1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/t_lock.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/signal.h> 31 #include <sys/systm.h> 32 #include <sys/user.h> 33 #include <sys/mman.h> 34 #include <sys/vm.h> 35 #include <sys/conf.h> 36 #include <sys/avintr.h> 37 #include <sys/autoconf.h> 38 #include <sys/disp.h> 39 #include <sys/class.h> 40 #include <sys/bitmap.h> 41 42 #include <sys/privregs.h> 43 44 #include <sys/proc.h> 45 #include <sys/buf.h> 46 #include <sys/kmem.h> 47 #include <sys/mem.h> 48 #include <sys/kstat.h> 49 50 #include <sys/reboot.h> 51 52 #include <sys/cred.h> 53 #include <sys/vnode.h> 54 #include <sys/file.h> 55 56 #include <sys/procfs.h> 57 58 #include <sys/vfs.h> 59 #include <sys/cmn_err.h> 60 #include <sys/utsname.h> 61 #include <sys/debug.h> 62 #include <sys/kdi.h> 63 64 #include <sys/dumphdr.h> 65 #include <sys/bootconf.h> 66 #include <sys/varargs.h> 67 #include <sys/promif.h> 68 #include <sys/modctl.h> 69 70 #include <sys/sunddi.h> 71 #include <sys/sunndi.h> 72 #include <sys/ndi_impldefs.h> 73 #include <sys/ddidmareq.h> 74 #include <sys/psw.h> 75 #include <sys/regset.h> 76 #include <sys/clock.h> 77 #include <sys/pte.h> 78 #include <sys/tss.h> 79 #include <sys/stack.h> 80 #include <sys/trap.h> 81 #include <sys/fp.h> 82 #include <vm/kboot_mmu.h> 83 #include <vm/anon.h> 84 #include <vm/as.h> 85 #include <vm/page.h> 86 #include <vm/seg.h> 87 #include <vm/seg_dev.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_kpm.h> 90 #include <vm/seg_map.h> 91 #include <vm/seg_vn.h> 92 #include <vm/seg_kp.h> 93 #include <sys/memnode.h> 94 #include <vm/vm_dep.h> 95 #include <sys/thread.h> 96 #include <sys/sysconf.h> 97 #include <sys/vm_machparam.h> 98 #include <sys/archsystm.h> 99 #include <sys/machsystm.h> 100 #include <vm/hat.h> 101 #include <vm/hat_i86.h> 102 #include <sys/pmem.h> 103 #include <sys/smp_impldefs.h> 104 #include <sys/x86_archext.h> 105 #include <sys/cpuvar.h> 106 #include <sys/segments.h> 107 #include <sys/clconf.h> 108 #include <sys/kobj.h> 109 #include <sys/kobj_lex.h> 110 #include <sys/cpc_impl.h> 111 #include <sys/x86_archext.h> 112 #include <sys/cpu_module.h> 113 #include <sys/smbios.h> 114 #include <sys/debug_info.h> 115 #include <sys/bootinfo.h> 116 #include <sys/ddi_timer.h> 117 #include <sys/multiboot.h> 118 119 #ifdef __xpv 120 121 #include <sys/hypervisor.h> 122 #include <sys/xen_mmu.h> 123 #include <sys/evtchn_impl.h> 124 #include <sys/gnttab.h> 125 #include <sys/xpv_panic.h> 126 #include <xen/sys/xenbus_comms.h> 127 #include <xen/public/physdev.h> 128 129 extern void xen_late_startup(void); 130 131 struct xen_evt_data cpu0_evt_data; 132 133 #endif /* __xpv */ 134 135 extern void progressbar_init(void); 136 extern void progressbar_start(void); 137 extern void brand_init(void); 138 extern void pcf_init(void); 139 140 extern int size_pse_array(pgcnt_t, int); 141 142 /* 143 * XXX make declaration below "static" when drivers no longer use this 144 * interface. 145 */ 146 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 147 148 /* 149 * segkp 150 */ 151 extern int segkp_fromheap; 152 153 static void kvm_init(void); 154 static void startup_init(void); 155 static void startup_memlist(void); 156 static void startup_kmem(void); 157 static void startup_modules(void); 158 static void startup_vm(void); 159 static void startup_end(void); 160 static void layout_kernel_va(void); 161 162 /* 163 * Declare these as initialized data so we can patch them. 164 */ 165 #ifdef __i386 166 167 /* 168 * Due to virtual address space limitations running in 32 bit mode, restrict 169 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 170 * 171 * If the physical max memory size of 64g were allowed to be configured, the 172 * size of user virtual address space will be less than 1g. A limited user 173 * address space greatly reduces the range of applications that can run. 174 * 175 * If more physical memory than PHYSMEM is required, users should preferably 176 * run in 64 bit mode which has far looser virtual address space limitations. 177 * 178 * If 64 bit mode is not available (as in IA32) and/or more physical memory 179 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 180 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 181 * should also be carefully tuned to balance out the need of the user 182 * application while minimizing the risk of kernel heap exhaustion due to 183 * kernelbase being set too high. 184 */ 185 #define PHYSMEM 0x400000 186 187 #else /* __amd64 */ 188 189 /* 190 * For now we can handle memory with physical addresses up to about 191 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 192 * half the VA space for seg_kpm. When systems get bigger than 64TB this 193 * code will need revisiting. There is an implicit assumption that there 194 * are no *huge* holes in the physical address space too. 195 */ 196 #define TERABYTE (1ul << 40) 197 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 198 #define PHYSMEM PHYSMEM_MAX64 199 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 200 201 #endif /* __amd64 */ 202 203 pgcnt_t physmem = PHYSMEM; 204 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 205 206 char *kobj_file_buf; 207 int kobj_file_bufsize; /* set in /etc/system */ 208 209 /* Global variables for MP support. Used in mp_startup */ 210 caddr_t rm_platter_va = 0; 211 uint32_t rm_platter_pa; 212 213 int auto_lpg_disable = 1; 214 215 /* 216 * Some CPUs have holes in the middle of the 64-bit virtual address range. 217 */ 218 uintptr_t hole_start, hole_end; 219 220 /* 221 * kpm mapping window 222 */ 223 caddr_t kpm_vbase; 224 size_t kpm_size; 225 static int kpm_desired; 226 #ifdef __amd64 227 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 228 #endif 229 230 /* 231 * Configuration parameters set at boot time. 232 */ 233 234 caddr_t econtig; /* end of first block of contiguous kernel */ 235 236 struct bootops *bootops = 0; /* passed in from boot */ 237 struct bootops **bootopsp; 238 struct boot_syscalls *sysp; /* passed in from boot */ 239 240 char bootblock_fstype[16]; 241 242 char kern_bootargs[OBP_MAXPATHLEN]; 243 char kern_bootfile[OBP_MAXPATHLEN]; 244 245 /* 246 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 247 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 248 * zio buffers from their own segment, otherwise they are allocated from the 249 * heap. The optimization of allocating zio buffers from their own segment is 250 * only valid on 64-bit kernels. 251 */ 252 #if defined(__amd64) 253 int segzio_fromheap = 0; 254 #else 255 int segzio_fromheap = 1; 256 #endif 257 258 /* 259 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 260 * depends on number of BOP_ALLOC calls made and requested size, memory size 261 * combination and whether boot.bin memory needs to be freed. 262 */ 263 #define POSS_NEW_FRAGMENTS 12 264 265 /* 266 * VM data structures 267 */ 268 long page_hashsz; /* Size of page hash table (power of two) */ 269 struct page *pp_base; /* Base of initial system page struct array */ 270 struct page **page_hash; /* Page hash table */ 271 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 272 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 273 int pse_shift; /* log2(pse_table_size) */ 274 struct seg ktextseg; /* Segment used for kernel executable image */ 275 struct seg kvalloc; /* Segment used for "valloc" mapping */ 276 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 277 struct seg kmapseg; /* Segment used for generic kernel mappings */ 278 struct seg kdebugseg; /* Segment used for the kernel debugger */ 279 280 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 281 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 282 283 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 284 285 #if defined(__amd64) 286 struct seg kvseg_core; /* Segment used for the core heap */ 287 struct seg kpmseg; /* Segment used for physical mapping */ 288 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 289 #else 290 struct seg *segkpm = NULL; /* Unused on IA32 */ 291 #endif 292 293 caddr_t segkp_base; /* Base address of segkp */ 294 caddr_t segzio_base; /* Base address of segzio */ 295 #if defined(__amd64) 296 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 297 #else 298 pgcnt_t segkpsize = 0; 299 #endif 300 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 301 302 /* 303 * VA range available to the debugger 304 */ 305 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 306 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 307 308 struct memseg *memseg_base; 309 struct vnode unused_pages_vp; 310 311 #define FOURGB 0x100000000LL 312 313 struct memlist *memlist; 314 315 caddr_t s_text; /* start of kernel text segment */ 316 caddr_t e_text; /* end of kernel text segment */ 317 caddr_t s_data; /* start of kernel data segment */ 318 caddr_t e_data; /* end of kernel data segment */ 319 caddr_t modtext; /* start of loadable module text reserved */ 320 caddr_t e_modtext; /* end of loadable module text reserved */ 321 caddr_t moddata; /* start of loadable module data reserved */ 322 caddr_t e_moddata; /* end of loadable module data reserved */ 323 324 struct memlist *phys_install; /* Total installed physical memory */ 325 struct memlist *phys_avail; /* Total available physical memory */ 326 327 /* 328 * kphysm_init returns the number of pages that were processed 329 */ 330 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 331 332 #define IO_PROP_SIZE 64 /* device property size */ 333 334 /* 335 * a couple useful roundup macros 336 */ 337 #define ROUND_UP_PAGE(x) \ 338 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 339 #define ROUND_UP_LPAGE(x) \ 340 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 341 #define ROUND_UP_4MEG(x) \ 342 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 343 #define ROUND_UP_TOPLEVEL(x) \ 344 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 345 346 /* 347 * 32-bit Kernel's Virtual memory layout. 348 * +-----------------------+ 349 * | | 350 * 0xFFC00000 -|-----------------------|- ARGSBASE 351 * | debugger | 352 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 353 * | Kernel Data | 354 * 0xFEC00000 -|-----------------------| 355 * | Kernel Text | 356 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 357 * |--- GDT ---|- GDT page (GDT_VA) 358 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 359 * | | 360 * | page_t structures | 361 * | memsegs, memlists, | 362 * | page hash, etc. | 363 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 364 * | | (segkp is just an arena in the heap) 365 * | | 366 * | kvseg | 367 * | | 368 * | | 369 * --- -|-----------------------|- kernelheap (floating) 370 * | Segkmap | 371 * 0xC3002000 -|-----------------------|- segmap_start (floating) 372 * | Red Zone | 373 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 374 * | | || 375 * | Shared objects | \/ 376 * | | 377 * : : 378 * | user data | 379 * |-----------------------| 380 * | user text | 381 * 0x08048000 -|-----------------------| 382 * | user stack | 383 * : : 384 * | invalid | 385 * 0x00000000 +-----------------------+ 386 * 387 * 388 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 389 * +-----------------------+ 390 * | | 391 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 392 * | debugger (?) | 393 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 394 * | unused | 395 * +-----------------------+ 396 * | Kernel Data | 397 * 0xFFFFFFFF.FBC00000 |-----------------------| 398 * | Kernel Text | 399 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 400 * |--- GDT ---|- GDT page (GDT_VA) 401 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 402 * | | 403 * | Core heap | (used for loadable modules) 404 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 405 * | Kernel | 406 * | heap | 407 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 408 * | segmap | 409 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 410 * | device mappings | 411 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 412 * | segzio | 413 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 414 * | segkp | 415 * --- |-----------------------|- segkp_base (floating) 416 * | page_t structures | valloc_base + valloc_sz 417 * | memsegs, memlists, | 418 * | page hash, etc. | 419 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 420 * | segkpm | 421 * 0xFFFFFE00.00000000 |-----------------------| 422 * | Red Zone | 423 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 424 * | User stack |- User space memory 425 * | | 426 * | shared objects, etc | (grows downwards) 427 * : : 428 * | | 429 * 0xFFFF8000.00000000 |-----------------------| 430 * | | 431 * | VA Hole / unused | 432 * | | 433 * 0x00008000.00000000 |-----------------------| 434 * | | 435 * | | 436 * : : 437 * | user heap | (grows upwards) 438 * | | 439 * | user data | 440 * |-----------------------| 441 * | user text | 442 * 0x00000000.04000000 |-----------------------| 443 * | invalid | 444 * 0x00000000.00000000 +-----------------------+ 445 * 446 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 447 * kernel, except that userlimit is raised to 0xfe000000 448 * 449 * Floating values: 450 * 451 * valloc_base: start of the kernel's memory management/tracking data 452 * structures. This region contains page_t structures for 453 * physical memory, memsegs, memlists, and the page hash. 454 * 455 * core_base: start of the kernel's "core" heap area on 64-bit systems. 456 * This area is intended to be used for global data as well as for module 457 * text/data that does not fit into the nucleus pages. The core heap is 458 * restricted to a 2GB range, allowing every address within it to be 459 * accessed using rip-relative addressing 460 * 461 * ekernelheap: end of kernelheap and start of segmap. 462 * 463 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 464 * above a red zone that separates the user's address space from the 465 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 466 * 467 * segmap_start: start of segmap. The length of segmap can be modified 468 * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated). 469 * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems. 470 * 471 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 472 * decreased by 2X the size required for page_t. This allows the kernel 473 * heap to grow in size with physical memory. With sizeof(page_t) == 80 474 * bytes, the following shows the values of kernelbase and kernel heap 475 * sizes for different memory configurations (assuming default segmap and 476 * segkp sizes). 477 * 478 * mem size for kernelbase kernel heap 479 * size page_t's size 480 * ---- --------- ---------- ----------- 481 * 1gb 0x01400000 0xd1800000 684MB 482 * 2gb 0x02800000 0xcf000000 704MB 483 * 4gb 0x05000000 0xca000000 744MB 484 * 6gb 0x07800000 0xc5000000 784MB 485 * 8gb 0x0a000000 0xc0000000 824MB 486 * 16gb 0x14000000 0xac000000 984MB 487 * 32gb 0x28000000 0x84000000 1304MB 488 * 64gb 0x50000000 0x34000000 1944MB (*) 489 * 490 * kernelbase is less than the abi minimum of 0xc0000000 for memory 491 * configurations above 8gb. 492 * 493 * (*) support for memory configurations above 32gb will require manual tuning 494 * of kernelbase to balance out the need of user applications. 495 */ 496 497 /* real-time-clock initialization parameters */ 498 extern time_t process_rtc_config_file(void); 499 500 uintptr_t kernelbase; 501 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 502 uintptr_t eprom_kernelbase; 503 size_t segmapsize; 504 uintptr_t segmap_start; 505 int segmapfreelists; 506 pgcnt_t npages; 507 pgcnt_t orig_npages; 508 size_t core_size; /* size of "core" heap */ 509 uintptr_t core_base; /* base address of "core" heap */ 510 511 /* 512 * List of bootstrap pages. We mark these as allocated in startup. 513 * release_bootstrap() will free them when we're completely done with 514 * the bootstrap. 515 */ 516 static page_t *bootpages; 517 518 /* 519 * boot time pages that have a vnode from the ramdisk will keep that forever. 520 */ 521 static page_t *rd_pages; 522 523 /* 524 * Lower 64K 525 */ 526 static page_t *lower_pages = NULL; 527 static int lower_pages_count = 0; 528 529 struct system_hardware system_hardware; 530 531 /* 532 * Is this Solaris instance running in a fully virtualized xVM domain? 533 */ 534 int xpv_is_hvm = 0; 535 536 /* 537 * Enable some debugging messages concerning memory usage... 538 */ 539 static void 540 print_memlist(char *title, struct memlist *mp) 541 { 542 prom_printf("MEMLIST: %s:\n", title); 543 while (mp != NULL) { 544 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 545 mp->address, mp->size); 546 mp = mp->next; 547 } 548 } 549 550 /* 551 * XX64 need a comment here.. are these just default values, surely 552 * we read the "cpuid" type information to figure this out. 553 */ 554 int l2cache_sz = 0x80000; 555 int l2cache_linesz = 0x40; 556 int l2cache_assoc = 1; 557 558 static size_t textrepl_min_gb = 10; 559 560 /* 561 * on 64 bit we use a predifined VA range for mapping devices in the kernel 562 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 563 */ 564 #ifdef __amd64 565 566 vmem_t *device_arena; 567 uintptr_t toxic_addr = (uintptr_t)NULL; 568 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 569 570 #else /* __i386 */ 571 572 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 573 size_t toxic_bit_map_len = 0; /* in bits */ 574 575 #endif /* __i386 */ 576 577 /* 578 * Simple boot time debug facilities 579 */ 580 static char *prm_dbg_str[] = { 581 "%s:%d: '%s' is 0x%x\n", 582 "%s:%d: '%s' is 0x%llx\n" 583 }; 584 585 int prom_debug; 586 587 #define PRM_DEBUG(q) if (prom_debug) \ 588 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 589 #define PRM_POINT(q) if (prom_debug) \ 590 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 591 592 /* 593 * This structure is used to keep track of the intial allocations 594 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 595 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 596 */ 597 #define NUM_ALLOCATIONS 7 598 int num_allocations = 0; 599 struct { 600 void **al_ptr; 601 size_t al_size; 602 } allocations[NUM_ALLOCATIONS]; 603 size_t valloc_sz = 0; 604 uintptr_t valloc_base; 605 606 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 607 size = ROUND_UP_PAGE(size); \ 608 if (num_allocations == NUM_ALLOCATIONS) \ 609 panic("too many ADD_TO_ALLOCATIONS()"); \ 610 allocations[num_allocations].al_ptr = (void**)&ptr; \ 611 allocations[num_allocations].al_size = size; \ 612 valloc_sz += size; \ 613 ++num_allocations; \ 614 } 615 616 /* 617 * Allocate all the initial memory needed by the page allocator. 618 */ 619 static void 620 perform_allocations(void) 621 { 622 caddr_t mem; 623 int i; 624 int valloc_align; 625 626 PRM_DEBUG(valloc_base); 627 PRM_DEBUG(valloc_sz); 628 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 629 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 630 if (mem != (caddr_t)valloc_base) 631 panic("BOP_ALLOC() failed"); 632 bzero(mem, valloc_sz); 633 for (i = 0; i < num_allocations; ++i) { 634 *allocations[i].al_ptr = (void *)mem; 635 mem += allocations[i].al_size; 636 } 637 } 638 639 /* 640 * Our world looks like this at startup time. 641 * 642 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 643 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 644 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 645 * addresses are fixed in the binary at link time. 646 * 647 * On the text page: 648 * unix/genunix/krtld/module text loads. 649 * 650 * On the data page: 651 * unix/genunix/krtld/module data loads. 652 * 653 * Machine-dependent startup code 654 */ 655 void 656 startup(void) 657 { 658 #if !defined(__xpv) 659 extern void startup_bios_disk(void); 660 extern void startup_pci_bios(void); 661 extern int post_fastreboot; 662 #endif 663 extern cpuset_t cpu_ready_set; 664 665 /* 666 * Make sure that nobody tries to use sekpm until we have 667 * initialized it properly. 668 */ 669 #if defined(__amd64) 670 kpm_desired = 1; 671 #endif 672 kpm_enable = 0; 673 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 674 675 #if defined(__xpv) /* XXPV fix me! */ 676 { 677 extern int segvn_use_regions; 678 segvn_use_regions = 0; 679 } 680 #endif 681 progressbar_init(); 682 startup_init(); 683 #if defined(__xpv) 684 startup_xen_version(); 685 #endif 686 startup_memlist(); 687 startup_kmem(); 688 startup_vm(); 689 #if !defined(__xpv) 690 if (!post_fastreboot) 691 startup_pci_bios(); 692 #endif 693 #if defined(__xpv) 694 startup_xen_mca(); 695 #endif 696 startup_modules(); 697 #if !defined(__xpv) 698 if (!post_fastreboot) 699 startup_bios_disk(); 700 #endif 701 startup_end(); 702 progressbar_start(); 703 } 704 705 static void 706 startup_init() 707 { 708 PRM_POINT("startup_init() starting..."); 709 710 /* 711 * Complete the extraction of cpuid data 712 */ 713 cpuid_pass2(CPU); 714 715 (void) check_boot_version(BOP_GETVERSION(bootops)); 716 717 /* 718 * Check for prom_debug in boot environment 719 */ 720 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 721 ++prom_debug; 722 PRM_POINT("prom_debug found in boot enviroment"); 723 } 724 725 /* 726 * Collect node, cpu and memory configuration information. 727 */ 728 get_system_configuration(); 729 730 /* 731 * Halt if this is an unsupported processor. 732 */ 733 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 734 printf("\n486 processor (\"%s\") detected.\n", 735 CPU->cpu_brandstr); 736 halt("This processor is not supported by this release " 737 "of Solaris."); 738 } 739 740 PRM_POINT("startup_init() done"); 741 } 742 743 /* 744 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 745 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 746 * also filters out physical page zero. There is some reliance on the 747 * boot loader allocating only a few contiguous physical memory chunks. 748 */ 749 static void 750 avail_filter(uint64_t *addr, uint64_t *size) 751 { 752 uintptr_t va; 753 uintptr_t next_va; 754 pfn_t pfn; 755 uint64_t pfn_addr; 756 uint64_t pfn_eaddr; 757 uint_t prot; 758 size_t len; 759 uint_t change; 760 761 if (prom_debug) 762 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 763 *addr, *size); 764 765 /* 766 * page zero is required for BIOS.. never make it available 767 */ 768 if (*addr == 0) { 769 *addr += MMU_PAGESIZE; 770 *size -= MMU_PAGESIZE; 771 } 772 773 /* 774 * First we trim from the front of the range. Since kbm_probe() 775 * walks ranges in virtual order, but addr/size are physical, we need 776 * to the list until no changes are seen. This deals with the case 777 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 778 * but w < v. 779 */ 780 do { 781 change = 0; 782 for (va = KERNEL_TEXT; 783 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 784 va = next_va) { 785 786 next_va = va + len; 787 pfn_addr = pfn_to_pa(pfn); 788 pfn_eaddr = pfn_addr + len; 789 790 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 791 change = 1; 792 while (*size > 0 && len > 0) { 793 *addr += MMU_PAGESIZE; 794 *size -= MMU_PAGESIZE; 795 len -= MMU_PAGESIZE; 796 } 797 } 798 } 799 if (change && prom_debug) 800 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 801 *addr, *size); 802 } while (change); 803 804 /* 805 * Trim pages from the end of the range. 806 */ 807 for (va = KERNEL_TEXT; 808 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 809 va = next_va) { 810 811 next_va = va + len; 812 pfn_addr = pfn_to_pa(pfn); 813 814 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 815 *size = pfn_addr - *addr; 816 } 817 818 if (prom_debug) 819 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 820 *addr, *size); 821 } 822 823 static void 824 kpm_init() 825 { 826 struct segkpm_crargs b; 827 828 /* 829 * These variables were all designed for sfmmu in which segkpm is 830 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 831 * might use 2+ page sizes on a single machine, so none of these 832 * variables have a single correct value. They are set up as if we 833 * always use a 4KB pagesize, which should do no harm. In the long 834 * run, we should get rid of KPM's assumption that only a single 835 * pagesize is used. 836 */ 837 kpm_pgshft = MMU_PAGESHIFT; 838 kpm_pgsz = MMU_PAGESIZE; 839 kpm_pgoff = MMU_PAGEOFFSET; 840 kpmp2pshft = 0; 841 kpmpnpgs = 1; 842 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 843 844 PRM_POINT("about to create segkpm"); 845 rw_enter(&kas.a_lock, RW_WRITER); 846 847 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 848 panic("cannot attach segkpm"); 849 850 b.prot = PROT_READ | PROT_WRITE; 851 b.nvcolors = 1; 852 853 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 854 panic("segkpm_create segkpm"); 855 856 rw_exit(&kas.a_lock); 857 } 858 859 /* 860 * The debug info page provides enough information to allow external 861 * inspectors (e.g. when running under a hypervisor) to bootstrap 862 * themselves into allowing full-blown kernel debugging. 863 */ 864 static void 865 init_debug_info(void) 866 { 867 caddr_t mem; 868 debug_info_t *di; 869 870 #ifndef __lint 871 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 872 #endif 873 874 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 875 MMU_PAGESIZE); 876 877 if (mem != (caddr_t)DEBUG_INFO_VA) 878 panic("BOP_ALLOC() failed"); 879 bzero(mem, MMU_PAGESIZE); 880 881 di = (debug_info_t *)mem; 882 883 di->di_magic = DEBUG_INFO_MAGIC; 884 di->di_version = DEBUG_INFO_VERSION; 885 di->di_modules = (uintptr_t)&modules; 886 di->di_s_text = (uintptr_t)s_text; 887 di->di_e_text = (uintptr_t)e_text; 888 di->di_s_data = (uintptr_t)s_data; 889 di->di_e_data = (uintptr_t)e_data; 890 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 891 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 892 } 893 894 /* 895 * Build the memlists and other kernel essential memory system data structures. 896 * This is everything at valloc_base. 897 */ 898 static void 899 startup_memlist(void) 900 { 901 size_t memlist_sz; 902 size_t memseg_sz; 903 size_t pagehash_sz; 904 size_t pp_sz; 905 uintptr_t va; 906 size_t len; 907 uint_t prot; 908 pfn_t pfn; 909 int memblocks; 910 caddr_t pagecolor_mem; 911 size_t pagecolor_memsz; 912 caddr_t page_ctrs_mem; 913 size_t page_ctrs_size; 914 size_t pse_table_alloc_size; 915 struct memlist *current; 916 extern void startup_build_mem_nodes(struct memlist *); 917 918 /* XX64 fix these - they should be in include files */ 919 extern size_t page_coloring_init(uint_t, int, int); 920 extern void page_coloring_setup(caddr_t); 921 922 PRM_POINT("startup_memlist() starting..."); 923 924 /* 925 * Use leftover large page nucleus text/data space for loadable modules. 926 * Use at most MODTEXT/MODDATA. 927 */ 928 len = kbm_nucleus_size; 929 ASSERT(len > MMU_PAGESIZE); 930 931 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 932 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 933 if (e_moddata - moddata > MODDATA) 934 e_moddata = moddata + MODDATA; 935 936 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 937 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 938 if (e_modtext - modtext > MODTEXT) 939 e_modtext = modtext + MODTEXT; 940 941 econtig = e_moddata; 942 943 PRM_DEBUG(modtext); 944 PRM_DEBUG(e_modtext); 945 PRM_DEBUG(moddata); 946 PRM_DEBUG(e_moddata); 947 PRM_DEBUG(econtig); 948 949 /* 950 * Examine the boot loader physical memory map to find out: 951 * - total memory in system - physinstalled 952 * - the max physical address - physmax 953 * - the number of discontiguous segments of memory. 954 */ 955 if (prom_debug) 956 print_memlist("boot physinstalled", 957 bootops->boot_mem->physinstalled); 958 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 959 &physinstalled, &memblocks); 960 PRM_DEBUG(physmax); 961 PRM_DEBUG(physinstalled); 962 PRM_DEBUG(memblocks); 963 964 /* 965 * Initialize hat's mmu parameters. 966 * Check for enforce-prot-exec in boot environment. It's used to 967 * enable/disable support for the page table entry NX bit. 968 * The default is to enforce PROT_EXEC on processors that support NX. 969 * Boot seems to round up the "len", but 8 seems to be big enough. 970 */ 971 mmu_init(); 972 973 #ifdef __i386 974 /* 975 * physmax is lowered if there is more memory than can be 976 * physically addressed in 32 bit (PAE/non-PAE) modes. 977 */ 978 if (mmu.pae_hat) { 979 if (PFN_ABOVE64G(physmax)) { 980 physinstalled -= (physmax - (PFN_64G - 1)); 981 physmax = PFN_64G - 1; 982 } 983 } else { 984 if (PFN_ABOVE4G(physmax)) { 985 physinstalled -= (physmax - (PFN_4G - 1)); 986 physmax = PFN_4G - 1; 987 } 988 } 989 #endif 990 991 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 992 993 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 994 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 995 char value[8]; 996 997 if (len < 8) 998 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 999 else 1000 (void) strcpy(value, ""); 1001 if (strcmp(value, "off") == 0) 1002 mmu.pt_nx = 0; 1003 } 1004 PRM_DEBUG(mmu.pt_nx); 1005 1006 /* 1007 * We will need page_t's for every page in the system, except for 1008 * memory mapped at or above above the start of the kernel text segment. 1009 * 1010 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1011 */ 1012 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1013 obp_pages = 0; 1014 va = KERNEL_TEXT; 1015 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1016 npages -= len >> MMU_PAGESHIFT; 1017 if (va >= (uintptr_t)e_moddata) 1018 obp_pages += len >> MMU_PAGESHIFT; 1019 va += len; 1020 } 1021 PRM_DEBUG(npages); 1022 PRM_DEBUG(obp_pages); 1023 1024 /* 1025 * If physmem is patched to be non-zero, use it instead of the computed 1026 * value unless it is larger than the actual amount of memory on hand. 1027 */ 1028 if (physmem == 0 || physmem > npages) { 1029 physmem = npages; 1030 } else if (physmem < npages) { 1031 orig_npages = npages; 1032 npages = physmem; 1033 } 1034 PRM_DEBUG(physmem); 1035 1036 /* 1037 * We now compute the sizes of all the initial allocations for 1038 * structures the kernel needs in order do kmem_alloc(). These 1039 * include: 1040 * memsegs 1041 * memlists 1042 * page hash table 1043 * page_t's 1044 * page coloring data structs 1045 */ 1046 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1047 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1048 PRM_DEBUG(memseg_sz); 1049 1050 /* 1051 * Reserve space for memlists. There's no real good way to know exactly 1052 * how much room we'll need, but this should be a good upper bound. 1053 */ 1054 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1055 (memblocks + POSS_NEW_FRAGMENTS)); 1056 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1057 PRM_DEBUG(memlist_sz); 1058 1059 /* 1060 * The page structure hash table size is a power of 2 1061 * such that the average hash chain length is PAGE_HASHAVELEN. 1062 */ 1063 page_hashsz = npages / PAGE_HASHAVELEN; 1064 page_hashsz = 1 << highbit(page_hashsz); 1065 pagehash_sz = sizeof (struct page *) * page_hashsz; 1066 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1067 PRM_DEBUG(pagehash_sz); 1068 1069 /* 1070 * Set aside room for the page structures themselves. 1071 */ 1072 PRM_DEBUG(npages); 1073 pp_sz = sizeof (struct page) * npages; 1074 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1075 PRM_DEBUG(pp_sz); 1076 1077 /* 1078 * determine l2 cache info and memory size for page coloring 1079 */ 1080 (void) getl2cacheinfo(CPU, 1081 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1082 pagecolor_memsz = 1083 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1084 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1085 PRM_DEBUG(pagecolor_memsz); 1086 1087 page_ctrs_size = page_ctrs_sz(); 1088 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1089 PRM_DEBUG(page_ctrs_size); 1090 1091 /* 1092 * Allocate the array that protects pp->p_selock. 1093 */ 1094 pse_shift = size_pse_array(physmem, max_ncpus); 1095 pse_table_size = 1 << pse_shift; 1096 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1097 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1098 1099 #if defined(__amd64) 1100 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1101 valloc_base = VALLOC_BASE; 1102 1103 /* 1104 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1105 * for values of physmax up to 1 Terabyte. They need adjusting when 1106 * memory is at addresses above 1 TB. 1107 */ 1108 if (physmax + 1 > mmu_btop(TERABYTE)) { 1109 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1110 1111 /* Round to largest possible pagesize for now */ 1112 kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1113 1114 segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */ 1115 1116 /* make sure we leave some space for user apps above hole */ 1117 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1118 if (segkpm_base > SEGKPM_BASE) 1119 segkpm_base = SEGKPM_BASE; 1120 PRM_DEBUG(segkpm_base); 1121 1122 valloc_base = segkpm_base + kpm_resv_amount; 1123 PRM_DEBUG(valloc_base); 1124 } 1125 #else /* __i386 */ 1126 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1127 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1128 PRM_DEBUG(valloc_base); 1129 #endif /* __i386 */ 1130 1131 /* 1132 * do all the initial allocations 1133 */ 1134 perform_allocations(); 1135 1136 /* 1137 * Build phys_install and phys_avail in kernel memspace. 1138 * - phys_install should be all memory in the system. 1139 * - phys_avail is phys_install minus any memory mapped before this 1140 * point above KERNEL_TEXT. 1141 */ 1142 current = phys_install = memlist; 1143 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1144 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1145 panic("physinstalled was too big!"); 1146 if (prom_debug) 1147 print_memlist("phys_install", phys_install); 1148 1149 phys_avail = current; 1150 PRM_POINT("Building phys_avail:\n"); 1151 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1152 avail_filter); 1153 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1154 panic("physavail was too big!"); 1155 if (prom_debug) 1156 print_memlist("phys_avail", phys_avail); 1157 1158 /* 1159 * setup page coloring 1160 */ 1161 page_coloring_setup(pagecolor_mem); 1162 page_lock_init(); /* currently a no-op */ 1163 1164 /* 1165 * free page list counters 1166 */ 1167 (void) page_ctrs_alloc(page_ctrs_mem); 1168 1169 /* 1170 * Size the pcf array based on the number of cpus in the box at 1171 * boot time. 1172 */ 1173 1174 pcf_init(); 1175 1176 /* 1177 * Initialize the page structures from the memory lists. 1178 */ 1179 availrmem_initial = availrmem = freemem = 0; 1180 PRM_POINT("Calling kphysm_init()..."); 1181 npages = kphysm_init(pp_base, npages); 1182 PRM_POINT("kphysm_init() done"); 1183 PRM_DEBUG(npages); 1184 1185 init_debug_info(); 1186 1187 /* 1188 * Now that page_t's have been initialized, remove all the 1189 * initial allocation pages from the kernel free page lists. 1190 */ 1191 boot_mapin((caddr_t)valloc_base, valloc_sz); 1192 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1193 PRM_POINT("startup_memlist() done"); 1194 1195 PRM_DEBUG(valloc_sz); 1196 1197 #if defined(__amd64) 1198 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1199 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1200 extern size_t textrepl_size_thresh; 1201 textrepl_size_thresh = (16 << 20) - 1; 1202 } 1203 #endif 1204 } 1205 1206 /* 1207 * Layout the kernel's part of address space and initialize kmem allocator. 1208 */ 1209 static void 1210 startup_kmem(void) 1211 { 1212 extern void page_set_colorequiv_arr(void); 1213 1214 PRM_POINT("startup_kmem() starting..."); 1215 1216 #if defined(__amd64) 1217 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1218 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1219 "systems."); 1220 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1221 core_base = (uintptr_t)COREHEAP_BASE; 1222 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1223 #else /* __i386 */ 1224 /* 1225 * We configure kernelbase based on: 1226 * 1227 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1228 * KERNELBASE_MAX. we large page align eprom_kernelbase 1229 * 1230 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1231 * On large memory systems we must lower kernelbase to allow 1232 * enough room for page_t's for all of memory. 1233 * 1234 * The value set here, might be changed a little later. 1235 */ 1236 if (eprom_kernelbase) { 1237 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1238 if (kernelbase > KERNELBASE_MAX) 1239 kernelbase = KERNELBASE_MAX; 1240 } else { 1241 kernelbase = (uintptr_t)KERNELBASE; 1242 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1243 } 1244 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1245 core_base = valloc_base; 1246 core_size = 0; 1247 #endif /* __i386 */ 1248 1249 PRM_DEBUG(core_base); 1250 PRM_DEBUG(core_size); 1251 PRM_DEBUG(kernelbase); 1252 1253 #if defined(__i386) 1254 segkp_fromheap = 1; 1255 #endif /* __i386 */ 1256 1257 ekernelheap = (char *)core_base; 1258 PRM_DEBUG(ekernelheap); 1259 1260 /* 1261 * Now that we know the real value of kernelbase, 1262 * update variables that were initialized with a value of 1263 * KERNELBASE (in common/conf/param.c). 1264 * 1265 * XXX The problem with this sort of hackery is that the 1266 * compiler just may feel like putting the const declarations 1267 * (in param.c) into the .text section. Perhaps they should 1268 * just be declared as variables there? 1269 */ 1270 1271 *(uintptr_t *)&_kernelbase = kernelbase; 1272 *(uintptr_t *)&_userlimit = kernelbase; 1273 #if defined(__amd64) 1274 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1275 #else 1276 *(uintptr_t *)&_userlimit32 = _userlimit; 1277 #endif 1278 PRM_DEBUG(_kernelbase); 1279 PRM_DEBUG(_userlimit); 1280 PRM_DEBUG(_userlimit32); 1281 1282 layout_kernel_va(); 1283 1284 #if defined(__i386) 1285 /* 1286 * If segmap is too large we can push the bottom of the kernel heap 1287 * higher than the base. Or worse, it could exceed the top of the 1288 * VA space entirely, causing it to wrap around. 1289 */ 1290 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1291 panic("too little address space available for kernelheap," 1292 " use eeprom for lower kernelbase or smaller segmapsize"); 1293 #endif /* __i386 */ 1294 1295 /* 1296 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1297 */ 1298 kernelheap_init(kernelheap, ekernelheap, 1299 kernelheap + MMU_PAGESIZE, 1300 (void *)core_base, (void *)(core_base + core_size)); 1301 1302 #if defined(__xpv) 1303 /* 1304 * Link pending events struct into cpu struct 1305 */ 1306 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1307 #endif 1308 /* 1309 * Initialize kernel memory allocator. 1310 */ 1311 kmem_init(); 1312 1313 /* 1314 * Factor in colorequiv to check additional 'equivalent' bins 1315 */ 1316 page_set_colorequiv_arr(); 1317 1318 /* 1319 * print this out early so that we know what's going on 1320 */ 1321 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1322 1323 /* 1324 * Initialize bp_mapin(). 1325 */ 1326 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1327 1328 /* 1329 * orig_npages is non-zero if physmem has been configured for less 1330 * than the available memory. 1331 */ 1332 if (orig_npages) { 1333 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1334 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1335 npages, orig_npages); 1336 } 1337 #if defined(__i386) 1338 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1339 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1340 "System using 0x%lx", 1341 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1342 #endif 1343 1344 #ifdef KERNELBASE_ABI_MIN 1345 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1346 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1347 "i386 ABI compliant.", (uintptr_t)kernelbase); 1348 } 1349 #endif 1350 1351 #ifdef __xpv 1352 /* 1353 * Some of the xen start information has to be relocated up 1354 * into the kernel's permanent address space. 1355 */ 1356 PRM_POINT("calling xen_relocate_start_info()"); 1357 xen_relocate_start_info(); 1358 PRM_POINT("xen_relocate_start_info() done"); 1359 1360 /* 1361 * (Update the vcpu pointer in our cpu structure to point into 1362 * the relocated shared info.) 1363 */ 1364 CPU->cpu_m.mcpu_vcpu_info = 1365 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1366 #endif 1367 1368 PRM_POINT("startup_kmem() done"); 1369 } 1370 1371 #ifndef __xpv 1372 /* 1373 * If we have detected that we are running in an HVM environment, we need 1374 * to prepend the PV driver directory to the module search path. 1375 */ 1376 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1377 static void 1378 update_default_path() 1379 { 1380 char *current, *newpath; 1381 int newlen; 1382 1383 /* 1384 * We are about to resync with krtld. krtld will reset its 1385 * internal module search path iff Solaris has set default_path. 1386 * We want to be sure we're prepending this new directory to the 1387 * right search path. 1388 */ 1389 current = (default_path == NULL) ? kobj_module_path : default_path; 1390 1391 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 1; 1392 newpath = kmem_alloc(newlen, KM_SLEEP); 1393 (void) strcpy(newpath, HVM_MOD_DIR); 1394 (void) strcat(newpath, " "); 1395 (void) strcat(newpath, current); 1396 1397 default_path = newpath; 1398 } 1399 #endif 1400 1401 static void 1402 startup_modules(void) 1403 { 1404 unsigned int i; 1405 extern void prom_setup(void); 1406 cmi_hdl_t hdl; 1407 1408 PRM_POINT("startup_modules() starting..."); 1409 1410 #ifndef __xpv 1411 /* 1412 * Initialize ten-micro second timer so that drivers will 1413 * not get short changed in their init phase. This was 1414 * not getting called until clkinit which, on fast cpu's 1415 * caused the drv_usecwait to be way too short. 1416 */ 1417 microfind(); 1418 1419 if (xpv_is_hvm) 1420 update_default_path(); 1421 #endif 1422 1423 /* 1424 * Read the GMT lag from /etc/rtc_config. 1425 */ 1426 sgmtl(process_rtc_config_file()); 1427 1428 /* 1429 * Calculate default settings of system parameters based upon 1430 * maxusers, yet allow to be overridden via the /etc/system file. 1431 */ 1432 param_calc(0); 1433 1434 mod_setup(); 1435 1436 /* 1437 * Initialize system parameters. 1438 */ 1439 param_init(); 1440 1441 /* 1442 * Initialize the default brands 1443 */ 1444 brand_init(); 1445 1446 /* 1447 * maxmem is the amount of physical memory we're playing with. 1448 */ 1449 maxmem = physmem; 1450 1451 /* 1452 * Initialize segment management stuff. 1453 */ 1454 seg_init(); 1455 1456 if (modload("fs", "specfs") == -1) 1457 halt("Can't load specfs"); 1458 1459 if (modload("fs", "devfs") == -1) 1460 halt("Can't load devfs"); 1461 1462 if (modload("fs", "dev") == -1) 1463 halt("Can't load dev"); 1464 1465 (void) modloadonly("sys", "lbl_edition"); 1466 1467 dispinit(); 1468 1469 /* 1470 * This is needed here to initialize hw_serial[] for cluster booting. 1471 */ 1472 if ((i = modload("misc", "sysinit")) != (unsigned int)-1) 1473 (void) modunload(i); 1474 else 1475 cmn_err(CE_CONT, "sysinit load failed"); 1476 1477 /* Read cluster configuration data. */ 1478 clconf_init(); 1479 1480 #if defined(__xpv) 1481 ec_init(); 1482 gnttab_init(); 1483 (void) xs_early_init(); 1484 #endif /* __xpv */ 1485 1486 /* 1487 * Create a kernel device tree. First, create rootnex and 1488 * then invoke bus specific code to probe devices. 1489 */ 1490 setup_ddi(); 1491 1492 /* 1493 * Set up the CPU module subsystem for the boot cpu in the native 1494 * case, and all physical cpu resource in the xpv dom0 case. 1495 * Modifies the device tree, so this must be done after 1496 * setup_ddi(). 1497 */ 1498 #ifdef __xpv 1499 /* 1500 * If paravirtualized and on dom0 then we initialize all physical 1501 * cpu handles now; if paravirtualized on a domU then do not 1502 * initialize. 1503 */ 1504 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1505 xen_mc_lcpu_cookie_t cpi; 1506 1507 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1508 cpi = xen_physcpu_next(cpi)) { 1509 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1510 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1511 xen_physcpu_strandid(cpi))) != NULL && 1512 (x86_feature & X86_MCA)) 1513 cmi_mca_init(hdl); 1514 } 1515 } 1516 #else 1517 /* 1518 * Initialize a handle for the boot cpu - others will initialize 1519 * as they startup. Do not do this if we know we are in an HVM domU. 1520 */ 1521 if (!xpv_is_hvm && 1522 (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1523 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL && 1524 (x86_feature & X86_MCA)) 1525 cmi_mca_init(hdl); 1526 #endif /* __xpv */ 1527 1528 /* 1529 * Fake a prom tree such that /dev/openprom continues to work 1530 */ 1531 PRM_POINT("startup_modules: calling prom_setup..."); 1532 prom_setup(); 1533 PRM_POINT("startup_modules: done"); 1534 1535 /* 1536 * Load all platform specific modules 1537 */ 1538 PRM_POINT("startup_modules: calling psm_modload..."); 1539 psm_modload(); 1540 1541 PRM_POINT("startup_modules() done"); 1542 } 1543 1544 /* 1545 * claim a "setaside" boot page for use in the kernel 1546 */ 1547 page_t * 1548 boot_claim_page(pfn_t pfn) 1549 { 1550 page_t *pp; 1551 1552 pp = page_numtopp_nolock(pfn); 1553 ASSERT(pp != NULL); 1554 1555 if (PP_ISBOOTPAGES(pp)) { 1556 if (pp->p_next != NULL) 1557 pp->p_next->p_prev = pp->p_prev; 1558 if (pp->p_prev == NULL) 1559 bootpages = pp->p_next; 1560 else 1561 pp->p_prev->p_next = pp->p_next; 1562 } else { 1563 /* 1564 * htable_attach() expects a base pagesize page 1565 */ 1566 if (pp->p_szc != 0) 1567 page_boot_demote(pp); 1568 pp = page_numtopp(pfn, SE_EXCL); 1569 } 1570 return (pp); 1571 } 1572 1573 /* 1574 * Walk through the pagetables looking for pages mapped in by boot. If the 1575 * setaside flag is set the pages are expected to be returned to the 1576 * kernel later in boot, so we add them to the bootpages list. 1577 */ 1578 static void 1579 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1580 { 1581 uintptr_t va = low; 1582 size_t len; 1583 uint_t prot; 1584 pfn_t pfn; 1585 page_t *pp; 1586 pgcnt_t boot_protect_cnt = 0; 1587 1588 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1589 if (va + len >= high) 1590 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1591 "legal range.", len, (void *)va); 1592 1593 while (len > 0) { 1594 pp = page_numtopp_alloc(pfn); 1595 if (pp != NULL) { 1596 if (setaside == 0) 1597 panic("Unexpected mapping by boot. " 1598 "addr=%p pfn=%lx\n", 1599 (void *)va, pfn); 1600 1601 pp->p_next = bootpages; 1602 pp->p_prev = NULL; 1603 PP_SETBOOTPAGES(pp); 1604 if (bootpages != NULL) { 1605 bootpages->p_prev = pp; 1606 } 1607 bootpages = pp; 1608 ++boot_protect_cnt; 1609 } 1610 1611 ++pfn; 1612 len -= MMU_PAGESIZE; 1613 va += MMU_PAGESIZE; 1614 } 1615 } 1616 PRM_DEBUG(boot_protect_cnt); 1617 } 1618 1619 /* 1620 * 1621 */ 1622 static void 1623 layout_kernel_va(void) 1624 { 1625 PRM_POINT("layout_kernel_va() starting..."); 1626 /* 1627 * Establish the final size of the kernel's heap, size of segmap, 1628 * segkp, etc. 1629 */ 1630 1631 #if defined(__amd64) 1632 1633 kpm_vbase = (caddr_t)segkpm_base; 1634 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1635 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1636 panic("not enough room for kpm!"); 1637 PRM_DEBUG(kpm_size); 1638 PRM_DEBUG(kpm_vbase); 1639 1640 /* 1641 * By default we create a seg_kp in 64 bit kernels, it's a little 1642 * faster to access than embedding it in the heap. 1643 */ 1644 segkp_base = (caddr_t)valloc_base + valloc_sz; 1645 if (!segkp_fromheap) { 1646 size_t sz = mmu_ptob(segkpsize); 1647 1648 /* 1649 * determine size of segkp 1650 */ 1651 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1652 sz = SEGKPDEFSIZE; 1653 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1654 "segkpsize has been reset to %ld pages", 1655 mmu_btop(sz)); 1656 } 1657 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1658 1659 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1660 } 1661 PRM_DEBUG(segkp_base); 1662 PRM_DEBUG(segkpsize); 1663 1664 /* 1665 * segzio is used for ZFS cached data. It uses a distinct VA 1666 * segment (from kernel heap) so that we can easily tell not to 1667 * include it in kernel crash dumps on 64 bit kernels. The trick is 1668 * to give it lots of VA, but not constrain the kernel heap. 1669 * We scale the size of segzio linearly with physmem up to 1670 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1671 */ 1672 segzio_base = segkp_base + mmu_ptob(segkpsize); 1673 if (segzio_fromheap) { 1674 segziosize = 0; 1675 } else { 1676 size_t physmem_size = mmu_ptob(physmem); 1677 size_t size = (segziosize == 0) ? 1678 physmem_size : mmu_ptob(segziosize); 1679 1680 if (size < SEGZIOMINSIZE) 1681 size = SEGZIOMINSIZE; 1682 if (size > SEGZIOMAXSIZE) { 1683 size = SEGZIOMAXSIZE; 1684 if (physmem_size > size) 1685 size += (physmem_size - size) / 2; 1686 } 1687 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1688 } 1689 PRM_DEBUG(segziosize); 1690 PRM_DEBUG(segzio_base); 1691 1692 /* 1693 * Put the range of VA for device mappings next, kmdb knows to not 1694 * grep in this range of addresses. 1695 */ 1696 toxic_addr = 1697 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1698 PRM_DEBUG(toxic_addr); 1699 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1700 #else /* __i386 */ 1701 segmap_start = ROUND_UP_LPAGE(kernelbase); 1702 #endif /* __i386 */ 1703 PRM_DEBUG(segmap_start); 1704 1705 /* 1706 * Users can change segmapsize through eeprom or /etc/system. 1707 * If the variable is tuned through eeprom, there is no upper 1708 * bound on the size of segmap. If it is tuned through 1709 * /etc/system on 32-bit systems, it must be no larger than we 1710 * planned for in startup_memlist(). 1711 */ 1712 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1713 1714 #if defined(__i386) 1715 /* 1716 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1717 * the bottom of the kernel's address range. Set aside space for a 1718 * small red zone just below the start of segmap. 1719 */ 1720 segmap_start += KERNEL_REDZONE_SIZE; 1721 segmapsize -= KERNEL_REDZONE_SIZE; 1722 #endif 1723 1724 PRM_DEBUG(segmap_start); 1725 PRM_DEBUG(segmapsize); 1726 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1727 PRM_DEBUG(kernelheap); 1728 PRM_POINT("layout_kernel_va() done..."); 1729 } 1730 1731 /* 1732 * Finish initializing the VM system, now that we are no longer 1733 * relying on the boot time memory allocators. 1734 */ 1735 static void 1736 startup_vm(void) 1737 { 1738 struct segmap_crargs a; 1739 1740 extern int use_brk_lpg, use_stk_lpg; 1741 1742 PRM_POINT("startup_vm() starting..."); 1743 1744 /* 1745 * Initialize the hat layer. 1746 */ 1747 hat_init(); 1748 1749 /* 1750 * Do final allocations of HAT data structures that need to 1751 * be allocated before quiescing the boot loader. 1752 */ 1753 PRM_POINT("Calling hat_kern_alloc()..."); 1754 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1755 PRM_POINT("hat_kern_alloc() done"); 1756 1757 #ifndef __xpv 1758 /* 1759 * Setup Page Attribute Table 1760 */ 1761 pat_sync(); 1762 #endif 1763 1764 /* 1765 * The next two loops are done in distinct steps in order 1766 * to be sure that any page that is doubly mapped (both above 1767 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1768 * Note this may never happen, but it might someday. 1769 */ 1770 bootpages = NULL; 1771 PRM_POINT("Protecting boot pages"); 1772 1773 /* 1774 * Protect any pages mapped above KERNEL_TEXT that somehow have 1775 * page_t's. This can only happen if something weird allocated 1776 * in this range (like kadb/kmdb). 1777 */ 1778 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1779 1780 /* 1781 * Before we can take over memory allocation/mapping from the boot 1782 * loader we must remove from our free page lists any boot allocated 1783 * pages that stay mapped until release_bootstrap(). 1784 */ 1785 protect_boot_range(0, kernelbase, 1); 1786 1787 1788 /* 1789 * Switch to running on regular HAT (not boot_mmu) 1790 */ 1791 PRM_POINT("Calling hat_kern_setup()..."); 1792 hat_kern_setup(); 1793 1794 /* 1795 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1796 */ 1797 bop_no_more_mem(); 1798 1799 PRM_POINT("hat_kern_setup() done"); 1800 1801 hat_cpu_online(CPU); 1802 1803 /* 1804 * Initialize VM system 1805 */ 1806 PRM_POINT("Calling kvm_init()..."); 1807 kvm_init(); 1808 PRM_POINT("kvm_init() done"); 1809 1810 /* 1811 * Tell kmdb that the VM system is now working 1812 */ 1813 if (boothowto & RB_DEBUG) 1814 kdi_dvec_vmready(); 1815 1816 #if defined(__xpv) 1817 /* 1818 * Populate the I/O pool on domain 0 1819 */ 1820 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1821 extern long populate_io_pool(void); 1822 long init_io_pool_cnt; 1823 1824 PRM_POINT("Populating reserve I/O page pool"); 1825 init_io_pool_cnt = populate_io_pool(); 1826 PRM_DEBUG(init_io_pool_cnt); 1827 } 1828 #endif 1829 /* 1830 * Mangle the brand string etc. 1831 */ 1832 cpuid_pass3(CPU); 1833 1834 #if defined(__amd64) 1835 1836 /* 1837 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1838 */ 1839 device_arena = vmem_create("device", (void *)toxic_addr, 1840 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1841 1842 #else /* __i386 */ 1843 1844 /* 1845 * allocate the bit map that tracks toxic pages 1846 */ 1847 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 1848 PRM_DEBUG(toxic_bit_map_len); 1849 toxic_bit_map = 1850 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1851 ASSERT(toxic_bit_map != NULL); 1852 PRM_DEBUG(toxic_bit_map); 1853 1854 #endif /* __i386 */ 1855 1856 1857 /* 1858 * Now that we've got more VA, as well as the ability to allocate from 1859 * it, tell the debugger. 1860 */ 1861 if (boothowto & RB_DEBUG) 1862 kdi_dvec_memavail(); 1863 1864 /* 1865 * The following code installs a special page fault handler (#pf) 1866 * to work around a pentium bug. 1867 */ 1868 #if !defined(__amd64) && !defined(__xpv) 1869 if (x86_type == X86_TYPE_P5) { 1870 desctbr_t idtr; 1871 gate_desc_t *newidt; 1872 1873 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1874 panic("failed to install pentium_pftrap"); 1875 1876 bcopy(idt0, newidt, NIDT * sizeof (*idt0)); 1877 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1878 KCS_SEL, SDT_SYSIGT, TRP_KPL); 1879 1880 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1881 PROT_READ | PROT_EXEC); 1882 1883 CPU->cpu_idt = newidt; 1884 idtr.dtr_base = (uintptr_t)CPU->cpu_idt; 1885 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1; 1886 wr_idtr(&idtr); 1887 } 1888 #endif /* !__amd64 */ 1889 1890 #if !defined(__xpv) 1891 /* 1892 * Map page pfn=0 for drivers, such as kd, that need to pick up 1893 * parameters left there by controllers/BIOS. 1894 */ 1895 PRM_POINT("setup up p0_va"); 1896 p0_va = i86devmap(0, 1, PROT_READ); 1897 PRM_DEBUG(p0_va); 1898 #endif 1899 1900 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1901 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1902 1903 /* 1904 * disable automatic large pages for small memory systems or 1905 * when the disable flag is set. 1906 * 1907 * Do not yet consider page sizes larger than 2m/4m. 1908 */ 1909 if (!auto_lpg_disable && mmu.max_page_level > 0) { 1910 max_uheap_lpsize = LEVEL_SIZE(1); 1911 max_ustack_lpsize = LEVEL_SIZE(1); 1912 max_privmap_lpsize = LEVEL_SIZE(1); 1913 max_uidata_lpsize = LEVEL_SIZE(1); 1914 max_utext_lpsize = LEVEL_SIZE(1); 1915 max_shm_lpsize = LEVEL_SIZE(1); 1916 } 1917 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 1918 auto_lpg_disable) { 1919 use_brk_lpg = 0; 1920 use_stk_lpg = 0; 1921 } 1922 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 1923 1924 PRM_POINT("Calling hat_init_finish()..."); 1925 hat_init_finish(); 1926 PRM_POINT("hat_init_finish() done"); 1927 1928 /* 1929 * Initialize the segkp segment type. 1930 */ 1931 rw_enter(&kas.a_lock, RW_WRITER); 1932 PRM_POINT("Attaching segkp"); 1933 if (segkp_fromheap) { 1934 segkp->s_as = &kas; 1935 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1936 segkp) < 0) { 1937 panic("startup: cannot attach segkp"); 1938 /*NOTREACHED*/ 1939 } 1940 PRM_POINT("Doing segkp_create()"); 1941 if (segkp_create(segkp) != 0) { 1942 panic("startup: segkp_create failed"); 1943 /*NOTREACHED*/ 1944 } 1945 PRM_DEBUG(segkp); 1946 rw_exit(&kas.a_lock); 1947 1948 /* 1949 * kpm segment 1950 */ 1951 segmap_kpm = 0; 1952 if (kpm_desired) { 1953 kpm_init(); 1954 kpm_enable = 1; 1955 vpm_enable = 1; 1956 } 1957 1958 /* 1959 * Now create segmap segment. 1960 */ 1961 rw_enter(&kas.a_lock, RW_WRITER); 1962 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 1963 panic("cannot attach segmap"); 1964 /*NOTREACHED*/ 1965 } 1966 PRM_DEBUG(segmap); 1967 1968 a.prot = PROT_READ | PROT_WRITE; 1969 a.shmsize = 0; 1970 a.nfreelist = segmapfreelists; 1971 1972 if (segmap_create(segmap, (caddr_t)&a) != 0) 1973 panic("segmap_create segmap"); 1974 rw_exit(&kas.a_lock); 1975 1976 setup_vaddr_for_ppcopy(CPU); 1977 1978 segdev_init(); 1979 #if defined(__xpv) 1980 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1981 #endif 1982 pmem_init(); 1983 1984 PRM_POINT("startup_vm() done"); 1985 } 1986 1987 /* 1988 * Load a tod module for the non-standard tod part found on this system. 1989 */ 1990 static void 1991 load_tod_module(char *todmod) 1992 { 1993 if (modload("tod", todmod) == -1) 1994 halt("Can't load TOD module"); 1995 } 1996 1997 static void 1998 startup_end(void) 1999 { 2000 int i; 2001 extern void setx86isalist(void); 2002 2003 PRM_POINT("startup_end() starting..."); 2004 2005 /* 2006 * Perform tasks that get done after most of the VM 2007 * initialization has been done but before the clock 2008 * and other devices get started. 2009 */ 2010 kern_setup1(); 2011 2012 /* 2013 * Perform CPC initialization for this CPU. 2014 */ 2015 kcpc_hw_init(CPU); 2016 2017 #if defined(OPTERON_WORKAROUND_6323525) 2018 if (opteron_workaround_6323525) 2019 patch_workaround_6323525(); 2020 #endif 2021 /* 2022 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2023 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2024 */ 2025 if (tod_module_name != NULL) { 2026 PRM_POINT("load_tod_module()"); 2027 load_tod_module(tod_module_name); 2028 } 2029 2030 #if defined(__xpv) 2031 /* 2032 * Forceload interposing TOD module for the hypervisor. 2033 */ 2034 PRM_POINT("load_tod_module()"); 2035 load_tod_module("xpvtod"); 2036 #endif 2037 2038 /* 2039 * Configure the system. 2040 */ 2041 PRM_POINT("Calling configure()..."); 2042 configure(); /* set up devices */ 2043 PRM_POINT("configure() done"); 2044 2045 /* 2046 * Set the isa_list string to the defined instruction sets we 2047 * support. 2048 */ 2049 setx86isalist(); 2050 cpu_intr_alloc(CPU, NINTR_THREADS); 2051 psm_install(); 2052 2053 /* 2054 * We're done with bootops. We don't unmap the bootstrap yet because 2055 * we're still using bootsvcs. 2056 */ 2057 PRM_POINT("NULLing out bootops"); 2058 *bootopsp = (struct bootops *)NULL; 2059 bootops = (struct bootops *)NULL; 2060 2061 #if defined(__xpv) 2062 ec_init_debug_irq(); 2063 xs_domu_init(); 2064 #endif 2065 PRM_POINT("Enabling interrupts"); 2066 (*picinitf)(); 2067 sti(); 2068 #if defined(__xpv) 2069 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2070 xen_late_startup(); 2071 #endif 2072 2073 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2074 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2075 2076 /* 2077 * Register these software interrupts for ddi timer. 2078 * Software interrupts up to the level 10 are supported. 2079 */ 2080 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2081 char name[sizeof ("timer_softintr") + 2]; 2082 (void) sprintf(name, "timer_softintr%02d", i); 2083 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2084 (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL); 2085 } 2086 2087 PRM_POINT("startup_end() done"); 2088 } 2089 2090 extern char hw_serial[]; 2091 char *_hs1107 = hw_serial; 2092 ulong_t _bdhs34; 2093 2094 void 2095 post_startup(void) 2096 { 2097 /* 2098 * Set the system wide, processor-specific flags to be passed 2099 * to userland via the aux vector for performance hints and 2100 * instruction set extensions. 2101 */ 2102 bind_hwcap(); 2103 2104 #ifdef __xpv 2105 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2106 #endif 2107 { 2108 /* 2109 * Load the System Management BIOS into the global ksmbios 2110 * handle, if an SMBIOS is present on this system. 2111 */ 2112 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 2113 2114 #if defined(__xpv) 2115 xpv_panic_init(); 2116 #else 2117 /* 2118 * Startup the memory scrubber. 2119 * XXPV This should be running somewhere .. 2120 */ 2121 if (!xpv_is_hvm) 2122 memscrub_init(); 2123 #endif 2124 } 2125 2126 /* 2127 * Complete CPU module initialization 2128 */ 2129 cmi_post_startup(); 2130 2131 /* 2132 * Perform forceloading tasks for /etc/system. 2133 */ 2134 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2135 2136 /* 2137 * ON4.0: Force /proc module in until clock interrupt handle fixed 2138 * ON4.0: This must be fixed or restated in /etc/systems. 2139 */ 2140 (void) modload("fs", "procfs"); 2141 2142 (void) i_ddi_attach_hw_nodes("pit_beep"); 2143 2144 #if defined(__i386) 2145 /* 2146 * Check for required functional Floating Point hardware, 2147 * unless FP hardware explicitly disabled. 2148 */ 2149 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2150 halt("No working FP hardware found"); 2151 #endif 2152 2153 maxmem = freemem; 2154 2155 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 2156 } 2157 2158 static int 2159 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) 2160 { 2161 return ((pp->p_pagenum >= btop(low_addr)) && 2162 (pp->p_pagenum < btopr(high_addr))); 2163 } 2164 2165 void 2166 release_bootstrap(void) 2167 { 2168 int root_is_ramdisk; 2169 page_t *pp; 2170 extern void kobj_boot_unmountroot(void); 2171 extern dev_t rootdev; 2172 #if !defined(__xpv) 2173 pfn_t pfn; 2174 #endif 2175 2176 /* unmount boot ramdisk and release kmem usage */ 2177 kobj_boot_unmountroot(); 2178 2179 /* 2180 * We're finished using the boot loader so free its pages. 2181 */ 2182 PRM_POINT("Unmapping lower boot pages"); 2183 2184 clear_boot_mappings(0, _userlimit); 2185 2186 postbootkernelbase = kernelbase; 2187 2188 /* 2189 * If root isn't on ramdisk, destroy the hardcoded 2190 * ramdisk node now and release the memory. Else, 2191 * ramdisk memory is kept in rd_pages. 2192 */ 2193 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2194 if (!root_is_ramdisk) { 2195 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2196 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2197 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2198 (void) ddi_remove_child(dip, 0); 2199 } 2200 2201 PRM_POINT("Releasing boot pages"); 2202 while (bootpages) { 2203 extern uint64_t ramdisk_start, ramdisk_end; 2204 pp = bootpages; 2205 bootpages = pp->p_next; 2206 2207 2208 /* Keep pages for the lower 64K */ 2209 if (pp_in_range(pp, 0, 0x40000)) { 2210 pp->p_next = lower_pages; 2211 lower_pages = pp; 2212 lower_pages_count++; 2213 continue; 2214 } 2215 2216 2217 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start, 2218 ramdisk_end)) { 2219 pp->p_next = rd_pages; 2220 rd_pages = pp; 2221 continue; 2222 } 2223 pp->p_next = (struct page *)0; 2224 pp->p_prev = (struct page *)0; 2225 PP_CLRBOOTPAGES(pp); 2226 page_free(pp, 1); 2227 } 2228 PRM_POINT("Boot pages released"); 2229 2230 #if !defined(__xpv) 2231 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2232 /* 2233 * Find 1 page below 1 MB so that other processors can boot up or 2234 * so that any processor can resume. 2235 * Make sure it has a kernel VA as well as a 1:1 mapping. 2236 * We should have just free'd one up. 2237 */ 2238 2239 /* 2240 * 0x10 pages is 64K. Leave the bottom 64K alone 2241 * for BIOS. 2242 */ 2243 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { 2244 if (page_numtopp_alloc(pfn) == NULL) 2245 continue; 2246 rm_platter_va = i86devmap(pfn, 1, 2247 PROT_READ | PROT_WRITE | PROT_EXEC); 2248 rm_platter_pa = ptob(pfn); 2249 hat_devload(kas.a_hat, 2250 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2251 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2252 HAT_LOAD_NOCONSIST); 2253 break; 2254 } 2255 if (pfn == btop(1*1024*1024) && use_mp) 2256 panic("No page below 1M available for starting " 2257 "other processors or for resuming from system-suspend"); 2258 #endif /* !__xpv */ 2259 } 2260 2261 /* 2262 * Initialize the platform-specific parts of a page_t. 2263 */ 2264 void 2265 add_physmem_cb(page_t *pp, pfn_t pnum) 2266 { 2267 pp->p_pagenum = pnum; 2268 pp->p_mapping = NULL; 2269 pp->p_embed = 0; 2270 pp->p_share = 0; 2271 pp->p_mlentry = 0; 2272 } 2273 2274 /* 2275 * kphysm_init() initializes physical memory. 2276 */ 2277 static pgcnt_t 2278 kphysm_init( 2279 page_t *pp, 2280 pgcnt_t npages) 2281 { 2282 struct memlist *pmem; 2283 struct memseg *cur_memseg; 2284 pfn_t base_pfn; 2285 pgcnt_t num; 2286 pgcnt_t pages_done = 0; 2287 uint64_t addr; 2288 uint64_t size; 2289 extern pfn_t ddiphysmin; 2290 2291 ASSERT(page_hash != NULL && page_hashsz != 0); 2292 2293 cur_memseg = memseg_base; 2294 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2295 /* 2296 * In a 32 bit kernel can't use higher memory if we're 2297 * not booting in PAE mode. This check takes care of that. 2298 */ 2299 addr = pmem->address; 2300 size = pmem->size; 2301 if (btop(addr) > physmax) 2302 continue; 2303 2304 /* 2305 * align addr and size - they may not be at page boundaries 2306 */ 2307 if ((addr & MMU_PAGEOFFSET) != 0) { 2308 addr += MMU_PAGEOFFSET; 2309 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2310 size -= addr - pmem->address; 2311 } 2312 2313 /* only process pages below or equal to physmax */ 2314 if ((btop(addr + size) - 1) > physmax) 2315 size = ptob(physmax - btop(addr) + 1); 2316 2317 num = btop(size); 2318 if (num == 0) 2319 continue; 2320 2321 if (num > npages) 2322 num = npages; 2323 2324 npages -= num; 2325 pages_done += num; 2326 base_pfn = btop(addr); 2327 2328 if (prom_debug) 2329 prom_printf("MEMSEG addr=0x%" PRIx64 2330 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2331 addr, num, base_pfn, base_pfn + num); 2332 2333 /* 2334 * Ignore pages below ddiphysmin to simplify ddi memory 2335 * allocation with non-zero addr_lo requests. 2336 */ 2337 if (base_pfn < ddiphysmin) { 2338 if (base_pfn + num <= ddiphysmin) 2339 continue; 2340 pp += (ddiphysmin - base_pfn); 2341 num -= (ddiphysmin - base_pfn); 2342 base_pfn = ddiphysmin; 2343 } 2344 2345 /* 2346 * Build the memsegs entry 2347 */ 2348 cur_memseg->pages = pp; 2349 cur_memseg->epages = pp + num; 2350 cur_memseg->pages_base = base_pfn; 2351 cur_memseg->pages_end = base_pfn + num; 2352 2353 /* 2354 * Insert into memseg list in decreasing pfn range order. 2355 * Low memory is typically more fragmented such that this 2356 * ordering keeps the larger ranges at the front of the list 2357 * for code that searches memseg. 2358 * This ASSERTS that the memsegs coming in from boot are in 2359 * increasing physical address order and not contiguous. 2360 */ 2361 if (memsegs != NULL) { 2362 ASSERT(cur_memseg->pages_base >= memsegs->pages_end); 2363 cur_memseg->next = memsegs; 2364 } 2365 memsegs = cur_memseg; 2366 2367 /* 2368 * add_physmem() initializes the PSM part of the page 2369 * struct by calling the PSM back with add_physmem_cb(). 2370 * In addition it coalesces pages into larger pages as 2371 * it initializes them. 2372 */ 2373 add_physmem(pp, num, base_pfn); 2374 cur_memseg++; 2375 availrmem_initial += num; 2376 availrmem += num; 2377 2378 pp += num; 2379 } 2380 2381 PRM_DEBUG(availrmem_initial); 2382 PRM_DEBUG(availrmem); 2383 PRM_DEBUG(freemem); 2384 build_pfn_hash(); 2385 return (pages_done); 2386 } 2387 2388 /* 2389 * Kernel VM initialization. 2390 */ 2391 static void 2392 kvm_init(void) 2393 { 2394 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2395 2396 /* 2397 * Put the kernel segments in kernel address space. 2398 */ 2399 rw_enter(&kas.a_lock, RW_WRITER); 2400 as_avlinit(&kas); 2401 2402 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2403 (void) segkmem_create(&ktextseg); 2404 2405 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2406 (void) segkmem_create(&kvalloc); 2407 2408 (void) seg_attach(&kas, kernelheap, 2409 ekernelheap - kernelheap, &kvseg); 2410 (void) segkmem_create(&kvseg); 2411 2412 if (core_size > 0) { 2413 PRM_POINT("attaching kvseg_core"); 2414 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2415 &kvseg_core); 2416 (void) segkmem_create(&kvseg_core); 2417 } 2418 2419 if (segziosize > 0) { 2420 PRM_POINT("attaching segzio"); 2421 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2422 &kzioseg); 2423 (void) segkmem_zio_create(&kzioseg); 2424 2425 /* create zio area covering new segment */ 2426 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2427 } 2428 2429 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2430 (void) segkmem_create(&kdebugseg); 2431 2432 rw_exit(&kas.a_lock); 2433 2434 /* 2435 * Ensure that the red zone at kernelbase is never accessible. 2436 */ 2437 PRM_POINT("protecting redzone"); 2438 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2439 2440 /* 2441 * Make the text writable so that it can be hot patched by DTrace. 2442 */ 2443 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2444 PROT_READ | PROT_WRITE | PROT_EXEC); 2445 2446 /* 2447 * Make data writable until end. 2448 */ 2449 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2450 PROT_READ | PROT_WRITE | PROT_EXEC); 2451 } 2452 2453 #ifndef __xpv 2454 /* 2455 * Solaris adds an entry for Write Combining caching to the PAT 2456 */ 2457 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2458 2459 void 2460 pat_sync(void) 2461 { 2462 ulong_t cr0, cr0_orig, cr4; 2463 2464 if (!(x86_feature & X86_PAT)) 2465 return; 2466 cr0_orig = cr0 = getcr0(); 2467 cr4 = getcr4(); 2468 2469 /* disable caching and flush all caches and TLBs */ 2470 cr0 |= CR0_CD; 2471 cr0 &= ~CR0_NW; 2472 setcr0(cr0); 2473 invalidate_cache(); 2474 if (cr4 & CR4_PGE) { 2475 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2476 setcr4(cr4); 2477 } else { 2478 reload_cr3(); 2479 } 2480 2481 /* add our entry to the PAT */ 2482 wrmsr(REG_PAT, pat_attr_reg); 2483 2484 /* flush TLBs and cache again, then reenable cr0 caching */ 2485 if (cr4 & CR4_PGE) { 2486 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2487 setcr4(cr4); 2488 } else { 2489 reload_cr3(); 2490 } 2491 invalidate_cache(); 2492 setcr0(cr0_orig); 2493 } 2494 2495 #endif /* !__xpv */ 2496 2497 void 2498 get_system_configuration(void) 2499 { 2500 char prop[32]; 2501 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2502 2503 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2504 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2505 kobj_getvalue(prop, &nodes_ll) == -1 || 2506 nodes_ll > MAXNODES || 2507 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2508 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2509 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2510 system_hardware.hd_nodes = 1; 2511 system_hardware.hd_cpus_per_node = 0; 2512 } else { 2513 system_hardware.hd_nodes = (int)nodes_ll; 2514 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2515 } 2516 2517 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2518 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2519 kobj_getvalue(prop, &lvalue) == -1) 2520 eprom_kernelbase = NULL; 2521 else 2522 eprom_kernelbase = (uintptr_t)lvalue; 2523 2524 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2525 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2526 kobj_getvalue(prop, &lvalue) == -1) 2527 segmapsize = SEGMAPDEFAULT; 2528 else 2529 segmapsize = (uintptr_t)lvalue; 2530 2531 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2532 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2533 kobj_getvalue(prop, &lvalue) == -1) 2534 segmapfreelists = 0; /* use segmap driver default */ 2535 else 2536 segmapfreelists = (int)lvalue; 2537 2538 /* physmem used to be here, but moved much earlier to fakebop.c */ 2539 } 2540 2541 /* 2542 * Add to a memory list. 2543 * start = start of new memory segment 2544 * len = length of new memory segment in bytes 2545 * new = pointer to a new struct memlist 2546 * memlistp = memory list to which to add segment. 2547 */ 2548 void 2549 memlist_add( 2550 uint64_t start, 2551 uint64_t len, 2552 struct memlist *new, 2553 struct memlist **memlistp) 2554 { 2555 struct memlist *cur; 2556 uint64_t end = start + len; 2557 2558 new->address = start; 2559 new->size = len; 2560 2561 cur = *memlistp; 2562 2563 while (cur) { 2564 if (cur->address >= end) { 2565 new->next = cur; 2566 *memlistp = new; 2567 new->prev = cur->prev; 2568 cur->prev = new; 2569 return; 2570 } 2571 ASSERT(cur->address + cur->size <= start); 2572 if (cur->next == NULL) { 2573 cur->next = new; 2574 new->prev = cur; 2575 new->next = NULL; 2576 return; 2577 } 2578 memlistp = &cur->next; 2579 cur = cur->next; 2580 } 2581 } 2582 2583 void 2584 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2585 { 2586 size_t tsize = e_modtext - modtext; 2587 size_t dsize = e_moddata - moddata; 2588 2589 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2590 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2591 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2592 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2593 } 2594 2595 caddr_t 2596 kobj_text_alloc(vmem_t *arena, size_t size) 2597 { 2598 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2599 } 2600 2601 /*ARGSUSED*/ 2602 caddr_t 2603 kobj_texthole_alloc(caddr_t addr, size_t size) 2604 { 2605 panic("unexpected call to kobj_texthole_alloc()"); 2606 /*NOTREACHED*/ 2607 return (0); 2608 } 2609 2610 /*ARGSUSED*/ 2611 void 2612 kobj_texthole_free(caddr_t addr, size_t size) 2613 { 2614 panic("unexpected call to kobj_texthole_free()"); 2615 } 2616 2617 /* 2618 * This is called just after configure() in startup(). 2619 * 2620 * The ISALIST concept is a bit hopeless on Intel, because 2621 * there's no guarantee of an ever-more-capable processor 2622 * given that various parts of the instruction set may appear 2623 * and disappear between different implementations. 2624 * 2625 * While it would be possible to correct it and even enhance 2626 * it somewhat, the explicit hardware capability bitmask allows 2627 * more flexibility. 2628 * 2629 * So, we just leave this alone. 2630 */ 2631 void 2632 setx86isalist(void) 2633 { 2634 char *tp; 2635 size_t len; 2636 extern char *isa_list; 2637 2638 #define TBUFSIZE 1024 2639 2640 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2641 *tp = '\0'; 2642 2643 #if defined(__amd64) 2644 (void) strcpy(tp, "amd64 "); 2645 #endif 2646 2647 switch (x86_vendor) { 2648 case X86_VENDOR_Intel: 2649 case X86_VENDOR_AMD: 2650 case X86_VENDOR_TM: 2651 if (x86_feature & X86_CMOV) { 2652 /* 2653 * Pentium Pro or later 2654 */ 2655 (void) strcat(tp, "pentium_pro"); 2656 (void) strcat(tp, x86_feature & X86_MMX ? 2657 "+mmx pentium_pro " : " "); 2658 } 2659 /*FALLTHROUGH*/ 2660 case X86_VENDOR_Cyrix: 2661 /* 2662 * The Cyrix 6x86 does not have any Pentium features 2663 * accessible while not at privilege level 0. 2664 */ 2665 if (x86_feature & X86_CPUID) { 2666 (void) strcat(tp, "pentium"); 2667 (void) strcat(tp, x86_feature & X86_MMX ? 2668 "+mmx pentium " : " "); 2669 } 2670 break; 2671 default: 2672 break; 2673 } 2674 (void) strcat(tp, "i486 i386 i86"); 2675 len = strlen(tp) + 1; /* account for NULL at end of string */ 2676 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2677 kmem_free(tp, TBUFSIZE); 2678 2679 #undef TBUFSIZE 2680 } 2681 2682 2683 #ifdef __amd64 2684 2685 void * 2686 device_arena_alloc(size_t size, int vm_flag) 2687 { 2688 return (vmem_alloc(device_arena, size, vm_flag)); 2689 } 2690 2691 void 2692 device_arena_free(void *vaddr, size_t size) 2693 { 2694 vmem_free(device_arena, vaddr, size); 2695 } 2696 2697 #else /* __i386 */ 2698 2699 void * 2700 device_arena_alloc(size_t size, int vm_flag) 2701 { 2702 caddr_t vaddr; 2703 uintptr_t v; 2704 size_t start; 2705 size_t end; 2706 2707 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2708 if (vaddr == NULL) 2709 return (NULL); 2710 2711 v = (uintptr_t)vaddr; 2712 ASSERT(v >= kernelbase); 2713 ASSERT(v + size <= valloc_base); 2714 2715 start = btop(v - kernelbase); 2716 end = btop(v + size - 1 - kernelbase); 2717 ASSERT(start < toxic_bit_map_len); 2718 ASSERT(end < toxic_bit_map_len); 2719 2720 while (start <= end) { 2721 BT_ATOMIC_SET(toxic_bit_map, start); 2722 ++start; 2723 } 2724 return (vaddr); 2725 } 2726 2727 void 2728 device_arena_free(void *vaddr, size_t size) 2729 { 2730 uintptr_t v = (uintptr_t)vaddr; 2731 size_t start; 2732 size_t end; 2733 2734 ASSERT(v >= kernelbase); 2735 ASSERT(v + size <= valloc_base); 2736 2737 start = btop(v - kernelbase); 2738 end = btop(v + size - 1 - kernelbase); 2739 ASSERT(start < toxic_bit_map_len); 2740 ASSERT(end < toxic_bit_map_len); 2741 2742 while (start <= end) { 2743 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2744 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2745 ++start; 2746 } 2747 vmem_free(heap_arena, vaddr, size); 2748 } 2749 2750 /* 2751 * returns 1st address in range that is in device arena, or NULL 2752 * if len is not NULL it returns the length of the toxic range 2753 */ 2754 void * 2755 device_arena_contains(void *vaddr, size_t size, size_t *len) 2756 { 2757 uintptr_t v = (uintptr_t)vaddr; 2758 uintptr_t eaddr = v + size; 2759 size_t start; 2760 size_t end; 2761 2762 /* 2763 * if called very early by kmdb, just return NULL 2764 */ 2765 if (toxic_bit_map == NULL) 2766 return (NULL); 2767 2768 /* 2769 * First check if we're completely outside the bitmap range. 2770 */ 2771 if (v >= valloc_base || eaddr < kernelbase) 2772 return (NULL); 2773 2774 /* 2775 * Trim ends of search to look at only what the bitmap covers. 2776 */ 2777 if (v < kernelbase) 2778 v = kernelbase; 2779 start = btop(v - kernelbase); 2780 end = btop(eaddr - kernelbase); 2781 if (end >= toxic_bit_map_len) 2782 end = toxic_bit_map_len; 2783 2784 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2785 return (NULL); 2786 2787 v = kernelbase + ptob(start); 2788 if (len != NULL) 2789 *len = ptob(end - start); 2790 return ((void *)v); 2791 } 2792 2793 #endif /* __i386 */ 2794