1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright (c) 2010, Intel Corporation. 26 * All rights reserved. 27 */ 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/systm.h> 35 #include <sys/user.h> 36 #include <sys/mman.h> 37 #include <sys/vm.h> 38 #include <sys/conf.h> 39 #include <sys/avintr.h> 40 #include <sys/autoconf.h> 41 #include <sys/disp.h> 42 #include <sys/class.h> 43 #include <sys/bitmap.h> 44 45 #include <sys/privregs.h> 46 47 #include <sys/proc.h> 48 #include <sys/buf.h> 49 #include <sys/kmem.h> 50 #include <sys/mem.h> 51 #include <sys/kstat.h> 52 53 #include <sys/reboot.h> 54 55 #include <sys/cred.h> 56 #include <sys/vnode.h> 57 #include <sys/file.h> 58 59 #include <sys/procfs.h> 60 61 #include <sys/vfs.h> 62 #include <sys/cmn_err.h> 63 #include <sys/utsname.h> 64 #include <sys/debug.h> 65 #include <sys/kdi.h> 66 67 #include <sys/dumphdr.h> 68 #include <sys/bootconf.h> 69 #include <sys/memlist_plat.h> 70 #include <sys/varargs.h> 71 #include <sys/promif.h> 72 #include <sys/modctl.h> 73 74 #include <sys/sunddi.h> 75 #include <sys/sunndi.h> 76 #include <sys/ndi_impldefs.h> 77 #include <sys/ddidmareq.h> 78 #include <sys/psw.h> 79 #include <sys/regset.h> 80 #include <sys/clock.h> 81 #include <sys/pte.h> 82 #include <sys/tss.h> 83 #include <sys/stack.h> 84 #include <sys/trap.h> 85 #include <sys/fp.h> 86 #include <vm/kboot_mmu.h> 87 #include <vm/anon.h> 88 #include <vm/as.h> 89 #include <vm/page.h> 90 #include <vm/seg.h> 91 #include <vm/seg_dev.h> 92 #include <vm/seg_kmem.h> 93 #include <vm/seg_kpm.h> 94 #include <vm/seg_map.h> 95 #include <vm/seg_vn.h> 96 #include <vm/seg_kp.h> 97 #include <sys/memnode.h> 98 #include <vm/vm_dep.h> 99 #include <sys/thread.h> 100 #include <sys/sysconf.h> 101 #include <sys/vm_machparam.h> 102 #include <sys/archsystm.h> 103 #include <sys/machsystm.h> 104 #include <vm/hat.h> 105 #include <vm/hat_i86.h> 106 #include <sys/pmem.h> 107 #include <sys/smp_impldefs.h> 108 #include <sys/x86_archext.h> 109 #include <sys/cpuvar.h> 110 #include <sys/segments.h> 111 #include <sys/clconf.h> 112 #include <sys/kobj.h> 113 #include <sys/kobj_lex.h> 114 #include <sys/cpc_impl.h> 115 #include <sys/cpu_module.h> 116 #include <sys/smbios.h> 117 #include <sys/debug_info.h> 118 #include <sys/bootinfo.h> 119 #include <sys/ddi_timer.h> 120 #include <sys/systeminfo.h> 121 #include <sys/multiboot.h> 122 123 #ifdef __xpv 124 125 #include <sys/hypervisor.h> 126 #include <sys/xen_mmu.h> 127 #include <sys/evtchn_impl.h> 128 #include <sys/gnttab.h> 129 #include <sys/xpv_panic.h> 130 #include <xen/sys/xenbus_comms.h> 131 #include <xen/public/physdev.h> 132 133 extern void xen_late_startup(void); 134 135 struct xen_evt_data cpu0_evt_data; 136 137 #else /* __xpv */ 138 #include <sys/memlist_impl.h> 139 140 extern void mem_config_init(void); 141 #endif /* __xpv */ 142 143 extern void progressbar_init(void); 144 extern void brand_init(void); 145 extern void pcf_init(void); 146 extern void pg_init(void); 147 148 extern int size_pse_array(pgcnt_t, int); 149 150 #if defined(_SOFT_HOSTID) 151 152 #include <sys/rtc.h> 153 154 static int32_t set_soft_hostid(void); 155 static char hostid_file[] = "/etc/hostid"; 156 157 #endif 158 159 void *gfx_devinfo_list; 160 161 #if defined(__amd64) && !defined(__xpv) 162 extern void immu_startup(void); 163 #endif 164 165 /* 166 * XXX make declaration below "static" when drivers no longer use this 167 * interface. 168 */ 169 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 170 171 /* 172 * segkp 173 */ 174 extern int segkp_fromheap; 175 176 static void kvm_init(void); 177 static void startup_init(void); 178 static void startup_memlist(void); 179 static void startup_kmem(void); 180 static void startup_modules(void); 181 static void startup_vm(void); 182 static void startup_end(void); 183 static void layout_kernel_va(void); 184 185 /* 186 * Declare these as initialized data so we can patch them. 187 */ 188 #ifdef __i386 189 190 /* 191 * Due to virtual address space limitations running in 32 bit mode, restrict 192 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 193 * 194 * If the physical max memory size of 64g were allowed to be configured, the 195 * size of user virtual address space will be less than 1g. A limited user 196 * address space greatly reduces the range of applications that can run. 197 * 198 * If more physical memory than PHYSMEM is required, users should preferably 199 * run in 64 bit mode which has far looser virtual address space limitations. 200 * 201 * If 64 bit mode is not available (as in IA32) and/or more physical memory 202 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 203 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 204 * should also be carefully tuned to balance out the need of the user 205 * application while minimizing the risk of kernel heap exhaustion due to 206 * kernelbase being set too high. 207 */ 208 #define PHYSMEM 0x400000 209 210 #else /* __amd64 */ 211 212 /* 213 * For now we can handle memory with physical addresses up to about 214 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 215 * half the VA space for seg_kpm. When systems get bigger than 64TB this 216 * code will need revisiting. There is an implicit assumption that there 217 * are no *huge* holes in the physical address space too. 218 */ 219 #define TERABYTE (1ul << 40) 220 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 221 #define PHYSMEM PHYSMEM_MAX64 222 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 223 224 #endif /* __amd64 */ 225 226 pgcnt_t physmem = PHYSMEM; 227 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 228 229 char *kobj_file_buf; 230 int kobj_file_bufsize; /* set in /etc/system */ 231 232 /* Global variables for MP support. Used in mp_startup */ 233 caddr_t rm_platter_va = 0; 234 uint32_t rm_platter_pa; 235 236 int auto_lpg_disable = 1; 237 238 /* 239 * Some CPUs have holes in the middle of the 64-bit virtual address range. 240 */ 241 uintptr_t hole_start, hole_end; 242 243 /* 244 * kpm mapping window 245 */ 246 caddr_t kpm_vbase; 247 size_t kpm_size; 248 static int kpm_desired; 249 #ifdef __amd64 250 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 251 #endif 252 253 /* 254 * Configuration parameters set at boot time. 255 */ 256 257 caddr_t econtig; /* end of first block of contiguous kernel */ 258 259 struct bootops *bootops = 0; /* passed in from boot */ 260 struct bootops **bootopsp; 261 struct boot_syscalls *sysp; /* passed in from boot */ 262 263 char bootblock_fstype[16]; 264 265 char kern_bootargs[OBP_MAXPATHLEN]; 266 char kern_bootfile[OBP_MAXPATHLEN]; 267 268 /* 269 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 270 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 271 * zio buffers from their own segment, otherwise they are allocated from the 272 * heap. The optimization of allocating zio buffers from their own segment is 273 * only valid on 64-bit kernels. 274 */ 275 #if defined(__amd64) 276 int segzio_fromheap = 0; 277 #else 278 int segzio_fromheap = 1; 279 #endif 280 281 /* 282 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 283 * depends on number of BOP_ALLOC calls made and requested size, memory size 284 * combination and whether boot.bin memory needs to be freed. 285 */ 286 #define POSS_NEW_FRAGMENTS 12 287 288 /* 289 * VM data structures 290 */ 291 long page_hashsz; /* Size of page hash table (power of two) */ 292 unsigned int page_hashsz_shift; /* log2(page_hashsz) */ 293 struct page *pp_base; /* Base of initial system page struct array */ 294 struct page **page_hash; /* Page hash table */ 295 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 296 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 297 int pse_shift; /* log2(pse_table_size) */ 298 struct seg ktextseg; /* Segment used for kernel executable image */ 299 struct seg kvalloc; /* Segment used for "valloc" mapping */ 300 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 301 struct seg kmapseg; /* Segment used for generic kernel mappings */ 302 struct seg kdebugseg; /* Segment used for the kernel debugger */ 303 304 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 305 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 306 307 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 308 309 #if defined(__amd64) 310 struct seg kvseg_core; /* Segment used for the core heap */ 311 struct seg kpmseg; /* Segment used for physical mapping */ 312 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 313 #else 314 struct seg *segkpm = NULL; /* Unused on IA32 */ 315 #endif 316 317 caddr_t segkp_base; /* Base address of segkp */ 318 caddr_t segzio_base; /* Base address of segzio */ 319 #if defined(__amd64) 320 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 321 #else 322 pgcnt_t segkpsize = 0; 323 #endif 324 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 325 326 /* 327 * A static DR page_t VA map is reserved that can map the page structures 328 * for a domain's entire RA space. The pages that back this space are 329 * dynamically allocated and need not be physically contiguous. The DR 330 * map size is derived from KPM size. 331 * This mechanism isn't used by x86 yet, so just stubs here. 332 */ 333 int ppvm_enable = 0; /* Static virtual map for page structs */ 334 page_t *ppvm_base = NULL; /* Base of page struct map */ 335 pgcnt_t ppvm_size = 0; /* Size of page struct map */ 336 337 /* 338 * VA range available to the debugger 339 */ 340 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 341 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 342 343 struct memseg *memseg_base; 344 struct vnode unused_pages_vp; 345 346 #define FOURGB 0x100000000LL 347 348 struct memlist *memlist; 349 350 caddr_t s_text; /* start of kernel text segment */ 351 caddr_t e_text; /* end of kernel text segment */ 352 caddr_t s_data; /* start of kernel data segment */ 353 caddr_t e_data; /* end of kernel data segment */ 354 caddr_t modtext; /* start of loadable module text reserved */ 355 caddr_t e_modtext; /* end of loadable module text reserved */ 356 caddr_t moddata; /* start of loadable module data reserved */ 357 caddr_t e_moddata; /* end of loadable module data reserved */ 358 359 struct memlist *phys_install; /* Total installed physical memory */ 360 struct memlist *phys_avail; /* Total available physical memory */ 361 struct memlist *bios_rsvd; /* Bios reserved memory */ 362 363 /* 364 * kphysm_init returns the number of pages that were processed 365 */ 366 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 367 368 #define IO_PROP_SIZE 64 /* device property size */ 369 370 /* 371 * a couple useful roundup macros 372 */ 373 #define ROUND_UP_PAGE(x) \ 374 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 375 #define ROUND_UP_LPAGE(x) \ 376 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 377 #define ROUND_UP_4MEG(x) \ 378 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 379 #define ROUND_UP_TOPLEVEL(x) \ 380 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 381 382 /* 383 * 32-bit Kernel's Virtual memory layout. 384 * +-----------------------+ 385 * | | 386 * 0xFFC00000 -|-----------------------|- ARGSBASE 387 * | debugger | 388 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 389 * | Kernel Data | 390 * 0xFEC00000 -|-----------------------| 391 * | Kernel Text | 392 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 393 * |--- GDT ---|- GDT page (GDT_VA) 394 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 395 * | | 396 * | page_t structures | 397 * | memsegs, memlists, | 398 * | page hash, etc. | 399 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 400 * | | (segkp is just an arena in the heap) 401 * | | 402 * | kvseg | 403 * | | 404 * | | 405 * --- -|-----------------------|- kernelheap (floating) 406 * | Segkmap | 407 * 0xC3002000 -|-----------------------|- segmap_start (floating) 408 * | Red Zone | 409 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 410 * | | || 411 * | Shared objects | \/ 412 * | | 413 * : : 414 * | user data | 415 * |-----------------------| 416 * | user text | 417 * 0x08048000 -|-----------------------| 418 * | user stack | 419 * : : 420 * | invalid | 421 * 0x00000000 +-----------------------+ 422 * 423 * 424 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 425 * +-----------------------+ 426 * | | 427 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 428 * | debugger (?) | 429 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 430 * | unused | 431 * +-----------------------+ 432 * | Kernel Data | 433 * 0xFFFFFFFF.FBC00000 |-----------------------| 434 * | Kernel Text | 435 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 436 * |--- GDT ---|- GDT page (GDT_VA) 437 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 438 * | | 439 * | Core heap | (used for loadable modules) 440 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 441 * | Kernel | 442 * | heap | 443 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 444 * | segmap | 445 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 446 * | device mappings | 447 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 448 * | segzio | 449 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 450 * | segkp | 451 * --- |-----------------------|- segkp_base (floating) 452 * | page_t structures | valloc_base + valloc_sz 453 * | memsegs, memlists, | 454 * | page hash, etc. | 455 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 456 * | segkpm | 457 * 0xFFFFFE00.00000000 |-----------------------| 458 * | Red Zone | 459 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 460 * | User stack |- User space memory 461 * | | 462 * | shared objects, etc | (grows downwards) 463 * : : 464 * | | 465 * 0xFFFF8000.00000000 |-----------------------| 466 * | | 467 * | VA Hole / unused | 468 * | | 469 * 0x00008000.00000000 |-----------------------| 470 * | | 471 * | | 472 * : : 473 * | user heap | (grows upwards) 474 * | | 475 * | user data | 476 * |-----------------------| 477 * | user text | 478 * 0x00000000.04000000 |-----------------------| 479 * | invalid | 480 * 0x00000000.00000000 +-----------------------+ 481 * 482 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 483 * kernel, except that userlimit is raised to 0xfe000000 484 * 485 * Floating values: 486 * 487 * valloc_base: start of the kernel's memory management/tracking data 488 * structures. This region contains page_t structures for 489 * physical memory, memsegs, memlists, and the page hash. 490 * 491 * core_base: start of the kernel's "core" heap area on 64-bit systems. 492 * This area is intended to be used for global data as well as for module 493 * text/data that does not fit into the nucleus pages. The core heap is 494 * restricted to a 2GB range, allowing every address within it to be 495 * accessed using rip-relative addressing 496 * 497 * ekernelheap: end of kernelheap and start of segmap. 498 * 499 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 500 * above a red zone that separates the user's address space from the 501 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 502 * 503 * segmap_start: start of segmap. The length of segmap can be modified 504 * through eeprom. The default length is 16MB on 32-bit systems and 64MB 505 * on 64-bit systems. 506 * 507 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 508 * decreased by 2X the size required for page_t. This allows the kernel 509 * heap to grow in size with physical memory. With sizeof(page_t) == 80 510 * bytes, the following shows the values of kernelbase and kernel heap 511 * sizes for different memory configurations (assuming default segmap and 512 * segkp sizes). 513 * 514 * mem size for kernelbase kernel heap 515 * size page_t's size 516 * ---- --------- ---------- ----------- 517 * 1gb 0x01400000 0xd1800000 684MB 518 * 2gb 0x02800000 0xcf000000 704MB 519 * 4gb 0x05000000 0xca000000 744MB 520 * 6gb 0x07800000 0xc5000000 784MB 521 * 8gb 0x0a000000 0xc0000000 824MB 522 * 16gb 0x14000000 0xac000000 984MB 523 * 32gb 0x28000000 0x84000000 1304MB 524 * 64gb 0x50000000 0x34000000 1944MB (*) 525 * 526 * kernelbase is less than the abi minimum of 0xc0000000 for memory 527 * configurations above 8gb. 528 * 529 * (*) support for memory configurations above 32gb will require manual tuning 530 * of kernelbase to balance out the need of user applications. 531 */ 532 533 /* real-time-clock initialization parameters */ 534 extern time_t process_rtc_config_file(void); 535 536 uintptr_t kernelbase; 537 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 538 uintptr_t eprom_kernelbase; 539 size_t segmapsize; 540 uintptr_t segmap_start; 541 int segmapfreelists; 542 pgcnt_t npages; 543 pgcnt_t orig_npages; 544 size_t core_size; /* size of "core" heap */ 545 uintptr_t core_base; /* base address of "core" heap */ 546 547 /* 548 * List of bootstrap pages. We mark these as allocated in startup. 549 * release_bootstrap() will free them when we're completely done with 550 * the bootstrap. 551 */ 552 static page_t *bootpages; 553 554 /* 555 * boot time pages that have a vnode from the ramdisk will keep that forever. 556 */ 557 static page_t *rd_pages; 558 559 /* 560 * Lower 64K 561 */ 562 static page_t *lower_pages = NULL; 563 static int lower_pages_count = 0; 564 565 struct system_hardware system_hardware; 566 567 /* 568 * Enable some debugging messages concerning memory usage... 569 */ 570 static void 571 print_memlist(char *title, struct memlist *mp) 572 { 573 prom_printf("MEMLIST: %s:\n", title); 574 while (mp != NULL) { 575 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 576 mp->ml_address, mp->ml_size); 577 mp = mp->ml_next; 578 } 579 } 580 581 /* 582 * XX64 need a comment here.. are these just default values, surely 583 * we read the "cpuid" type information to figure this out. 584 */ 585 int l2cache_sz = 0x80000; 586 int l2cache_linesz = 0x40; 587 int l2cache_assoc = 1; 588 589 static size_t textrepl_min_gb = 10; 590 591 /* 592 * on 64 bit we use a predifined VA range for mapping devices in the kernel 593 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 594 */ 595 #ifdef __amd64 596 597 vmem_t *device_arena; 598 uintptr_t toxic_addr = (uintptr_t)NULL; 599 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 600 601 #else /* __i386 */ 602 603 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 604 size_t toxic_bit_map_len = 0; /* in bits */ 605 606 #endif /* __i386 */ 607 608 /* 609 * Simple boot time debug facilities 610 */ 611 static char *prm_dbg_str[] = { 612 "%s:%d: '%s' is 0x%x\n", 613 "%s:%d: '%s' is 0x%llx\n" 614 }; 615 616 int prom_debug; 617 618 #define PRM_DEBUG(q) if (prom_debug) \ 619 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 620 #define PRM_POINT(q) if (prom_debug) \ 621 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 622 623 /* 624 * This structure is used to keep track of the intial allocations 625 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 626 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 627 */ 628 #define NUM_ALLOCATIONS 8 629 int num_allocations = 0; 630 struct { 631 void **al_ptr; 632 size_t al_size; 633 } allocations[NUM_ALLOCATIONS]; 634 size_t valloc_sz = 0; 635 uintptr_t valloc_base; 636 637 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 638 size = ROUND_UP_PAGE(size); \ 639 if (num_allocations == NUM_ALLOCATIONS) \ 640 panic("too many ADD_TO_ALLOCATIONS()"); \ 641 allocations[num_allocations].al_ptr = (void**)&ptr; \ 642 allocations[num_allocations].al_size = size; \ 643 valloc_sz += size; \ 644 ++num_allocations; \ 645 } 646 647 /* 648 * Allocate all the initial memory needed by the page allocator. 649 */ 650 static void 651 perform_allocations(void) 652 { 653 caddr_t mem; 654 int i; 655 int valloc_align; 656 657 PRM_DEBUG(valloc_base); 658 PRM_DEBUG(valloc_sz); 659 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 660 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 661 if (mem != (caddr_t)valloc_base) 662 panic("BOP_ALLOC() failed"); 663 bzero(mem, valloc_sz); 664 for (i = 0; i < num_allocations; ++i) { 665 *allocations[i].al_ptr = (void *)mem; 666 mem += allocations[i].al_size; 667 } 668 } 669 670 /* 671 * Our world looks like this at startup time. 672 * 673 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 674 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 675 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 676 * addresses are fixed in the binary at link time. 677 * 678 * On the text page: 679 * unix/genunix/krtld/module text loads. 680 * 681 * On the data page: 682 * unix/genunix/krtld/module data loads. 683 * 684 * Machine-dependent startup code 685 */ 686 void 687 startup(void) 688 { 689 #if !defined(__xpv) 690 extern void startup_pci_bios(void); 691 #endif 692 extern cpuset_t cpu_ready_set; 693 694 /* 695 * Make sure that nobody tries to use sekpm until we have 696 * initialized it properly. 697 */ 698 #if defined(__amd64) 699 kpm_desired = 1; 700 #endif 701 kpm_enable = 0; 702 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 703 704 #if defined(__xpv) /* XXPV fix me! */ 705 { 706 extern int segvn_use_regions; 707 segvn_use_regions = 0; 708 } 709 #endif 710 progressbar_init(); 711 startup_init(); 712 #if defined(__xpv) 713 startup_xen_version(); 714 #endif 715 startup_memlist(); 716 startup_kmem(); 717 startup_vm(); 718 #if !defined(__xpv) 719 /* 720 * Note we need to do this even on fast reboot in order to access 721 * the irq routing table (used for pci labels). 722 */ 723 startup_pci_bios(); 724 #endif 725 #if defined(__xpv) 726 startup_xen_mca(); 727 #endif 728 startup_modules(); 729 730 startup_end(); 731 } 732 733 static void 734 startup_init() 735 { 736 PRM_POINT("startup_init() starting..."); 737 738 /* 739 * Complete the extraction of cpuid data 740 */ 741 cpuid_pass2(CPU); 742 743 (void) check_boot_version(BOP_GETVERSION(bootops)); 744 745 /* 746 * Check for prom_debug in boot environment 747 */ 748 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 749 ++prom_debug; 750 PRM_POINT("prom_debug found in boot enviroment"); 751 } 752 753 /* 754 * Collect node, cpu and memory configuration information. 755 */ 756 get_system_configuration(); 757 758 /* 759 * Halt if this is an unsupported processor. 760 */ 761 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 762 printf("\n486 processor (\"%s\") detected.\n", 763 CPU->cpu_brandstr); 764 halt("This processor is not supported by this release " 765 "of Solaris."); 766 } 767 768 PRM_POINT("startup_init() done"); 769 } 770 771 /* 772 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 773 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 774 * also filters out physical page zero. There is some reliance on the 775 * boot loader allocating only a few contiguous physical memory chunks. 776 */ 777 static void 778 avail_filter(uint64_t *addr, uint64_t *size) 779 { 780 uintptr_t va; 781 uintptr_t next_va; 782 pfn_t pfn; 783 uint64_t pfn_addr; 784 uint64_t pfn_eaddr; 785 uint_t prot; 786 size_t len; 787 uint_t change; 788 789 if (prom_debug) 790 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 791 *addr, *size); 792 793 /* 794 * page zero is required for BIOS.. never make it available 795 */ 796 if (*addr == 0) { 797 *addr += MMU_PAGESIZE; 798 *size -= MMU_PAGESIZE; 799 } 800 801 /* 802 * First we trim from the front of the range. Since kbm_probe() 803 * walks ranges in virtual order, but addr/size are physical, we need 804 * to the list until no changes are seen. This deals with the case 805 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 806 * but w < v. 807 */ 808 do { 809 change = 0; 810 for (va = KERNEL_TEXT; 811 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 812 va = next_va) { 813 814 next_va = va + len; 815 pfn_addr = pfn_to_pa(pfn); 816 pfn_eaddr = pfn_addr + len; 817 818 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 819 change = 1; 820 while (*size > 0 && len > 0) { 821 *addr += MMU_PAGESIZE; 822 *size -= MMU_PAGESIZE; 823 len -= MMU_PAGESIZE; 824 } 825 } 826 } 827 if (change && prom_debug) 828 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 829 *addr, *size); 830 } while (change); 831 832 /* 833 * Trim pages from the end of the range. 834 */ 835 for (va = KERNEL_TEXT; 836 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 837 va = next_va) { 838 839 next_va = va + len; 840 pfn_addr = pfn_to_pa(pfn); 841 842 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 843 *size = pfn_addr - *addr; 844 } 845 846 if (prom_debug) 847 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 848 *addr, *size); 849 } 850 851 static void 852 kpm_init() 853 { 854 struct segkpm_crargs b; 855 856 /* 857 * These variables were all designed for sfmmu in which segkpm is 858 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 859 * might use 2+ page sizes on a single machine, so none of these 860 * variables have a single correct value. They are set up as if we 861 * always use a 4KB pagesize, which should do no harm. In the long 862 * run, we should get rid of KPM's assumption that only a single 863 * pagesize is used. 864 */ 865 kpm_pgshft = MMU_PAGESHIFT; 866 kpm_pgsz = MMU_PAGESIZE; 867 kpm_pgoff = MMU_PAGEOFFSET; 868 kpmp2pshft = 0; 869 kpmpnpgs = 1; 870 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 871 872 PRM_POINT("about to create segkpm"); 873 rw_enter(&kas.a_lock, RW_WRITER); 874 875 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 876 panic("cannot attach segkpm"); 877 878 b.prot = PROT_READ | PROT_WRITE; 879 b.nvcolors = 1; 880 881 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 882 panic("segkpm_create segkpm"); 883 884 rw_exit(&kas.a_lock); 885 } 886 887 /* 888 * The debug info page provides enough information to allow external 889 * inspectors (e.g. when running under a hypervisor) to bootstrap 890 * themselves into allowing full-blown kernel debugging. 891 */ 892 static void 893 init_debug_info(void) 894 { 895 caddr_t mem; 896 debug_info_t *di; 897 898 #ifndef __lint 899 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 900 #endif 901 902 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 903 MMU_PAGESIZE); 904 905 if (mem != (caddr_t)DEBUG_INFO_VA) 906 panic("BOP_ALLOC() failed"); 907 bzero(mem, MMU_PAGESIZE); 908 909 di = (debug_info_t *)mem; 910 911 di->di_magic = DEBUG_INFO_MAGIC; 912 di->di_version = DEBUG_INFO_VERSION; 913 di->di_modules = (uintptr_t)&modules; 914 di->di_s_text = (uintptr_t)s_text; 915 di->di_e_text = (uintptr_t)e_text; 916 di->di_s_data = (uintptr_t)s_data; 917 di->di_e_data = (uintptr_t)e_data; 918 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 919 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 920 } 921 922 /* 923 * Build the memlists and other kernel essential memory system data structures. 924 * This is everything at valloc_base. 925 */ 926 static void 927 startup_memlist(void) 928 { 929 size_t memlist_sz; 930 size_t memseg_sz; 931 size_t pagehash_sz; 932 size_t pp_sz; 933 uintptr_t va; 934 size_t len; 935 uint_t prot; 936 pfn_t pfn; 937 int memblocks; 938 pfn_t rsvd_high_pfn; 939 pgcnt_t rsvd_pgcnt; 940 size_t rsvdmemlist_sz; 941 int rsvdmemblocks; 942 caddr_t pagecolor_mem; 943 size_t pagecolor_memsz; 944 caddr_t page_ctrs_mem; 945 size_t page_ctrs_size; 946 size_t pse_table_alloc_size; 947 struct memlist *current; 948 extern void startup_build_mem_nodes(struct memlist *); 949 950 /* XX64 fix these - they should be in include files */ 951 extern size_t page_coloring_init(uint_t, int, int); 952 extern void page_coloring_setup(caddr_t); 953 954 PRM_POINT("startup_memlist() starting..."); 955 956 /* 957 * Use leftover large page nucleus text/data space for loadable modules. 958 * Use at most MODTEXT/MODDATA. 959 */ 960 len = kbm_nucleus_size; 961 ASSERT(len > MMU_PAGESIZE); 962 963 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 964 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 965 if (e_moddata - moddata > MODDATA) 966 e_moddata = moddata + MODDATA; 967 968 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 969 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 970 if (e_modtext - modtext > MODTEXT) 971 e_modtext = modtext + MODTEXT; 972 973 econtig = e_moddata; 974 975 PRM_DEBUG(modtext); 976 PRM_DEBUG(e_modtext); 977 PRM_DEBUG(moddata); 978 PRM_DEBUG(e_moddata); 979 PRM_DEBUG(econtig); 980 981 /* 982 * Examine the boot loader physical memory map to find out: 983 * - total memory in system - physinstalled 984 * - the max physical address - physmax 985 * - the number of discontiguous segments of memory. 986 */ 987 if (prom_debug) 988 print_memlist("boot physinstalled", 989 bootops->boot_mem->physinstalled); 990 installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax, 991 &physinstalled, &memblocks); 992 PRM_DEBUG(physmax); 993 PRM_DEBUG(physinstalled); 994 PRM_DEBUG(memblocks); 995 996 /* 997 * Compute maximum physical address for memory DR operations. 998 * Memory DR operations are unsupported on xpv or 32bit OSes. 999 */ 1000 #ifdef __amd64 1001 if (plat_dr_support_memory()) { 1002 if (plat_dr_physmax == 0) { 1003 uint_t pabits = UINT_MAX; 1004 1005 cpuid_get_addrsize(CPU, &pabits, NULL); 1006 plat_dr_physmax = btop(1ULL << pabits); 1007 } 1008 if (plat_dr_physmax > PHYSMEM_MAX64) 1009 plat_dr_physmax = PHYSMEM_MAX64; 1010 } else 1011 #endif 1012 plat_dr_physmax = 0; 1013 1014 /* 1015 * Examine the bios reserved memory to find out: 1016 * - the number of discontiguous segments of memory. 1017 */ 1018 if (prom_debug) 1019 print_memlist("boot reserved mem", 1020 bootops->boot_mem->rsvdmem); 1021 installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn, 1022 &rsvd_pgcnt, &rsvdmemblocks); 1023 PRM_DEBUG(rsvd_high_pfn); 1024 PRM_DEBUG(rsvd_pgcnt); 1025 PRM_DEBUG(rsvdmemblocks); 1026 1027 /* 1028 * Initialize hat's mmu parameters. 1029 * Check for enforce-prot-exec in boot environment. It's used to 1030 * enable/disable support for the page table entry NX bit. 1031 * The default is to enforce PROT_EXEC on processors that support NX. 1032 * Boot seems to round up the "len", but 8 seems to be big enough. 1033 */ 1034 mmu_init(); 1035 1036 #ifdef __i386 1037 /* 1038 * physmax is lowered if there is more memory than can be 1039 * physically addressed in 32 bit (PAE/non-PAE) modes. 1040 */ 1041 if (mmu.pae_hat) { 1042 if (PFN_ABOVE64G(physmax)) { 1043 physinstalled -= (physmax - (PFN_64G - 1)); 1044 physmax = PFN_64G - 1; 1045 } 1046 } else { 1047 if (PFN_ABOVE4G(physmax)) { 1048 physinstalled -= (physmax - (PFN_4G - 1)); 1049 physmax = PFN_4G - 1; 1050 } 1051 } 1052 #endif 1053 1054 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 1055 1056 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 1057 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 1058 char value[8]; 1059 1060 if (len < 8) 1061 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 1062 else 1063 (void) strcpy(value, ""); 1064 if (strcmp(value, "off") == 0) 1065 mmu.pt_nx = 0; 1066 } 1067 PRM_DEBUG(mmu.pt_nx); 1068 1069 /* 1070 * We will need page_t's for every page in the system, except for 1071 * memory mapped at or above above the start of the kernel text segment. 1072 * 1073 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1074 */ 1075 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1076 obp_pages = 0; 1077 va = KERNEL_TEXT; 1078 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1079 npages -= len >> MMU_PAGESHIFT; 1080 if (va >= (uintptr_t)e_moddata) 1081 obp_pages += len >> MMU_PAGESHIFT; 1082 va += len; 1083 } 1084 PRM_DEBUG(npages); 1085 PRM_DEBUG(obp_pages); 1086 1087 /* 1088 * If physmem is patched to be non-zero, use it instead of the computed 1089 * value unless it is larger than the actual amount of memory on hand. 1090 */ 1091 if (physmem == 0 || physmem > npages) { 1092 physmem = npages; 1093 } else if (physmem < npages) { 1094 orig_npages = npages; 1095 npages = physmem; 1096 } 1097 PRM_DEBUG(physmem); 1098 1099 /* 1100 * We now compute the sizes of all the initial allocations for 1101 * structures the kernel needs in order do kmem_alloc(). These 1102 * include: 1103 * memsegs 1104 * memlists 1105 * page hash table 1106 * page_t's 1107 * page coloring data structs 1108 */ 1109 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1110 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1111 PRM_DEBUG(memseg_sz); 1112 1113 /* 1114 * Reserve space for memlists. There's no real good way to know exactly 1115 * how much room we'll need, but this should be a good upper bound. 1116 */ 1117 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1118 (memblocks + POSS_NEW_FRAGMENTS)); 1119 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1120 PRM_DEBUG(memlist_sz); 1121 1122 /* 1123 * Reserve space for bios reserved memlists. 1124 */ 1125 rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1126 (rsvdmemblocks + POSS_NEW_FRAGMENTS)); 1127 ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz); 1128 PRM_DEBUG(rsvdmemlist_sz); 1129 1130 /* LINTED */ 1131 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), sizeof (struct page))); 1132 /* 1133 * The page structure hash table size is a power of 2 1134 * such that the average hash chain length is PAGE_HASHAVELEN. 1135 */ 1136 page_hashsz = npages / PAGE_HASHAVELEN; 1137 page_hashsz_shift = highbit(page_hashsz); 1138 page_hashsz = 1 << page_hashsz_shift; 1139 pagehash_sz = sizeof (struct page *) * page_hashsz; 1140 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1141 PRM_DEBUG(pagehash_sz); 1142 1143 /* 1144 * Set aside room for the page structures themselves. 1145 */ 1146 PRM_DEBUG(npages); 1147 pp_sz = sizeof (struct page) * npages; 1148 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1149 PRM_DEBUG(pp_sz); 1150 1151 /* 1152 * determine l2 cache info and memory size for page coloring 1153 */ 1154 (void) getl2cacheinfo(CPU, 1155 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1156 pagecolor_memsz = 1157 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1158 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1159 PRM_DEBUG(pagecolor_memsz); 1160 1161 page_ctrs_size = page_ctrs_sz(); 1162 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1163 PRM_DEBUG(page_ctrs_size); 1164 1165 /* 1166 * Allocate the array that protects pp->p_selock. 1167 */ 1168 pse_shift = size_pse_array(physmem, max_ncpus); 1169 pse_table_size = 1 << pse_shift; 1170 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1171 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1172 1173 #if defined(__amd64) 1174 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1175 valloc_base = VALLOC_BASE; 1176 1177 /* 1178 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1179 * for values of physmax up to 1 Terabyte. They need adjusting when 1180 * memory is at addresses above 1 TB. When adjusted, segkpm_base must 1181 * be aligned on KERNEL_REDZONE_SIZE boundary (span of top level pte). 1182 */ 1183 if (physmax + 1 > mmu_btop(TERABYTE) || 1184 plat_dr_physmax > mmu_btop(TERABYTE)) { 1185 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1186 1187 if (kpm_resv_amount < mmu_ptob(plat_dr_physmax)) { 1188 kpm_resv_amount = mmu_ptob(plat_dr_physmax); 1189 } 1190 1191 segkpm_base = -(P2ROUNDUP((2 * kpm_resv_amount), 1192 KERNEL_REDZONE_SIZE)); /* down from top VA */ 1193 1194 /* make sure we leave some space for user apps above hole */ 1195 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1196 if (segkpm_base > SEGKPM_BASE) 1197 segkpm_base = SEGKPM_BASE; 1198 PRM_DEBUG(segkpm_base); 1199 1200 valloc_base = segkpm_base + P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1201 if (valloc_base < segkpm_base) 1202 panic("not enough kernel VA to support memory size"); 1203 PRM_DEBUG(valloc_base); 1204 } 1205 #else /* __i386 */ 1206 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1207 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1208 PRM_DEBUG(valloc_base); 1209 #endif /* __i386 */ 1210 1211 /* 1212 * do all the initial allocations 1213 */ 1214 perform_allocations(); 1215 1216 /* 1217 * Build phys_install and phys_avail in kernel memspace. 1218 * - phys_install should be all memory in the system. 1219 * - phys_avail is phys_install minus any memory mapped before this 1220 * point above KERNEL_TEXT. 1221 */ 1222 current = phys_install = memlist; 1223 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1224 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1225 panic("physinstalled was too big!"); 1226 if (prom_debug) 1227 print_memlist("phys_install", phys_install); 1228 1229 phys_avail = current; 1230 PRM_POINT("Building phys_avail:\n"); 1231 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1232 avail_filter); 1233 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1234 panic("physavail was too big!"); 1235 if (prom_debug) 1236 print_memlist("phys_avail", phys_avail); 1237 #ifndef __xpv 1238 /* 1239 * Free unused memlist items, which may be used by memory DR driver 1240 * at runtime. 1241 */ 1242 if ((caddr_t)current < (caddr_t)memlist + memlist_sz) { 1243 memlist_free_block((caddr_t)current, 1244 (caddr_t)memlist + memlist_sz - (caddr_t)current); 1245 } 1246 #endif 1247 1248 /* 1249 * Build bios reserved memspace 1250 */ 1251 current = bios_rsvd; 1252 copy_memlist_filter(bootops->boot_mem->rsvdmem, ¤t, NULL); 1253 if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz) 1254 panic("bios_rsvd was too big!"); 1255 if (prom_debug) 1256 print_memlist("bios_rsvd", bios_rsvd); 1257 #ifndef __xpv 1258 /* 1259 * Free unused memlist items, which may be used by memory DR driver 1260 * at runtime. 1261 */ 1262 if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) { 1263 memlist_free_block((caddr_t)current, 1264 (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current); 1265 } 1266 #endif 1267 1268 /* 1269 * setup page coloring 1270 */ 1271 page_coloring_setup(pagecolor_mem); 1272 page_lock_init(); /* currently a no-op */ 1273 1274 /* 1275 * free page list counters 1276 */ 1277 (void) page_ctrs_alloc(page_ctrs_mem); 1278 1279 /* 1280 * Size the pcf array based on the number of cpus in the box at 1281 * boot time. 1282 */ 1283 1284 pcf_init(); 1285 1286 /* 1287 * Initialize the page structures from the memory lists. 1288 */ 1289 availrmem_initial = availrmem = freemem = 0; 1290 PRM_POINT("Calling kphysm_init()..."); 1291 npages = kphysm_init(pp_base, npages); 1292 PRM_POINT("kphysm_init() done"); 1293 PRM_DEBUG(npages); 1294 1295 init_debug_info(); 1296 1297 /* 1298 * Now that page_t's have been initialized, remove all the 1299 * initial allocation pages from the kernel free page lists. 1300 */ 1301 boot_mapin((caddr_t)valloc_base, valloc_sz); 1302 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1303 PRM_POINT("startup_memlist() done"); 1304 1305 PRM_DEBUG(valloc_sz); 1306 1307 #if defined(__amd64) 1308 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1309 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1310 extern size_t textrepl_size_thresh; 1311 textrepl_size_thresh = (16 << 20) - 1; 1312 } 1313 #endif 1314 } 1315 1316 /* 1317 * Layout the kernel's part of address space and initialize kmem allocator. 1318 */ 1319 static void 1320 startup_kmem(void) 1321 { 1322 extern void page_set_colorequiv_arr(void); 1323 const char *fmt = "?features: %b\n"; 1324 1325 PRM_POINT("startup_kmem() starting..."); 1326 1327 #if defined(__amd64) 1328 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1329 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1330 "systems."); 1331 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1332 core_base = (uintptr_t)COREHEAP_BASE; 1333 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1334 #else /* __i386 */ 1335 /* 1336 * We configure kernelbase based on: 1337 * 1338 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1339 * KERNELBASE_MAX. we large page align eprom_kernelbase 1340 * 1341 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1342 * On large memory systems we must lower kernelbase to allow 1343 * enough room for page_t's for all of memory. 1344 * 1345 * The value set here, might be changed a little later. 1346 */ 1347 if (eprom_kernelbase) { 1348 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1349 if (kernelbase > KERNELBASE_MAX) 1350 kernelbase = KERNELBASE_MAX; 1351 } else { 1352 kernelbase = (uintptr_t)KERNELBASE; 1353 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1354 } 1355 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1356 core_base = valloc_base; 1357 core_size = 0; 1358 #endif /* __i386 */ 1359 1360 PRM_DEBUG(core_base); 1361 PRM_DEBUG(core_size); 1362 PRM_DEBUG(kernelbase); 1363 1364 #if defined(__i386) 1365 segkp_fromheap = 1; 1366 #endif /* __i386 */ 1367 1368 ekernelheap = (char *)core_base; 1369 PRM_DEBUG(ekernelheap); 1370 1371 /* 1372 * Now that we know the real value of kernelbase, 1373 * update variables that were initialized with a value of 1374 * KERNELBASE (in common/conf/param.c). 1375 * 1376 * XXX The problem with this sort of hackery is that the 1377 * compiler just may feel like putting the const declarations 1378 * (in param.c) into the .text section. Perhaps they should 1379 * just be declared as variables there? 1380 */ 1381 1382 *(uintptr_t *)&_kernelbase = kernelbase; 1383 *(uintptr_t *)&_userlimit = kernelbase; 1384 #if defined(__amd64) 1385 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1386 #else 1387 *(uintptr_t *)&_userlimit32 = _userlimit; 1388 #endif 1389 PRM_DEBUG(_kernelbase); 1390 PRM_DEBUG(_userlimit); 1391 PRM_DEBUG(_userlimit32); 1392 1393 layout_kernel_va(); 1394 1395 #if defined(__i386) 1396 /* 1397 * If segmap is too large we can push the bottom of the kernel heap 1398 * higher than the base. Or worse, it could exceed the top of the 1399 * VA space entirely, causing it to wrap around. 1400 */ 1401 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1402 panic("too little address space available for kernelheap," 1403 " use eeprom for lower kernelbase or smaller segmapsize"); 1404 #endif /* __i386 */ 1405 1406 /* 1407 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1408 */ 1409 kernelheap_init(kernelheap, ekernelheap, 1410 kernelheap + MMU_PAGESIZE, 1411 (void *)core_base, (void *)(core_base + core_size)); 1412 1413 #if defined(__xpv) 1414 /* 1415 * Link pending events struct into cpu struct 1416 */ 1417 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1418 #endif 1419 /* 1420 * Initialize kernel memory allocator. 1421 */ 1422 kmem_init(); 1423 1424 /* 1425 * Factor in colorequiv to check additional 'equivalent' bins 1426 */ 1427 page_set_colorequiv_arr(); 1428 1429 /* 1430 * print this out early so that we know what's going on 1431 */ 1432 cmn_err(CE_CONT, fmt, x86_feature, FMT_X86_FEATURE); 1433 1434 /* 1435 * Initialize bp_mapin(). 1436 */ 1437 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1438 1439 /* 1440 * orig_npages is non-zero if physmem has been configured for less 1441 * than the available memory. 1442 */ 1443 if (orig_npages) { 1444 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1445 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1446 npages, orig_npages); 1447 } 1448 #if defined(__i386) 1449 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1450 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1451 "System using 0x%lx", 1452 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1453 #endif 1454 1455 #ifdef KERNELBASE_ABI_MIN 1456 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1457 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1458 "i386 ABI compliant.", (uintptr_t)kernelbase); 1459 } 1460 #endif 1461 1462 #ifndef __xpv 1463 if (plat_dr_support_memory()) { 1464 mem_config_init(); 1465 } 1466 #else /* __xpv */ 1467 /* 1468 * Some of the xen start information has to be relocated up 1469 * into the kernel's permanent address space. 1470 */ 1471 PRM_POINT("calling xen_relocate_start_info()"); 1472 xen_relocate_start_info(); 1473 PRM_POINT("xen_relocate_start_info() done"); 1474 1475 /* 1476 * (Update the vcpu pointer in our cpu structure to point into 1477 * the relocated shared info.) 1478 */ 1479 CPU->cpu_m.mcpu_vcpu_info = 1480 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1481 #endif /* __xpv */ 1482 1483 PRM_POINT("startup_kmem() done"); 1484 } 1485 1486 #ifndef __xpv 1487 /* 1488 * If we have detected that we are running in an HVM environment, we need 1489 * to prepend the PV driver directory to the module search path. 1490 */ 1491 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1492 static void 1493 update_default_path() 1494 { 1495 char *current, *newpath; 1496 int newlen; 1497 1498 /* 1499 * We are about to resync with krtld. krtld will reset its 1500 * internal module search path iff Solaris has set default_path. 1501 * We want to be sure we're prepending this new directory to the 1502 * right search path. 1503 */ 1504 current = (default_path == NULL) ? kobj_module_path : default_path; 1505 1506 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2; 1507 newpath = kmem_alloc(newlen, KM_SLEEP); 1508 (void) strcpy(newpath, HVM_MOD_DIR); 1509 (void) strcat(newpath, " "); 1510 (void) strcat(newpath, current); 1511 1512 default_path = newpath; 1513 } 1514 #endif 1515 1516 static void 1517 startup_modules(void) 1518 { 1519 int cnt; 1520 extern void prom_setup(void); 1521 int32_t v, h; 1522 char d[11]; 1523 char *cp; 1524 cmi_hdl_t hdl; 1525 1526 PRM_POINT("startup_modules() starting..."); 1527 1528 #ifndef __xpv 1529 /* 1530 * Initialize ten-micro second timer so that drivers will 1531 * not get short changed in their init phase. This was 1532 * not getting called until clkinit which, on fast cpu's 1533 * caused the drv_usecwait to be way too short. 1534 */ 1535 microfind(); 1536 1537 if (get_hwenv() == HW_XEN_HVM) 1538 update_default_path(); 1539 #endif 1540 1541 /* 1542 * Read the GMT lag from /etc/rtc_config. 1543 */ 1544 sgmtl(process_rtc_config_file()); 1545 1546 /* 1547 * Calculate default settings of system parameters based upon 1548 * maxusers, yet allow to be overridden via the /etc/system file. 1549 */ 1550 param_calc(0); 1551 1552 mod_setup(); 1553 1554 /* 1555 * Initialize system parameters. 1556 */ 1557 param_init(); 1558 1559 /* 1560 * Initialize the default brands 1561 */ 1562 brand_init(); 1563 1564 /* 1565 * maxmem is the amount of physical memory we're playing with. 1566 */ 1567 maxmem = physmem; 1568 1569 /* 1570 * Initialize segment management stuff. 1571 */ 1572 seg_init(); 1573 1574 if (modload("fs", "specfs") == -1) 1575 halt("Can't load specfs"); 1576 1577 if (modload("fs", "devfs") == -1) 1578 halt("Can't load devfs"); 1579 1580 if (modload("fs", "dev") == -1) 1581 halt("Can't load dev"); 1582 1583 if (modload("fs", "procfs") == -1) 1584 halt("Can't load procfs"); 1585 1586 (void) modloadonly("sys", "lbl_edition"); 1587 1588 dispinit(); 1589 1590 /* 1591 * This is needed here to initialize hw_serial[] for cluster booting. 1592 */ 1593 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) { 1594 cmn_err(CE_WARN, "Unable to set hostid"); 1595 } else { 1596 for (v = h, cnt = 0; cnt < 10; cnt++) { 1597 d[cnt] = (char)(v % 10); 1598 v /= 10; 1599 if (v == 0) 1600 break; 1601 } 1602 for (cp = hw_serial; cnt >= 0; cnt--) 1603 *cp++ = d[cnt] + '0'; 1604 *cp = 0; 1605 } 1606 1607 /* Read cluster configuration data. */ 1608 clconf_init(); 1609 1610 #if defined(__xpv) 1611 (void) ec_init(); 1612 gnttab_init(); 1613 (void) xs_early_init(); 1614 #endif /* __xpv */ 1615 1616 /* 1617 * Create a kernel device tree. First, create rootnex and 1618 * then invoke bus specific code to probe devices. 1619 */ 1620 setup_ddi(); 1621 1622 #ifdef __xpv 1623 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1624 #endif 1625 { 1626 /* 1627 * Load the System Management BIOS into the global ksmbios 1628 * handle, if an SMBIOS is present on this system. 1629 */ 1630 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1631 } 1632 1633 1634 /* 1635 * Set up the CPU module subsystem for the boot cpu in the native 1636 * case, and all physical cpu resource in the xpv dom0 case. 1637 * Modifies the device tree, so this must be done after 1638 * setup_ddi(). 1639 */ 1640 #ifdef __xpv 1641 /* 1642 * If paravirtualized and on dom0 then we initialize all physical 1643 * cpu handles now; if paravirtualized on a domU then do not 1644 * initialize. 1645 */ 1646 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1647 xen_mc_lcpu_cookie_t cpi; 1648 1649 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1650 cpi = xen_physcpu_next(cpi)) { 1651 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1652 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1653 xen_physcpu_strandid(cpi))) != NULL && 1654 (x86_feature & X86_MCA)) 1655 cmi_mca_init(hdl); 1656 } 1657 } 1658 #else 1659 /* 1660 * Initialize a handle for the boot cpu - others will initialize 1661 * as they startup. Do not do this if we know we are in an HVM domU. 1662 */ 1663 if ((get_hwenv() != HW_XEN_HVM) && 1664 (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1665 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL && 1666 (x86_feature & X86_MCA)) { 1667 cmi_mca_init(hdl); 1668 CPU->cpu_m.mcpu_cmi_hdl = hdl; 1669 } 1670 #endif /* __xpv */ 1671 1672 /* 1673 * Fake a prom tree such that /dev/openprom continues to work 1674 */ 1675 PRM_POINT("startup_modules: calling prom_setup..."); 1676 prom_setup(); 1677 PRM_POINT("startup_modules: done"); 1678 1679 /* 1680 * Load all platform specific modules 1681 */ 1682 PRM_POINT("startup_modules: calling psm_modload..."); 1683 psm_modload(); 1684 1685 PRM_POINT("startup_modules() done"); 1686 } 1687 1688 /* 1689 * claim a "setaside" boot page for use in the kernel 1690 */ 1691 page_t * 1692 boot_claim_page(pfn_t pfn) 1693 { 1694 page_t *pp; 1695 1696 pp = page_numtopp_nolock(pfn); 1697 ASSERT(pp != NULL); 1698 1699 if (PP_ISBOOTPAGES(pp)) { 1700 if (pp->p_next != NULL) 1701 pp->p_next->p_prev = pp->p_prev; 1702 if (pp->p_prev == NULL) 1703 bootpages = pp->p_next; 1704 else 1705 pp->p_prev->p_next = pp->p_next; 1706 } else { 1707 /* 1708 * htable_attach() expects a base pagesize page 1709 */ 1710 if (pp->p_szc != 0) 1711 page_boot_demote(pp); 1712 pp = page_numtopp(pfn, SE_EXCL); 1713 } 1714 return (pp); 1715 } 1716 1717 /* 1718 * Walk through the pagetables looking for pages mapped in by boot. If the 1719 * setaside flag is set the pages are expected to be returned to the 1720 * kernel later in boot, so we add them to the bootpages list. 1721 */ 1722 static void 1723 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1724 { 1725 uintptr_t va = low; 1726 size_t len; 1727 uint_t prot; 1728 pfn_t pfn; 1729 page_t *pp; 1730 pgcnt_t boot_protect_cnt = 0; 1731 1732 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1733 if (va + len >= high) 1734 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1735 "legal range.", len, (void *)va); 1736 1737 while (len > 0) { 1738 pp = page_numtopp_alloc(pfn); 1739 if (pp != NULL) { 1740 if (setaside == 0) 1741 panic("Unexpected mapping by boot. " 1742 "addr=%p pfn=%lx\n", 1743 (void *)va, pfn); 1744 1745 pp->p_next = bootpages; 1746 pp->p_prev = NULL; 1747 PP_SETBOOTPAGES(pp); 1748 if (bootpages != NULL) { 1749 bootpages->p_prev = pp; 1750 } 1751 bootpages = pp; 1752 ++boot_protect_cnt; 1753 } 1754 1755 ++pfn; 1756 len -= MMU_PAGESIZE; 1757 va += MMU_PAGESIZE; 1758 } 1759 } 1760 PRM_DEBUG(boot_protect_cnt); 1761 } 1762 1763 /* 1764 * 1765 */ 1766 static void 1767 layout_kernel_va(void) 1768 { 1769 PRM_POINT("layout_kernel_va() starting..."); 1770 /* 1771 * Establish the final size of the kernel's heap, size of segmap, 1772 * segkp, etc. 1773 */ 1774 1775 #if defined(__amd64) 1776 1777 kpm_vbase = (caddr_t)segkpm_base; 1778 if (physmax + 1 < plat_dr_physmax) { 1779 kpm_size = ROUND_UP_LPAGE(mmu_ptob(plat_dr_physmax)); 1780 } else { 1781 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1782 } 1783 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1784 panic("not enough room for kpm!"); 1785 PRM_DEBUG(kpm_size); 1786 PRM_DEBUG(kpm_vbase); 1787 1788 /* 1789 * By default we create a seg_kp in 64 bit kernels, it's a little 1790 * faster to access than embedding it in the heap. 1791 */ 1792 segkp_base = (caddr_t)valloc_base + valloc_sz; 1793 if (!segkp_fromheap) { 1794 size_t sz = mmu_ptob(segkpsize); 1795 1796 /* 1797 * determine size of segkp 1798 */ 1799 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1800 sz = SEGKPDEFSIZE; 1801 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1802 "segkpsize has been reset to %ld pages", 1803 mmu_btop(sz)); 1804 } 1805 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1806 1807 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1808 } 1809 PRM_DEBUG(segkp_base); 1810 PRM_DEBUG(segkpsize); 1811 1812 /* 1813 * segzio is used for ZFS cached data. It uses a distinct VA 1814 * segment (from kernel heap) so that we can easily tell not to 1815 * include it in kernel crash dumps on 64 bit kernels. The trick is 1816 * to give it lots of VA, but not constrain the kernel heap. 1817 * We scale the size of segzio linearly with physmem up to 1818 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1819 */ 1820 segzio_base = segkp_base + mmu_ptob(segkpsize); 1821 if (segzio_fromheap) { 1822 segziosize = 0; 1823 } else { 1824 size_t physmem_size = mmu_ptob(physmem); 1825 size_t size = (segziosize == 0) ? 1826 physmem_size : mmu_ptob(segziosize); 1827 1828 if (size < SEGZIOMINSIZE) 1829 size = SEGZIOMINSIZE; 1830 if (size > SEGZIOMAXSIZE) { 1831 size = SEGZIOMAXSIZE; 1832 if (physmem_size > size) 1833 size += (physmem_size - size) / 2; 1834 } 1835 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1836 } 1837 PRM_DEBUG(segziosize); 1838 PRM_DEBUG(segzio_base); 1839 1840 /* 1841 * Put the range of VA for device mappings next, kmdb knows to not 1842 * grep in this range of addresses. 1843 */ 1844 toxic_addr = 1845 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1846 PRM_DEBUG(toxic_addr); 1847 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1848 #else /* __i386 */ 1849 segmap_start = ROUND_UP_LPAGE(kernelbase); 1850 #endif /* __i386 */ 1851 PRM_DEBUG(segmap_start); 1852 1853 /* 1854 * Users can change segmapsize through eeprom. If the variable 1855 * is tuned through eeprom, there is no upper bound on the 1856 * size of segmap. 1857 */ 1858 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1859 1860 #if defined(__i386) 1861 /* 1862 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1863 * the bottom of the kernel's address range. Set aside space for a 1864 * small red zone just below the start of segmap. 1865 */ 1866 segmap_start += KERNEL_REDZONE_SIZE; 1867 segmapsize -= KERNEL_REDZONE_SIZE; 1868 #endif 1869 1870 PRM_DEBUG(segmap_start); 1871 PRM_DEBUG(segmapsize); 1872 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1873 PRM_DEBUG(kernelheap); 1874 PRM_POINT("layout_kernel_va() done..."); 1875 } 1876 1877 /* 1878 * Finish initializing the VM system, now that we are no longer 1879 * relying on the boot time memory allocators. 1880 */ 1881 static void 1882 startup_vm(void) 1883 { 1884 struct segmap_crargs a; 1885 1886 extern int use_brk_lpg, use_stk_lpg; 1887 1888 PRM_POINT("startup_vm() starting..."); 1889 1890 /* 1891 * Initialize the hat layer. 1892 */ 1893 hat_init(); 1894 1895 /* 1896 * Do final allocations of HAT data structures that need to 1897 * be allocated before quiescing the boot loader. 1898 */ 1899 PRM_POINT("Calling hat_kern_alloc()..."); 1900 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1901 PRM_POINT("hat_kern_alloc() done"); 1902 1903 #ifndef __xpv 1904 /* 1905 * Setup Page Attribute Table 1906 */ 1907 pat_sync(); 1908 #endif 1909 1910 /* 1911 * The next two loops are done in distinct steps in order 1912 * to be sure that any page that is doubly mapped (both above 1913 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1914 * Note this may never happen, but it might someday. 1915 */ 1916 bootpages = NULL; 1917 PRM_POINT("Protecting boot pages"); 1918 1919 /* 1920 * Protect any pages mapped above KERNEL_TEXT that somehow have 1921 * page_t's. This can only happen if something weird allocated 1922 * in this range (like kadb/kmdb). 1923 */ 1924 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1925 1926 /* 1927 * Before we can take over memory allocation/mapping from the boot 1928 * loader we must remove from our free page lists any boot allocated 1929 * pages that stay mapped until release_bootstrap(). 1930 */ 1931 protect_boot_range(0, kernelbase, 1); 1932 1933 1934 /* 1935 * Switch to running on regular HAT (not boot_mmu) 1936 */ 1937 PRM_POINT("Calling hat_kern_setup()..."); 1938 hat_kern_setup(); 1939 1940 /* 1941 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1942 */ 1943 bop_no_more_mem(); 1944 1945 PRM_POINT("hat_kern_setup() done"); 1946 1947 hat_cpu_online(CPU); 1948 1949 /* 1950 * Initialize VM system 1951 */ 1952 PRM_POINT("Calling kvm_init()..."); 1953 kvm_init(); 1954 PRM_POINT("kvm_init() done"); 1955 1956 /* 1957 * Tell kmdb that the VM system is now working 1958 */ 1959 if (boothowto & RB_DEBUG) 1960 kdi_dvec_vmready(); 1961 1962 #if defined(__xpv) 1963 /* 1964 * Populate the I/O pool on domain 0 1965 */ 1966 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1967 extern long populate_io_pool(void); 1968 long init_io_pool_cnt; 1969 1970 PRM_POINT("Populating reserve I/O page pool"); 1971 init_io_pool_cnt = populate_io_pool(); 1972 PRM_DEBUG(init_io_pool_cnt); 1973 } 1974 #endif 1975 /* 1976 * Mangle the brand string etc. 1977 */ 1978 cpuid_pass3(CPU); 1979 1980 #if defined(__amd64) 1981 1982 /* 1983 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1984 */ 1985 device_arena = vmem_create("device", (void *)toxic_addr, 1986 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1987 1988 #else /* __i386 */ 1989 1990 /* 1991 * allocate the bit map that tracks toxic pages 1992 */ 1993 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 1994 PRM_DEBUG(toxic_bit_map_len); 1995 toxic_bit_map = 1996 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1997 ASSERT(toxic_bit_map != NULL); 1998 PRM_DEBUG(toxic_bit_map); 1999 2000 #endif /* __i386 */ 2001 2002 2003 /* 2004 * Now that we've got more VA, as well as the ability to allocate from 2005 * it, tell the debugger. 2006 */ 2007 if (boothowto & RB_DEBUG) 2008 kdi_dvec_memavail(); 2009 2010 /* 2011 * The following code installs a special page fault handler (#pf) 2012 * to work around a pentium bug. 2013 */ 2014 #if !defined(__amd64) && !defined(__xpv) 2015 if (x86_type == X86_TYPE_P5) { 2016 desctbr_t idtr; 2017 gate_desc_t *newidt; 2018 2019 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 2020 panic("failed to install pentium_pftrap"); 2021 2022 bcopy(idt0, newidt, NIDT * sizeof (*idt0)); 2023 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 2024 KCS_SEL, SDT_SYSIGT, TRP_KPL, 0); 2025 2026 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 2027 PROT_READ | PROT_EXEC); 2028 2029 CPU->cpu_idt = newidt; 2030 idtr.dtr_base = (uintptr_t)CPU->cpu_idt; 2031 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1; 2032 wr_idtr(&idtr); 2033 } 2034 #endif /* !__amd64 */ 2035 2036 #if !defined(__xpv) 2037 /* 2038 * Map page pfn=0 for drivers, such as kd, that need to pick up 2039 * parameters left there by controllers/BIOS. 2040 */ 2041 PRM_POINT("setup up p0_va"); 2042 p0_va = i86devmap(0, 1, PROT_READ); 2043 PRM_DEBUG(p0_va); 2044 #endif 2045 2046 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 2047 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 2048 2049 /* 2050 * disable automatic large pages for small memory systems or 2051 * when the disable flag is set. 2052 * 2053 * Do not yet consider page sizes larger than 2m/4m. 2054 */ 2055 if (!auto_lpg_disable && mmu.max_page_level > 0) { 2056 max_uheap_lpsize = LEVEL_SIZE(1); 2057 max_ustack_lpsize = LEVEL_SIZE(1); 2058 max_privmap_lpsize = LEVEL_SIZE(1); 2059 max_uidata_lpsize = LEVEL_SIZE(1); 2060 max_utext_lpsize = LEVEL_SIZE(1); 2061 max_shm_lpsize = LEVEL_SIZE(1); 2062 } 2063 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 2064 auto_lpg_disable) { 2065 use_brk_lpg = 0; 2066 use_stk_lpg = 0; 2067 } 2068 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 2069 2070 PRM_POINT("Calling hat_init_finish()..."); 2071 hat_init_finish(); 2072 PRM_POINT("hat_init_finish() done"); 2073 2074 /* 2075 * Initialize the segkp segment type. 2076 */ 2077 rw_enter(&kas.a_lock, RW_WRITER); 2078 PRM_POINT("Attaching segkp"); 2079 if (segkp_fromheap) { 2080 segkp->s_as = &kas; 2081 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 2082 segkp) < 0) { 2083 panic("startup: cannot attach segkp"); 2084 /*NOTREACHED*/ 2085 } 2086 PRM_POINT("Doing segkp_create()"); 2087 if (segkp_create(segkp) != 0) { 2088 panic("startup: segkp_create failed"); 2089 /*NOTREACHED*/ 2090 } 2091 PRM_DEBUG(segkp); 2092 rw_exit(&kas.a_lock); 2093 2094 /* 2095 * kpm segment 2096 */ 2097 segmap_kpm = 0; 2098 if (kpm_desired) { 2099 kpm_init(); 2100 kpm_enable = 1; 2101 } 2102 2103 /* 2104 * Now create segmap segment. 2105 */ 2106 rw_enter(&kas.a_lock, RW_WRITER); 2107 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 2108 panic("cannot attach segmap"); 2109 /*NOTREACHED*/ 2110 } 2111 PRM_DEBUG(segmap); 2112 2113 a.prot = PROT_READ | PROT_WRITE; 2114 a.shmsize = 0; 2115 a.nfreelist = segmapfreelists; 2116 2117 if (segmap_create(segmap, (caddr_t)&a) != 0) 2118 panic("segmap_create segmap"); 2119 rw_exit(&kas.a_lock); 2120 2121 setup_vaddr_for_ppcopy(CPU); 2122 2123 segdev_init(); 2124 #if defined(__xpv) 2125 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2126 #endif 2127 pmem_init(); 2128 2129 PRM_POINT("startup_vm() done"); 2130 } 2131 2132 /* 2133 * Load a tod module for the non-standard tod part found on this system. 2134 */ 2135 static void 2136 load_tod_module(char *todmod) 2137 { 2138 if (modload("tod", todmod) == -1) 2139 halt("Can't load TOD module"); 2140 } 2141 2142 static void 2143 startup_end(void) 2144 { 2145 int i; 2146 extern void setx86isalist(void); 2147 extern void cpu_event_init(void); 2148 2149 PRM_POINT("startup_end() starting..."); 2150 2151 /* 2152 * Perform tasks that get done after most of the VM 2153 * initialization has been done but before the clock 2154 * and other devices get started. 2155 */ 2156 kern_setup1(); 2157 2158 /* 2159 * Perform CPC initialization for this CPU. 2160 */ 2161 kcpc_hw_init(CPU); 2162 2163 /* 2164 * Initialize cpu event framework. 2165 */ 2166 cpu_event_init(); 2167 2168 #if defined(OPTERON_WORKAROUND_6323525) 2169 if (opteron_workaround_6323525) 2170 patch_workaround_6323525(); 2171 #endif 2172 /* 2173 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2174 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2175 */ 2176 if (tod_module_name != NULL) { 2177 PRM_POINT("load_tod_module()"); 2178 load_tod_module(tod_module_name); 2179 } 2180 2181 #if defined(__xpv) 2182 /* 2183 * Forceload interposing TOD module for the hypervisor. 2184 */ 2185 PRM_POINT("load_tod_module()"); 2186 load_tod_module("xpvtod"); 2187 #endif 2188 2189 /* 2190 * Configure the system. 2191 */ 2192 PRM_POINT("Calling configure()..."); 2193 configure(); /* set up devices */ 2194 PRM_POINT("configure() done"); 2195 2196 /* 2197 * Set the isa_list string to the defined instruction sets we 2198 * support. 2199 */ 2200 setx86isalist(); 2201 cpu_intr_alloc(CPU, NINTR_THREADS); 2202 psm_install(); 2203 2204 /* 2205 * We're done with bootops. We don't unmap the bootstrap yet because 2206 * we're still using bootsvcs. 2207 */ 2208 PRM_POINT("NULLing out bootops"); 2209 *bootopsp = (struct bootops *)NULL; 2210 bootops = (struct bootops *)NULL; 2211 2212 #if defined(__xpv) 2213 ec_init_debug_irq(); 2214 xs_domu_init(); 2215 #endif 2216 2217 #if defined(__amd64) && !defined(__xpv) 2218 /* 2219 * Intel IOMMU has been setup/initialized in ddi_impl.c 2220 * Start it up now. 2221 */ 2222 immu_startup(); 2223 #endif 2224 2225 PRM_POINT("Enabling interrupts"); 2226 (*picinitf)(); 2227 sti(); 2228 #if defined(__xpv) 2229 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2230 xen_late_startup(); 2231 #endif 2232 2233 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2234 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2235 2236 /* 2237 * Register these software interrupts for ddi timer. 2238 * Software interrupts up to the level 10 are supported. 2239 */ 2240 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2241 char name[sizeof ("timer_softintr") + 2]; 2242 (void) sprintf(name, "timer_softintr%02d", i); 2243 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2244 (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL); 2245 } 2246 2247 #if !defined(__xpv) 2248 if (modload("drv", "amd_iommu") < 0) { 2249 PRM_POINT("No AMD IOMMU present\n"); 2250 } else if (ddi_hold_installed_driver(ddi_name_to_major( 2251 "amd_iommu")) == NULL) { 2252 prom_printf("ERROR: failed to attach AMD IOMMU\n"); 2253 } 2254 #endif 2255 post_startup_cpu_fixups(); 2256 2257 PRM_POINT("startup_end() done"); 2258 } 2259 2260 /* 2261 * Don't remove the following 2 variables. They are necessary 2262 * for reading the hostid from the legacy file (/kernel/misc/sysinit). 2263 */ 2264 char *_hs1107 = hw_serial; 2265 ulong_t _bdhs34; 2266 2267 void 2268 post_startup(void) 2269 { 2270 extern void cpupm_init(cpu_t *); 2271 extern void cpu_event_init_cpu(cpu_t *); 2272 2273 /* 2274 * Set the system wide, processor-specific flags to be passed 2275 * to userland via the aux vector for performance hints and 2276 * instruction set extensions. 2277 */ 2278 bind_hwcap(); 2279 2280 #ifdef __xpv 2281 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2282 #endif 2283 { 2284 #if defined(__xpv) 2285 xpv_panic_init(); 2286 #else 2287 /* 2288 * Startup the memory scrubber. 2289 * XXPV This should be running somewhere .. 2290 */ 2291 if (get_hwenv() != HW_XEN_HVM) 2292 memscrub_init(); 2293 #endif 2294 } 2295 2296 /* 2297 * Complete CPU module initialization 2298 */ 2299 cmi_post_startup(); 2300 2301 /* 2302 * Perform forceloading tasks for /etc/system. 2303 */ 2304 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2305 2306 /* 2307 * ON4.0: Force /proc module in until clock interrupt handle fixed 2308 * ON4.0: This must be fixed or restated in /etc/systems. 2309 */ 2310 (void) modload("fs", "procfs"); 2311 2312 (void) i_ddi_attach_hw_nodes("pit_beep"); 2313 2314 #if defined(__i386) 2315 /* 2316 * Check for required functional Floating Point hardware, 2317 * unless FP hardware explicitly disabled. 2318 */ 2319 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2320 halt("No working FP hardware found"); 2321 #endif 2322 2323 maxmem = freemem; 2324 2325 cpu_event_init_cpu(CPU); 2326 cpupm_init(CPU); 2327 (void) mach_cpu_create_device_node(CPU, NULL); 2328 2329 pg_init(); 2330 } 2331 2332 static int 2333 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) 2334 { 2335 return ((pp->p_pagenum >= btop(low_addr)) && 2336 (pp->p_pagenum < btopr(high_addr))); 2337 } 2338 2339 void 2340 release_bootstrap(void) 2341 { 2342 int root_is_ramdisk; 2343 page_t *pp; 2344 extern void kobj_boot_unmountroot(void); 2345 extern dev_t rootdev; 2346 #if !defined(__xpv) 2347 pfn_t pfn; 2348 #endif 2349 2350 /* unmount boot ramdisk and release kmem usage */ 2351 kobj_boot_unmountroot(); 2352 2353 /* 2354 * We're finished using the boot loader so free its pages. 2355 */ 2356 PRM_POINT("Unmapping lower boot pages"); 2357 2358 clear_boot_mappings(0, _userlimit); 2359 2360 postbootkernelbase = kernelbase; 2361 2362 /* 2363 * If root isn't on ramdisk, destroy the hardcoded 2364 * ramdisk node now and release the memory. Else, 2365 * ramdisk memory is kept in rd_pages. 2366 */ 2367 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2368 if (!root_is_ramdisk) { 2369 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2370 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2371 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2372 (void) ddi_remove_child(dip, 0); 2373 } 2374 2375 PRM_POINT("Releasing boot pages"); 2376 while (bootpages) { 2377 extern uint64_t ramdisk_start, ramdisk_end; 2378 pp = bootpages; 2379 bootpages = pp->p_next; 2380 2381 2382 /* Keep pages for the lower 64K */ 2383 if (pp_in_range(pp, 0, 0x40000)) { 2384 pp->p_next = lower_pages; 2385 lower_pages = pp; 2386 lower_pages_count++; 2387 continue; 2388 } 2389 2390 2391 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start, 2392 ramdisk_end)) { 2393 pp->p_next = rd_pages; 2394 rd_pages = pp; 2395 continue; 2396 } 2397 pp->p_next = (struct page *)0; 2398 pp->p_prev = (struct page *)0; 2399 PP_CLRBOOTPAGES(pp); 2400 page_free(pp, 1); 2401 } 2402 PRM_POINT("Boot pages released"); 2403 2404 #if !defined(__xpv) 2405 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2406 /* 2407 * Find 1 page below 1 MB so that other processors can boot up or 2408 * so that any processor can resume. 2409 * Make sure it has a kernel VA as well as a 1:1 mapping. 2410 * We should have just free'd one up. 2411 */ 2412 2413 /* 2414 * 0x10 pages is 64K. Leave the bottom 64K alone 2415 * for BIOS. 2416 */ 2417 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { 2418 if (page_numtopp_alloc(pfn) == NULL) 2419 continue; 2420 rm_platter_va = i86devmap(pfn, 1, 2421 PROT_READ | PROT_WRITE | PROT_EXEC); 2422 rm_platter_pa = ptob(pfn); 2423 break; 2424 } 2425 if (pfn == btop(1*1024*1024) && use_mp) 2426 panic("No page below 1M available for starting " 2427 "other processors or for resuming from system-suspend"); 2428 #endif /* !__xpv */ 2429 } 2430 2431 /* 2432 * Initialize the platform-specific parts of a page_t. 2433 */ 2434 void 2435 add_physmem_cb(page_t *pp, pfn_t pnum) 2436 { 2437 pp->p_pagenum = pnum; 2438 pp->p_mapping = NULL; 2439 pp->p_embed = 0; 2440 pp->p_share = 0; 2441 pp->p_mlentry = 0; 2442 } 2443 2444 /* 2445 * kphysm_init() initializes physical memory. 2446 */ 2447 static pgcnt_t 2448 kphysm_init( 2449 page_t *pp, 2450 pgcnt_t npages) 2451 { 2452 struct memlist *pmem; 2453 struct memseg *cur_memseg; 2454 pfn_t base_pfn; 2455 pfn_t end_pfn; 2456 pgcnt_t num; 2457 pgcnt_t pages_done = 0; 2458 uint64_t addr; 2459 uint64_t size; 2460 extern pfn_t ddiphysmin; 2461 extern int mnode_xwa; 2462 int ms = 0, me = 0; 2463 2464 ASSERT(page_hash != NULL && page_hashsz != 0); 2465 2466 cur_memseg = memseg_base; 2467 for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) { 2468 /* 2469 * In a 32 bit kernel can't use higher memory if we're 2470 * not booting in PAE mode. This check takes care of that. 2471 */ 2472 addr = pmem->ml_address; 2473 size = pmem->ml_size; 2474 if (btop(addr) > physmax) 2475 continue; 2476 2477 /* 2478 * align addr and size - they may not be at page boundaries 2479 */ 2480 if ((addr & MMU_PAGEOFFSET) != 0) { 2481 addr += MMU_PAGEOFFSET; 2482 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2483 size -= addr - pmem->ml_address; 2484 } 2485 2486 /* only process pages below or equal to physmax */ 2487 if ((btop(addr + size) - 1) > physmax) 2488 size = ptob(physmax - btop(addr) + 1); 2489 2490 num = btop(size); 2491 if (num == 0) 2492 continue; 2493 2494 if (num > npages) 2495 num = npages; 2496 2497 npages -= num; 2498 pages_done += num; 2499 base_pfn = btop(addr); 2500 2501 if (prom_debug) 2502 prom_printf("MEMSEG addr=0x%" PRIx64 2503 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2504 addr, num, base_pfn, base_pfn + num); 2505 2506 /* 2507 * Ignore pages below ddiphysmin to simplify ddi memory 2508 * allocation with non-zero addr_lo requests. 2509 */ 2510 if (base_pfn < ddiphysmin) { 2511 if (base_pfn + num <= ddiphysmin) 2512 continue; 2513 pp += (ddiphysmin - base_pfn); 2514 num -= (ddiphysmin - base_pfn); 2515 base_pfn = ddiphysmin; 2516 } 2517 2518 /* 2519 * mnode_xwa is greater than 1 when large pages regions can 2520 * cross memory node boundaries. To prevent the formation 2521 * of these large pages, configure the memsegs based on the 2522 * memory node ranges which had been made non-contiguous. 2523 */ 2524 if (mnode_xwa > 1) { 2525 2526 end_pfn = base_pfn + num - 1; 2527 ms = PFN_2_MEM_NODE(base_pfn); 2528 me = PFN_2_MEM_NODE(end_pfn); 2529 2530 if (ms != me) { 2531 /* 2532 * current range spans more than 1 memory node. 2533 * Set num to only the pfn range in the start 2534 * memory node. 2535 */ 2536 num = mem_node_config[ms].physmax - base_pfn 2537 + 1; 2538 ASSERT(end_pfn > mem_node_config[ms].physmax); 2539 } 2540 } 2541 2542 for (;;) { 2543 /* 2544 * Build the memsegs entry 2545 */ 2546 cur_memseg->pages = pp; 2547 cur_memseg->epages = pp + num; 2548 cur_memseg->pages_base = base_pfn; 2549 cur_memseg->pages_end = base_pfn + num; 2550 2551 /* 2552 * Insert into memseg list in decreasing pfn range 2553 * order. Low memory is typically more fragmented such 2554 * that this ordering keeps the larger ranges at the 2555 * front of the list for code that searches memseg. 2556 * This ASSERTS that the memsegs coming in from boot 2557 * are in increasing physical address order and not 2558 * contiguous. 2559 */ 2560 if (memsegs != NULL) { 2561 ASSERT(cur_memseg->pages_base >= 2562 memsegs->pages_end); 2563 cur_memseg->next = memsegs; 2564 } 2565 memsegs = cur_memseg; 2566 2567 /* 2568 * add_physmem() initializes the PSM part of the page 2569 * struct by calling the PSM back with add_physmem_cb(). 2570 * In addition it coalesces pages into larger pages as 2571 * it initializes them. 2572 */ 2573 add_physmem(pp, num, base_pfn); 2574 cur_memseg++; 2575 availrmem_initial += num; 2576 availrmem += num; 2577 2578 pp += num; 2579 if (ms >= me) 2580 break; 2581 2582 /* process next memory node range */ 2583 ms++; 2584 base_pfn = mem_node_config[ms].physbase; 2585 num = MIN(mem_node_config[ms].physmax, 2586 end_pfn) - base_pfn + 1; 2587 } 2588 } 2589 2590 PRM_DEBUG(availrmem_initial); 2591 PRM_DEBUG(availrmem); 2592 PRM_DEBUG(freemem); 2593 build_pfn_hash(); 2594 return (pages_done); 2595 } 2596 2597 /* 2598 * Kernel VM initialization. 2599 */ 2600 static void 2601 kvm_init(void) 2602 { 2603 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2604 2605 /* 2606 * Put the kernel segments in kernel address space. 2607 */ 2608 rw_enter(&kas.a_lock, RW_WRITER); 2609 as_avlinit(&kas); 2610 2611 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2612 (void) segkmem_create(&ktextseg); 2613 2614 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2615 (void) segkmem_create(&kvalloc); 2616 2617 (void) seg_attach(&kas, kernelheap, 2618 ekernelheap - kernelheap, &kvseg); 2619 (void) segkmem_create(&kvseg); 2620 2621 if (core_size > 0) { 2622 PRM_POINT("attaching kvseg_core"); 2623 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2624 &kvseg_core); 2625 (void) segkmem_create(&kvseg_core); 2626 } 2627 2628 if (segziosize > 0) { 2629 PRM_POINT("attaching segzio"); 2630 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2631 &kzioseg); 2632 (void) segkmem_zio_create(&kzioseg); 2633 2634 /* create zio area covering new segment */ 2635 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2636 } 2637 2638 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2639 (void) segkmem_create(&kdebugseg); 2640 2641 rw_exit(&kas.a_lock); 2642 2643 /* 2644 * Ensure that the red zone at kernelbase is never accessible. 2645 */ 2646 PRM_POINT("protecting redzone"); 2647 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2648 2649 /* 2650 * Make the text writable so that it can be hot patched by DTrace. 2651 */ 2652 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2653 PROT_READ | PROT_WRITE | PROT_EXEC); 2654 2655 /* 2656 * Make data writable until end. 2657 */ 2658 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2659 PROT_READ | PROT_WRITE | PROT_EXEC); 2660 } 2661 2662 #ifndef __xpv 2663 /* 2664 * Solaris adds an entry for Write Combining caching to the PAT 2665 */ 2666 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2667 2668 void 2669 pat_sync(void) 2670 { 2671 ulong_t cr0, cr0_orig, cr4; 2672 2673 if (!(x86_feature & X86_PAT)) 2674 return; 2675 cr0_orig = cr0 = getcr0(); 2676 cr4 = getcr4(); 2677 2678 /* disable caching and flush all caches and TLBs */ 2679 cr0 |= CR0_CD; 2680 cr0 &= ~CR0_NW; 2681 setcr0(cr0); 2682 invalidate_cache(); 2683 if (cr4 & CR4_PGE) { 2684 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2685 setcr4(cr4); 2686 } else { 2687 reload_cr3(); 2688 } 2689 2690 /* add our entry to the PAT */ 2691 wrmsr(REG_PAT, pat_attr_reg); 2692 2693 /* flush TLBs and cache again, then reenable cr0 caching */ 2694 if (cr4 & CR4_PGE) { 2695 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2696 setcr4(cr4); 2697 } else { 2698 reload_cr3(); 2699 } 2700 invalidate_cache(); 2701 setcr0(cr0_orig); 2702 } 2703 2704 #endif /* !__xpv */ 2705 2706 #if defined(_SOFT_HOSTID) 2707 /* 2708 * On platforms that do not have a hardware serial number, attempt 2709 * to set one based on the contents of /etc/hostid. If this file does 2710 * not exist, assume that we are to generate a new hostid and set 2711 * it in the kernel, for subsequent saving by a userland process 2712 * once the system is up and the root filesystem is mounted r/w. 2713 * 2714 * In order to gracefully support upgrade on OpenSolaris, if 2715 * /etc/hostid does not exist, we will attempt to get a serial number 2716 * using the legacy method (/kernel/misc/sysinit). 2717 * 2718 * In an attempt to make the hostid less prone to abuse 2719 * (for license circumvention, etc), we store it in /etc/hostid 2720 * in rot47 format. 2721 */ 2722 extern volatile unsigned long tenmicrodata; 2723 static int atoi(char *); 2724 2725 static int32_t 2726 set_soft_hostid(void) 2727 { 2728 struct _buf *file; 2729 char tokbuf[MAXNAMELEN]; 2730 token_t token; 2731 int done = 0; 2732 u_longlong_t tmp; 2733 int i; 2734 int32_t hostid = (int32_t)HW_INVALID_HOSTID; 2735 unsigned char *c; 2736 hrtime_t tsc; 2737 2738 /* 2739 * If /etc/hostid file not found, we'd like to get a pseudo 2740 * random number to use at the hostid. A nice way to do this 2741 * is to read the real time clock. To remain xen-compatible, 2742 * we can't poke the real hardware, so we use tsc_read() to 2743 * read the real time clock. However, there is an ominous 2744 * warning in tsc_read that says it can return zero, so we 2745 * deal with that possibility by falling back to using the 2746 * (hopefully random enough) value in tenmicrodata. 2747 */ 2748 2749 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) { 2750 /* 2751 * hostid file not found - try to load sysinit module 2752 * and see if it has a nonzero hostid value...use that 2753 * instead of generating a new hostid here if so. 2754 */ 2755 if ((i = modload("misc", "sysinit")) != -1) { 2756 if (strlen(hw_serial) > 0) 2757 hostid = (int32_t)atoi(hw_serial); 2758 (void) modunload(i); 2759 } 2760 if (hostid == HW_INVALID_HOSTID) { 2761 tsc = tsc_read(); 2762 if (tsc == 0) /* tsc_read can return zero sometimes */ 2763 hostid = (int32_t)tenmicrodata & 0x0CFFFFF; 2764 else 2765 hostid = (int32_t)tsc & 0x0CFFFFF; 2766 } 2767 } else { 2768 /* hostid file found */ 2769 while (!done) { 2770 token = kobj_lex(file, tokbuf, sizeof (tokbuf)); 2771 2772 switch (token) { 2773 case POUND: 2774 /* 2775 * skip comments 2776 */ 2777 kobj_find_eol(file); 2778 break; 2779 case STRING: 2780 /* 2781 * un-rot47 - obviously this 2782 * nonsense is ascii-specific 2783 */ 2784 for (c = (unsigned char *)tokbuf; 2785 *c != '\0'; c++) { 2786 *c += 47; 2787 if (*c > '~') 2788 *c -= 94; 2789 else if (*c < '!') 2790 *c += 94; 2791 } 2792 /* 2793 * now we should have a real number 2794 */ 2795 2796 if (kobj_getvalue(tokbuf, &tmp) != 0) 2797 kobj_file_err(CE_WARN, file, 2798 "Bad value %s for hostid", 2799 tokbuf); 2800 else 2801 hostid = (int32_t)tmp; 2802 2803 break; 2804 case EOF: 2805 done = 1; 2806 /* FALLTHROUGH */ 2807 case NEWLINE: 2808 kobj_newline(file); 2809 break; 2810 default: 2811 break; 2812 2813 } 2814 } 2815 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */ 2816 kobj_file_err(CE_WARN, file, 2817 "hostid missing or corrupt"); 2818 2819 kobj_close_file(file); 2820 } 2821 /* 2822 * hostid is now the value read from /etc/hostid, or the 2823 * new hostid we generated in this routine or HW_INVALID_HOSTID if not 2824 * set. 2825 */ 2826 return (hostid); 2827 } 2828 2829 static int 2830 atoi(char *p) 2831 { 2832 int i = 0; 2833 2834 while (*p != '\0') 2835 i = 10 * i + (*p++ - '0'); 2836 2837 return (i); 2838 } 2839 2840 #endif /* _SOFT_HOSTID */ 2841 2842 void 2843 get_system_configuration(void) 2844 { 2845 char prop[32]; 2846 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2847 2848 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2849 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2850 kobj_getvalue(prop, &nodes_ll) == -1 || 2851 nodes_ll > MAXNODES || 2852 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2853 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2854 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2855 system_hardware.hd_nodes = 1; 2856 system_hardware.hd_cpus_per_node = 0; 2857 } else { 2858 system_hardware.hd_nodes = (int)nodes_ll; 2859 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2860 } 2861 2862 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2863 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2864 kobj_getvalue(prop, &lvalue) == -1) 2865 eprom_kernelbase = NULL; 2866 else 2867 eprom_kernelbase = (uintptr_t)lvalue; 2868 2869 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2870 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2871 kobj_getvalue(prop, &lvalue) == -1) 2872 segmapsize = SEGMAPDEFAULT; 2873 else 2874 segmapsize = (uintptr_t)lvalue; 2875 2876 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2877 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2878 kobj_getvalue(prop, &lvalue) == -1) 2879 segmapfreelists = 0; /* use segmap driver default */ 2880 else 2881 segmapfreelists = (int)lvalue; 2882 2883 /* physmem used to be here, but moved much earlier to fakebop.c */ 2884 } 2885 2886 /* 2887 * Add to a memory list. 2888 * start = start of new memory segment 2889 * len = length of new memory segment in bytes 2890 * new = pointer to a new struct memlist 2891 * memlistp = memory list to which to add segment. 2892 */ 2893 void 2894 memlist_add( 2895 uint64_t start, 2896 uint64_t len, 2897 struct memlist *new, 2898 struct memlist **memlistp) 2899 { 2900 struct memlist *cur; 2901 uint64_t end = start + len; 2902 2903 new->ml_address = start; 2904 new->ml_size = len; 2905 2906 cur = *memlistp; 2907 2908 while (cur) { 2909 if (cur->ml_address >= end) { 2910 new->ml_next = cur; 2911 *memlistp = new; 2912 new->ml_prev = cur->ml_prev; 2913 cur->ml_prev = new; 2914 return; 2915 } 2916 ASSERT(cur->ml_address + cur->ml_size <= start); 2917 if (cur->ml_next == NULL) { 2918 cur->ml_next = new; 2919 new->ml_prev = cur; 2920 new->ml_next = NULL; 2921 return; 2922 } 2923 memlistp = &cur->ml_next; 2924 cur = cur->ml_next; 2925 } 2926 } 2927 2928 void 2929 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2930 { 2931 size_t tsize = e_modtext - modtext; 2932 size_t dsize = e_moddata - moddata; 2933 2934 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2935 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2936 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2937 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2938 } 2939 2940 caddr_t 2941 kobj_text_alloc(vmem_t *arena, size_t size) 2942 { 2943 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2944 } 2945 2946 /*ARGSUSED*/ 2947 caddr_t 2948 kobj_texthole_alloc(caddr_t addr, size_t size) 2949 { 2950 panic("unexpected call to kobj_texthole_alloc()"); 2951 /*NOTREACHED*/ 2952 return (0); 2953 } 2954 2955 /*ARGSUSED*/ 2956 void 2957 kobj_texthole_free(caddr_t addr, size_t size) 2958 { 2959 panic("unexpected call to kobj_texthole_free()"); 2960 } 2961 2962 /* 2963 * This is called just after configure() in startup(). 2964 * 2965 * The ISALIST concept is a bit hopeless on Intel, because 2966 * there's no guarantee of an ever-more-capable processor 2967 * given that various parts of the instruction set may appear 2968 * and disappear between different implementations. 2969 * 2970 * While it would be possible to correct it and even enhance 2971 * it somewhat, the explicit hardware capability bitmask allows 2972 * more flexibility. 2973 * 2974 * So, we just leave this alone. 2975 */ 2976 void 2977 setx86isalist(void) 2978 { 2979 char *tp; 2980 size_t len; 2981 extern char *isa_list; 2982 2983 #define TBUFSIZE 1024 2984 2985 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2986 *tp = '\0'; 2987 2988 #if defined(__amd64) 2989 (void) strcpy(tp, "amd64 "); 2990 #endif 2991 2992 switch (x86_vendor) { 2993 case X86_VENDOR_Intel: 2994 case X86_VENDOR_AMD: 2995 case X86_VENDOR_TM: 2996 if (x86_feature & X86_CMOV) { 2997 /* 2998 * Pentium Pro or later 2999 */ 3000 (void) strcat(tp, "pentium_pro"); 3001 (void) strcat(tp, x86_feature & X86_MMX ? 3002 "+mmx pentium_pro " : " "); 3003 } 3004 /*FALLTHROUGH*/ 3005 case X86_VENDOR_Cyrix: 3006 /* 3007 * The Cyrix 6x86 does not have any Pentium features 3008 * accessible while not at privilege level 0. 3009 */ 3010 if (x86_feature & X86_CPUID) { 3011 (void) strcat(tp, "pentium"); 3012 (void) strcat(tp, x86_feature & X86_MMX ? 3013 "+mmx pentium " : " "); 3014 } 3015 break; 3016 default: 3017 break; 3018 } 3019 (void) strcat(tp, "i486 i386 i86"); 3020 len = strlen(tp) + 1; /* account for NULL at end of string */ 3021 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 3022 kmem_free(tp, TBUFSIZE); 3023 3024 #undef TBUFSIZE 3025 } 3026 3027 3028 #ifdef __amd64 3029 3030 void * 3031 device_arena_alloc(size_t size, int vm_flag) 3032 { 3033 return (vmem_alloc(device_arena, size, vm_flag)); 3034 } 3035 3036 void 3037 device_arena_free(void *vaddr, size_t size) 3038 { 3039 vmem_free(device_arena, vaddr, size); 3040 } 3041 3042 #else /* __i386 */ 3043 3044 void * 3045 device_arena_alloc(size_t size, int vm_flag) 3046 { 3047 caddr_t vaddr; 3048 uintptr_t v; 3049 size_t start; 3050 size_t end; 3051 3052 vaddr = vmem_alloc(heap_arena, size, vm_flag); 3053 if (vaddr == NULL) 3054 return (NULL); 3055 3056 v = (uintptr_t)vaddr; 3057 ASSERT(v >= kernelbase); 3058 ASSERT(v + size <= valloc_base); 3059 3060 start = btop(v - kernelbase); 3061 end = btop(v + size - 1 - kernelbase); 3062 ASSERT(start < toxic_bit_map_len); 3063 ASSERT(end < toxic_bit_map_len); 3064 3065 while (start <= end) { 3066 BT_ATOMIC_SET(toxic_bit_map, start); 3067 ++start; 3068 } 3069 return (vaddr); 3070 } 3071 3072 void 3073 device_arena_free(void *vaddr, size_t size) 3074 { 3075 uintptr_t v = (uintptr_t)vaddr; 3076 size_t start; 3077 size_t end; 3078 3079 ASSERT(v >= kernelbase); 3080 ASSERT(v + size <= valloc_base); 3081 3082 start = btop(v - kernelbase); 3083 end = btop(v + size - 1 - kernelbase); 3084 ASSERT(start < toxic_bit_map_len); 3085 ASSERT(end < toxic_bit_map_len); 3086 3087 while (start <= end) { 3088 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 3089 BT_ATOMIC_CLEAR(toxic_bit_map, start); 3090 ++start; 3091 } 3092 vmem_free(heap_arena, vaddr, size); 3093 } 3094 3095 /* 3096 * returns 1st address in range that is in device arena, or NULL 3097 * if len is not NULL it returns the length of the toxic range 3098 */ 3099 void * 3100 device_arena_contains(void *vaddr, size_t size, size_t *len) 3101 { 3102 uintptr_t v = (uintptr_t)vaddr; 3103 uintptr_t eaddr = v + size; 3104 size_t start; 3105 size_t end; 3106 3107 /* 3108 * if called very early by kmdb, just return NULL 3109 */ 3110 if (toxic_bit_map == NULL) 3111 return (NULL); 3112 3113 /* 3114 * First check if we're completely outside the bitmap range. 3115 */ 3116 if (v >= valloc_base || eaddr < kernelbase) 3117 return (NULL); 3118 3119 /* 3120 * Trim ends of search to look at only what the bitmap covers. 3121 */ 3122 if (v < kernelbase) 3123 v = kernelbase; 3124 start = btop(v - kernelbase); 3125 end = btop(eaddr - kernelbase); 3126 if (end >= toxic_bit_map_len) 3127 end = toxic_bit_map_len; 3128 3129 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 3130 return (NULL); 3131 3132 v = kernelbase + ptob(start); 3133 if (len != NULL) 3134 *len = ptob(end - start); 3135 return ((void *)v); 3136 } 3137 3138 #endif /* __i386 */ 3139