me = 0; 2382 2383 ASSERT(page_hash != NULL && page_hashsz != 0); 2384 2385 cur_memseg = memseg_base; 2386 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2387 /* 2388 * In a 32 bit kernel can't use higher memory if we're 2389 * not booting in PAE mode. This check takes care of that. 2390 */ 2391 addr = pmem->address; 2392 size = pmem->size; 2393 if (btop(addr) > physmax) 2394 continue; 2395 2396 /* 2397 * align addr and size - they may not be at page boundaries 2398 */ 2399 if ((addr & MMU_PAGEOFFSET) != 0) { 2400 addr += MMU_PAGEOFFSET; 2401 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2402 size -= addr - pmem->address; 2403 } 2404 2405 /* only process pages below or equal to physmax */ 2406 if ((btop(addr + size) - 1) > physmax) 2407 size = ptob(physmax - btop(addr) + 1); 2408 2409 num = btop(size); 2410 if (num == 0) 2411 continue; 2412 2413 if (num > npages) 2414 num = npages; 2415 2416 npages -= num; 2417 pages_done += num; 2418 base_pfn = btop(addr); 2419 2420 if (prom_debug) 2421 prom_printf("MEMSEG addr=0x%" PRIx64 2422 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2423 addr, num, base_pfn, base_pfn + num); 2424 2425 /* 2426 * Ignore pages below ddiphysmin to simplify ddi memory 2427 * allocation with non-zero addr_lo requests. 2428 */ 2429 if (base_pfn < ddiphysmin) { 2430 if (base_pfn + num <= ddiphysmin) 2431 continue; 2432 pp += (ddiphysmin - base_pfn); 2433 num -= (ddiphysmin - base_pfn); 2434 base_pfn = ddiphysmin; 2435 } 2436 2437 /* 2438 * mnode_xwa is greater than 1 when large pages regions can 2439 * cross memory node boundaries. To prevent the formation 2440 * of these large pages, configure the memsegs based on the 2441 * memory node ranges which had been made non-contiguous. 2442 */ 2443 if (mnode_xwa > 1) { 2444 2445 end_pfn = base_pfn + num - 1; 2446 ms = PFN_2_MEM_NODE(base_pfn); 2447 me = PFN_2_MEM_NODE(end_pfn); 2448 2449 if (ms != me) { 2450 /* 2451 * current range spans more than 1 memory node. 2452 * Set num to only the pfn range in the start 2453 * memory node. 2454 */ 2455 num = mem_node_config[ms].physmax - base_pfn 2456 + 1; 2457 ASSERT(end_pfn > mem_node_config[ms].physmax); 2458 } 2459 } 2460 2461 for (;;) { 2462 /* 2463 * Build the memsegs entry 2464 */ 2465 cur_memseg->pages = pp; 2466 cur_memseg->epages = pp + num; 2467 cur_memseg->pages_base = base_pfn; 2468 cur_memseg->pages_end = base_pfn + num; 2469 2470 /* 2471 * Insert into memseg list in decreasing pfn range 2472 * order. Low memory is typically more fragmented such 2473 * that this ordering keeps the larger ranges at the 2474 * front of the list for code that searches memseg. 2475 * This ASSERTS that the memsegs coming in from boot 2476 * are in increasing physical address order and not 2477 * contiguous. 2478 */ 2479 if (memsegs != NULL) { 2480 ASSERT(cur_memseg->pages_base >= 2481 memsegs->pages_end); 2482 cur_memseg->next = memsegs; 2483 } 2484 memsegs = cur_memseg; 2485 2486 /* 2487 * add_physmem() initializes the PSM part of the page 2488 * struct by calling the PSM back with add_physmem_cb(). 2489 * In addition it coalesces pages into larger pages as 2490 * it initializes them. 2491 */ 2492 add_physmem(pp, num, base_pfn); 2493 cur_memseg++; 2494 availrmem_initial += num; 2495 availrmem += num; 2496 2497 pp += num; 2498 if (ms >= me) 2499 break; 2500 2501 /* process next memory node range */ 2502 ms++; 2503 base_pfn = mem_node_config[ms].physbase; 2504 num = MIN(mem_node_config[ms].physmax, 2505 end_pfn) - base_pfn + 1; 2506 } 2507 } 2508 2509 PRM_DEBUG(availrmem_initial); 2510 PRM_DEBUG(availrmem); 2511 PRM_DEBUG(freemem); 2512 build_pfn_hash(); 2513 return (pages_done); 2514 } 2515 2516 /* 2517 * Kernel VM initialization. 2518 */ 2519 static void 2520 kvm_init(void) 2521 { 2522 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2523 2524 /* 2525 * Put the kernel segments in kernel address space. 2526 */ 2527 rw_enter(&kas.a_lock, RW_WRITER); 2528 as_avlinit(&kas); 2529 2530 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2531 (void) segkmem_create(&ktextseg); 2532 2533 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2534 (void) segkmem_create(&kvalloc); 2535 2536 (void) seg_attach(&kas, kernelheap, 2537 ekernelheap - kernelheap, &kvseg); 2538 (void) segkmem_create(&kvseg); 2539 2540 if (core_size > 0) { 2541 PRM_POINT("attaching kvseg_core"); 2542 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2543 &kvseg_core); 2544 (void) segkmem_create(&kvseg_core); 2545 } 2546 2547 if (segziosize > 0) { 2548 PRM_POINT("attaching segzio"); 2549 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2550 &kzioseg); 2551 (void) segkmem_zio_create(&kzioseg); 2552 2553 /* create zio area covering new segment */ 2554 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2555 } 2556 2557 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2558 (void) segkmem_create(&kdebugseg); 2559 2560 rw_exit(&kas.a_lock); 2561 2562 /* 2563 * Ensure that the red zone at kernelbase is never accessible. 2564 */ 2565 PRM_POINT("protecting redzone"); 2566 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2567 2568 /* 2569 * Make the text writable so that it can be hot patched by DTrace. 2570 */ 2571 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2572 PROT_READ | PROT_WRITE | PROT_EXEC); 2573 2574 /* 2575 * Make data writable until end. 2576 */ 2577 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2578 PROT_READ | PROT_WRITE | PROT_EXEC); 2579 } 2580 2581 #ifndef __xpv 2582 /* 2583 * Solaris adds an entry for Write Combining caching to the PAT 2584 */ 2585 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2586 2587 void 2588 pat_sync(void) 2589 { 2590 ulong_t cr0, cr0_orig, cr4; 2591 2592 if (!(x86_feature & X86_PAT)) 2593 return; 2594 cr0_orig = cr0 = getcr0(); 2595 cr4 = getcr4(); 2596 2597 /* disable caching and flush all caches and TLBs */ 2598 cr0 |= CR0_CD; 2599 cr0 &= ~CR0_NW; 2600 setcr0(cr0); 2601 invalidate_cache(); 2602 if (cr4 & CR4_PGE) { 2603 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2604 setcr4(cr4); 2605 } else { 2606 reload_cr3(); 2607 } 2608 2609 /* add our entry to the PAT */ 2610 wrmsr(REG_PAT, pat_attr_reg); 2611 2612 /* flush TLBs and cache again, then reenable cr0 caching */ 2613 if (cr4 & CR4_PGE) { 2614 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2615 setcr4(cr4); 2616 } else { 2617 reload_cr3(); 2618 } 2619 invalidate_cache(); 2620 setcr0(cr0_orig); 2621 } 2622 2623 #endif /* !__xpv */ 2624 2625 #if defined(_SOFT_HOSTID) 2626 /* 2627 * On platforms that do not have a hardware serial number, attempt 2628 * to set one based on the contents of /etc/hostid. If this file does 2629 * not exist, assume that we are to generate a new hostid and set 2630 * it in the kernel, for subsequent saving by a userland process 2631 * once the system is up and the root filesystem is mounted r/w. 2632 * 2633 * In order to gracefully support upgrade on OpenSolaris, if 2634 * /etc/hostid does not exist, we will attempt to get a serial number 2635 * using the legacy method (/kernel/misc/sysinit). 2636 * 2637 * In an attempt to make the hostid less prone to abuse 2638 * (for license circumvention, etc), we store it in /etc/hostid 2639 * in rot47 format. 2640 */ 2641 extern volatile unsigned long tenmicrodata; 2642 static int atoi(char *); 2643 2644 static int32_t 2645 set_soft_hostid(void) 2646 { 2647 struct _buf *file; 2648 char tokbuf[MAXNAMELEN]; 2649 token_t token; 2650 int done = 0; 2651 u_longlong_t tmp; 2652 int i; 2653 int32_t hostid = (int32_t)HW_INVALID_HOSTID; 2654 unsigned char *c; 2655 hrtime_t tsc; 2656 2657 /* 2658 * If /etc/hostid file not found, we'd like to get a pseudo 2659 * random number to use at the hostid. A nice way to do this 2660 * is to read the real time clock. To remain xen-compatible, 2661 * we can't poke the real hardware, so we use tsc_read() to 2662 * read the real time clock. However, there is an ominous 2663 * warning in tsc_read that says it can return zero, so we 2664 * deal with that possibility by falling back to using the 2665 * (hopefully random enough) value in tenmicrodata. 2666 */ 2667 2668 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) { 2669 /* 2670 * hostid file not found - try to load sysinit module 2671 * and see if it has a nonzero hostid value...use that 2672 * instead of generating a new hostid here if so. 2673 */ 2674 if ((i = modload("misc", "sysinit")) != -1) { 2675 if (strlen(hw_serial) > 0) 2676 hostid = (int32_t)atoi(hw_serial); 2677 (void) modunload(i); 2678 } 2679 if (hostid == HW_INVALID_HOSTID) { 2680 tsc = tsc_read(); 2681 if (tsc == 0) /* tsc_read can return zero sometimes */ 2682 hostid = (int32_t)tenmicrodata & 0x0CFFFFF; 2683 else 2684 hostid = (int32_t)tsc & 0x0CFFFFF; 2685 } 2686 } else { 2687 /* hostid file found */ 2688 while (!done) { 2689 token = kobj_lex(file, tokbuf, sizeof (tokbuf)); 2690 2691 switch (token) { 2692 case POUND: 2693 /* 2694 * skip comments 2695 */ 2696 kobj_find_eol(file); 2697 break; 2698 case STRING: 2699 /* 2700 * un-rot47 - obviously this 2701 * nonsense is ascii-specific 2702 */ 2703 for (c = (unsigned char *)tokbuf; 2704 *c != '\0'; c++) { 2705 *c += 47; 2706 if (*c > '~') 2707 *c -= 94; 2708 else if (*c < '!') 2709 *c += 94; 2710 } 2711 /* 2712 * now we should have a real number 2713 */ 2714 2715 if (kobj_getvalue(tokbuf, &tmp) != 0) 2716 kobj_file_err(CE_WARN, file, 2717 "Bad value %s for hostid", 2718 tokbuf); 2719 else 2720 hostid = (int32_t)tmp; 2721 2722 break; 2723 case EOF: 2724 done = 1; 2725 /* FALLTHROUGH */ 2726 case NEWLINE: 2727 kobj_newline(file); 2728 break; 2729 default: 2730 break; 2731 2732 } 2733 } 2734 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */ 2735 kobj_file_err(CE_WARN, file, 2736 "hostid missing or corrupt"); 2737 2738 kobj_close_file(file); 2739 } 2740 /* 2741 * hostid is now the value read from /etc/hostid, or the 2742 * new hostid we generated in this routine or HW_INVALID_HOSTID if not 2743 * set. 2744 */ 2745 return (hostid); 2746 } 2747 2748 static int 2749 atoi(char *p) 2750 { 2751 int i = 0; 2752 2753 while (*p != '\0') 2754 i = 10 * i + (*p++ - '0'); 2755 2756 return (i); 2757 } 2758 2759 #endif /* _SOFT_HOSTID */ 2760 2761 void 2762 get_system_configuration(void) 2763 { 2764 char prop[32]; 2765 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2766 2767 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2768 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2769 kobj_getvalue(prop, &nodes_ll) == -1 || 2770 nodes_ll > MAXNODES || 2771 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2772 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2773 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2774 system_hardware.hd_nodes = 1; 2775 system_hardware.hd_cpus_per_node = 0; 2776 } else { 2777 system_hardware.hd_nodes = (int)nodes_ll; 2778 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2779 } 2780 2781 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2782 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2783 kobj_getvalue(prop, &lvalue) == -1) 2784 eprom_kernelbase = NULL; 2785 else 2786 eprom_kernelbase = (uintptr_t)lvalue; 2787 2788 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2789 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2790 kobj_getvalue(prop, &lvalue) == -1) 2791 segmapsize = SEGMAPDEFAULT; 2792 else 2793 segmapsize = (uintptr_t)lvalue; 2794 2795 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2796 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2797 kobj_getvalue(prop, &lvalue) == -1) 2798 segmapfreelists = 0; /* use segmap driver default */ 2799 else 2800 segmapfreelists = (int)lvalue; 2801 2802 /* physmem used to be here, but moved much earlier to fakebop.c */ 2803 } 2804 2805 /* 2806 * Add to a memory list. 2807 * start = start of new memory segment 2808 * len = length of new memory segment in bytes 2809 * new = pointer to a new struct memlist 2810 * memlistp = memory list to which to add segment. 2811 */ 2812 void 2813 memlist_add( 2814 uint64_t start, 2815 uint64_t len, 2816 struct memlist *new, 2817 struct memlist **memlistp) 2818 { 2819 struct memlist *cur; 2820 uint64_t end = start + len; 2821 2822 new->address = start; 2823 new->size = len; 2824 2825 cur = *memlistp; 2826 2827 while (cur) { 2828 if (cur->address >= end) { 2829 new->next = cur; 2830 *memlistp = new; 2831 new->prev = cur->prev; 2832 cur->prev = new; 2833 return; 2834 } 2835 ASSERT(cur->address + cur->size <= start); 2836 if (cur->next == NULL) { 2837 cur->next = new; 2838 new->prev = cur; 2839 new->next = NULL; 2840 return; 2841 } 2842 memlistp = &cur->next; 2843 cur = cur->next; 2844 } 2845 } 2846 2847 void 2848 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2849 { 2850 size_t tsize = e_modtext - modtext; 2851 size_t dsize = e_moddata - moddata; 2852 2853 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2854 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2855 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2856 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2857 } 2858 2859 caddr_t 2860 kobj_text_alloc(vmem_t *arena, size_t size) 2861 { 2862 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2863 } 2864 2865 /*ARGSUSED*/ 2866 caddr_t 2867 kobj_texthole_alloc(caddr_t addr, size_t size) 2868 { 2869 panic("unexpected call to kobj_texthole_alloc()"); 2870 /*NOTREACHED*/ 2871 return (0); 2872 } 2873 2874 /*ARGSUSED*/ 2875 void 2876 kobj_texthole_free(caddr_t addr, size_t size) 2877 { 2878 panic("unexpected call to kobj_texthole_free()"); 2879 } 2880 2881 /* 2882 * This is called just after configure() in startup(). 2883 * 2884 * The ISALIST concept is a bit hopeless on Intel, because 2885 * there's no guarantee of an ever-more-capable processor 2886 * given that various parts of the instruction set may appear 2887 * and disappear between different implementations. 2888 * 2889 * While it would be possible to correct it and even enhance 2890 * it somewhat, the explicit hardware capability bitmask allows 2891 * more flexibility. 2892 * 2893 * So, we just leave this alone. 2894 */ 2895 void 2896 setx86isalist(void) 2897 { 2898 char *tp; 2899 size_t len; 2900 extern char *isa_list; 2901 2902 #define TBUFSIZE 1024 2903 2904 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2905 *tp = '\0'; 2906 2907 #if defined(__amd64) 2908 (void) strcpy(tp, "amd64 "); 2909 #endif 2910 2911 switch (x86_vendor) { 2912 case X86_VENDOR_Intel: 2913 case X86_VENDOR_AMD: 2914 case X86_VENDOR_TM: 2915 if (x86_feature & X86_CMOV) { 2916 /* 2917 * Pentium Pro or later 2918 */ 2919 (void) strcat(tp, "pentium_pro"); 2920 (void) strcat(tp, x86_feature & X86_MMX ? 2921 "+mmx pentium_pro " : " "); 2922 } 2923 /*FALLTHROUGH*/ 2924 case X86_VENDOR_Cyrix: 2925 /* 2926 * The Cyrix 6x86 does not have any Pentium features 2927 * accessible while not at privilege level 0. 2928 */ 2929 if (x86_feature & X86_CPUID) { 2930 (void) strcat(tp, "pentium"); 2931 (void) strcat(tp, x86_feature & X86_MMX ? 2932 "+mmx pentium " : " "); 2933 } 2934 break; 2935 default: 2936 break; 2937 } 2938 (void) strcat(tp, "i486 i386 i86"); 2939 len = strlen(tp) + 1; /* account for NULL at end of string */ 2940 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2941 kmem_free(tp, TBUFSIZE); 2942 2943 #undef TBUFSIZE 2944 } 2945 2946 2947 #ifdef __amd64 2948 2949 void * 2950 device_arena_alloc(size_t size, int vm_flag) 2951 { 2952 return (vmem_alloc(device_arena, size, vm_flag)); 2953 } 2954 2955 void 2956 device_arena_free(void *vaddr, size_t size) 2957 { 2958 vmem_free(device_arena, vaddr, size); 2959 } 2960 2961 #else /* __i386 */ 2962 2963 void * 2964 device_arena_alloc(size_t size, int vm_flag) 2965 { 2966 caddr_t vaddr; 2967 uintptr_t v; 2968 size_t start; 2969 size_t end; 2970 2971 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2972 if (vaddr == NULL) 2973 return (NULL); 2974 2975 v = (uintptr_t)vaddr; 2976 ASSERT(v >= kernelbase); 2977 ASSERT(v + size <= valloc_base); 2978 2979 start = btop(v - kernelbase); 2980 end = btop(v + size - 1 - kernelbase); 2981 ASSERT(start < toxic_bit_map_len); 2982 ASSERT(end < toxic_bit_map_len); 2983 2984 while (start <= end) { 2985 BT_ATOMIC_SET(toxic_bit_map, start); 2986 ++start; 2987 } 2988 return (vaddr); 2989 } 2990 2991 void 2992 device_arena_free(void *vaddr, size_t size) 2993 { 2994 uintptr_t v = (uintptr_t)vaddr; 2995 size_t start; 2996 size_t end; 2997 2998 ASSERT(v >= kernelbase); 2999 ASSERT(v + size <= valloc_base); 3000 3001 start = btop(v - kernelbase); 3002 end = btop(v + size - 1 - kernelbase); 3003 ASSERT(start < toxic_bit_map_len); 3004 ASSERT(end < toxic_bit_map_len); 3005 3006 while (start <= end) { 3007 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 3008 BT_ATOMIC_CLEAR(toxic_bit_map, start); 3009 ++start; 3010 } 3011 vmem_free(heap_arena, vaddr, size); 3012 } 3013 3014 /* 3015 * returns 1st address in range that is in device arena, or NULL 3016 * if len is not NULL it returns the length of the toxic range 3017 */ 3018 void * 3019 device_arena_contains(void *vaddr, size_t size, size_t *len) 3020 { 3021 uintptr_t v = (uintptr_t)vaddr; 3022 uintptr_t eaddr = v + size; 3023 size_t start; 3024 size_t end; 3025 3026 /* 3027 * if called very early by kmdb, just return NULL 3028 */ 3029 if (toxic_bit_map == NULL) 3030 return (NULL); 3031 3032 /* 3033 * First check if we're completely outside the bitmap range. 3034 */ 3035 if (v >= valloc_base || eaddr < kernelbase) 3036 return (NULL); 3037 3038 /* 3039 * Trim ends of search to look at only what the bitmap covers. 3040 */ 3041 if (v < kernelbase) 3042 v = kernelbase; 3043 start = btop(v - kernelbase); 3044 end = btop(eaddr - kernelbase); 3045 if (end >= toxic_bit_map_len) 3046 end = toxic_bit_map_len; 3047 3048 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 3049 return (NULL); 3050 3051 v = kernelbase + ptob(start); 3052 if (len != NULL) 3053 *len = ptob(end - start); 3054 return ((void *)v); 3055 } 3056 3057 #endif /* __i386 */ 3058