1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/t_lock.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/signal.h> 31 #include <sys/systm.h> 32 #include <sys/user.h> 33 #include <sys/mman.h> 34 #include <sys/vm.h> 35 #include <sys/conf.h> 36 #include <sys/avintr.h> 37 #include <sys/autoconf.h> 38 #include <sys/disp.h> 39 #include <sys/class.h> 40 #include <sys/bitmap.h> 41 42 #include <sys/privregs.h> 43 44 #include <sys/proc.h> 45 #include <sys/buf.h> 46 #include <sys/kmem.h> 47 #include <sys/mem.h> 48 #include <sys/kstat.h> 49 50 #include <sys/reboot.h> 51 52 #include <sys/cred.h> 53 #include <sys/vnode.h> 54 #include <sys/file.h> 55 56 #include <sys/procfs.h> 57 58 #include <sys/vfs.h> 59 #include <sys/cmn_err.h> 60 #include <sys/utsname.h> 61 #include <sys/debug.h> 62 #include <sys/kdi.h> 63 64 #include <sys/dumphdr.h> 65 #include <sys/bootconf.h> 66 #include <sys/varargs.h> 67 #include <sys/promif.h> 68 #include <sys/modctl.h> 69 70 #include <sys/sunddi.h> 71 #include <sys/sunndi.h> 72 #include <sys/ndi_impldefs.h> 73 #include <sys/ddidmareq.h> 74 #include <sys/psw.h> 75 #include <sys/regset.h> 76 #include <sys/clock.h> 77 #include <sys/pte.h> 78 #include <sys/tss.h> 79 #include <sys/stack.h> 80 #include <sys/trap.h> 81 #include <sys/fp.h> 82 #include <vm/kboot_mmu.h> 83 #include <vm/anon.h> 84 #include <vm/as.h> 85 #include <vm/page.h> 86 #include <vm/seg.h> 87 #include <vm/seg_dev.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_kpm.h> 90 #include <vm/seg_map.h> 91 #include <vm/seg_vn.h> 92 #include <vm/seg_kp.h> 93 #include <sys/memnode.h> 94 #include <vm/vm_dep.h> 95 #include <sys/thread.h> 96 #include <sys/sysconf.h> 97 #include <sys/vm_machparam.h> 98 #include <sys/archsystm.h> 99 #include <sys/machsystm.h> 100 #include <vm/hat.h> 101 #include <vm/hat_i86.h> 102 #include <sys/pmem.h> 103 #include <sys/smp_impldefs.h> 104 #include <sys/x86_archext.h> 105 #include <sys/cpuvar.h> 106 #include <sys/segments.h> 107 #include <sys/clconf.h> 108 #include <sys/kobj.h> 109 #include <sys/kobj_lex.h> 110 #include <sys/cpc_impl.h> 111 #include <sys/cpu_module.h> 112 #include <sys/smbios.h> 113 #include <sys/debug_info.h> 114 #include <sys/bootinfo.h> 115 #include <sys/ddi_timer.h> 116 #include <sys/systeminfo.h> 117 #include <sys/multiboot.h> 118 119 #ifdef __xpv 120 121 #include <sys/hypervisor.h> 122 #include <sys/xen_mmu.h> 123 #include <sys/evtchn_impl.h> 124 #include <sys/gnttab.h> 125 #include <sys/xpv_panic.h> 126 #include <xen/sys/xenbus_comms.h> 127 #include <xen/public/physdev.h> 128 129 extern void xen_late_startup(void); 130 131 struct xen_evt_data cpu0_evt_data; 132 133 #endif /* __xpv */ 134 135 extern void progressbar_init(void); 136 extern void brand_init(void); 137 extern void pcf_init(void); 138 extern void pg_init(void); 139 140 extern int size_pse_array(pgcnt_t, int); 141 142 #if defined(_SOFT_HOSTID) 143 144 #include <sys/rtc.h> 145 146 static int32_t set_soft_hostid(void); 147 static char hostid_file[] = "/etc/hostid"; 148 149 #endif 150 151 void *gfx_devinfo_list; 152 153 #if defined(__amd64) && !defined(__xpv) 154 extern void immu_startup(void); 155 #endif 156 157 /* 158 * XXX make declaration below "static" when drivers no longer use this 159 * interface. 160 */ 161 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 162 163 /* 164 * segkp 165 */ 166 extern int segkp_fromheap; 167 168 static void kvm_init(void); 169 static void startup_init(void); 170 static void startup_memlist(void); 171 static void startup_kmem(void); 172 static void startup_modules(void); 173 static void startup_vm(void); 174 static void startup_end(void); 175 static void layout_kernel_va(void); 176 177 /* 178 * Declare these as initialized data so we can patch them. 179 */ 180 #ifdef __i386 181 182 /* 183 * Due to virtual address space limitations running in 32 bit mode, restrict 184 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 185 * 186 * If the physical max memory size of 64g were allowed to be configured, the 187 * size of user virtual address space will be less than 1g. A limited user 188 * address space greatly reduces the range of applications that can run. 189 * 190 * If more physical memory than PHYSMEM is required, users should preferably 191 * run in 64 bit mode which has far looser virtual address space limitations. 192 * 193 * If 64 bit mode is not available (as in IA32) and/or more physical memory 194 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 195 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 196 * should also be carefully tuned to balance out the need of the user 197 * application while minimizing the risk of kernel heap exhaustion due to 198 * kernelbase being set too high. 199 */ 200 #define PHYSMEM 0x400000 201 202 #else /* __amd64 */ 203 204 /* 205 * For now we can handle memory with physical addresses up to about 206 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 207 * half the VA space for seg_kpm. When systems get bigger than 64TB this 208 * code will need revisiting. There is an implicit assumption that there 209 * are no *huge* holes in the physical address space too. 210 */ 211 #define TERABYTE (1ul << 40) 212 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 213 #define PHYSMEM PHYSMEM_MAX64 214 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 215 216 #endif /* __amd64 */ 217 218 pgcnt_t physmem = PHYSMEM; 219 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 220 221 char *kobj_file_buf; 222 int kobj_file_bufsize; /* set in /etc/system */ 223 224 /* Global variables for MP support. Used in mp_startup */ 225 caddr_t rm_platter_va = 0; 226 uint32_t rm_platter_pa; 227 228 int auto_lpg_disable = 1; 229 230 /* 231 * Some CPUs have holes in the middle of the 64-bit virtual address range. 232 */ 233 uintptr_t hole_start, hole_end; 234 235 /* 236 * kpm mapping window 237 */ 238 caddr_t kpm_vbase; 239 size_t kpm_size; 240 static int kpm_desired; 241 #ifdef __amd64 242 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 243 #endif 244 245 /* 246 * Configuration parameters set at boot time. 247 */ 248 249 caddr_t econtig; /* end of first block of contiguous kernel */ 250 251 struct bootops *bootops = 0; /* passed in from boot */ 252 struct bootops **bootopsp; 253 struct boot_syscalls *sysp; /* passed in from boot */ 254 255 char bootblock_fstype[16]; 256 257 char kern_bootargs[OBP_MAXPATHLEN]; 258 char kern_bootfile[OBP_MAXPATHLEN]; 259 260 /* 261 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 262 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 263 * zio buffers from their own segment, otherwise they are allocated from the 264 * heap. The optimization of allocating zio buffers from their own segment is 265 * only valid on 64-bit kernels. 266 */ 267 #if defined(__amd64) 268 int segzio_fromheap = 0; 269 #else 270 int segzio_fromheap = 1; 271 #endif 272 273 /* 274 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 275 * depends on number of BOP_ALLOC calls made and requested size, memory size 276 * combination and whether boot.bin memory needs to be freed. 277 */ 278 #define POSS_NEW_FRAGMENTS 12 279 280 /* 281 * VM data structures 282 */ 283 long page_hashsz; /* Size of page hash table (power of two) */ 284 struct page *pp_base; /* Base of initial system page struct array */ 285 struct page **page_hash; /* Page hash table */ 286 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 287 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 288 int pse_shift; /* log2(pse_table_size) */ 289 struct seg ktextseg; /* Segment used for kernel executable image */ 290 struct seg kvalloc; /* Segment used for "valloc" mapping */ 291 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 292 struct seg kmapseg; /* Segment used for generic kernel mappings */ 293 struct seg kdebugseg; /* Segment used for the kernel debugger */ 294 295 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 296 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 297 298 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 299 300 #if defined(__amd64) 301 struct seg kvseg_core; /* Segment used for the core heap */ 302 struct seg kpmseg; /* Segment used for physical mapping */ 303 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 304 #else 305 struct seg *segkpm = NULL; /* Unused on IA32 */ 306 #endif 307 308 caddr_t segkp_base; /* Base address of segkp */ 309 caddr_t segzio_base; /* Base address of segzio */ 310 #if defined(__amd64) 311 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 312 #else 313 pgcnt_t segkpsize = 0; 314 #endif 315 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 316 317 /* 318 * VA range available to the debugger 319 */ 320 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 321 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 322 323 struct memseg *memseg_base; 324 struct vnode unused_pages_vp; 325 326 #define FOURGB 0x100000000LL 327 328 struct memlist *memlist; 329 330 caddr_t s_text; /* start of kernel text segment */ 331 caddr_t e_text; /* end of kernel text segment */ 332 caddr_t s_data; /* start of kernel data segment */ 333 caddr_t e_data; /* end of kernel data segment */ 334 caddr_t modtext; /* start of loadable module text reserved */ 335 caddr_t e_modtext; /* end of loadable module text reserved */ 336 caddr_t moddata; /* start of loadable module data reserved */ 337 caddr_t e_moddata; /* end of loadable module data reserved */ 338 339 struct memlist *phys_install; /* Total installed physical memory */ 340 struct memlist *phys_avail; /* Total available physical memory */ 341 struct memlist *bios_rsvd; /* Bios reserved memory */ 342 343 /* 344 * kphysm_init returns the number of pages that were processed 345 */ 346 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 347 348 #define IO_PROP_SIZE 64 /* device property size */ 349 350 /* 351 * a couple useful roundup macros 352 */ 353 #define ROUND_UP_PAGE(x) \ 354 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 355 #define ROUND_UP_LPAGE(x) \ 356 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 357 #define ROUND_UP_4MEG(x) \ 358 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 359 #define ROUND_UP_TOPLEVEL(x) \ 360 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 361 362 /* 363 * 32-bit Kernel's Virtual memory layout. 364 * +-----------------------+ 365 * | | 366 * 0xFFC00000 -|-----------------------|- ARGSBASE 367 * | debugger | 368 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 369 * | Kernel Data | 370 * 0xFEC00000 -|-----------------------| 371 * | Kernel Text | 372 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 373 * |--- GDT ---|- GDT page (GDT_VA) 374 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 375 * | | 376 * | page_t structures | 377 * | memsegs, memlists, | 378 * | page hash, etc. | 379 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 380 * | | (segkp is just an arena in the heap) 381 * | | 382 * | kvseg | 383 * | | 384 * | | 385 * --- -|-----------------------|- kernelheap (floating) 386 * | Segkmap | 387 * 0xC3002000 -|-----------------------|- segmap_start (floating) 388 * | Red Zone | 389 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 390 * | | || 391 * | Shared objects | \/ 392 * | | 393 * : : 394 * | user data | 395 * |-----------------------| 396 * | user text | 397 * 0x08048000 -|-----------------------| 398 * | user stack | 399 * : : 400 * | invalid | 401 * 0x00000000 +-----------------------+ 402 * 403 * 404 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 405 * +-----------------------+ 406 * | | 407 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 408 * | debugger (?) | 409 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 410 * | unused | 411 * +-----------------------+ 412 * | Kernel Data | 413 * 0xFFFFFFFF.FBC00000 |-----------------------| 414 * | Kernel Text | 415 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 416 * |--- GDT ---|- GDT page (GDT_VA) 417 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 418 * | | 419 * | Core heap | (used for loadable modules) 420 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 421 * | Kernel | 422 * | heap | 423 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 424 * | segmap | 425 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 426 * | device mappings | 427 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 428 * | segzio | 429 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 430 * | segkp | 431 * --- |-----------------------|- segkp_base (floating) 432 * | page_t structures | valloc_base + valloc_sz 433 * | memsegs, memlists, | 434 * | page hash, etc. | 435 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 436 * | segkpm | 437 * 0xFFFFFE00.00000000 |-----------------------| 438 * | Red Zone | 439 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 440 * | User stack |- User space memory 441 * | | 442 * | shared objects, etc | (grows downwards) 443 * : : 444 * | | 445 * 0xFFFF8000.00000000 |-----------------------| 446 * | | 447 * | VA Hole / unused | 448 * | | 449 * 0x00008000.00000000 |-----------------------| 450 * | | 451 * | | 452 * : : 453 * | user heap | (grows upwards) 454 * | | 455 * | user data | 456 * |-----------------------| 457 * | user text | 458 * 0x00000000.04000000 |-----------------------| 459 * | invalid | 460 * 0x00000000.00000000 +-----------------------+ 461 * 462 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 463 * kernel, except that userlimit is raised to 0xfe000000 464 * 465 * Floating values: 466 * 467 * valloc_base: start of the kernel's memory management/tracking data 468 * structures. This region contains page_t structures for 469 * physical memory, memsegs, memlists, and the page hash. 470 * 471 * core_base: start of the kernel's "core" heap area on 64-bit systems. 472 * This area is intended to be used for global data as well as for module 473 * text/data that does not fit into the nucleus pages. The core heap is 474 * restricted to a 2GB range, allowing every address within it to be 475 * accessed using rip-relative addressing 476 * 477 * ekernelheap: end of kernelheap and start of segmap. 478 * 479 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 480 * above a red zone that separates the user's address space from the 481 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 482 * 483 * segmap_start: start of segmap. The length of segmap can be modified 484 * through eeprom. The default length is 16MB on 32-bit systems and 64MB 485 * on 64-bit systems. 486 * 487 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 488 * decreased by 2X the size required for page_t. This allows the kernel 489 * heap to grow in size with physical memory. With sizeof(page_t) == 80 490 * bytes, the following shows the values of kernelbase and kernel heap 491 * sizes for different memory configurations (assuming default segmap and 492 * segkp sizes). 493 * 494 * mem size for kernelbase kernel heap 495 * size page_t's size 496 * ---- --------- ---------- ----------- 497 * 1gb 0x01400000 0xd1800000 684MB 498 * 2gb 0x02800000 0xcf000000 704MB 499 * 4gb 0x05000000 0xca000000 744MB 500 * 6gb 0x07800000 0xc5000000 784MB 501 * 8gb 0x0a000000 0xc0000000 824MB 502 * 16gb 0x14000000 0xac000000 984MB 503 * 32gb 0x28000000 0x84000000 1304MB 504 * 64gb 0x50000000 0x34000000 1944MB (*) 505 * 506 * kernelbase is less than the abi minimum of 0xc0000000 for memory 507 * configurations above 8gb. 508 * 509 * (*) support for memory configurations above 32gb will require manual tuning 510 * of kernelbase to balance out the need of user applications. 511 */ 512 513 /* real-time-clock initialization parameters */ 514 extern time_t process_rtc_config_file(void); 515 516 uintptr_t kernelbase; 517 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 518 uintptr_t eprom_kernelbase; 519 size_t segmapsize; 520 uintptr_t segmap_start; 521 int segmapfreelists; 522 pgcnt_t npages; 523 pgcnt_t orig_npages; 524 size_t core_size; /* size of "core" heap */ 525 uintptr_t core_base; /* base address of "core" heap */ 526 527 /* 528 * List of bootstrap pages. We mark these as allocated in startup. 529 * release_bootstrap() will free them when we're completely done with 530 * the bootstrap. 531 */ 532 static page_t *bootpages; 533 534 /* 535 * boot time pages that have a vnode from the ramdisk will keep that forever. 536 */ 537 static page_t *rd_pages; 538 539 /* 540 * Lower 64K 541 */ 542 static page_t *lower_pages = NULL; 543 static int lower_pages_count = 0; 544 545 struct system_hardware system_hardware; 546 547 /* 548 * Enable some debugging messages concerning memory usage... 549 */ 550 static void 551 print_memlist(char *title, struct memlist *mp) 552 { 553 prom_printf("MEMLIST: %s:\n", title); 554 while (mp != NULL) { 555 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 556 mp->ml_address, mp->ml_size); 557 mp = mp->ml_next; 558 } 559 } 560 561 /* 562 * XX64 need a comment here.. are these just default values, surely 563 * we read the "cpuid" type information to figure this out. 564 */ 565 int l2cache_sz = 0x80000; 566 int l2cache_linesz = 0x40; 567 int l2cache_assoc = 1; 568 569 static size_t textrepl_min_gb = 10; 570 571 /* 572 * on 64 bit we use a predifined VA range for mapping devices in the kernel 573 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 574 */ 575 #ifdef __amd64 576 577 vmem_t *device_arena; 578 uintptr_t toxic_addr = (uintptr_t)NULL; 579 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 580 581 #else /* __i386 */ 582 583 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 584 size_t toxic_bit_map_len = 0; /* in bits */ 585 586 #endif /* __i386 */ 587 588 /* 589 * Simple boot time debug facilities 590 */ 591 static char *prm_dbg_str[] = { 592 "%s:%d: '%s' is 0x%x\n", 593 "%s:%d: '%s' is 0x%llx\n" 594 }; 595 596 int prom_debug; 597 598 #define PRM_DEBUG(q) if (prom_debug) \ 599 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 600 #define PRM_POINT(q) if (prom_debug) \ 601 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 602 603 /* 604 * This structure is used to keep track of the intial allocations 605 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 606 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 607 */ 608 #define NUM_ALLOCATIONS 8 609 int num_allocations = 0; 610 struct { 611 void **al_ptr; 612 size_t al_size; 613 } allocations[NUM_ALLOCATIONS]; 614 size_t valloc_sz = 0; 615 uintptr_t valloc_base; 616 617 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 618 size = ROUND_UP_PAGE(size); \ 619 if (num_allocations == NUM_ALLOCATIONS) \ 620 panic("too many ADD_TO_ALLOCATIONS()"); \ 621 allocations[num_allocations].al_ptr = (void**)&ptr; \ 622 allocations[num_allocations].al_size = size; \ 623 valloc_sz += size; \ 624 ++num_allocations; \ 625 } 626 627 /* 628 * Allocate all the initial memory needed by the page allocator. 629 */ 630 static void 631 perform_allocations(void) 632 { 633 caddr_t mem; 634 int i; 635 int valloc_align; 636 637 PRM_DEBUG(valloc_base); 638 PRM_DEBUG(valloc_sz); 639 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 640 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 641 if (mem != (caddr_t)valloc_base) 642 panic("BOP_ALLOC() failed"); 643 bzero(mem, valloc_sz); 644 for (i = 0; i < num_allocations; ++i) { 645 *allocations[i].al_ptr = (void *)mem; 646 mem += allocations[i].al_size; 647 } 648 } 649 650 /* 651 * Our world looks like this at startup time. 652 * 653 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 654 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 655 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 656 * addresses are fixed in the binary at link time. 657 * 658 * On the text page: 659 * unix/genunix/krtld/module text loads. 660 * 661 * On the data page: 662 * unix/genunix/krtld/module data loads. 663 * 664 * Machine-dependent startup code 665 */ 666 void 667 startup(void) 668 { 669 #if !defined(__xpv) 670 extern void startup_pci_bios(void); 671 extern int post_fastreboot; 672 #endif 673 extern cpuset_t cpu_ready_set; 674 675 /* 676 * Make sure that nobody tries to use sekpm until we have 677 * initialized it properly. 678 */ 679 #if defined(__amd64) 680 kpm_desired = 1; 681 #endif 682 kpm_enable = 0; 683 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 684 685 #if defined(__xpv) /* XXPV fix me! */ 686 { 687 extern int segvn_use_regions; 688 segvn_use_regions = 0; 689 } 690 #endif 691 progressbar_init(); 692 startup_init(); 693 #if defined(__xpv) 694 startup_xen_version(); 695 #endif 696 startup_memlist(); 697 startup_kmem(); 698 startup_vm(); 699 #if !defined(__xpv) 700 if (!post_fastreboot) 701 startup_pci_bios(); 702 #endif 703 #if defined(__xpv) 704 startup_xen_mca(); 705 #endif 706 startup_modules(); 707 708 startup_end(); 709 } 710 711 static void 712 startup_init() 713 { 714 PRM_POINT("startup_init() starting..."); 715 716 /* 717 * Complete the extraction of cpuid data 718 */ 719 cpuid_pass2(CPU); 720 721 (void) check_boot_version(BOP_GETVERSION(bootops)); 722 723 /* 724 * Check for prom_debug in boot environment 725 */ 726 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 727 ++prom_debug; 728 PRM_POINT("prom_debug found in boot enviroment"); 729 } 730 731 /* 732 * Collect node, cpu and memory configuration information. 733 */ 734 get_system_configuration(); 735 736 /* 737 * Halt if this is an unsupported processor. 738 */ 739 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 740 printf("\n486 processor (\"%s\") detected.\n", 741 CPU->cpu_brandstr); 742 halt("This processor is not supported by this release " 743 "of Solaris."); 744 } 745 746 PRM_POINT("startup_init() done"); 747 } 748 749 /* 750 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 751 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 752 * also filters out physical page zero. There is some reliance on the 753 * boot loader allocating only a few contiguous physical memory chunks. 754 */ 755 static void 756 avail_filter(uint64_t *addr, uint64_t *size) 757 { 758 uintptr_t va; 759 uintptr_t next_va; 760 pfn_t pfn; 761 uint64_t pfn_addr; 762 uint64_t pfn_eaddr; 763 uint_t prot; 764 size_t len; 765 uint_t change; 766 767 if (prom_debug) 768 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 769 *addr, *size); 770 771 /* 772 * page zero is required for BIOS.. never make it available 773 */ 774 if (*addr == 0) { 775 *addr += MMU_PAGESIZE; 776 *size -= MMU_PAGESIZE; 777 } 778 779 /* 780 * First we trim from the front of the range. Since kbm_probe() 781 * walks ranges in virtual order, but addr/size are physical, we need 782 * to the list until no changes are seen. This deals with the case 783 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 784 * but w < v. 785 */ 786 do { 787 change = 0; 788 for (va = KERNEL_TEXT; 789 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 790 va = next_va) { 791 792 next_va = va + len; 793 pfn_addr = pfn_to_pa(pfn); 794 pfn_eaddr = pfn_addr + len; 795 796 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 797 change = 1; 798 while (*size > 0 && len > 0) { 799 *addr += MMU_PAGESIZE; 800 *size -= MMU_PAGESIZE; 801 len -= MMU_PAGESIZE; 802 } 803 } 804 } 805 if (change && prom_debug) 806 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 807 *addr, *size); 808 } while (change); 809 810 /* 811 * Trim pages from the end of the range. 812 */ 813 for (va = KERNEL_TEXT; 814 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 815 va = next_va) { 816 817 next_va = va + len; 818 pfn_addr = pfn_to_pa(pfn); 819 820 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 821 *size = pfn_addr - *addr; 822 } 823 824 if (prom_debug) 825 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 826 *addr, *size); 827 } 828 829 static void 830 kpm_init() 831 { 832 struct segkpm_crargs b; 833 834 /* 835 * These variables were all designed for sfmmu in which segkpm is 836 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 837 * might use 2+ page sizes on a single machine, so none of these 838 * variables have a single correct value. They are set up as if we 839 * always use a 4KB pagesize, which should do no harm. In the long 840 * run, we should get rid of KPM's assumption that only a single 841 * pagesize is used. 842 */ 843 kpm_pgshft = MMU_PAGESHIFT; 844 kpm_pgsz = MMU_PAGESIZE; 845 kpm_pgoff = MMU_PAGEOFFSET; 846 kpmp2pshft = 0; 847 kpmpnpgs = 1; 848 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 849 850 PRM_POINT("about to create segkpm"); 851 rw_enter(&kas.a_lock, RW_WRITER); 852 853 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 854 panic("cannot attach segkpm"); 855 856 b.prot = PROT_READ | PROT_WRITE; 857 b.nvcolors = 1; 858 859 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 860 panic("segkpm_create segkpm"); 861 862 rw_exit(&kas.a_lock); 863 } 864 865 /* 866 * The debug info page provides enough information to allow external 867 * inspectors (e.g. when running under a hypervisor) to bootstrap 868 * themselves into allowing full-blown kernel debugging. 869 */ 870 static void 871 init_debug_info(void) 872 { 873 caddr_t mem; 874 debug_info_t *di; 875 876 #ifndef __lint 877 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 878 #endif 879 880 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 881 MMU_PAGESIZE); 882 883 if (mem != (caddr_t)DEBUG_INFO_VA) 884 panic("BOP_ALLOC() failed"); 885 bzero(mem, MMU_PAGESIZE); 886 887 di = (debug_info_t *)mem; 888 889 di->di_magic = DEBUG_INFO_MAGIC; 890 di->di_version = DEBUG_INFO_VERSION; 891 di->di_modules = (uintptr_t)&modules; 892 di->di_s_text = (uintptr_t)s_text; 893 di->di_e_text = (uintptr_t)e_text; 894 di->di_s_data = (uintptr_t)s_data; 895 di->di_e_data = (uintptr_t)e_data; 896 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 897 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 898 } 899 900 /* 901 * Build the memlists and other kernel essential memory system data structures. 902 * This is everything at valloc_base. 903 */ 904 static void 905 startup_memlist(void) 906 { 907 size_t memlist_sz; 908 size_t memseg_sz; 909 size_t pagehash_sz; 910 size_t pp_sz; 911 uintptr_t va; 912 size_t len; 913 uint_t prot; 914 pfn_t pfn; 915 int memblocks; 916 pfn_t rsvd_high_pfn; 917 pgcnt_t rsvd_pgcnt; 918 size_t rsvdmemlist_sz; 919 int rsvdmemblocks; 920 caddr_t pagecolor_mem; 921 size_t pagecolor_memsz; 922 caddr_t page_ctrs_mem; 923 size_t page_ctrs_size; 924 size_t pse_table_alloc_size; 925 struct memlist *current; 926 extern void startup_build_mem_nodes(struct memlist *); 927 928 /* XX64 fix these - they should be in include files */ 929 extern size_t page_coloring_init(uint_t, int, int); 930 extern void page_coloring_setup(caddr_t); 931 932 PRM_POINT("startup_memlist() starting..."); 933 934 /* 935 * Use leftover large page nucleus text/data space for loadable modules. 936 * Use at most MODTEXT/MODDATA. 937 */ 938 len = kbm_nucleus_size; 939 ASSERT(len > MMU_PAGESIZE); 940 941 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 942 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 943 if (e_moddata - moddata > MODDATA) 944 e_moddata = moddata + MODDATA; 945 946 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 947 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 948 if (e_modtext - modtext > MODTEXT) 949 e_modtext = modtext + MODTEXT; 950 951 econtig = e_moddata; 952 953 PRM_DEBUG(modtext); 954 PRM_DEBUG(e_modtext); 955 PRM_DEBUG(moddata); 956 PRM_DEBUG(e_moddata); 957 PRM_DEBUG(econtig); 958 959 /* 960 * Examine the boot loader physical memory map to find out: 961 * - total memory in system - physinstalled 962 * - the max physical address - physmax 963 * - the number of discontiguous segments of memory. 964 */ 965 if (prom_debug) 966 print_memlist("boot physinstalled", 967 bootops->boot_mem->physinstalled); 968 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 969 &physinstalled, &memblocks); 970 PRM_DEBUG(physmax); 971 PRM_DEBUG(physinstalled); 972 PRM_DEBUG(memblocks); 973 974 /* 975 * Examine the bios reserved memory to find out: 976 * - the number of discontiguous segments of memory. 977 */ 978 if (prom_debug) 979 print_memlist("boot reserved mem", 980 bootops->boot_mem->rsvdmem); 981 installed_top_size(bootops->boot_mem->rsvdmem, &rsvd_high_pfn, 982 &rsvd_pgcnt, &rsvdmemblocks); 983 PRM_DEBUG(rsvd_high_pfn); 984 PRM_DEBUG(rsvd_pgcnt); 985 PRM_DEBUG(rsvdmemblocks); 986 987 /* 988 * Initialize hat's mmu parameters. 989 * Check for enforce-prot-exec in boot environment. It's used to 990 * enable/disable support for the page table entry NX bit. 991 * The default is to enforce PROT_EXEC on processors that support NX. 992 * Boot seems to round up the "len", but 8 seems to be big enough. 993 */ 994 mmu_init(); 995 996 #ifdef __i386 997 /* 998 * physmax is lowered if there is more memory than can be 999 * physically addressed in 32 bit (PAE/non-PAE) modes. 1000 */ 1001 if (mmu.pae_hat) { 1002 if (PFN_ABOVE64G(physmax)) { 1003 physinstalled -= (physmax - (PFN_64G - 1)); 1004 physmax = PFN_64G - 1; 1005 } 1006 } else { 1007 if (PFN_ABOVE4G(physmax)) { 1008 physinstalled -= (physmax - (PFN_4G - 1)); 1009 physmax = PFN_4G - 1; 1010 } 1011 } 1012 #endif 1013 1014 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 1015 1016 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 1017 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 1018 char value[8]; 1019 1020 if (len < 8) 1021 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 1022 else 1023 (void) strcpy(value, ""); 1024 if (strcmp(value, "off") == 0) 1025 mmu.pt_nx = 0; 1026 } 1027 PRM_DEBUG(mmu.pt_nx); 1028 1029 /* 1030 * We will need page_t's for every page in the system, except for 1031 * memory mapped at or above above the start of the kernel text segment. 1032 * 1033 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1034 */ 1035 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1036 obp_pages = 0; 1037 va = KERNEL_TEXT; 1038 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1039 npages -= len >> MMU_PAGESHIFT; 1040 if (va >= (uintptr_t)e_moddata) 1041 obp_pages += len >> MMU_PAGESHIFT; 1042 va += len; 1043 } 1044 PRM_DEBUG(npages); 1045 PRM_DEBUG(obp_pages); 1046 1047 /* 1048 * If physmem is patched to be non-zero, use it instead of the computed 1049 * value unless it is larger than the actual amount of memory on hand. 1050 */ 1051 if (physmem == 0 || physmem > npages) { 1052 physmem = npages; 1053 } else if (physmem < npages) { 1054 orig_npages = npages; 1055 npages = physmem; 1056 } 1057 PRM_DEBUG(physmem); 1058 1059 /* 1060 * We now compute the sizes of all the initial allocations for 1061 * structures the kernel needs in order do kmem_alloc(). These 1062 * include: 1063 * memsegs 1064 * memlists 1065 * page hash table 1066 * page_t's 1067 * page coloring data structs 1068 */ 1069 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1070 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1071 PRM_DEBUG(memseg_sz); 1072 1073 /* 1074 * Reserve space for memlists. There's no real good way to know exactly 1075 * how much room we'll need, but this should be a good upper bound. 1076 */ 1077 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1078 (memblocks + POSS_NEW_FRAGMENTS)); 1079 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1080 PRM_DEBUG(memlist_sz); 1081 1082 /* 1083 * Reserve space for bios reserved memlists. 1084 */ 1085 rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1086 (rsvdmemblocks + POSS_NEW_FRAGMENTS)); 1087 ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz); 1088 PRM_DEBUG(rsvdmemlist_sz); 1089 1090 /* 1091 * The page structure hash table size is a power of 2 1092 * such that the average hash chain length is PAGE_HASHAVELEN. 1093 */ 1094 page_hashsz = npages / PAGE_HASHAVELEN; 1095 page_hashsz = 1 << highbit(page_hashsz); 1096 pagehash_sz = sizeof (struct page *) * page_hashsz; 1097 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1098 PRM_DEBUG(pagehash_sz); 1099 1100 /* 1101 * Set aside room for the page structures themselves. 1102 */ 1103 PRM_DEBUG(npages); 1104 pp_sz = sizeof (struct page) * npages; 1105 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1106 PRM_DEBUG(pp_sz); 1107 1108 /* 1109 * determine l2 cache info and memory size for page coloring 1110 */ 1111 (void) getl2cacheinfo(CPU, 1112 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1113 pagecolor_memsz = 1114 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1115 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1116 PRM_DEBUG(pagecolor_memsz); 1117 1118 page_ctrs_size = page_ctrs_sz(); 1119 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1120 PRM_DEBUG(page_ctrs_size); 1121 1122 /* 1123 * Allocate the array that protects pp->p_selock. 1124 */ 1125 pse_shift = size_pse_array(physmem, max_ncpus); 1126 pse_table_size = 1 << pse_shift; 1127 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1128 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1129 1130 #if defined(__amd64) 1131 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1132 valloc_base = VALLOC_BASE; 1133 1134 /* 1135 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1136 * for values of physmax up to 1 Terabyte. They need adjusting when 1137 * memory is at addresses above 1 TB. When adjusted, segkpm_base must 1138 * be aligned on KERNEL_REDZONE_SIZE boundary (span of top level pte). 1139 */ 1140 if (physmax + 1 > mmu_btop(TERABYTE)) { 1141 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1142 1143 segkpm_base = -(P2ROUNDUP((2 * kpm_resv_amount), 1144 KERNEL_REDZONE_SIZE)); /* down from top VA */ 1145 1146 /* make sure we leave some space for user apps above hole */ 1147 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1148 if (segkpm_base > SEGKPM_BASE) 1149 segkpm_base = SEGKPM_BASE; 1150 PRM_DEBUG(segkpm_base); 1151 1152 valloc_base = segkpm_base + P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1153 if (valloc_base < segkpm_base) 1154 panic("not enough kernel VA to support memory size"); 1155 PRM_DEBUG(valloc_base); 1156 } 1157 #else /* __i386 */ 1158 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1159 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1160 PRM_DEBUG(valloc_base); 1161 #endif /* __i386 */ 1162 1163 /* 1164 * do all the initial allocations 1165 */ 1166 perform_allocations(); 1167 1168 /* 1169 * Build phys_install and phys_avail in kernel memspace. 1170 * - phys_install should be all memory in the system. 1171 * - phys_avail is phys_install minus any memory mapped before this 1172 * point above KERNEL_TEXT. 1173 */ 1174 current = phys_install = memlist; 1175 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1176 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1177 panic("physinstalled was too big!"); 1178 if (prom_debug) 1179 print_memlist("phys_install", phys_install); 1180 1181 phys_avail = current; 1182 PRM_POINT("Building phys_avail:\n"); 1183 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1184 avail_filter); 1185 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1186 panic("physavail was too big!"); 1187 if (prom_debug) 1188 print_memlist("phys_avail", phys_avail); 1189 1190 /* 1191 * Build bios reserved memspace 1192 */ 1193 current = bios_rsvd; 1194 copy_memlist_filter(bootops->boot_mem->rsvdmem, ¤t, NULL); 1195 if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz) 1196 panic("bios_rsvd was too big!"); 1197 if (prom_debug) 1198 print_memlist("bios_rsvd", bios_rsvd); 1199 1200 /* 1201 * setup page coloring 1202 */ 1203 page_coloring_setup(pagecolor_mem); 1204 page_lock_init(); /* currently a no-op */ 1205 1206 /* 1207 * free page list counters 1208 */ 1209 (void) page_ctrs_alloc(page_ctrs_mem); 1210 1211 /* 1212 * Size the pcf array based on the number of cpus in the box at 1213 * boot time. 1214 */ 1215 1216 pcf_init(); 1217 1218 /* 1219 * Initialize the page structures from the memory lists. 1220 */ 1221 availrmem_initial = availrmem = freemem = 0; 1222 PRM_POINT("Calling kphysm_init()..."); 1223 npages = kphysm_init(pp_base, npages); 1224 PRM_POINT("kphysm_init() done"); 1225 PRM_DEBUG(npages); 1226 1227 init_debug_info(); 1228 1229 /* 1230 * Now that page_t's have been initialized, remove all the 1231 * initial allocation pages from the kernel free page lists. 1232 */ 1233 boot_mapin((caddr_t)valloc_base, valloc_sz); 1234 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1235 PRM_POINT("startup_memlist() done"); 1236 1237 PRM_DEBUG(valloc_sz); 1238 1239 #if defined(__amd64) 1240 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1241 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1242 extern size_t textrepl_size_thresh; 1243 textrepl_size_thresh = (16 << 20) - 1; 1244 } 1245 #endif 1246 } 1247 1248 /* 1249 * Layout the kernel's part of address space and initialize kmem allocator. 1250 */ 1251 static void 1252 startup_kmem(void) 1253 { 1254 extern void page_set_colorequiv_arr(void); 1255 const char *fmt = "?features: %b\n"; 1256 1257 PRM_POINT("startup_kmem() starting..."); 1258 1259 #if defined(__amd64) 1260 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1261 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1262 "systems."); 1263 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1264 core_base = (uintptr_t)COREHEAP_BASE; 1265 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1266 #else /* __i386 */ 1267 /* 1268 * We configure kernelbase based on: 1269 * 1270 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1271 * KERNELBASE_MAX. we large page align eprom_kernelbase 1272 * 1273 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1274 * On large memory systems we must lower kernelbase to allow 1275 * enough room for page_t's for all of memory. 1276 * 1277 * The value set here, might be changed a little later. 1278 */ 1279 if (eprom_kernelbase) { 1280 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1281 if (kernelbase > KERNELBASE_MAX) 1282 kernelbase = KERNELBASE_MAX; 1283 } else { 1284 kernelbase = (uintptr_t)KERNELBASE; 1285 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1286 } 1287 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1288 core_base = valloc_base; 1289 core_size = 0; 1290 #endif /* __i386 */ 1291 1292 PRM_DEBUG(core_base); 1293 PRM_DEBUG(core_size); 1294 PRM_DEBUG(kernelbase); 1295 1296 #if defined(__i386) 1297 segkp_fromheap = 1; 1298 #endif /* __i386 */ 1299 1300 ekernelheap = (char *)core_base; 1301 PRM_DEBUG(ekernelheap); 1302 1303 /* 1304 * Now that we know the real value of kernelbase, 1305 * update variables that were initialized with a value of 1306 * KERNELBASE (in common/conf/param.c). 1307 * 1308 * XXX The problem with this sort of hackery is that the 1309 * compiler just may feel like putting the const declarations 1310 * (in param.c) into the .text section. Perhaps they should 1311 * just be declared as variables there? 1312 */ 1313 1314 *(uintptr_t *)&_kernelbase = kernelbase; 1315 *(uintptr_t *)&_userlimit = kernelbase; 1316 #if defined(__amd64) 1317 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1318 #else 1319 *(uintptr_t *)&_userlimit32 = _userlimit; 1320 #endif 1321 PRM_DEBUG(_kernelbase); 1322 PRM_DEBUG(_userlimit); 1323 PRM_DEBUG(_userlimit32); 1324 1325 layout_kernel_va(); 1326 1327 #if defined(__i386) 1328 /* 1329 * If segmap is too large we can push the bottom of the kernel heap 1330 * higher than the base. Or worse, it could exceed the top of the 1331 * VA space entirely, causing it to wrap around. 1332 */ 1333 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1334 panic("too little address space available for kernelheap," 1335 " use eeprom for lower kernelbase or smaller segmapsize"); 1336 #endif /* __i386 */ 1337 1338 /* 1339 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1340 */ 1341 kernelheap_init(kernelheap, ekernelheap, 1342 kernelheap + MMU_PAGESIZE, 1343 (void *)core_base, (void *)(core_base + core_size)); 1344 1345 #if defined(__xpv) 1346 /* 1347 * Link pending events struct into cpu struct 1348 */ 1349 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1350 #endif 1351 /* 1352 * Initialize kernel memory allocator. 1353 */ 1354 kmem_init(); 1355 1356 /* 1357 * Factor in colorequiv to check additional 'equivalent' bins 1358 */ 1359 page_set_colorequiv_arr(); 1360 1361 /* 1362 * print this out early so that we know what's going on 1363 */ 1364 cmn_err(CE_CONT, fmt, x86_feature, FMT_X86_FEATURE); 1365 1366 /* 1367 * Initialize bp_mapin(). 1368 */ 1369 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1370 1371 /* 1372 * orig_npages is non-zero if physmem has been configured for less 1373 * than the available memory. 1374 */ 1375 if (orig_npages) { 1376 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1377 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1378 npages, orig_npages); 1379 } 1380 #if defined(__i386) 1381 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1382 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1383 "System using 0x%lx", 1384 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1385 #endif 1386 1387 #ifdef KERNELBASE_ABI_MIN 1388 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1389 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1390 "i386 ABI compliant.", (uintptr_t)kernelbase); 1391 } 1392 #endif 1393 1394 #ifdef __xpv 1395 /* 1396 * Some of the xen start information has to be relocated up 1397 * into the kernel's permanent address space. 1398 */ 1399 PRM_POINT("calling xen_relocate_start_info()"); 1400 xen_relocate_start_info(); 1401 PRM_POINT("xen_relocate_start_info() done"); 1402 1403 /* 1404 * (Update the vcpu pointer in our cpu structure to point into 1405 * the relocated shared info.) 1406 */ 1407 CPU->cpu_m.mcpu_vcpu_info = 1408 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1409 #endif 1410 1411 PRM_POINT("startup_kmem() done"); 1412 } 1413 1414 #ifndef __xpv 1415 /* 1416 * If we have detected that we are running in an HVM environment, we need 1417 * to prepend the PV driver directory to the module search path. 1418 */ 1419 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1420 static void 1421 update_default_path() 1422 { 1423 char *current, *newpath; 1424 int newlen; 1425 1426 /* 1427 * We are about to resync with krtld. krtld will reset its 1428 * internal module search path iff Solaris has set default_path. 1429 * We want to be sure we're prepending this new directory to the 1430 * right search path. 1431 */ 1432 current = (default_path == NULL) ? kobj_module_path : default_path; 1433 1434 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2; 1435 newpath = kmem_alloc(newlen, KM_SLEEP); 1436 (void) strcpy(newpath, HVM_MOD_DIR); 1437 (void) strcat(newpath, " "); 1438 (void) strcat(newpath, current); 1439 1440 default_path = newpath; 1441 } 1442 #endif 1443 1444 static void 1445 startup_modules(void) 1446 { 1447 int cnt; 1448 extern void prom_setup(void); 1449 int32_t v, h; 1450 char d[11]; 1451 char *cp; 1452 cmi_hdl_t hdl; 1453 1454 PRM_POINT("startup_modules() starting..."); 1455 1456 #ifndef __xpv 1457 /* 1458 * Initialize ten-micro second timer so that drivers will 1459 * not get short changed in their init phase. This was 1460 * not getting called until clkinit which, on fast cpu's 1461 * caused the drv_usecwait to be way too short. 1462 */ 1463 microfind(); 1464 1465 if (get_hwenv() == HW_XEN_HVM) 1466 update_default_path(); 1467 #endif 1468 1469 /* 1470 * Read the GMT lag from /etc/rtc_config. 1471 */ 1472 sgmtl(process_rtc_config_file()); 1473 1474 /* 1475 * Calculate default settings of system parameters based upon 1476 * maxusers, yet allow to be overridden via the /etc/system file. 1477 */ 1478 param_calc(0); 1479 1480 mod_setup(); 1481 1482 /* 1483 * Initialize system parameters. 1484 */ 1485 param_init(); 1486 1487 /* 1488 * Initialize the default brands 1489 */ 1490 brand_init(); 1491 1492 /* 1493 * maxmem is the amount of physical memory we're playing with. 1494 */ 1495 maxmem = physmem; 1496 1497 /* 1498 * Initialize segment management stuff. 1499 */ 1500 seg_init(); 1501 1502 if (modload("fs", "specfs") == -1) 1503 halt("Can't load specfs"); 1504 1505 if (modload("fs", "devfs") == -1) 1506 halt("Can't load devfs"); 1507 1508 if (modload("fs", "dev") == -1) 1509 halt("Can't load dev"); 1510 1511 if (modload("fs", "procfs") == -1) 1512 halt("Can't load procfs"); 1513 1514 (void) modloadonly("sys", "lbl_edition"); 1515 1516 dispinit(); 1517 1518 /* 1519 * This is needed here to initialize hw_serial[] for cluster booting. 1520 */ 1521 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) { 1522 cmn_err(CE_WARN, "Unable to set hostid"); 1523 } else { 1524 for (v = h, cnt = 0; cnt < 10; cnt++) { 1525 d[cnt] = (char)(v % 10); 1526 v /= 10; 1527 if (v == 0) 1528 break; 1529 } 1530 for (cp = hw_serial; cnt >= 0; cnt--) 1531 *cp++ = d[cnt] + '0'; 1532 *cp = 0; 1533 } 1534 1535 /* Read cluster configuration data. */ 1536 clconf_init(); 1537 1538 #if defined(__xpv) 1539 (void) ec_init(); 1540 gnttab_init(); 1541 (void) xs_early_init(); 1542 #endif /* __xpv */ 1543 1544 /* 1545 * Create a kernel device tree. First, create rootnex and 1546 * then invoke bus specific code to probe devices. 1547 */ 1548 setup_ddi(); 1549 1550 #ifdef __xpv 1551 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1552 #endif 1553 { 1554 /* 1555 * Load the System Management BIOS into the global ksmbios 1556 * handle, if an SMBIOS is present on this system. 1557 */ 1558 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1559 } 1560 1561 1562 /* 1563 * Set up the CPU module subsystem for the boot cpu in the native 1564 * case, and all physical cpu resource in the xpv dom0 case. 1565 * Modifies the device tree, so this must be done after 1566 * setup_ddi(). 1567 */ 1568 #ifdef __xpv 1569 /* 1570 * If paravirtualized and on dom0 then we initialize all physical 1571 * cpu handles now; if paravirtualized on a domU then do not 1572 * initialize. 1573 */ 1574 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1575 xen_mc_lcpu_cookie_t cpi; 1576 1577 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1578 cpi = xen_physcpu_next(cpi)) { 1579 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1580 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1581 xen_physcpu_strandid(cpi))) != NULL && 1582 (x86_feature & X86_MCA)) 1583 cmi_mca_init(hdl); 1584 } 1585 } 1586 #else 1587 /* 1588 * Initialize a handle for the boot cpu - others will initialize 1589 * as they startup. Do not do this if we know we are in an HVM domU. 1590 */ 1591 if ((get_hwenv() != HW_XEN_HVM) && 1592 (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1593 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL && 1594 (x86_feature & X86_MCA)) 1595 cmi_mca_init(hdl); 1596 #endif /* __xpv */ 1597 1598 /* 1599 * Fake a prom tree such that /dev/openprom continues to work 1600 */ 1601 PRM_POINT("startup_modules: calling prom_setup..."); 1602 prom_setup(); 1603 PRM_POINT("startup_modules: done"); 1604 1605 /* 1606 * Load all platform specific modules 1607 */ 1608 PRM_POINT("startup_modules: calling psm_modload..."); 1609 psm_modload(); 1610 1611 PRM_POINT("startup_modules() done"); 1612 } 1613 1614 /* 1615 * claim a "setaside" boot page for use in the kernel 1616 */ 1617 page_t * 1618 boot_claim_page(pfn_t pfn) 1619 { 1620 page_t *pp; 1621 1622 pp = page_numtopp_nolock(pfn); 1623 ASSERT(pp != NULL); 1624 1625 if (PP_ISBOOTPAGES(pp)) { 1626 if (pp->p_next != NULL) 1627 pp->p_next->p_prev = pp->p_prev; 1628 if (pp->p_prev == NULL) 1629 bootpages = pp->p_next; 1630 else 1631 pp->p_prev->p_next = pp->p_next; 1632 } else { 1633 /* 1634 * htable_attach() expects a base pagesize page 1635 */ 1636 if (pp->p_szc != 0) 1637 page_boot_demote(pp); 1638 pp = page_numtopp(pfn, SE_EXCL); 1639 } 1640 return (pp); 1641 } 1642 1643 /* 1644 * Walk through the pagetables looking for pages mapped in by boot. If the 1645 * setaside flag is set the pages are expected to be returned to the 1646 * kernel later in boot, so we add them to the bootpages list. 1647 */ 1648 static void 1649 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1650 { 1651 uintptr_t va = low; 1652 size_t len; 1653 uint_t prot; 1654 pfn_t pfn; 1655 page_t *pp; 1656 pgcnt_t boot_protect_cnt = 0; 1657 1658 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1659 if (va + len >= high) 1660 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1661 "legal range.", len, (void *)va); 1662 1663 while (len > 0) { 1664 pp = page_numtopp_alloc(pfn); 1665 if (pp != NULL) { 1666 if (setaside == 0) 1667 panic("Unexpected mapping by boot. " 1668 "addr=%p pfn=%lx\n", 1669 (void *)va, pfn); 1670 1671 pp->p_next = bootpages; 1672 pp->p_prev = NULL; 1673 PP_SETBOOTPAGES(pp); 1674 if (bootpages != NULL) { 1675 bootpages->p_prev = pp; 1676 } 1677 bootpages = pp; 1678 ++boot_protect_cnt; 1679 } 1680 1681 ++pfn; 1682 len -= MMU_PAGESIZE; 1683 va += MMU_PAGESIZE; 1684 } 1685 } 1686 PRM_DEBUG(boot_protect_cnt); 1687 } 1688 1689 /* 1690 * 1691 */ 1692 static void 1693 layout_kernel_va(void) 1694 { 1695 PRM_POINT("layout_kernel_va() starting..."); 1696 /* 1697 * Establish the final size of the kernel's heap, size of segmap, 1698 * segkp, etc. 1699 */ 1700 1701 #if defined(__amd64) 1702 1703 kpm_vbase = (caddr_t)segkpm_base; 1704 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1705 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1706 panic("not enough room for kpm!"); 1707 PRM_DEBUG(kpm_size); 1708 PRM_DEBUG(kpm_vbase); 1709 1710 /* 1711 * By default we create a seg_kp in 64 bit kernels, it's a little 1712 * faster to access than embedding it in the heap. 1713 */ 1714 segkp_base = (caddr_t)valloc_base + valloc_sz; 1715 if (!segkp_fromheap) { 1716 size_t sz = mmu_ptob(segkpsize); 1717 1718 /* 1719 * determine size of segkp 1720 */ 1721 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1722 sz = SEGKPDEFSIZE; 1723 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1724 "segkpsize has been reset to %ld pages", 1725 mmu_btop(sz)); 1726 } 1727 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1728 1729 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1730 } 1731 PRM_DEBUG(segkp_base); 1732 PRM_DEBUG(segkpsize); 1733 1734 /* 1735 * segzio is used for ZFS cached data. It uses a distinct VA 1736 * segment (from kernel heap) so that we can easily tell not to 1737 * include it in kernel crash dumps on 64 bit kernels. The trick is 1738 * to give it lots of VA, but not constrain the kernel heap. 1739 * We scale the size of segzio linearly with physmem up to 1740 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1741 */ 1742 segzio_base = segkp_base + mmu_ptob(segkpsize); 1743 if (segzio_fromheap) { 1744 segziosize = 0; 1745 } else { 1746 size_t physmem_size = mmu_ptob(physmem); 1747 size_t size = (segziosize == 0) ? 1748 physmem_size : mmu_ptob(segziosize); 1749 1750 if (size < SEGZIOMINSIZE) 1751 size = SEGZIOMINSIZE; 1752 if (size > SEGZIOMAXSIZE) { 1753 size = SEGZIOMAXSIZE; 1754 if (physmem_size > size) 1755 size += (physmem_size - size) / 2; 1756 } 1757 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1758 } 1759 PRM_DEBUG(segziosize); 1760 PRM_DEBUG(segzio_base); 1761 1762 /* 1763 * Put the range of VA for device mappings next, kmdb knows to not 1764 * grep in this range of addresses. 1765 */ 1766 toxic_addr = 1767 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1768 PRM_DEBUG(toxic_addr); 1769 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1770 #else /* __i386 */ 1771 segmap_start = ROUND_UP_LPAGE(kernelbase); 1772 #endif /* __i386 */ 1773 PRM_DEBUG(segmap_start); 1774 1775 /* 1776 * Users can change segmapsize through eeprom. If the variable 1777 * is tuned through eeprom, there is no upper bound on the 1778 * size of segmap. 1779 */ 1780 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1781 1782 #if defined(__i386) 1783 /* 1784 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1785 * the bottom of the kernel's address range. Set aside space for a 1786 * small red zone just below the start of segmap. 1787 */ 1788 segmap_start += KERNEL_REDZONE_SIZE; 1789 segmapsize -= KERNEL_REDZONE_SIZE; 1790 #endif 1791 1792 PRM_DEBUG(segmap_start); 1793 PRM_DEBUG(segmapsize); 1794 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1795 PRM_DEBUG(kernelheap); 1796 PRM_POINT("layout_kernel_va() done..."); 1797 } 1798 1799 /* 1800 * Finish initializing the VM system, now that we are no longer 1801 * relying on the boot time memory allocators. 1802 */ 1803 static void 1804 startup_vm(void) 1805 { 1806 struct segmap_crargs a; 1807 1808 extern int use_brk_lpg, use_stk_lpg; 1809 1810 PRM_POINT("startup_vm() starting..."); 1811 1812 /* 1813 * Initialize the hat layer. 1814 */ 1815 hat_init(); 1816 1817 /* 1818 * Do final allocations of HAT data structures that need to 1819 * be allocated before quiescing the boot loader. 1820 */ 1821 PRM_POINT("Calling hat_kern_alloc()..."); 1822 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1823 PRM_POINT("hat_kern_alloc() done"); 1824 1825 #ifndef __xpv 1826 /* 1827 * Setup Page Attribute Table 1828 */ 1829 pat_sync(); 1830 #endif 1831 1832 /* 1833 * The next two loops are done in distinct steps in order 1834 * to be sure that any page that is doubly mapped (both above 1835 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1836 * Note this may never happen, but it might someday. 1837 */ 1838 bootpages = NULL; 1839 PRM_POINT("Protecting boot pages"); 1840 1841 /* 1842 * Protect any pages mapped above KERNEL_TEXT that somehow have 1843 * page_t's. This can only happen if something weird allocated 1844 * in this range (like kadb/kmdb). 1845 */ 1846 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1847 1848 /* 1849 * Before we can take over memory allocation/mapping from the boot 1850 * loader we must remove from our free page lists any boot allocated 1851 * pages that stay mapped until release_bootstrap(). 1852 */ 1853 protect_boot_range(0, kernelbase, 1); 1854 1855 1856 /* 1857 * Switch to running on regular HAT (not boot_mmu) 1858 */ 1859 PRM_POINT("Calling hat_kern_setup()..."); 1860 hat_kern_setup(); 1861 1862 /* 1863 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1864 */ 1865 bop_no_more_mem(); 1866 1867 PRM_POINT("hat_kern_setup() done"); 1868 1869 hat_cpu_online(CPU); 1870 1871 /* 1872 * Initialize VM system 1873 */ 1874 PRM_POINT("Calling kvm_init()..."); 1875 kvm_init(); 1876 PRM_POINT("kvm_init() done"); 1877 1878 /* 1879 * Tell kmdb that the VM system is now working 1880 */ 1881 if (boothowto & RB_DEBUG) 1882 kdi_dvec_vmready(); 1883 1884 #if defined(__xpv) 1885 /* 1886 * Populate the I/O pool on domain 0 1887 */ 1888 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1889 extern long populate_io_pool(void); 1890 long init_io_pool_cnt; 1891 1892 PRM_POINT("Populating reserve I/O page pool"); 1893 init_io_pool_cnt = populate_io_pool(); 1894 PRM_DEBUG(init_io_pool_cnt); 1895 } 1896 #endif 1897 /* 1898 * Mangle the brand string etc. 1899 */ 1900 cpuid_pass3(CPU); 1901 1902 #if defined(__amd64) 1903 1904 /* 1905 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1906 */ 1907 device_arena = vmem_create("device", (void *)toxic_addr, 1908 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1909 1910 #else /* __i386 */ 1911 1912 /* 1913 * allocate the bit map that tracks toxic pages 1914 */ 1915 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 1916 PRM_DEBUG(toxic_bit_map_len); 1917 toxic_bit_map = 1918 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1919 ASSERT(toxic_bit_map != NULL); 1920 PRM_DEBUG(toxic_bit_map); 1921 1922 #endif /* __i386 */ 1923 1924 1925 /* 1926 * Now that we've got more VA, as well as the ability to allocate from 1927 * it, tell the debugger. 1928 */ 1929 if (boothowto & RB_DEBUG) 1930 kdi_dvec_memavail(); 1931 1932 /* 1933 * The following code installs a special page fault handler (#pf) 1934 * to work around a pentium bug. 1935 */ 1936 #if !defined(__amd64) && !defined(__xpv) 1937 if (x86_type == X86_TYPE_P5) { 1938 desctbr_t idtr; 1939 gate_desc_t *newidt; 1940 1941 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1942 panic("failed to install pentium_pftrap"); 1943 1944 bcopy(idt0, newidt, NIDT * sizeof (*idt0)); 1945 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1946 KCS_SEL, SDT_SYSIGT, TRP_KPL, 0); 1947 1948 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1949 PROT_READ | PROT_EXEC); 1950 1951 CPU->cpu_idt = newidt; 1952 idtr.dtr_base = (uintptr_t)CPU->cpu_idt; 1953 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1; 1954 wr_idtr(&idtr); 1955 } 1956 #endif /* !__amd64 */ 1957 1958 #if !defined(__xpv) 1959 /* 1960 * Map page pfn=0 for drivers, such as kd, that need to pick up 1961 * parameters left there by controllers/BIOS. 1962 */ 1963 PRM_POINT("setup up p0_va"); 1964 p0_va = i86devmap(0, 1, PROT_READ); 1965 PRM_DEBUG(p0_va); 1966 #endif 1967 1968 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1969 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1970 1971 /* 1972 * disable automatic large pages for small memory systems or 1973 * when the disable flag is set. 1974 * 1975 * Do not yet consider page sizes larger than 2m/4m. 1976 */ 1977 if (!auto_lpg_disable && mmu.max_page_level > 0) { 1978 max_uheap_lpsize = LEVEL_SIZE(1); 1979 max_ustack_lpsize = LEVEL_SIZE(1); 1980 max_privmap_lpsize = LEVEL_SIZE(1); 1981 max_uidata_lpsize = LEVEL_SIZE(1); 1982 max_utext_lpsize = LEVEL_SIZE(1); 1983 max_shm_lpsize = LEVEL_SIZE(1); 1984 } 1985 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 1986 auto_lpg_disable) { 1987 use_brk_lpg = 0; 1988 use_stk_lpg = 0; 1989 } 1990 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 1991 1992 PRM_POINT("Calling hat_init_finish()..."); 1993 hat_init_finish(); 1994 PRM_POINT("hat_init_finish() done"); 1995 1996 /* 1997 * Initialize the segkp segment type. 1998 */ 1999 rw_enter(&kas.a_lock, RW_WRITER); 2000 PRM_POINT("Attaching segkp"); 2001 if (segkp_fromheap) { 2002 segkp->s_as = &kas; 2003 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 2004 segkp) < 0) { 2005 panic("startup: cannot attach segkp"); 2006 /*NOTREACHED*/ 2007 } 2008 PRM_POINT("Doing segkp_create()"); 2009 if (segkp_create(segkp) != 0) { 2010 panic("startup: segkp_create failed"); 2011 /*NOTREACHED*/ 2012 } 2013 PRM_DEBUG(segkp); 2014 rw_exit(&kas.a_lock); 2015 2016 /* 2017 * kpm segment 2018 */ 2019 segmap_kpm = 0; 2020 if (kpm_desired) { 2021 kpm_init(); 2022 kpm_enable = 1; 2023 } 2024 2025 /* 2026 * Now create segmap segment. 2027 */ 2028 rw_enter(&kas.a_lock, RW_WRITER); 2029 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 2030 panic("cannot attach segmap"); 2031 /*NOTREACHED*/ 2032 } 2033 PRM_DEBUG(segmap); 2034 2035 a.prot = PROT_READ | PROT_WRITE; 2036 a.shmsize = 0; 2037 a.nfreelist = segmapfreelists; 2038 2039 if (segmap_create(segmap, (caddr_t)&a) != 0) 2040 panic("segmap_create segmap"); 2041 rw_exit(&kas.a_lock); 2042 2043 setup_vaddr_for_ppcopy(CPU); 2044 2045 segdev_init(); 2046 #if defined(__xpv) 2047 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2048 #endif 2049 pmem_init(); 2050 2051 PRM_POINT("startup_vm() done"); 2052 } 2053 2054 /* 2055 * Load a tod module for the non-standard tod part found on this system. 2056 */ 2057 static void 2058 load_tod_module(char *todmod) 2059 { 2060 if (modload("tod", todmod) == -1) 2061 halt("Can't load TOD module"); 2062 } 2063 2064 static void 2065 startup_end(void) 2066 { 2067 int i; 2068 extern void setx86isalist(void); 2069 extern void cpu_event_init(void); 2070 2071 PRM_POINT("startup_end() starting..."); 2072 2073 /* 2074 * Perform tasks that get done after most of the VM 2075 * initialization has been done but before the clock 2076 * and other devices get started. 2077 */ 2078 kern_setup1(); 2079 2080 /* 2081 * Perform CPC initialization for this CPU. 2082 */ 2083 kcpc_hw_init(CPU); 2084 2085 /* 2086 * Initialize cpu event framework. 2087 */ 2088 cpu_event_init(); 2089 2090 #if defined(OPTERON_WORKAROUND_6323525) 2091 if (opteron_workaround_6323525) 2092 patch_workaround_6323525(); 2093 #endif 2094 /* 2095 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2096 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2097 */ 2098 if (tod_module_name != NULL) { 2099 PRM_POINT("load_tod_module()"); 2100 load_tod_module(tod_module_name); 2101 } 2102 2103 #if defined(__xpv) 2104 /* 2105 * Forceload interposing TOD module for the hypervisor. 2106 */ 2107 PRM_POINT("load_tod_module()"); 2108 load_tod_module("xpvtod"); 2109 #endif 2110 2111 /* 2112 * Configure the system. 2113 */ 2114 PRM_POINT("Calling configure()..."); 2115 configure(); /* set up devices */ 2116 PRM_POINT("configure() done"); 2117 2118 /* 2119 * Set the isa_list string to the defined instruction sets we 2120 * support. 2121 */ 2122 setx86isalist(); 2123 cpu_intr_alloc(CPU, NINTR_THREADS); 2124 psm_install(); 2125 2126 /* 2127 * We're done with bootops. We don't unmap the bootstrap yet because 2128 * we're still using bootsvcs. 2129 */ 2130 PRM_POINT("NULLing out bootops"); 2131 *bootopsp = (struct bootops *)NULL; 2132 bootops = (struct bootops *)NULL; 2133 2134 #if defined(__xpv) 2135 ec_init_debug_irq(); 2136 xs_domu_init(); 2137 #endif 2138 2139 #if defined(__amd64) && !defined(__xpv) 2140 /* 2141 * Intel IOMMU has been setup/initialized in ddi_impl.c 2142 * Start it up now. 2143 */ 2144 immu_startup(); 2145 #endif 2146 2147 PRM_POINT("Enabling interrupts"); 2148 (*picinitf)(); 2149 sti(); 2150 #if defined(__xpv) 2151 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2152 xen_late_startup(); 2153 #endif 2154 2155 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2156 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2157 2158 /* 2159 * Register these software interrupts for ddi timer. 2160 * Software interrupts up to the level 10 are supported. 2161 */ 2162 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2163 char name[sizeof ("timer_softintr") + 2]; 2164 (void) sprintf(name, "timer_softintr%02d", i); 2165 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2166 (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL); 2167 } 2168 2169 #if !defined(__xpv) 2170 if (modload("drv", "amd_iommu") < 0) { 2171 PRM_POINT("No AMD IOMMU present\n"); 2172 } else if (ddi_hold_installed_driver(ddi_name_to_major( 2173 "amd_iommu")) == NULL) { 2174 prom_printf("ERROR: failed to attach AMD IOMMU\n"); 2175 } 2176 #endif 2177 post_startup_cpu_fixups(); 2178 2179 PRM_POINT("startup_end() done"); 2180 } 2181 2182 /* 2183 * Don't remove the following 2 variables. They are necessary 2184 * for reading the hostid from the legacy file (/kernel/misc/sysinit). 2185 */ 2186 char *_hs1107 = hw_serial; 2187 ulong_t _bdhs34; 2188 2189 void 2190 post_startup(void) 2191 { 2192 extern void cpupm_init(cpu_t *); 2193 extern void cpu_event_init_cpu(cpu_t *); 2194 2195 /* 2196 * Set the system wide, processor-specific flags to be passed 2197 * to userland via the aux vector for performance hints and 2198 * instruction set extensions. 2199 */ 2200 bind_hwcap(); 2201 2202 #ifdef __xpv 2203 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2204 #endif 2205 { 2206 #if defined(__xpv) 2207 xpv_panic_init(); 2208 #else 2209 /* 2210 * Startup the memory scrubber. 2211 * XXPV This should be running somewhere .. 2212 */ 2213 if (get_hwenv() != HW_XEN_HVM) 2214 memscrub_init(); 2215 #endif 2216 } 2217 2218 /* 2219 * Complete CPU module initialization 2220 */ 2221 cmi_post_startup(); 2222 2223 /* 2224 * Perform forceloading tasks for /etc/system. 2225 */ 2226 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2227 2228 /* 2229 * ON4.0: Force /proc module in until clock interrupt handle fixed 2230 * ON4.0: This must be fixed or restated in /etc/systems. 2231 */ 2232 (void) modload("fs", "procfs"); 2233 2234 (void) i_ddi_attach_hw_nodes("pit_beep"); 2235 2236 #if defined(__i386) 2237 /* 2238 * Check for required functional Floating Point hardware, 2239 * unless FP hardware explicitly disabled. 2240 */ 2241 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2242 halt("No working FP hardware found"); 2243 #endif 2244 2245 maxmem = freemem; 2246 2247 cpu_event_init_cpu(CPU); 2248 cpupm_init(CPU); 2249 (void) mach_cpu_create_device_node(CPU, NULL); 2250 2251 pg_init(); 2252 } 2253 2254 static int 2255 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) 2256 { 2257 return ((pp->p_pagenum >= btop(low_addr)) && 2258 (pp->p_pagenum < btopr(high_addr))); 2259 } 2260 2261 void 2262 release_bootstrap(void) 2263 { 2264 int root_is_ramdisk; 2265 page_t *pp; 2266 extern void kobj_boot_unmountroot(void); 2267 extern dev_t rootdev; 2268 #if !defined(__xpv) 2269 pfn_t pfn; 2270 #endif 2271 2272 /* unmount boot ramdisk and release kmem usage */ 2273 kobj_boot_unmountroot(); 2274 2275 /* 2276 * We're finished using the boot loader so free its pages. 2277 */ 2278 PRM_POINT("Unmapping lower boot pages"); 2279 2280 clear_boot_mappings(0, _userlimit); 2281 2282 postbootkernelbase = kernelbase; 2283 2284 /* 2285 * If root isn't on ramdisk, destroy the hardcoded 2286 * ramdisk node now and release the memory. Else, 2287 * ramdisk memory is kept in rd_pages. 2288 */ 2289 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2290 if (!root_is_ramdisk) { 2291 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2292 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2293 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2294 (void) ddi_remove_child(dip, 0); 2295 } 2296 2297 PRM_POINT("Releasing boot pages"); 2298 while (bootpages) { 2299 extern uint64_t ramdisk_start, ramdisk_end; 2300 pp = bootpages; 2301 bootpages = pp->p_next; 2302 2303 2304 /* Keep pages for the lower 64K */ 2305 if (pp_in_range(pp, 0, 0x40000)) { 2306 pp->p_next = lower_pages; 2307 lower_pages = pp; 2308 lower_pages_count++; 2309 continue; 2310 } 2311 2312 2313 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start, 2314 ramdisk_end)) { 2315 pp->p_next = rd_pages; 2316 rd_pages = pp; 2317 continue; 2318 } 2319 pp->p_next = (struct page *)0; 2320 pp->p_prev = (struct page *)0; 2321 PP_CLRBOOTPAGES(pp); 2322 page_free(pp, 1); 2323 } 2324 PRM_POINT("Boot pages released"); 2325 2326 #if !defined(__xpv) 2327 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2328 /* 2329 * Find 1 page below 1 MB so that other processors can boot up or 2330 * so that any processor can resume. 2331 * Make sure it has a kernel VA as well as a 1:1 mapping. 2332 * We should have just free'd one up. 2333 */ 2334 2335 /* 2336 * 0x10 pages is 64K. Leave the bottom 64K alone 2337 * for BIOS. 2338 */ 2339 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { 2340 if (page_numtopp_alloc(pfn) == NULL) 2341 continue; 2342 rm_platter_va = i86devmap(pfn, 1, 2343 PROT_READ | PROT_WRITE | PROT_EXEC); 2344 rm_platter_pa = ptob(pfn); 2345 hat_devload(kas.a_hat, 2346 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2347 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2348 HAT_LOAD_NOCONSIST); 2349 break; 2350 } 2351 if (pfn == btop(1*1024*1024) && use_mp) 2352 panic("No page below 1M available for starting " 2353 "other processors or for resuming from system-suspend"); 2354 #endif /* !__xpv */ 2355 } 2356 2357 /* 2358 * Initialize the platform-specific parts of a page_t. 2359 */ 2360 void 2361 add_physmem_cb(page_t *pp, pfn_t pnum) 2362 { 2363 pp->p_pagenum = pnum; 2364 pp->p_mapping = NULL; 2365 pp->p_embed = 0; 2366 pp->p_share = 0; 2367 pp->p_mlentry = 0; 2368 } 2369 2370 /* 2371 * kphysm_init() initializes physical memory. 2372 */ 2373 static pgcnt_t 2374 kphysm_init( 2375 page_t *pp, 2376 pgcnt_t npages) 2377 { 2378 struct memlist *pmem; 2379 struct memseg *cur_memseg; 2380 pfn_t base_pfn; 2381 pfn_t end_pfn; 2382 pgcnt_t num; 2383 pgcnt_t pages_done = 0; 2384 uint64_t addr; 2385 uint64_t size; 2386 extern pfn_t ddiphysmin; 2387 extern int mnode_xwa; 2388 int ms = 0, me = 0; 2389 2390 ASSERT(page_hash != NULL && page_hashsz != 0); 2391 2392 cur_memseg = memseg_base; 2393 for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) { 2394 /* 2395 * In a 32 bit kernel can't use higher memory if we're 2396 * not booting in PAE mode. This check takes care of that. 2397 */ 2398 addr = pmem->ml_address; 2399 size = pmem->ml_size; 2400 if (btop(addr) > physmax) 2401 continue; 2402 2403 /* 2404 * align addr and size - they may not be at page boundaries 2405 */ 2406 if ((addr & MMU_PAGEOFFSET) != 0) { 2407 addr += MMU_PAGEOFFSET; 2408 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2409 size -= addr - pmem->ml_address; 2410 } 2411 2412 /* only process pages below or equal to physmax */ 2413 if ((btop(addr + size) - 1) > physmax) 2414 size = ptob(physmax - btop(addr) + 1); 2415 2416 num = btop(size); 2417 if (num == 0) 2418 continue; 2419 2420 if (num > npages) 2421 num = npages; 2422 2423 npages -= num; 2424 pages_done += num; 2425 base_pfn = btop(addr); 2426 2427 if (prom_debug) 2428 prom_printf("MEMSEG addr=0x%" PRIx64 2429 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2430 addr, num, base_pfn, base_pfn + num); 2431 2432 /* 2433 * Ignore pages below ddiphysmin to simplify ddi memory 2434 * allocation with non-zero addr_lo requests. 2435 */ 2436 if (base_pfn < ddiphysmin) { 2437 if (base_pfn + num <= ddiphysmin) 2438 continue; 2439 pp += (ddiphysmin - base_pfn); 2440 num -= (ddiphysmin - base_pfn); 2441 base_pfn = ddiphysmin; 2442 } 2443 2444 /* 2445 * mnode_xwa is greater than 1 when large pages regions can 2446 * cross memory node boundaries. To prevent the formation 2447 * of these large pages, configure the memsegs based on the 2448 * memory node ranges which had been made non-contiguous. 2449 */ 2450 if (mnode_xwa > 1) { 2451 2452 end_pfn = base_pfn + num - 1; 2453 ms = PFN_2_MEM_NODE(base_pfn); 2454 me = PFN_2_MEM_NODE(end_pfn); 2455 2456 if (ms != me) { 2457 /* 2458 * current range spans more than 1 memory node. 2459 * Set num to only the pfn range in the start 2460 * memory node. 2461 */ 2462 num = mem_node_config[ms].physmax - base_pfn 2463 + 1; 2464 ASSERT(end_pfn > mem_node_config[ms].physmax); 2465 } 2466 } 2467 2468 for (;;) { 2469 /* 2470 * Build the memsegs entry 2471 */ 2472 cur_memseg->pages = pp; 2473 cur_memseg->epages = pp + num; 2474 cur_memseg->pages_base = base_pfn; 2475 cur_memseg->pages_end = base_pfn + num; 2476 2477 /* 2478 * Insert into memseg list in decreasing pfn range 2479 * order. Low memory is typically more fragmented such 2480 * that this ordering keeps the larger ranges at the 2481 * front of the list for code that searches memseg. 2482 * This ASSERTS that the memsegs coming in from boot 2483 * are in increasing physical address order and not 2484 * contiguous. 2485 */ 2486 if (memsegs != NULL) { 2487 ASSERT(cur_memseg->pages_base >= 2488 memsegs->pages_end); 2489 cur_memseg->next = memsegs; 2490 } 2491 memsegs = cur_memseg; 2492 2493 /* 2494 * add_physmem() initializes the PSM part of the page 2495 * struct by calling the PSM back with add_physmem_cb(). 2496 * In addition it coalesces pages into larger pages as 2497 * it initializes them. 2498 */ 2499 add_physmem(pp, num, base_pfn); 2500 cur_memseg++; 2501 availrmem_initial += num; 2502 availrmem += num; 2503 2504 pp += num; 2505 if (ms >= me) 2506 break; 2507 2508 /* process next memory node range */ 2509 ms++; 2510 base_pfn = mem_node_config[ms].physbase; 2511 num = MIN(mem_node_config[ms].physmax, 2512 end_pfn) - base_pfn + 1; 2513 } 2514 } 2515 2516 PRM_DEBUG(availrmem_initial); 2517 PRM_DEBUG(availrmem); 2518 PRM_DEBUG(freemem); 2519 build_pfn_hash(); 2520 return (pages_done); 2521 } 2522 2523 /* 2524 * Kernel VM initialization. 2525 */ 2526 static void 2527 kvm_init(void) 2528 { 2529 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2530 2531 /* 2532 * Put the kernel segments in kernel address space. 2533 */ 2534 rw_enter(&kas.a_lock, RW_WRITER); 2535 as_avlinit(&kas); 2536 2537 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2538 (void) segkmem_create(&ktextseg); 2539 2540 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2541 (void) segkmem_create(&kvalloc); 2542 2543 (void) seg_attach(&kas, kernelheap, 2544 ekernelheap - kernelheap, &kvseg); 2545 (void) segkmem_create(&kvseg); 2546 2547 if (core_size > 0) { 2548 PRM_POINT("attaching kvseg_core"); 2549 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2550 &kvseg_core); 2551 (void) segkmem_create(&kvseg_core); 2552 } 2553 2554 if (segziosize > 0) { 2555 PRM_POINT("attaching segzio"); 2556 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2557 &kzioseg); 2558 (void) segkmem_zio_create(&kzioseg); 2559 2560 /* create zio area covering new segment */ 2561 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2562 } 2563 2564 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2565 (void) segkmem_create(&kdebugseg); 2566 2567 rw_exit(&kas.a_lock); 2568 2569 /* 2570 * Ensure that the red zone at kernelbase is never accessible. 2571 */ 2572 PRM_POINT("protecting redzone"); 2573 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2574 2575 /* 2576 * Make the text writable so that it can be hot patched by DTrace. 2577 */ 2578 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2579 PROT_READ | PROT_WRITE | PROT_EXEC); 2580 2581 /* 2582 * Make data writable until end. 2583 */ 2584 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2585 PROT_READ | PROT_WRITE | PROT_EXEC); 2586 } 2587 2588 #ifndef __xpv 2589 /* 2590 * Solaris adds an entry for Write Combining caching to the PAT 2591 */ 2592 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2593 2594 void 2595 pat_sync(void) 2596 { 2597 ulong_t cr0, cr0_orig, cr4; 2598 2599 if (!(x86_feature & X86_PAT)) 2600 return; 2601 cr0_orig = cr0 = getcr0(); 2602 cr4 = getcr4(); 2603 2604 /* disable caching and flush all caches and TLBs */ 2605 cr0 |= CR0_CD; 2606 cr0 &= ~CR0_NW; 2607 setcr0(cr0); 2608 invalidate_cache(); 2609 if (cr4 & CR4_PGE) { 2610 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2611 setcr4(cr4); 2612 } else { 2613 reload_cr3(); 2614 } 2615 2616 /* add our entry to the PAT */ 2617 wrmsr(REG_PAT, pat_attr_reg); 2618 2619 /* flush TLBs and cache again, then reenable cr0 caching */ 2620 if (cr4 & CR4_PGE) { 2621 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2622 setcr4(cr4); 2623 } else { 2624 reload_cr3(); 2625 } 2626 invalidate_cache(); 2627 setcr0(cr0_orig); 2628 } 2629 2630 #endif /* !__xpv */ 2631 2632 #if defined(_SOFT_HOSTID) 2633 /* 2634 * On platforms that do not have a hardware serial number, attempt 2635 * to set one based on the contents of /etc/hostid. If this file does 2636 * not exist, assume that we are to generate a new hostid and set 2637 * it in the kernel, for subsequent saving by a userland process 2638 * once the system is up and the root filesystem is mounted r/w. 2639 * 2640 * In order to gracefully support upgrade on OpenSolaris, if 2641 * /etc/hostid does not exist, we will attempt to get a serial number 2642 * using the legacy method (/kernel/misc/sysinit). 2643 * 2644 * In an attempt to make the hostid less prone to abuse 2645 * (for license circumvention, etc), we store it in /etc/hostid 2646 * in rot47 format. 2647 */ 2648 extern volatile unsigned long tenmicrodata; 2649 static int atoi(char *); 2650 2651 static int32_t 2652 set_soft_hostid(void) 2653 { 2654 struct _buf *file; 2655 char tokbuf[MAXNAMELEN]; 2656 token_t token; 2657 int done = 0; 2658 u_longlong_t tmp; 2659 int i; 2660 int32_t hostid = (int32_t)HW_INVALID_HOSTID; 2661 unsigned char *c; 2662 hrtime_t tsc; 2663 2664 /* 2665 * If /etc/hostid file not found, we'd like to get a pseudo 2666 * random number to use at the hostid. A nice way to do this 2667 * is to read the real time clock. To remain xen-compatible, 2668 * we can't poke the real hardware, so we use tsc_read() to 2669 * read the real time clock. However, there is an ominous 2670 * warning in tsc_read that says it can return zero, so we 2671 * deal with that possibility by falling back to using the 2672 * (hopefully random enough) value in tenmicrodata. 2673 */ 2674 2675 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) { 2676 /* 2677 * hostid file not found - try to load sysinit module 2678 * and see if it has a nonzero hostid value...use that 2679 * instead of generating a new hostid here if so. 2680 */ 2681 if ((i = modload("misc", "sysinit")) != -1) { 2682 if (strlen(hw_serial) > 0) 2683 hostid = (int32_t)atoi(hw_serial); 2684 (void) modunload(i); 2685 } 2686 if (hostid == HW_INVALID_HOSTID) { 2687 tsc = tsc_read(); 2688 if (tsc == 0) /* tsc_read can return zero sometimes */ 2689 hostid = (int32_t)tenmicrodata & 0x0CFFFFF; 2690 else 2691 hostid = (int32_t)tsc & 0x0CFFFFF; 2692 } 2693 } else { 2694 /* hostid file found */ 2695 while (!done) { 2696 token = kobj_lex(file, tokbuf, sizeof (tokbuf)); 2697 2698 switch (token) { 2699 case POUND: 2700 /* 2701 * skip comments 2702 */ 2703 kobj_find_eol(file); 2704 break; 2705 case STRING: 2706 /* 2707 * un-rot47 - obviously this 2708 * nonsense is ascii-specific 2709 */ 2710 for (c = (unsigned char *)tokbuf; 2711 *c != '\0'; c++) { 2712 *c += 47; 2713 if (*c > '~') 2714 *c -= 94; 2715 else if (*c < '!') 2716 *c += 94; 2717 } 2718 /* 2719 * now we should have a real number 2720 */ 2721 2722 if (kobj_getvalue(tokbuf, &tmp) != 0) 2723 kobj_file_err(CE_WARN, file, 2724 "Bad value %s for hostid", 2725 tokbuf); 2726 else 2727 hostid = (int32_t)tmp; 2728 2729 break; 2730 case EOF: 2731 done = 1; 2732 /* FALLTHROUGH */ 2733 case NEWLINE: 2734 kobj_newline(file); 2735 break; 2736 default: 2737 break; 2738 2739 } 2740 } 2741 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */ 2742 kobj_file_err(CE_WARN, file, 2743 "hostid missing or corrupt"); 2744 2745 kobj_close_file(file); 2746 } 2747 /* 2748 * hostid is now the value read from /etc/hostid, or the 2749 * new hostid we generated in this routine or HW_INVALID_HOSTID if not 2750 * set. 2751 */ 2752 return (hostid); 2753 } 2754 2755 static int 2756 atoi(char *p) 2757 { 2758 int i = 0; 2759 2760 while (*p != '\0') 2761 i = 10 * i + (*p++ - '0'); 2762 2763 return (i); 2764 } 2765 2766 #endif /* _SOFT_HOSTID */ 2767 2768 void 2769 get_system_configuration(void) 2770 { 2771 char prop[32]; 2772 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2773 2774 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2775 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2776 kobj_getvalue(prop, &nodes_ll) == -1 || 2777 nodes_ll > MAXNODES || 2778 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2779 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2780 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2781 system_hardware.hd_nodes = 1; 2782 system_hardware.hd_cpus_per_node = 0; 2783 } else { 2784 system_hardware.hd_nodes = (int)nodes_ll; 2785 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2786 } 2787 2788 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2789 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2790 kobj_getvalue(prop, &lvalue) == -1) 2791 eprom_kernelbase = NULL; 2792 else 2793 eprom_kernelbase = (uintptr_t)lvalue; 2794 2795 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2796 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2797 kobj_getvalue(prop, &lvalue) == -1) 2798 segmapsize = SEGMAPDEFAULT; 2799 else 2800 segmapsize = (uintptr_t)lvalue; 2801 2802 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2803 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2804 kobj_getvalue(prop, &lvalue) == -1) 2805 segmapfreelists = 0; /* use segmap driver default */ 2806 else 2807 segmapfreelists = (int)lvalue; 2808 2809 /* physmem used to be here, but moved much earlier to fakebop.c */ 2810 } 2811 2812 /* 2813 * Add to a memory list. 2814 * start = start of new memory segment 2815 * len = length of new memory segment in bytes 2816 * new = pointer to a new struct memlist 2817 * memlistp = memory list to which to add segment. 2818 */ 2819 void 2820 memlist_add( 2821 uint64_t start, 2822 uint64_t len, 2823 struct memlist *new, 2824 struct memlist **memlistp) 2825 { 2826 struct memlist *cur; 2827 uint64_t end = start + len; 2828 2829 new->ml_address = start; 2830 new->ml_size = len; 2831 2832 cur = *memlistp; 2833 2834 while (cur) { 2835 if (cur->ml_address >= end) { 2836 new->ml_next = cur; 2837 *memlistp = new; 2838 new->ml_prev = cur->ml_prev; 2839 cur->ml_prev = new; 2840 return; 2841 } 2842 ASSERT(cur->ml_address + cur->ml_size <= start); 2843 if (cur->ml_next == NULL) { 2844 cur->ml_next = new; 2845 new->ml_prev = cur; 2846 new->ml_next = NULL; 2847 return; 2848 } 2849 memlistp = &cur->ml_next; 2850 cur = cur->ml_next; 2851 } 2852 } 2853 2854 void 2855 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2856 { 2857 size_t tsize = e_modtext - modtext; 2858 size_t dsize = e_moddata - moddata; 2859 2860 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2861 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2862 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2863 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2864 } 2865 2866 caddr_t 2867 kobj_text_alloc(vmem_t *arena, size_t size) 2868 { 2869 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2870 } 2871 2872 /*ARGSUSED*/ 2873 caddr_t 2874 kobj_texthole_alloc(caddr_t addr, size_t size) 2875 { 2876 panic("unexpected call to kobj_texthole_alloc()"); 2877 /*NOTREACHED*/ 2878 return (0); 2879 } 2880 2881 /*ARGSUSED*/ 2882 void 2883 kobj_texthole_free(caddr_t addr, size_t size) 2884 { 2885 panic("unexpected call to kobj_texthole_free()"); 2886 } 2887 2888 /* 2889 * This is called just after configure() in startup(). 2890 * 2891 * The ISALIST concept is a bit hopeless on Intel, because 2892 * there's no guarantee of an ever-more-capable processor 2893 * given that various parts of the instruction set may appear 2894 * and disappear between different implementations. 2895 * 2896 * While it would be possible to correct it and even enhance 2897 * it somewhat, the explicit hardware capability bitmask allows 2898 * more flexibility. 2899 * 2900 * So, we just leave this alone. 2901 */ 2902 void 2903 setx86isalist(void) 2904 { 2905 char *tp; 2906 size_t len; 2907 extern char *isa_list; 2908 2909 #define TBUFSIZE 1024 2910 2911 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2912 *tp = '\0'; 2913 2914 #if defined(__amd64) 2915 (void) strcpy(tp, "amd64 "); 2916 #endif 2917 2918 switch (x86_vendor) { 2919 case X86_VENDOR_Intel: 2920 case X86_VENDOR_AMD: 2921 case X86_VENDOR_TM: 2922 if (x86_feature & X86_CMOV) { 2923 /* 2924 * Pentium Pro or later 2925 */ 2926 (void) strcat(tp, "pentium_pro"); 2927 (void) strcat(tp, x86_feature & X86_MMX ? 2928 "+mmx pentium_pro " : " "); 2929 } 2930 /*FALLTHROUGH*/ 2931 case X86_VENDOR_Cyrix: 2932 /* 2933 * The Cyrix 6x86 does not have any Pentium features 2934 * accessible while not at privilege level 0. 2935 */ 2936 if (x86_feature & X86_CPUID) { 2937 (void) strcat(tp, "pentium"); 2938 (void) strcat(tp, x86_feature & X86_MMX ? 2939 "+mmx pentium " : " "); 2940 } 2941 break; 2942 default: 2943 break; 2944 } 2945 (void) strcat(tp, "i486 i386 i86"); 2946 len = strlen(tp) + 1; /* account for NULL at end of string */ 2947 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2948 kmem_free(tp, TBUFSIZE); 2949 2950 #undef TBUFSIZE 2951 } 2952 2953 2954 #ifdef __amd64 2955 2956 void * 2957 device_arena_alloc(size_t size, int vm_flag) 2958 { 2959 return (vmem_alloc(device_arena, size, vm_flag)); 2960 } 2961 2962 void 2963 device_arena_free(void *vaddr, size_t size) 2964 { 2965 vmem_free(device_arena, vaddr, size); 2966 } 2967 2968 #else /* __i386 */ 2969 2970 void * 2971 device_arena_alloc(size_t size, int vm_flag) 2972 { 2973 caddr_t vaddr; 2974 uintptr_t v; 2975 size_t start; 2976 size_t end; 2977 2978 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2979 if (vaddr == NULL) 2980 return (NULL); 2981 2982 v = (uintptr_t)vaddr; 2983 ASSERT(v >= kernelbase); 2984 ASSERT(v + size <= valloc_base); 2985 2986 start = btop(v - kernelbase); 2987 end = btop(v + size - 1 - kernelbase); 2988 ASSERT(start < toxic_bit_map_len); 2989 ASSERT(end < toxic_bit_map_len); 2990 2991 while (start <= end) { 2992 BT_ATOMIC_SET(toxic_bit_map, start); 2993 ++start; 2994 } 2995 return (vaddr); 2996 } 2997 2998 void 2999 device_arena_free(void *vaddr, size_t size) 3000 { 3001 uintptr_t v = (uintptr_t)vaddr; 3002 size_t start; 3003 size_t end; 3004 3005 ASSERT(v >= kernelbase); 3006 ASSERT(v + size <= valloc_base); 3007 3008 start = btop(v - kernelbase); 3009 end = btop(v + size - 1 - kernelbase); 3010 ASSERT(start < toxic_bit_map_len); 3011 ASSERT(end < toxic_bit_map_len); 3012 3013 while (start <= end) { 3014 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 3015 BT_ATOMIC_CLEAR(toxic_bit_map, start); 3016 ++start; 3017 } 3018 vmem_free(heap_arena, vaddr, size); 3019 } 3020 3021 /* 3022 * returns 1st address in range that is in device arena, or NULL 3023 * if len is not NULL it returns the length of the toxic range 3024 */ 3025 void * 3026 device_arena_contains(void *vaddr, size_t size, size_t *len) 3027 { 3028 uintptr_t v = (uintptr_t)vaddr; 3029 uintptr_t eaddr = v + size; 3030 size_t start; 3031 size_t end; 3032 3033 /* 3034 * if called very early by kmdb, just return NULL 3035 */ 3036 if (toxic_bit_map == NULL) 3037 return (NULL); 3038 3039 /* 3040 * First check if we're completely outside the bitmap range. 3041 */ 3042 if (v >= valloc_base || eaddr < kernelbase) 3043 return (NULL); 3044 3045 /* 3046 * Trim ends of search to look at only what the bitmap covers. 3047 */ 3048 if (v < kernelbase) 3049 v = kernelbase; 3050 start = btop(v - kernelbase); 3051 end = btop(eaddr - kernelbase); 3052 if (end >= toxic_bit_map_len) 3053 end = toxic_bit_map_len; 3054 3055 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 3056 return (NULL); 3057 3058 v = kernelbase + ptob(start); 3059 if (len != NULL) 3060 *len = ptob(end - start); 3061 return ((void *)v); 3062 } 3063 3064 #endif /* __i386 */ 3065