1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/t_lock.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/systm.h> 34 #include <sys/user.h> 35 #include <sys/mman.h> 36 #include <sys/vm.h> 37 #include <sys/conf.h> 38 #include <sys/avintr.h> 39 #include <sys/autoconf.h> 40 #include <sys/disp.h> 41 #include <sys/class.h> 42 #include <sys/bitmap.h> 43 44 #include <sys/privregs.h> 45 46 #include <sys/proc.h> 47 #include <sys/buf.h> 48 #include <sys/kmem.h> 49 #include <sys/mem.h> 50 #include <sys/kstat.h> 51 52 #include <sys/reboot.h> 53 54 #include <sys/cred.h> 55 #include <sys/vnode.h> 56 #include <sys/file.h> 57 58 #include <sys/procfs.h> 59 60 #include <sys/vfs.h> 61 #include <sys/cmn_err.h> 62 #include <sys/utsname.h> 63 #include <sys/debug.h> 64 #include <sys/kdi.h> 65 66 #include <sys/dumphdr.h> 67 #include <sys/bootconf.h> 68 #include <sys/varargs.h> 69 #include <sys/promif.h> 70 #include <sys/modctl.h> 71 72 #include <sys/sunddi.h> 73 #include <sys/sunndi.h> 74 #include <sys/ndi_impldefs.h> 75 #include <sys/ddidmareq.h> 76 #include <sys/psw.h> 77 #include <sys/regset.h> 78 #include <sys/clock.h> 79 #include <sys/pte.h> 80 #include <sys/tss.h> 81 #include <sys/stack.h> 82 #include <sys/trap.h> 83 #include <sys/fp.h> 84 #include <vm/kboot_mmu.h> 85 #include <vm/anon.h> 86 #include <vm/as.h> 87 #include <vm/page.h> 88 #include <vm/seg.h> 89 #include <vm/seg_dev.h> 90 #include <vm/seg_kmem.h> 91 #include <vm/seg_kpm.h> 92 #include <vm/seg_map.h> 93 #include <vm/seg_vn.h> 94 #include <vm/seg_kp.h> 95 #include <sys/memnode.h> 96 #include <vm/vm_dep.h> 97 #include <sys/thread.h> 98 #include <sys/sysconf.h> 99 #include <sys/vm_machparam.h> 100 #include <sys/archsystm.h> 101 #include <sys/machsystm.h> 102 #include <vm/hat.h> 103 #include <vm/hat_i86.h> 104 #include <sys/pmem.h> 105 #include <sys/smp_impldefs.h> 106 #include <sys/x86_archext.h> 107 #include <sys/cpuvar.h> 108 #include <sys/segments.h> 109 #include <sys/clconf.h> 110 #include <sys/kobj.h> 111 #include <sys/kobj_lex.h> 112 #include <sys/cpc_impl.h> 113 #include <sys/x86_archext.h> 114 #include <sys/cpu_module.h> 115 #include <sys/smbios.h> 116 #include <sys/debug_info.h> 117 #include <sys/bootinfo.h> 118 #include <sys/ddi_timer.h> 119 120 #ifdef __xpv 121 122 #include <sys/hypervisor.h> 123 #include <sys/xen_mmu.h> 124 #include <sys/evtchn_impl.h> 125 #include <sys/gnttab.h> 126 #include <sys/xpv_panic.h> 127 #include <xen/sys/xenbus_comms.h> 128 #include <xen/public/physdev.h> 129 130 extern void xen_late_startup(void); 131 132 struct xen_evt_data cpu0_evt_data; 133 134 #endif /* __xpv */ 135 136 extern void progressbar_init(void); 137 extern void progressbar_start(void); 138 extern void brand_init(void); 139 140 extern int size_pse_array(pgcnt_t, int); 141 142 /* 143 * XXX make declaration below "static" when drivers no longer use this 144 * interface. 145 */ 146 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 147 148 /* 149 * segkp 150 */ 151 extern int segkp_fromheap; 152 153 static void kvm_init(void); 154 static void startup_init(void); 155 static void startup_memlist(void); 156 static void startup_kmem(void); 157 static void startup_modules(void); 158 static void startup_vm(void); 159 static void startup_end(void); 160 static void layout_kernel_va(void); 161 162 /* 163 * Declare these as initialized data so we can patch them. 164 */ 165 #ifdef __i386 166 167 /* 168 * Due to virtual address space limitations running in 32 bit mode, restrict 169 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 170 * 171 * If the physical max memory size of 64g were allowed to be configured, the 172 * size of user virtual address space will be less than 1g. A limited user 173 * address space greatly reduces the range of applications that can run. 174 * 175 * If more physical memory than PHYSMEM is required, users should preferably 176 * run in 64 bit mode which has far looser virtual address space limitations. 177 * 178 * If 64 bit mode is not available (as in IA32) and/or more physical memory 179 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 180 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 181 * should also be carefully tuned to balance out the need of the user 182 * application while minimizing the risk of kernel heap exhaustion due to 183 * kernelbase being set too high. 184 */ 185 #define PHYSMEM 0x400000 186 187 #else /* __amd64 */ 188 189 /* 190 * For now we can handle memory with physical addresses up to about 191 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 192 * half the VA space for seg_kpm. When systems get bigger than 64TB this 193 * code will need revisiting. There is an implicit assumption that there 194 * are no *huge* holes in the physical address space too. 195 */ 196 #define TERABYTE (1ul << 40) 197 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 198 #define PHYSMEM PHYSMEM_MAX64 199 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 200 201 #endif /* __amd64 */ 202 203 pgcnt_t physmem = PHYSMEM; 204 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 205 206 char *kobj_file_buf; 207 int kobj_file_bufsize; /* set in /etc/system */ 208 209 /* Global variables for MP support. Used in mp_startup */ 210 caddr_t rm_platter_va; 211 uint32_t rm_platter_pa; 212 213 int auto_lpg_disable = 1; 214 215 /* 216 * Some CPUs have holes in the middle of the 64-bit virtual address range. 217 */ 218 uintptr_t hole_start, hole_end; 219 220 /* 221 * kpm mapping window 222 */ 223 caddr_t kpm_vbase; 224 size_t kpm_size; 225 static int kpm_desired; 226 #ifdef __amd64 227 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 228 #endif 229 230 /* 231 * Configuration parameters set at boot time. 232 */ 233 234 caddr_t econtig; /* end of first block of contiguous kernel */ 235 236 struct bootops *bootops = 0; /* passed in from boot */ 237 struct bootops **bootopsp; 238 struct boot_syscalls *sysp; /* passed in from boot */ 239 240 char bootblock_fstype[16]; 241 242 char kern_bootargs[OBP_MAXPATHLEN]; 243 244 /* 245 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 246 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 247 * zio buffers from their own segment, otherwise they are allocated from the 248 * heap. The optimization of allocating zio buffers from their own segment is 249 * only valid on 64-bit kernels. 250 */ 251 #if defined(__amd64) 252 int segzio_fromheap = 0; 253 #else 254 int segzio_fromheap = 1; 255 #endif 256 257 /* 258 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 259 * depends on number of BOP_ALLOC calls made and requested size, memory size 260 * combination and whether boot.bin memory needs to be freed. 261 */ 262 #define POSS_NEW_FRAGMENTS 12 263 264 /* 265 * VM data structures 266 */ 267 long page_hashsz; /* Size of page hash table (power of two) */ 268 struct page *pp_base; /* Base of initial system page struct array */ 269 struct page **page_hash; /* Page hash table */ 270 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 271 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 272 int pse_shift; /* log2(pse_table_size) */ 273 struct seg ktextseg; /* Segment used for kernel executable image */ 274 struct seg kvalloc; /* Segment used for "valloc" mapping */ 275 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 276 struct seg kmapseg; /* Segment used for generic kernel mappings */ 277 struct seg kdebugseg; /* Segment used for the kernel debugger */ 278 279 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 280 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 281 282 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 283 284 #if defined(__amd64) 285 struct seg kvseg_core; /* Segment used for the core heap */ 286 struct seg kpmseg; /* Segment used for physical mapping */ 287 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 288 #else 289 struct seg *segkpm = NULL; /* Unused on IA32 */ 290 #endif 291 292 caddr_t segkp_base; /* Base address of segkp */ 293 caddr_t segzio_base; /* Base address of segzio */ 294 #if defined(__amd64) 295 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 296 #else 297 pgcnt_t segkpsize = 0; 298 #endif 299 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 300 301 /* 302 * VA range available to the debugger 303 */ 304 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 305 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 306 307 struct memseg *memseg_base; 308 struct vnode unused_pages_vp; 309 310 #define FOURGB 0x100000000LL 311 312 struct memlist *memlist; 313 314 caddr_t s_text; /* start of kernel text segment */ 315 caddr_t e_text; /* end of kernel text segment */ 316 caddr_t s_data; /* start of kernel data segment */ 317 caddr_t e_data; /* end of kernel data segment */ 318 caddr_t modtext; /* start of loadable module text reserved */ 319 caddr_t e_modtext; /* end of loadable module text reserved */ 320 caddr_t moddata; /* start of loadable module data reserved */ 321 caddr_t e_moddata; /* end of loadable module data reserved */ 322 323 struct memlist *phys_install; /* Total installed physical memory */ 324 struct memlist *phys_avail; /* Total available physical memory */ 325 326 /* 327 * kphysm_init returns the number of pages that were processed 328 */ 329 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 330 331 #define IO_PROP_SIZE 64 /* device property size */ 332 333 /* 334 * a couple useful roundup macros 335 */ 336 #define ROUND_UP_PAGE(x) \ 337 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 338 #define ROUND_UP_LPAGE(x) \ 339 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 340 #define ROUND_UP_4MEG(x) \ 341 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 342 #define ROUND_UP_TOPLEVEL(x) \ 343 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 344 345 /* 346 * 32-bit Kernel's Virtual memory layout. 347 * +-----------------------+ 348 * | | 349 * 0xFFC00000 -|-----------------------|- ARGSBASE 350 * | debugger | 351 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 352 * | Kernel Data | 353 * 0xFEC00000 -|-----------------------| 354 * | Kernel Text | 355 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 356 * |--- GDT ---|- GDT page (GDT_VA) 357 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 358 * | | 359 * | page_t structures | 360 * | memsegs, memlists, | 361 * | page hash, etc. | 362 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 363 * | | (segkp is just an arena in the heap) 364 * | | 365 * | kvseg | 366 * | | 367 * | | 368 * --- -|-----------------------|- kernelheap (floating) 369 * | Segkmap | 370 * 0xC3002000 -|-----------------------|- segmap_start (floating) 371 * | Red Zone | 372 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 373 * | | || 374 * | Shared objects | \/ 375 * | | 376 * : : 377 * | user data | 378 * |-----------------------| 379 * | user text | 380 * 0x08048000 -|-----------------------| 381 * | user stack | 382 * : : 383 * | invalid | 384 * 0x00000000 +-----------------------+ 385 * 386 * 387 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 388 * +-----------------------+ 389 * | | 390 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 391 * | debugger (?) | 392 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 393 * | unused | 394 * +-----------------------+ 395 * | Kernel Data | 396 * 0xFFFFFFFF.FBC00000 |-----------------------| 397 * | Kernel Text | 398 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 399 * |--- GDT ---|- GDT page (GDT_VA) 400 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 401 * | | 402 * | Core heap | (used for loadable modules) 403 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 404 * | Kernel | 405 * | heap | 406 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 407 * | segmap | 408 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 409 * | device mappings | 410 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 411 * | segzio | 412 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 413 * | segkp | 414 * --- |-----------------------|- segkp_base (floating) 415 * | page_t structures | valloc_base + valloc_sz 416 * | memsegs, memlists, | 417 * | page hash, etc. | 418 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 419 * | segkpm | 420 * 0xFFFFFE00.00000000 |-----------------------| 421 * | Red Zone | 422 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 423 * | User stack |- User space memory 424 * | | 425 * | shared objects, etc | (grows downwards) 426 * : : 427 * | | 428 * 0xFFFF8000.00000000 |-----------------------| 429 * | | 430 * | VA Hole / unused | 431 * | | 432 * 0x00008000.00000000 |-----------------------| 433 * | | 434 * | | 435 * : : 436 * | user heap | (grows upwards) 437 * | | 438 * | user data | 439 * |-----------------------| 440 * | user text | 441 * 0x00000000.04000000 |-----------------------| 442 * | invalid | 443 * 0x00000000.00000000 +-----------------------+ 444 * 445 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 446 * kernel, except that userlimit is raised to 0xfe000000 447 * 448 * Floating values: 449 * 450 * valloc_base: start of the kernel's memory management/tracking data 451 * structures. This region contains page_t structures for 452 * physical memory, memsegs, memlists, and the page hash. 453 * 454 * core_base: start of the kernel's "core" heap area on 64-bit systems. 455 * This area is intended to be used for global data as well as for module 456 * text/data that does not fit into the nucleus pages. The core heap is 457 * restricted to a 2GB range, allowing every address within it to be 458 * accessed using rip-relative addressing 459 * 460 * ekernelheap: end of kernelheap and start of segmap. 461 * 462 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 463 * above a red zone that separates the user's address space from the 464 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 465 * 466 * segmap_start: start of segmap. The length of segmap can be modified 467 * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated). 468 * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems. 469 * 470 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 471 * decreased by 2X the size required for page_t. This allows the kernel 472 * heap to grow in size with physical memory. With sizeof(page_t) == 80 473 * bytes, the following shows the values of kernelbase and kernel heap 474 * sizes for different memory configurations (assuming default segmap and 475 * segkp sizes). 476 * 477 * mem size for kernelbase kernel heap 478 * size page_t's size 479 * ---- --------- ---------- ----------- 480 * 1gb 0x01400000 0xd1800000 684MB 481 * 2gb 0x02800000 0xcf000000 704MB 482 * 4gb 0x05000000 0xca000000 744MB 483 * 6gb 0x07800000 0xc5000000 784MB 484 * 8gb 0x0a000000 0xc0000000 824MB 485 * 16gb 0x14000000 0xac000000 984MB 486 * 32gb 0x28000000 0x84000000 1304MB 487 * 64gb 0x50000000 0x34000000 1944MB (*) 488 * 489 * kernelbase is less than the abi minimum of 0xc0000000 for memory 490 * configurations above 8gb. 491 * 492 * (*) support for memory configurations above 32gb will require manual tuning 493 * of kernelbase to balance out the need of user applications. 494 */ 495 496 /* real-time-clock initialization parameters */ 497 extern time_t process_rtc_config_file(void); 498 499 uintptr_t kernelbase; 500 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 501 uintptr_t eprom_kernelbase; 502 size_t segmapsize; 503 uintptr_t segmap_start; 504 int segmapfreelists; 505 pgcnt_t npages; 506 pgcnt_t orig_npages; 507 size_t core_size; /* size of "core" heap */ 508 uintptr_t core_base; /* base address of "core" heap */ 509 510 /* 511 * List of bootstrap pages. We mark these as allocated in startup. 512 * release_bootstrap() will free them when we're completely done with 513 * the bootstrap. 514 */ 515 static page_t *bootpages; 516 517 /* 518 * boot time pages that have a vnode from the ramdisk will keep that forever. 519 */ 520 static page_t *rd_pages; 521 522 struct system_hardware system_hardware; 523 524 /* 525 * Is this Solaris instance running in a fully virtualized xVM domain? 526 */ 527 int xpv_is_hvm = 0; 528 529 /* 530 * Enable some debugging messages concerning memory usage... 531 */ 532 static void 533 print_memlist(char *title, struct memlist *mp) 534 { 535 prom_printf("MEMLIST: %s:\n", title); 536 while (mp != NULL) { 537 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 538 mp->address, mp->size); 539 mp = mp->next; 540 } 541 } 542 543 /* 544 * XX64 need a comment here.. are these just default values, surely 545 * we read the "cpuid" type information to figure this out. 546 */ 547 int l2cache_sz = 0x80000; 548 int l2cache_linesz = 0x40; 549 int l2cache_assoc = 1; 550 551 static size_t textrepl_min_gb = 10; 552 553 /* 554 * on 64 bit we use a predifined VA range for mapping devices in the kernel 555 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 556 */ 557 #ifdef __amd64 558 559 vmem_t *device_arena; 560 uintptr_t toxic_addr = (uintptr_t)NULL; 561 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 562 563 #else /* __i386 */ 564 565 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 566 size_t toxic_bit_map_len = 0; /* in bits */ 567 568 #endif /* __i386 */ 569 570 /* 571 * Simple boot time debug facilities 572 */ 573 static char *prm_dbg_str[] = { 574 "%s:%d: '%s' is 0x%x\n", 575 "%s:%d: '%s' is 0x%llx\n" 576 }; 577 578 int prom_debug; 579 580 #define PRM_DEBUG(q) if (prom_debug) \ 581 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 582 #define PRM_POINT(q) if (prom_debug) \ 583 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 584 585 /* 586 * This structure is used to keep track of the intial allocations 587 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 588 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 589 */ 590 #define NUM_ALLOCATIONS 7 591 int num_allocations = 0; 592 struct { 593 void **al_ptr; 594 size_t al_size; 595 } allocations[NUM_ALLOCATIONS]; 596 size_t valloc_sz = 0; 597 uintptr_t valloc_base; 598 599 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 600 size = ROUND_UP_PAGE(size); \ 601 if (num_allocations == NUM_ALLOCATIONS) \ 602 panic("too many ADD_TO_ALLOCATIONS()"); \ 603 allocations[num_allocations].al_ptr = (void**)&ptr; \ 604 allocations[num_allocations].al_size = size; \ 605 valloc_sz += size; \ 606 ++num_allocations; \ 607 } 608 609 /* 610 * Allocate all the initial memory needed by the page allocator. 611 */ 612 static void 613 perform_allocations(void) 614 { 615 caddr_t mem; 616 int i; 617 int valloc_align; 618 619 PRM_DEBUG(valloc_base); 620 PRM_DEBUG(valloc_sz); 621 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 622 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 623 if (mem != (caddr_t)valloc_base) 624 panic("BOP_ALLOC() failed"); 625 bzero(mem, valloc_sz); 626 for (i = 0; i < num_allocations; ++i) { 627 *allocations[i].al_ptr = (void *)mem; 628 mem += allocations[i].al_size; 629 } 630 } 631 632 /* 633 * Our world looks like this at startup time. 634 * 635 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 636 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 637 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 638 * addresses are fixed in the binary at link time. 639 * 640 * On the text page: 641 * unix/genunix/krtld/module text loads. 642 * 643 * On the data page: 644 * unix/genunix/krtld/module data loads. 645 * 646 * Machine-dependent startup code 647 */ 648 void 649 startup(void) 650 { 651 #if !defined(__xpv) 652 extern void startup_bios_disk(void); 653 extern void startup_pci_bios(void); 654 #endif 655 extern cpuset_t cpu_ready_set; 656 657 /* 658 * Make sure that nobody tries to use sekpm until we have 659 * initialized it properly. 660 */ 661 #if defined(__amd64) 662 kpm_desired = 1; 663 #endif 664 kpm_enable = 0; 665 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 666 667 #if defined(__xpv) /* XXPV fix me! */ 668 { 669 extern int segvn_use_regions; 670 segvn_use_regions = 0; 671 } 672 #endif 673 progressbar_init(); 674 startup_init(); 675 #if defined(__xpv) 676 startup_xen_version(); 677 #endif 678 startup_memlist(); 679 startup_kmem(); 680 startup_vm(); 681 #if !defined(__xpv) 682 startup_pci_bios(); 683 #endif 684 startup_modules(); 685 #if !defined(__xpv) 686 startup_bios_disk(); 687 #endif 688 startup_end(); 689 progressbar_start(); 690 } 691 692 static void 693 startup_init() 694 { 695 PRM_POINT("startup_init() starting..."); 696 697 /* 698 * Complete the extraction of cpuid data 699 */ 700 cpuid_pass2(CPU); 701 702 (void) check_boot_version(BOP_GETVERSION(bootops)); 703 704 /* 705 * Check for prom_debug in boot environment 706 */ 707 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 708 ++prom_debug; 709 PRM_POINT("prom_debug found in boot enviroment"); 710 } 711 712 /* 713 * Collect node, cpu and memory configuration information. 714 */ 715 get_system_configuration(); 716 717 /* 718 * Halt if this is an unsupported processor. 719 */ 720 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 721 printf("\n486 processor (\"%s\") detected.\n", 722 CPU->cpu_brandstr); 723 halt("This processor is not supported by this release " 724 "of Solaris."); 725 } 726 727 PRM_POINT("startup_init() done"); 728 } 729 730 /* 731 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 732 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 733 * also filters out physical page zero. There is some reliance on the 734 * boot loader allocating only a few contiguous physical memory chunks. 735 */ 736 static void 737 avail_filter(uint64_t *addr, uint64_t *size) 738 { 739 uintptr_t va; 740 uintptr_t next_va; 741 pfn_t pfn; 742 uint64_t pfn_addr; 743 uint64_t pfn_eaddr; 744 uint_t prot; 745 size_t len; 746 uint_t change; 747 748 if (prom_debug) 749 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 750 *addr, *size); 751 752 /* 753 * page zero is required for BIOS.. never make it available 754 */ 755 if (*addr == 0) { 756 *addr += MMU_PAGESIZE; 757 *size -= MMU_PAGESIZE; 758 } 759 760 /* 761 * First we trim from the front of the range. Since kbm_probe() 762 * walks ranges in virtual order, but addr/size are physical, we need 763 * to the list until no changes are seen. This deals with the case 764 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 765 * but w < v. 766 */ 767 do { 768 change = 0; 769 for (va = KERNEL_TEXT; 770 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 771 va = next_va) { 772 773 next_va = va + len; 774 pfn_addr = pfn_to_pa(pfn); 775 pfn_eaddr = pfn_addr + len; 776 777 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 778 change = 1; 779 while (*size > 0 && len > 0) { 780 *addr += MMU_PAGESIZE; 781 *size -= MMU_PAGESIZE; 782 len -= MMU_PAGESIZE; 783 } 784 } 785 } 786 if (change && prom_debug) 787 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 788 *addr, *size); 789 } while (change); 790 791 /* 792 * Trim pages from the end of the range. 793 */ 794 for (va = KERNEL_TEXT; 795 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 796 va = next_va) { 797 798 next_va = va + len; 799 pfn_addr = pfn_to_pa(pfn); 800 801 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 802 *size = pfn_addr - *addr; 803 } 804 805 if (prom_debug) 806 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 807 *addr, *size); 808 } 809 810 static void 811 kpm_init() 812 { 813 struct segkpm_crargs b; 814 815 /* 816 * These variables were all designed for sfmmu in which segkpm is 817 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 818 * might use 2+ page sizes on a single machine, so none of these 819 * variables have a single correct value. They are set up as if we 820 * always use a 4KB pagesize, which should do no harm. In the long 821 * run, we should get rid of KPM's assumption that only a single 822 * pagesize is used. 823 */ 824 kpm_pgshft = MMU_PAGESHIFT; 825 kpm_pgsz = MMU_PAGESIZE; 826 kpm_pgoff = MMU_PAGEOFFSET; 827 kpmp2pshft = 0; 828 kpmpnpgs = 1; 829 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 830 831 PRM_POINT("about to create segkpm"); 832 rw_enter(&kas.a_lock, RW_WRITER); 833 834 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 835 panic("cannot attach segkpm"); 836 837 b.prot = PROT_READ | PROT_WRITE; 838 b.nvcolors = 1; 839 840 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 841 panic("segkpm_create segkpm"); 842 843 rw_exit(&kas.a_lock); 844 } 845 846 /* 847 * The debug info page provides enough information to allow external 848 * inspectors (e.g. when running under a hypervisor) to bootstrap 849 * themselves into allowing full-blown kernel debugging. 850 */ 851 static void 852 init_debug_info(void) 853 { 854 caddr_t mem; 855 debug_info_t *di; 856 857 #ifndef __lint 858 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 859 #endif 860 861 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 862 MMU_PAGESIZE); 863 864 if (mem != (caddr_t)DEBUG_INFO_VA) 865 panic("BOP_ALLOC() failed"); 866 bzero(mem, MMU_PAGESIZE); 867 868 di = (debug_info_t *)mem; 869 870 di->di_magic = DEBUG_INFO_MAGIC; 871 di->di_version = DEBUG_INFO_VERSION; 872 di->di_modules = (uintptr_t)&modules; 873 di->di_s_text = (uintptr_t)s_text; 874 di->di_e_text = (uintptr_t)e_text; 875 di->di_s_data = (uintptr_t)s_data; 876 di->di_e_data = (uintptr_t)e_data; 877 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 878 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 879 } 880 881 /* 882 * Build the memlists and other kernel essential memory system data structures. 883 * This is everything at valloc_base. 884 */ 885 static void 886 startup_memlist(void) 887 { 888 size_t memlist_sz; 889 size_t memseg_sz; 890 size_t pagehash_sz; 891 size_t pp_sz; 892 uintptr_t va; 893 size_t len; 894 uint_t prot; 895 pfn_t pfn; 896 int memblocks; 897 caddr_t pagecolor_mem; 898 size_t pagecolor_memsz; 899 caddr_t page_ctrs_mem; 900 size_t page_ctrs_size; 901 size_t pse_table_alloc_size; 902 struct memlist *current; 903 extern void startup_build_mem_nodes(struct memlist *); 904 905 /* XX64 fix these - they should be in include files */ 906 extern size_t page_coloring_init(uint_t, int, int); 907 extern void page_coloring_setup(caddr_t); 908 909 PRM_POINT("startup_memlist() starting..."); 910 911 /* 912 * Use leftover large page nucleus text/data space for loadable modules. 913 * Use at most MODTEXT/MODDATA. 914 */ 915 len = kbm_nucleus_size; 916 ASSERT(len > MMU_PAGESIZE); 917 918 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 919 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 920 if (e_moddata - moddata > MODDATA) 921 e_moddata = moddata + MODDATA; 922 923 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 924 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 925 if (e_modtext - modtext > MODTEXT) 926 e_modtext = modtext + MODTEXT; 927 928 econtig = e_moddata; 929 930 PRM_DEBUG(modtext); 931 PRM_DEBUG(e_modtext); 932 PRM_DEBUG(moddata); 933 PRM_DEBUG(e_moddata); 934 PRM_DEBUG(econtig); 935 936 /* 937 * Examine the boot loader physical memory map to find out: 938 * - total memory in system - physinstalled 939 * - the max physical address - physmax 940 * - the number of discontiguous segments of memory. 941 */ 942 if (prom_debug) 943 print_memlist("boot physinstalled", 944 bootops->boot_mem->physinstalled); 945 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 946 &physinstalled, &memblocks); 947 PRM_DEBUG(physmax); 948 PRM_DEBUG(physinstalled); 949 PRM_DEBUG(memblocks); 950 951 /* 952 * Initialize hat's mmu parameters. 953 * Check for enforce-prot-exec in boot environment. It's used to 954 * enable/disable support for the page table entry NX bit. 955 * The default is to enforce PROT_EXEC on processors that support NX. 956 * Boot seems to round up the "len", but 8 seems to be big enough. 957 */ 958 mmu_init(); 959 960 #ifdef __i386 961 /* 962 * physmax is lowered if there is more memory than can be 963 * physically addressed in 32 bit (PAE/non-PAE) modes. 964 */ 965 if (mmu.pae_hat) { 966 if (PFN_ABOVE64G(physmax)) { 967 physinstalled -= (physmax - (PFN_64G - 1)); 968 physmax = PFN_64G - 1; 969 } 970 } else { 971 if (PFN_ABOVE4G(physmax)) { 972 physinstalled -= (physmax - (PFN_4G - 1)); 973 physmax = PFN_4G - 1; 974 } 975 } 976 #endif 977 978 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 979 980 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 981 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 982 char value[8]; 983 984 if (len < 8) 985 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 986 else 987 (void) strcpy(value, ""); 988 if (strcmp(value, "off") == 0) 989 mmu.pt_nx = 0; 990 } 991 PRM_DEBUG(mmu.pt_nx); 992 993 /* 994 * We will need page_t's for every page in the system, except for 995 * memory mapped at or above above the start of the kernel text segment. 996 * 997 * pages above e_modtext are attributed to kernel debugger (obp_pages) 998 */ 999 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1000 obp_pages = 0; 1001 va = KERNEL_TEXT; 1002 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1003 npages -= len >> MMU_PAGESHIFT; 1004 if (va >= (uintptr_t)e_moddata) 1005 obp_pages += len >> MMU_PAGESHIFT; 1006 va += len; 1007 } 1008 PRM_DEBUG(npages); 1009 PRM_DEBUG(obp_pages); 1010 1011 /* 1012 * If physmem is patched to be non-zero, use it instead of the computed 1013 * value unless it is larger than the actual amount of memory on hand. 1014 */ 1015 if (physmem == 0 || physmem > npages) { 1016 physmem = npages; 1017 } else if (physmem < npages) { 1018 orig_npages = npages; 1019 npages = physmem; 1020 } 1021 PRM_DEBUG(physmem); 1022 1023 /* 1024 * We now compute the sizes of all the initial allocations for 1025 * structures the kernel needs in order do kmem_alloc(). These 1026 * include: 1027 * memsegs 1028 * memlists 1029 * page hash table 1030 * page_t's 1031 * page coloring data structs 1032 */ 1033 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1034 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1035 PRM_DEBUG(memseg_sz); 1036 1037 /* 1038 * Reserve space for memlists. There's no real good way to know exactly 1039 * how much room we'll need, but this should be a good upper bound. 1040 */ 1041 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1042 (memblocks + POSS_NEW_FRAGMENTS)); 1043 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1044 PRM_DEBUG(memlist_sz); 1045 1046 /* 1047 * The page structure hash table size is a power of 2 1048 * such that the average hash chain length is PAGE_HASHAVELEN. 1049 */ 1050 page_hashsz = npages / PAGE_HASHAVELEN; 1051 page_hashsz = 1 << highbit(page_hashsz); 1052 pagehash_sz = sizeof (struct page *) * page_hashsz; 1053 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1054 PRM_DEBUG(pagehash_sz); 1055 1056 /* 1057 * Set aside room for the page structures themselves. 1058 */ 1059 PRM_DEBUG(npages); 1060 pp_sz = sizeof (struct page) * npages; 1061 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1062 PRM_DEBUG(pp_sz); 1063 1064 /* 1065 * determine l2 cache info and memory size for page coloring 1066 */ 1067 (void) getl2cacheinfo(CPU, 1068 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1069 pagecolor_memsz = 1070 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1071 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1072 PRM_DEBUG(pagecolor_memsz); 1073 1074 page_ctrs_size = page_ctrs_sz(); 1075 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1076 PRM_DEBUG(page_ctrs_size); 1077 1078 /* 1079 * Allocate the array that protects pp->p_selock. 1080 */ 1081 pse_shift = size_pse_array(physmem, max_ncpus); 1082 pse_table_size = 1 << pse_shift; 1083 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1084 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1085 1086 #if defined(__amd64) 1087 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1088 valloc_base = VALLOC_BASE; 1089 1090 /* 1091 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1092 * for values of physmax up to 1 Terabyte. They need adjusting when 1093 * memory is at addresses above 1 TB. 1094 */ 1095 if (physmax + 1 > mmu_btop(TERABYTE)) { 1096 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1097 1098 /* Round to largest possible pagesize for now */ 1099 kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1100 1101 segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */ 1102 1103 /* make sure we leave some space for user apps above hole */ 1104 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1105 if (segkpm_base > SEGKPM_BASE) 1106 segkpm_base = SEGKPM_BASE; 1107 PRM_DEBUG(segkpm_base); 1108 1109 valloc_base = segkpm_base + kpm_resv_amount; 1110 PRM_DEBUG(valloc_base); 1111 } 1112 #else /* __i386 */ 1113 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1114 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1115 PRM_DEBUG(valloc_base); 1116 #endif /* __i386 */ 1117 1118 /* 1119 * do all the initial allocations 1120 */ 1121 perform_allocations(); 1122 1123 /* 1124 * Build phys_install and phys_avail in kernel memspace. 1125 * - phys_install should be all memory in the system. 1126 * - phys_avail is phys_install minus any memory mapped before this 1127 * point above KERNEL_TEXT. 1128 */ 1129 current = phys_install = memlist; 1130 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1131 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1132 panic("physinstalled was too big!"); 1133 if (prom_debug) 1134 print_memlist("phys_install", phys_install); 1135 1136 phys_avail = current; 1137 PRM_POINT("Building phys_avail:\n"); 1138 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1139 avail_filter); 1140 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1141 panic("physavail was too big!"); 1142 if (prom_debug) 1143 print_memlist("phys_avail", phys_avail); 1144 1145 /* 1146 * setup page coloring 1147 */ 1148 page_coloring_setup(pagecolor_mem); 1149 page_lock_init(); /* currently a no-op */ 1150 1151 /* 1152 * free page list counters 1153 */ 1154 (void) page_ctrs_alloc(page_ctrs_mem); 1155 1156 /* 1157 * Initialize the page structures from the memory lists. 1158 */ 1159 availrmem_initial = availrmem = freemem = 0; 1160 PRM_POINT("Calling kphysm_init()..."); 1161 npages = kphysm_init(pp_base, npages); 1162 PRM_POINT("kphysm_init() done"); 1163 PRM_DEBUG(npages); 1164 1165 init_debug_info(); 1166 1167 /* 1168 * Now that page_t's have been initialized, remove all the 1169 * initial allocation pages from the kernel free page lists. 1170 */ 1171 boot_mapin((caddr_t)valloc_base, valloc_sz); 1172 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1173 PRM_POINT("startup_memlist() done"); 1174 1175 PRM_DEBUG(valloc_sz); 1176 1177 #if defined(__amd64) 1178 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1179 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1180 extern size_t textrepl_size_thresh; 1181 textrepl_size_thresh = (16 << 20) - 1; 1182 } 1183 #endif 1184 } 1185 1186 /* 1187 * Layout the kernel's part of address space and initialize kmem allocator. 1188 */ 1189 static void 1190 startup_kmem(void) 1191 { 1192 extern void page_set_colorequiv_arr(void); 1193 1194 PRM_POINT("startup_kmem() starting..."); 1195 1196 #if defined(__amd64) 1197 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1198 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1199 "systems."); 1200 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1201 core_base = (uintptr_t)COREHEAP_BASE; 1202 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1203 #else /* __i386 */ 1204 /* 1205 * We configure kernelbase based on: 1206 * 1207 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1208 * KERNELBASE_MAX. we large page align eprom_kernelbase 1209 * 1210 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1211 * On large memory systems we must lower kernelbase to allow 1212 * enough room for page_t's for all of memory. 1213 * 1214 * The value set here, might be changed a little later. 1215 */ 1216 if (eprom_kernelbase) { 1217 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1218 if (kernelbase > KERNELBASE_MAX) 1219 kernelbase = KERNELBASE_MAX; 1220 } else { 1221 kernelbase = (uintptr_t)KERNELBASE; 1222 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1223 } 1224 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1225 core_base = valloc_base; 1226 core_size = 0; 1227 #endif /* __i386 */ 1228 1229 PRM_DEBUG(core_base); 1230 PRM_DEBUG(core_size); 1231 PRM_DEBUG(kernelbase); 1232 1233 #if defined(__i386) 1234 segkp_fromheap = 1; 1235 #endif /* __i386 */ 1236 1237 ekernelheap = (char *)core_base; 1238 PRM_DEBUG(ekernelheap); 1239 1240 /* 1241 * Now that we know the real value of kernelbase, 1242 * update variables that were initialized with a value of 1243 * KERNELBASE (in common/conf/param.c). 1244 * 1245 * XXX The problem with this sort of hackery is that the 1246 * compiler just may feel like putting the const declarations 1247 * (in param.c) into the .text section. Perhaps they should 1248 * just be declared as variables there? 1249 */ 1250 1251 *(uintptr_t *)&_kernelbase = kernelbase; 1252 *(uintptr_t *)&_userlimit = kernelbase; 1253 #if defined(__amd64) 1254 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1255 #else 1256 *(uintptr_t *)&_userlimit32 = _userlimit; 1257 #endif 1258 PRM_DEBUG(_kernelbase); 1259 PRM_DEBUG(_userlimit); 1260 PRM_DEBUG(_userlimit32); 1261 1262 layout_kernel_va(); 1263 1264 #if defined(__i386) 1265 /* 1266 * If segmap is too large we can push the bottom of the kernel heap 1267 * higher than the base. Or worse, it could exceed the top of the 1268 * VA space entirely, causing it to wrap around. 1269 */ 1270 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1271 panic("too little address space available for kernelheap," 1272 " use eeprom for lower kernelbase or smaller segmapsize"); 1273 #endif /* __i386 */ 1274 1275 /* 1276 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1277 */ 1278 kernelheap_init(kernelheap, ekernelheap, 1279 kernelheap + MMU_PAGESIZE, 1280 (void *)core_base, (void *)(core_base + core_size)); 1281 1282 #if defined(__xpv) 1283 /* 1284 * Link pending events struct into cpu struct 1285 */ 1286 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1287 #endif 1288 /* 1289 * Initialize kernel memory allocator. 1290 */ 1291 kmem_init(); 1292 1293 /* 1294 * Factor in colorequiv to check additional 'equivalent' bins 1295 */ 1296 page_set_colorequiv_arr(); 1297 1298 /* 1299 * print this out early so that we know what's going on 1300 */ 1301 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1302 1303 /* 1304 * Initialize bp_mapin(). 1305 */ 1306 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1307 1308 /* 1309 * orig_npages is non-zero if physmem has been configured for less 1310 * than the available memory. 1311 */ 1312 if (orig_npages) { 1313 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1314 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1315 npages, orig_npages); 1316 } 1317 #if defined(__i386) 1318 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1319 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1320 "System using 0x%lx", 1321 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1322 #endif 1323 1324 #ifdef KERNELBASE_ABI_MIN 1325 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1326 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1327 "i386 ABI compliant.", (uintptr_t)kernelbase); 1328 } 1329 #endif 1330 1331 #ifdef __xpv 1332 /* 1333 * Some of the xen start information has to be relocated up 1334 * into the kernel's permanent address space. 1335 */ 1336 PRM_POINT("calling xen_relocate_start_info()"); 1337 xen_relocate_start_info(); 1338 PRM_POINT("xen_relocate_start_info() done"); 1339 1340 /* 1341 * (Update the vcpu pointer in our cpu structure to point into 1342 * the relocated shared info.) 1343 */ 1344 CPU->cpu_m.mcpu_vcpu_info = 1345 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1346 #endif 1347 1348 PRM_POINT("startup_kmem() done"); 1349 } 1350 1351 #ifndef __xpv 1352 /* 1353 * If we have detected that we are running in an HVM environment, we need 1354 * to prepend the PV driver directory to the module search path. 1355 */ 1356 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1357 static void 1358 update_default_path() 1359 { 1360 char *current, *newpath; 1361 int newlen; 1362 1363 /* 1364 * We are about to resync with krtld. krtld will reset its 1365 * internal module search path iff Solaris has set default_path. 1366 * We want to be sure we're prepending this new directory to the 1367 * right search path. 1368 */ 1369 current = (default_path == NULL) ? kobj_module_path : default_path; 1370 1371 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 1; 1372 newpath = kmem_alloc(newlen, KM_SLEEP); 1373 (void) strcpy(newpath, HVM_MOD_DIR); 1374 (void) strcat(newpath, " "); 1375 (void) strcat(newpath, current); 1376 1377 default_path = newpath; 1378 } 1379 #endif 1380 1381 static void 1382 startup_modules(void) 1383 { 1384 unsigned int i; 1385 extern void prom_setup(void); 1386 1387 PRM_POINT("startup_modules() starting..."); 1388 1389 #ifndef __xpv 1390 /* 1391 * Initialize ten-micro second timer so that drivers will 1392 * not get short changed in their init phase. This was 1393 * not getting called until clkinit which, on fast cpu's 1394 * caused the drv_usecwait to be way too short. 1395 */ 1396 microfind(); 1397 1398 if (xpv_is_hvm) 1399 update_default_path(); 1400 #endif 1401 1402 /* 1403 * Read the GMT lag from /etc/rtc_config. 1404 */ 1405 sgmtl(process_rtc_config_file()); 1406 1407 /* 1408 * Calculate default settings of system parameters based upon 1409 * maxusers, yet allow to be overridden via the /etc/system file. 1410 */ 1411 param_calc(0); 1412 1413 mod_setup(); 1414 1415 /* 1416 * Initialize system parameters. 1417 */ 1418 param_init(); 1419 1420 /* 1421 * Initialize the default brands 1422 */ 1423 brand_init(); 1424 1425 /* 1426 * maxmem is the amount of physical memory we're playing with. 1427 */ 1428 maxmem = physmem; 1429 1430 /* 1431 * Initialize segment management stuff. 1432 */ 1433 seg_init(); 1434 1435 if (modload("fs", "specfs") == -1) 1436 halt("Can't load specfs"); 1437 1438 if (modload("fs", "devfs") == -1) 1439 halt("Can't load devfs"); 1440 1441 if (modload("fs", "dev") == -1) 1442 halt("Can't load dev"); 1443 1444 (void) modloadonly("sys", "lbl_edition"); 1445 1446 dispinit(); 1447 1448 /* 1449 * This is needed here to initialize hw_serial[] for cluster booting. 1450 */ 1451 if ((i = modload("misc", "sysinit")) != (unsigned int)-1) 1452 (void) modunload(i); 1453 else 1454 cmn_err(CE_CONT, "sysinit load failed"); 1455 1456 /* Read cluster configuration data. */ 1457 clconf_init(); 1458 1459 #if defined(__xpv) 1460 ec_init(); 1461 gnttab_init(); 1462 (void) xs_early_init(); 1463 #endif /* __xpv */ 1464 1465 /* 1466 * Create a kernel device tree. First, create rootnex and 1467 * then invoke bus specific code to probe devices. 1468 */ 1469 setup_ddi(); 1470 1471 #ifndef __xpv 1472 { 1473 /* 1474 * Set up the CPU module subsystem. Modifies the device tree, 1475 * so it must be done after setup_ddi(). 1476 */ 1477 1478 cmi_hdl_t hdl; 1479 1480 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1481 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) { 1482 if (x86_feature & X86_MCA) 1483 cmi_mca_init(hdl); 1484 } 1485 } 1486 #endif /* __xpv */ 1487 1488 /* 1489 * Fake a prom tree such that /dev/openprom continues to work 1490 */ 1491 PRM_POINT("startup_modules: calling prom_setup..."); 1492 prom_setup(); 1493 PRM_POINT("startup_modules: done"); 1494 1495 /* 1496 * Load all platform specific modules 1497 */ 1498 PRM_POINT("startup_modules: calling psm_modload..."); 1499 psm_modload(); 1500 1501 PRM_POINT("startup_modules() done"); 1502 } 1503 1504 /* 1505 * claim a "setaside" boot page for use in the kernel 1506 */ 1507 page_t * 1508 boot_claim_page(pfn_t pfn) 1509 { 1510 page_t *pp; 1511 1512 pp = page_numtopp_nolock(pfn); 1513 ASSERT(pp != NULL); 1514 1515 if (PP_ISBOOTPAGES(pp)) { 1516 if (pp->p_next != NULL) 1517 pp->p_next->p_prev = pp->p_prev; 1518 if (pp->p_prev == NULL) 1519 bootpages = pp->p_next; 1520 else 1521 pp->p_prev->p_next = pp->p_next; 1522 } else { 1523 /* 1524 * htable_attach() expects a base pagesize page 1525 */ 1526 if (pp->p_szc != 0) 1527 page_boot_demote(pp); 1528 pp = page_numtopp(pfn, SE_EXCL); 1529 } 1530 return (pp); 1531 } 1532 1533 /* 1534 * Walk through the pagetables looking for pages mapped in by boot. If the 1535 * setaside flag is set the pages are expected to be returned to the 1536 * kernel later in boot, so we add them to the bootpages list. 1537 */ 1538 static void 1539 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1540 { 1541 uintptr_t va = low; 1542 size_t len; 1543 uint_t prot; 1544 pfn_t pfn; 1545 page_t *pp; 1546 pgcnt_t boot_protect_cnt = 0; 1547 1548 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1549 if (va + len >= high) 1550 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1551 "legal range.", len, (void *)va); 1552 1553 while (len > 0) { 1554 pp = page_numtopp_alloc(pfn); 1555 if (pp != NULL) { 1556 if (setaside == 0) 1557 panic("Unexpected mapping by boot. " 1558 "addr=%p pfn=%lx\n", 1559 (void *)va, pfn); 1560 1561 pp->p_next = bootpages; 1562 pp->p_prev = NULL; 1563 PP_SETBOOTPAGES(pp); 1564 if (bootpages != NULL) { 1565 bootpages->p_prev = pp; 1566 } 1567 bootpages = pp; 1568 ++boot_protect_cnt; 1569 } 1570 1571 ++pfn; 1572 len -= MMU_PAGESIZE; 1573 va += MMU_PAGESIZE; 1574 } 1575 } 1576 PRM_DEBUG(boot_protect_cnt); 1577 } 1578 1579 /* 1580 * 1581 */ 1582 static void 1583 layout_kernel_va(void) 1584 { 1585 PRM_POINT("layout_kernel_va() starting..."); 1586 /* 1587 * Establish the final size of the kernel's heap, size of segmap, 1588 * segkp, etc. 1589 */ 1590 1591 #if defined(__amd64) 1592 1593 kpm_vbase = (caddr_t)segkpm_base; 1594 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1595 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1596 panic("not enough room for kpm!"); 1597 PRM_DEBUG(kpm_size); 1598 PRM_DEBUG(kpm_vbase); 1599 1600 /* 1601 * By default we create a seg_kp in 64 bit kernels, it's a little 1602 * faster to access than embedding it in the heap. 1603 */ 1604 segkp_base = (caddr_t)valloc_base + valloc_sz; 1605 if (!segkp_fromheap) { 1606 size_t sz = mmu_ptob(segkpsize); 1607 1608 /* 1609 * determine size of segkp 1610 */ 1611 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1612 sz = SEGKPDEFSIZE; 1613 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1614 "segkpsize has been reset to %ld pages", 1615 mmu_btop(sz)); 1616 } 1617 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1618 1619 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1620 } 1621 PRM_DEBUG(segkp_base); 1622 PRM_DEBUG(segkpsize); 1623 1624 /* 1625 * segzio is used for ZFS cached data. It uses a distinct VA 1626 * segment (from kernel heap) so that we can easily tell not to 1627 * include it in kernel crash dumps on 64 bit kernels. The trick is 1628 * to give it lots of VA, but not constrain the kernel heap. 1629 * We scale the size of segzio linearly with physmem up to 1630 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1631 */ 1632 segzio_base = segkp_base + mmu_ptob(segkpsize); 1633 if (segzio_fromheap) { 1634 segziosize = 0; 1635 } else { 1636 size_t physmem_size = mmu_ptob(physmem); 1637 size_t size = (segziosize == 0) ? 1638 physmem_size : mmu_ptob(segziosize); 1639 1640 if (size < SEGZIOMINSIZE) 1641 size = SEGZIOMINSIZE; 1642 if (size > SEGZIOMAXSIZE) { 1643 size = SEGZIOMAXSIZE; 1644 if (physmem_size > size) 1645 size += (physmem_size - size) / 2; 1646 } 1647 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1648 } 1649 PRM_DEBUG(segziosize); 1650 PRM_DEBUG(segzio_base); 1651 1652 /* 1653 * Put the range of VA for device mappings next, kmdb knows to not 1654 * grep in this range of addresses. 1655 */ 1656 toxic_addr = 1657 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1658 PRM_DEBUG(toxic_addr); 1659 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1660 #else /* __i386 */ 1661 segmap_start = ROUND_UP_LPAGE(kernelbase); 1662 #endif /* __i386 */ 1663 PRM_DEBUG(segmap_start); 1664 1665 /* 1666 * Users can change segmapsize through eeprom or /etc/system. 1667 * If the variable is tuned through eeprom, there is no upper 1668 * bound on the size of segmap. If it is tuned through 1669 * /etc/system on 32-bit systems, it must be no larger than we 1670 * planned for in startup_memlist(). 1671 */ 1672 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1673 1674 #if defined(__i386) 1675 /* 1676 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1677 * the bottom of the kernel's address range. Set aside space for a 1678 * small red zone just below the start of segmap. 1679 */ 1680 segmap_start += KERNEL_REDZONE_SIZE; 1681 segmapsize -= KERNEL_REDZONE_SIZE; 1682 #endif 1683 1684 PRM_DEBUG(segmap_start); 1685 PRM_DEBUG(segmapsize); 1686 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1687 PRM_DEBUG(kernelheap); 1688 PRM_POINT("layout_kernel_va() done..."); 1689 } 1690 1691 /* 1692 * Finish initializing the VM system, now that we are no longer 1693 * relying on the boot time memory allocators. 1694 */ 1695 static void 1696 startup_vm(void) 1697 { 1698 struct segmap_crargs a; 1699 1700 extern int use_brk_lpg, use_stk_lpg; 1701 1702 PRM_POINT("startup_vm() starting..."); 1703 1704 /* 1705 * Initialize the hat layer. 1706 */ 1707 hat_init(); 1708 1709 /* 1710 * Do final allocations of HAT data structures that need to 1711 * be allocated before quiescing the boot loader. 1712 */ 1713 PRM_POINT("Calling hat_kern_alloc()..."); 1714 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1715 PRM_POINT("hat_kern_alloc() done"); 1716 1717 #ifndef __xpv 1718 /* 1719 * Setup Page Attribute Table 1720 */ 1721 pat_sync(); 1722 #endif 1723 1724 /* 1725 * The next two loops are done in distinct steps in order 1726 * to be sure that any page that is doubly mapped (both above 1727 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1728 * Note this may never happen, but it might someday. 1729 */ 1730 bootpages = NULL; 1731 PRM_POINT("Protecting boot pages"); 1732 1733 /* 1734 * Protect any pages mapped above KERNEL_TEXT that somehow have 1735 * page_t's. This can only happen if something weird allocated 1736 * in this range (like kadb/kmdb). 1737 */ 1738 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1739 1740 /* 1741 * Before we can take over memory allocation/mapping from the boot 1742 * loader we must remove from our free page lists any boot allocated 1743 * pages that stay mapped until release_bootstrap(). 1744 */ 1745 protect_boot_range(0, kernelbase, 1); 1746 1747 1748 /* 1749 * Switch to running on regular HAT (not boot_mmu) 1750 */ 1751 PRM_POINT("Calling hat_kern_setup()..."); 1752 hat_kern_setup(); 1753 1754 /* 1755 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1756 */ 1757 bop_no_more_mem(); 1758 1759 PRM_POINT("hat_kern_setup() done"); 1760 1761 hat_cpu_online(CPU); 1762 1763 /* 1764 * Initialize VM system 1765 */ 1766 PRM_POINT("Calling kvm_init()..."); 1767 kvm_init(); 1768 PRM_POINT("kvm_init() done"); 1769 1770 /* 1771 * Tell kmdb that the VM system is now working 1772 */ 1773 if (boothowto & RB_DEBUG) 1774 kdi_dvec_vmready(); 1775 1776 #if defined(__xpv) 1777 /* 1778 * Populate the I/O pool on domain 0 1779 */ 1780 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1781 extern long populate_io_pool(void); 1782 long init_io_pool_cnt; 1783 1784 PRM_POINT("Populating reserve I/O page pool"); 1785 init_io_pool_cnt = populate_io_pool(); 1786 PRM_DEBUG(init_io_pool_cnt); 1787 } 1788 #endif 1789 /* 1790 * Mangle the brand string etc. 1791 */ 1792 cpuid_pass3(CPU); 1793 1794 #if defined(__amd64) 1795 1796 /* 1797 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1798 */ 1799 device_arena = vmem_create("device", (void *)toxic_addr, 1800 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1801 1802 #else /* __i386 */ 1803 1804 /* 1805 * allocate the bit map that tracks toxic pages 1806 */ 1807 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 1808 PRM_DEBUG(toxic_bit_map_len); 1809 toxic_bit_map = 1810 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1811 ASSERT(toxic_bit_map != NULL); 1812 PRM_DEBUG(toxic_bit_map); 1813 1814 #endif /* __i386 */ 1815 1816 1817 /* 1818 * Now that we've got more VA, as well as the ability to allocate from 1819 * it, tell the debugger. 1820 */ 1821 if (boothowto & RB_DEBUG) 1822 kdi_dvec_memavail(); 1823 1824 /* 1825 * The following code installs a special page fault handler (#pf) 1826 * to work around a pentium bug. 1827 */ 1828 #if !defined(__amd64) && !defined(__xpv) 1829 if (x86_type == X86_TYPE_P5) { 1830 desctbr_t idtr; 1831 gate_desc_t *newidt; 1832 1833 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1834 panic("failed to install pentium_pftrap"); 1835 1836 bcopy(idt0, newidt, NIDT * sizeof (*idt0)); 1837 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1838 KCS_SEL, SDT_SYSIGT, TRP_KPL); 1839 1840 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1841 PROT_READ | PROT_EXEC); 1842 1843 CPU->cpu_idt = newidt; 1844 idtr.dtr_base = (uintptr_t)CPU->cpu_idt; 1845 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1; 1846 wr_idtr(&idtr); 1847 } 1848 #endif /* !__amd64 */ 1849 1850 #if !defined(__xpv) 1851 /* 1852 * Map page pfn=0 for drivers, such as kd, that need to pick up 1853 * parameters left there by controllers/BIOS. 1854 */ 1855 PRM_POINT("setup up p0_va"); 1856 p0_va = i86devmap(0, 1, PROT_READ); 1857 PRM_DEBUG(p0_va); 1858 #endif 1859 1860 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1861 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1862 1863 /* 1864 * disable automatic large pages for small memory systems or 1865 * when the disable flag is set. 1866 * 1867 * Do not yet consider page sizes larger than 2m/4m. 1868 */ 1869 if (!auto_lpg_disable && mmu.max_page_level > 0) { 1870 max_uheap_lpsize = LEVEL_SIZE(1); 1871 max_ustack_lpsize = LEVEL_SIZE(1); 1872 max_privmap_lpsize = LEVEL_SIZE(1); 1873 max_uidata_lpsize = LEVEL_SIZE(1); 1874 max_utext_lpsize = LEVEL_SIZE(1); 1875 max_shm_lpsize = LEVEL_SIZE(1); 1876 } 1877 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 1878 auto_lpg_disable) { 1879 use_brk_lpg = 0; 1880 use_stk_lpg = 0; 1881 } 1882 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 1883 1884 PRM_POINT("Calling hat_init_finish()..."); 1885 hat_init_finish(); 1886 PRM_POINT("hat_init_finish() done"); 1887 1888 /* 1889 * Initialize the segkp segment type. 1890 */ 1891 rw_enter(&kas.a_lock, RW_WRITER); 1892 PRM_POINT("Attaching segkp"); 1893 if (segkp_fromheap) { 1894 segkp->s_as = &kas; 1895 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1896 segkp) < 0) { 1897 panic("startup: cannot attach segkp"); 1898 /*NOTREACHED*/ 1899 } 1900 PRM_POINT("Doing segkp_create()"); 1901 if (segkp_create(segkp) != 0) { 1902 panic("startup: segkp_create failed"); 1903 /*NOTREACHED*/ 1904 } 1905 PRM_DEBUG(segkp); 1906 rw_exit(&kas.a_lock); 1907 1908 /* 1909 * kpm segment 1910 */ 1911 segmap_kpm = 0; 1912 if (kpm_desired) { 1913 kpm_init(); 1914 kpm_enable = 1; 1915 vpm_enable = 1; 1916 } 1917 1918 /* 1919 * Now create segmap segment. 1920 */ 1921 rw_enter(&kas.a_lock, RW_WRITER); 1922 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 1923 panic("cannot attach segmap"); 1924 /*NOTREACHED*/ 1925 } 1926 PRM_DEBUG(segmap); 1927 1928 a.prot = PROT_READ | PROT_WRITE; 1929 a.shmsize = 0; 1930 a.nfreelist = segmapfreelists; 1931 1932 if (segmap_create(segmap, (caddr_t)&a) != 0) 1933 panic("segmap_create segmap"); 1934 rw_exit(&kas.a_lock); 1935 1936 setup_vaddr_for_ppcopy(CPU); 1937 1938 segdev_init(); 1939 #if defined(__xpv) 1940 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1941 #endif 1942 pmem_init(); 1943 1944 PRM_POINT("startup_vm() done"); 1945 } 1946 1947 /* 1948 * Load a tod module for the non-standard tod part found on this system. 1949 */ 1950 static void 1951 load_tod_module(char *todmod) 1952 { 1953 if (modload("tod", todmod) == -1) 1954 halt("Can't load TOD module"); 1955 } 1956 1957 static void 1958 startup_end(void) 1959 { 1960 int i; 1961 extern void setx86isalist(void); 1962 1963 PRM_POINT("startup_end() starting..."); 1964 1965 /* 1966 * Perform tasks that get done after most of the VM 1967 * initialization has been done but before the clock 1968 * and other devices get started. 1969 */ 1970 kern_setup1(); 1971 1972 /* 1973 * Perform CPC initialization for this CPU. 1974 */ 1975 kcpc_hw_init(CPU); 1976 1977 #if defined(OPTERON_WORKAROUND_6323525) 1978 if (opteron_workaround_6323525) 1979 patch_workaround_6323525(); 1980 #endif 1981 /* 1982 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 1983 * (For now, "needed" is defined as set tod_module_name in /etc/system) 1984 */ 1985 if (tod_module_name != NULL) { 1986 PRM_POINT("load_tod_module()"); 1987 load_tod_module(tod_module_name); 1988 } 1989 1990 #if defined(__xpv) 1991 /* 1992 * Forceload interposing TOD module for the hypervisor. 1993 */ 1994 PRM_POINT("load_tod_module()"); 1995 load_tod_module("xpvtod"); 1996 #endif 1997 1998 /* 1999 * Configure the system. 2000 */ 2001 PRM_POINT("Calling configure()..."); 2002 configure(); /* set up devices */ 2003 PRM_POINT("configure() done"); 2004 2005 /* 2006 * Set the isa_list string to the defined instruction sets we 2007 * support. 2008 */ 2009 setx86isalist(); 2010 cpu_intr_alloc(CPU, NINTR_THREADS); 2011 psm_install(); 2012 2013 /* 2014 * We're done with bootops. We don't unmap the bootstrap yet because 2015 * we're still using bootsvcs. 2016 */ 2017 PRM_POINT("NULLing out bootops"); 2018 *bootopsp = (struct bootops *)NULL; 2019 bootops = (struct bootops *)NULL; 2020 2021 #if defined(__xpv) 2022 ec_init_debug_irq(); 2023 xs_domu_init(); 2024 #endif 2025 PRM_POINT("Enabling interrupts"); 2026 (*picinitf)(); 2027 sti(); 2028 #if defined(__xpv) 2029 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2030 xen_late_startup(); 2031 #endif 2032 2033 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2034 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2035 2036 /* 2037 * Register these software interrupts for ddi timer. 2038 * Software interrupts up to the level 10 are supported. 2039 */ 2040 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2041 char name[sizeof ("timer_softintr") + 2]; 2042 (void) sprintf(name, "timer_softintr%02d", i); 2043 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2044 (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL); 2045 } 2046 2047 PRM_POINT("startup_end() done"); 2048 } 2049 2050 extern char hw_serial[]; 2051 char *_hs1107 = hw_serial; 2052 ulong_t _bdhs34; 2053 2054 void 2055 post_startup(void) 2056 { 2057 /* 2058 * Set the system wide, processor-specific flags to be passed 2059 * to userland via the aux vector for performance hints and 2060 * instruction set extensions. 2061 */ 2062 bind_hwcap(); 2063 2064 #ifdef __xpv 2065 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2066 #endif 2067 { 2068 /* 2069 * Load the System Management BIOS into the global ksmbios 2070 * handle, if an SMBIOS is present on this system. 2071 */ 2072 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 2073 2074 #if defined(__xpv) 2075 xpv_panic_init(); 2076 #else 2077 /* 2078 * Startup the memory scrubber. 2079 * XXPV This should be running somewhere .. 2080 */ 2081 memscrub_init(); 2082 #endif 2083 } 2084 2085 /* 2086 * Complete CPU module initialization 2087 */ 2088 cmi_post_startup(); 2089 2090 /* 2091 * Perform forceloading tasks for /etc/system. 2092 */ 2093 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2094 2095 /* 2096 * ON4.0: Force /proc module in until clock interrupt handle fixed 2097 * ON4.0: This must be fixed or restated in /etc/systems. 2098 */ 2099 (void) modload("fs", "procfs"); 2100 2101 (void) i_ddi_attach_hw_nodes("pit_beep"); 2102 2103 #if defined(__i386) 2104 /* 2105 * Check for required functional Floating Point hardware, 2106 * unless FP hardware explicitly disabled. 2107 */ 2108 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2109 halt("No working FP hardware found"); 2110 #endif 2111 2112 maxmem = freemem; 2113 2114 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 2115 } 2116 2117 static int 2118 pp_in_ramdisk(page_t *pp) 2119 { 2120 extern uint64_t ramdisk_start, ramdisk_end; 2121 2122 return ((pp->p_pagenum >= btop(ramdisk_start)) && 2123 (pp->p_pagenum < btopr(ramdisk_end))); 2124 } 2125 2126 void 2127 release_bootstrap(void) 2128 { 2129 int root_is_ramdisk; 2130 page_t *pp; 2131 extern void kobj_boot_unmountroot(void); 2132 extern dev_t rootdev; 2133 2134 /* unmount boot ramdisk and release kmem usage */ 2135 kobj_boot_unmountroot(); 2136 2137 /* 2138 * We're finished using the boot loader so free its pages. 2139 */ 2140 PRM_POINT("Unmapping lower boot pages"); 2141 clear_boot_mappings(0, _userlimit); 2142 postbootkernelbase = kernelbase; 2143 2144 /* 2145 * If root isn't on ramdisk, destroy the hardcoded 2146 * ramdisk node now and release the memory. Else, 2147 * ramdisk memory is kept in rd_pages. 2148 */ 2149 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2150 if (!root_is_ramdisk) { 2151 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2152 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2153 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2154 (void) ddi_remove_child(dip, 0); 2155 } 2156 2157 PRM_POINT("Releasing boot pages"); 2158 while (bootpages) { 2159 pp = bootpages; 2160 bootpages = pp->p_next; 2161 if (root_is_ramdisk && pp_in_ramdisk(pp)) { 2162 pp->p_next = rd_pages; 2163 rd_pages = pp; 2164 continue; 2165 } 2166 pp->p_next = (struct page *)0; 2167 pp->p_prev = (struct page *)0; 2168 PP_CLRBOOTPAGES(pp); 2169 page_free(pp, 1); 2170 } 2171 PRM_POINT("Boot pages released"); 2172 2173 #if !defined(__xpv) 2174 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2175 /* 2176 * Find 1 page below 1 MB so that other processors can boot up. 2177 * Make sure it has a kernel VA as well as a 1:1 mapping. 2178 * We should have just free'd one up. 2179 */ 2180 if (use_mp) { 2181 pfn_t pfn; 2182 2183 for (pfn = 1; pfn < btop(1*1024*1024); pfn++) { 2184 if (page_numtopp_alloc(pfn) == NULL) 2185 continue; 2186 rm_platter_va = i86devmap(pfn, 1, 2187 PROT_READ | PROT_WRITE | PROT_EXEC); 2188 rm_platter_pa = ptob(pfn); 2189 hat_devload(kas.a_hat, 2190 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2191 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2192 HAT_LOAD_NOCONSIST); 2193 break; 2194 } 2195 if (pfn == btop(1*1024*1024)) 2196 panic("No page available for starting " 2197 "other processors"); 2198 } 2199 #endif /* !__xpv */ 2200 } 2201 2202 /* 2203 * Initialize the platform-specific parts of a page_t. 2204 */ 2205 void 2206 add_physmem_cb(page_t *pp, pfn_t pnum) 2207 { 2208 pp->p_pagenum = pnum; 2209 pp->p_mapping = NULL; 2210 pp->p_embed = 0; 2211 pp->p_share = 0; 2212 pp->p_mlentry = 0; 2213 } 2214 2215 /* 2216 * kphysm_init() initializes physical memory. 2217 */ 2218 static pgcnt_t 2219 kphysm_init( 2220 page_t *pp, 2221 pgcnt_t npages) 2222 { 2223 struct memlist *pmem; 2224 struct memseg *cur_memseg; 2225 pfn_t base_pfn; 2226 pgcnt_t num; 2227 pgcnt_t pages_done = 0; 2228 uint64_t addr; 2229 uint64_t size; 2230 extern pfn_t ddiphysmin; 2231 2232 ASSERT(page_hash != NULL && page_hashsz != 0); 2233 2234 cur_memseg = memseg_base; 2235 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2236 /* 2237 * In a 32 bit kernel can't use higher memory if we're 2238 * not booting in PAE mode. This check takes care of that. 2239 */ 2240 addr = pmem->address; 2241 size = pmem->size; 2242 if (btop(addr) > physmax) 2243 continue; 2244 2245 /* 2246 * align addr and size - they may not be at page boundaries 2247 */ 2248 if ((addr & MMU_PAGEOFFSET) != 0) { 2249 addr += MMU_PAGEOFFSET; 2250 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2251 size -= addr - pmem->address; 2252 } 2253 2254 /* only process pages below or equal to physmax */ 2255 if ((btop(addr + size) - 1) > physmax) 2256 size = ptob(physmax - btop(addr) + 1); 2257 2258 num = btop(size); 2259 if (num == 0) 2260 continue; 2261 2262 if (num > npages) 2263 num = npages; 2264 2265 npages -= num; 2266 pages_done += num; 2267 base_pfn = btop(addr); 2268 2269 if (prom_debug) 2270 prom_printf("MEMSEG addr=0x%" PRIx64 2271 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2272 addr, num, base_pfn, base_pfn + num); 2273 2274 /* 2275 * Ignore pages below ddiphysmin to simplify ddi memory 2276 * allocation with non-zero addr_lo requests. 2277 */ 2278 if (base_pfn < ddiphysmin) { 2279 if (base_pfn + num <= ddiphysmin) 2280 continue; 2281 pp += (ddiphysmin - base_pfn); 2282 num -= (ddiphysmin - base_pfn); 2283 base_pfn = ddiphysmin; 2284 } 2285 2286 /* 2287 * Build the memsegs entry 2288 */ 2289 cur_memseg->pages = pp; 2290 cur_memseg->epages = pp + num; 2291 cur_memseg->pages_base = base_pfn; 2292 cur_memseg->pages_end = base_pfn + num; 2293 2294 /* 2295 * Insert into memseg list in decreasing pfn range order. 2296 * Low memory is typically more fragmented such that this 2297 * ordering keeps the larger ranges at the front of the list 2298 * for code that searches memseg. 2299 * This ASSERTS that the memsegs coming in from boot are in 2300 * increasing physical address order and not contiguous. 2301 */ 2302 if (memsegs != NULL) { 2303 ASSERT(cur_memseg->pages_base >= memsegs->pages_end); 2304 cur_memseg->next = memsegs; 2305 } 2306 memsegs = cur_memseg; 2307 2308 /* 2309 * add_physmem() initializes the PSM part of the page 2310 * struct by calling the PSM back with add_physmem_cb(). 2311 * In addition it coalesces pages into larger pages as 2312 * it initializes them. 2313 */ 2314 add_physmem(pp, num, base_pfn); 2315 cur_memseg++; 2316 availrmem_initial += num; 2317 availrmem += num; 2318 2319 pp += num; 2320 } 2321 2322 PRM_DEBUG(availrmem_initial); 2323 PRM_DEBUG(availrmem); 2324 PRM_DEBUG(freemem); 2325 build_pfn_hash(); 2326 return (pages_done); 2327 } 2328 2329 /* 2330 * Kernel VM initialization. 2331 */ 2332 static void 2333 kvm_init(void) 2334 { 2335 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2336 2337 /* 2338 * Put the kernel segments in kernel address space. 2339 */ 2340 rw_enter(&kas.a_lock, RW_WRITER); 2341 as_avlinit(&kas); 2342 2343 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2344 (void) segkmem_create(&ktextseg); 2345 2346 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2347 (void) segkmem_create(&kvalloc); 2348 2349 (void) seg_attach(&kas, kernelheap, 2350 ekernelheap - kernelheap, &kvseg); 2351 (void) segkmem_create(&kvseg); 2352 2353 if (core_size > 0) { 2354 PRM_POINT("attaching kvseg_core"); 2355 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2356 &kvseg_core); 2357 (void) segkmem_create(&kvseg_core); 2358 } 2359 2360 if (segziosize > 0) { 2361 PRM_POINT("attaching segzio"); 2362 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2363 &kzioseg); 2364 (void) segkmem_zio_create(&kzioseg); 2365 2366 /* create zio area covering new segment */ 2367 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2368 } 2369 2370 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2371 (void) segkmem_create(&kdebugseg); 2372 2373 rw_exit(&kas.a_lock); 2374 2375 /* 2376 * Ensure that the red zone at kernelbase is never accessible. 2377 */ 2378 PRM_POINT("protecting redzone"); 2379 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2380 2381 /* 2382 * Make the text writable so that it can be hot patched by DTrace. 2383 */ 2384 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2385 PROT_READ | PROT_WRITE | PROT_EXEC); 2386 2387 /* 2388 * Make data writable until end. 2389 */ 2390 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2391 PROT_READ | PROT_WRITE | PROT_EXEC); 2392 } 2393 2394 #ifndef __xpv 2395 /* 2396 * Solaris adds an entry for Write Combining caching to the PAT 2397 */ 2398 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2399 2400 void 2401 pat_sync(void) 2402 { 2403 ulong_t cr0, cr0_orig, cr4; 2404 2405 if (!(x86_feature & X86_PAT)) 2406 return; 2407 cr0_orig = cr0 = getcr0(); 2408 cr4 = getcr4(); 2409 2410 /* disable caching and flush all caches and TLBs */ 2411 cr0 |= CR0_CD; 2412 cr0 &= ~CR0_NW; 2413 setcr0(cr0); 2414 invalidate_cache(); 2415 if (cr4 & CR4_PGE) { 2416 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2417 setcr4(cr4); 2418 } else { 2419 reload_cr3(); 2420 } 2421 2422 /* add our entry to the PAT */ 2423 wrmsr(REG_PAT, pat_attr_reg); 2424 2425 /* flush TLBs and cache again, then reenable cr0 caching */ 2426 if (cr4 & CR4_PGE) { 2427 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2428 setcr4(cr4); 2429 } else { 2430 reload_cr3(); 2431 } 2432 invalidate_cache(); 2433 setcr0(cr0_orig); 2434 } 2435 2436 #endif /* !__xpv */ 2437 2438 void 2439 get_system_configuration(void) 2440 { 2441 char prop[32]; 2442 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2443 2444 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2445 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2446 kobj_getvalue(prop, &nodes_ll) == -1 || 2447 nodes_ll > MAXNODES || 2448 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2449 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2450 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2451 system_hardware.hd_nodes = 1; 2452 system_hardware.hd_cpus_per_node = 0; 2453 } else { 2454 system_hardware.hd_nodes = (int)nodes_ll; 2455 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2456 } 2457 2458 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2459 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2460 kobj_getvalue(prop, &lvalue) == -1) 2461 eprom_kernelbase = NULL; 2462 else 2463 eprom_kernelbase = (uintptr_t)lvalue; 2464 2465 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2466 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2467 kobj_getvalue(prop, &lvalue) == -1) 2468 segmapsize = SEGMAPDEFAULT; 2469 else 2470 segmapsize = (uintptr_t)lvalue; 2471 2472 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2473 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2474 kobj_getvalue(prop, &lvalue) == -1) 2475 segmapfreelists = 0; /* use segmap driver default */ 2476 else 2477 segmapfreelists = (int)lvalue; 2478 2479 /* physmem used to be here, but moved much earlier to fakebop.c */ 2480 } 2481 2482 /* 2483 * Add to a memory list. 2484 * start = start of new memory segment 2485 * len = length of new memory segment in bytes 2486 * new = pointer to a new struct memlist 2487 * memlistp = memory list to which to add segment. 2488 */ 2489 void 2490 memlist_add( 2491 uint64_t start, 2492 uint64_t len, 2493 struct memlist *new, 2494 struct memlist **memlistp) 2495 { 2496 struct memlist *cur; 2497 uint64_t end = start + len; 2498 2499 new->address = start; 2500 new->size = len; 2501 2502 cur = *memlistp; 2503 2504 while (cur) { 2505 if (cur->address >= end) { 2506 new->next = cur; 2507 *memlistp = new; 2508 new->prev = cur->prev; 2509 cur->prev = new; 2510 return; 2511 } 2512 ASSERT(cur->address + cur->size <= start); 2513 if (cur->next == NULL) { 2514 cur->next = new; 2515 new->prev = cur; 2516 new->next = NULL; 2517 return; 2518 } 2519 memlistp = &cur->next; 2520 cur = cur->next; 2521 } 2522 } 2523 2524 void 2525 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2526 { 2527 size_t tsize = e_modtext - modtext; 2528 size_t dsize = e_moddata - moddata; 2529 2530 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2531 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2532 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2533 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2534 } 2535 2536 caddr_t 2537 kobj_text_alloc(vmem_t *arena, size_t size) 2538 { 2539 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2540 } 2541 2542 /*ARGSUSED*/ 2543 caddr_t 2544 kobj_texthole_alloc(caddr_t addr, size_t size) 2545 { 2546 panic("unexpected call to kobj_texthole_alloc()"); 2547 /*NOTREACHED*/ 2548 return (0); 2549 } 2550 2551 /*ARGSUSED*/ 2552 void 2553 kobj_texthole_free(caddr_t addr, size_t size) 2554 { 2555 panic("unexpected call to kobj_texthole_free()"); 2556 } 2557 2558 /* 2559 * This is called just after configure() in startup(). 2560 * 2561 * The ISALIST concept is a bit hopeless on Intel, because 2562 * there's no guarantee of an ever-more-capable processor 2563 * given that various parts of the instruction set may appear 2564 * and disappear between different implementations. 2565 * 2566 * While it would be possible to correct it and even enhance 2567 * it somewhat, the explicit hardware capability bitmask allows 2568 * more flexibility. 2569 * 2570 * So, we just leave this alone. 2571 */ 2572 void 2573 setx86isalist(void) 2574 { 2575 char *tp; 2576 size_t len; 2577 extern char *isa_list; 2578 2579 #define TBUFSIZE 1024 2580 2581 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2582 *tp = '\0'; 2583 2584 #if defined(__amd64) 2585 (void) strcpy(tp, "amd64 "); 2586 #endif 2587 2588 switch (x86_vendor) { 2589 case X86_VENDOR_Intel: 2590 case X86_VENDOR_AMD: 2591 case X86_VENDOR_TM: 2592 if (x86_feature & X86_CMOV) { 2593 /* 2594 * Pentium Pro or later 2595 */ 2596 (void) strcat(tp, "pentium_pro"); 2597 (void) strcat(tp, x86_feature & X86_MMX ? 2598 "+mmx pentium_pro " : " "); 2599 } 2600 /*FALLTHROUGH*/ 2601 case X86_VENDOR_Cyrix: 2602 /* 2603 * The Cyrix 6x86 does not have any Pentium features 2604 * accessible while not at privilege level 0. 2605 */ 2606 if (x86_feature & X86_CPUID) { 2607 (void) strcat(tp, "pentium"); 2608 (void) strcat(tp, x86_feature & X86_MMX ? 2609 "+mmx pentium " : " "); 2610 } 2611 break; 2612 default: 2613 break; 2614 } 2615 (void) strcat(tp, "i486 i386 i86"); 2616 len = strlen(tp) + 1; /* account for NULL at end of string */ 2617 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2618 kmem_free(tp, TBUFSIZE); 2619 2620 #undef TBUFSIZE 2621 } 2622 2623 2624 #ifdef __amd64 2625 2626 void * 2627 device_arena_alloc(size_t size, int vm_flag) 2628 { 2629 return (vmem_alloc(device_arena, size, vm_flag)); 2630 } 2631 2632 void 2633 device_arena_free(void *vaddr, size_t size) 2634 { 2635 vmem_free(device_arena, vaddr, size); 2636 } 2637 2638 #else /* __i386 */ 2639 2640 void * 2641 device_arena_alloc(size_t size, int vm_flag) 2642 { 2643 caddr_t vaddr; 2644 uintptr_t v; 2645 size_t start; 2646 size_t end; 2647 2648 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2649 if (vaddr == NULL) 2650 return (NULL); 2651 2652 v = (uintptr_t)vaddr; 2653 ASSERT(v >= kernelbase); 2654 ASSERT(v + size <= valloc_base); 2655 2656 start = btop(v - kernelbase); 2657 end = btop(v + size - 1 - kernelbase); 2658 ASSERT(start < toxic_bit_map_len); 2659 ASSERT(end < toxic_bit_map_len); 2660 2661 while (start <= end) { 2662 BT_ATOMIC_SET(toxic_bit_map, start); 2663 ++start; 2664 } 2665 return (vaddr); 2666 } 2667 2668 void 2669 device_arena_free(void *vaddr, size_t size) 2670 { 2671 uintptr_t v = (uintptr_t)vaddr; 2672 size_t start; 2673 size_t end; 2674 2675 ASSERT(v >= kernelbase); 2676 ASSERT(v + size <= valloc_base); 2677 2678 start = btop(v - kernelbase); 2679 end = btop(v + size - 1 - kernelbase); 2680 ASSERT(start < toxic_bit_map_len); 2681 ASSERT(end < toxic_bit_map_len); 2682 2683 while (start <= end) { 2684 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2685 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2686 ++start; 2687 } 2688 vmem_free(heap_arena, vaddr, size); 2689 } 2690 2691 /* 2692 * returns 1st address in range that is in device arena, or NULL 2693 * if len is not NULL it returns the length of the toxic range 2694 */ 2695 void * 2696 device_arena_contains(void *vaddr, size_t size, size_t *len) 2697 { 2698 uintptr_t v = (uintptr_t)vaddr; 2699 uintptr_t eaddr = v + size; 2700 size_t start; 2701 size_t end; 2702 2703 /* 2704 * if called very early by kmdb, just return NULL 2705 */ 2706 if (toxic_bit_map == NULL) 2707 return (NULL); 2708 2709 /* 2710 * First check if we're completely outside the bitmap range. 2711 */ 2712 if (v >= valloc_base || eaddr < kernelbase) 2713 return (NULL); 2714 2715 /* 2716 * Trim ends of search to look at only what the bitmap covers. 2717 */ 2718 if (v < kernelbase) 2719 v = kernelbase; 2720 start = btop(v - kernelbase); 2721 end = btop(eaddr - kernelbase); 2722 if (end >= toxic_bit_map_len) 2723 end = toxic_bit_map_len; 2724 2725 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2726 return (NULL); 2727 2728 v = kernelbase + ptob(start); 2729 if (len != NULL) 2730 *len = ptob(end - start); 2731 return ((void *)v); 2732 } 2733 2734 #endif /* __i386 */ 2735