1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/t_lock.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/systm.h> 34 #include <sys/user.h> 35 #include <sys/mman.h> 36 #include <sys/vm.h> 37 #include <sys/conf.h> 38 #include <sys/avintr.h> 39 #include <sys/autoconf.h> 40 #include <sys/disp.h> 41 #include <sys/class.h> 42 #include <sys/bitmap.h> 43 44 #include <sys/privregs.h> 45 46 #include <sys/proc.h> 47 #include <sys/buf.h> 48 #include <sys/kmem.h> 49 #include <sys/kstat.h> 50 51 #include <sys/reboot.h> 52 53 #include <sys/cred.h> 54 #include <sys/vnode.h> 55 #include <sys/file.h> 56 57 #include <sys/procfs.h> 58 59 #include <sys/vfs.h> 60 #include <sys/cmn_err.h> 61 #include <sys/utsname.h> 62 #include <sys/debug.h> 63 #include <sys/kdi.h> 64 65 #include <sys/dumphdr.h> 66 #include <sys/bootconf.h> 67 #include <sys/varargs.h> 68 #include <sys/promif.h> 69 #include <sys/modctl.h> /* for "procfs" hack */ 70 71 #include <sys/sunddi.h> 72 #include <sys/sunndi.h> 73 #include <sys/ndi_impldefs.h> 74 #include <sys/ddidmareq.h> 75 #include <sys/psw.h> 76 #include <sys/regset.h> 77 #include <sys/clock.h> 78 #include <sys/pte.h> 79 #include <sys/tss.h> 80 #include <sys/stack.h> 81 #include <sys/trap.h> 82 #include <sys/fp.h> 83 #include <vm/anon.h> 84 #include <vm/as.h> 85 #include <vm/page.h> 86 #include <vm/seg.h> 87 #include <vm/seg_dev.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_kpm.h> 90 #include <vm/seg_map.h> 91 #include <vm/seg_vn.h> 92 #include <vm/seg_kp.h> 93 #include <sys/memnode.h> 94 #include <vm/vm_dep.h> 95 #include <sys/thread.h> 96 #include <sys/sysconf.h> 97 #include <sys/vm_machparam.h> 98 #include <sys/archsystm.h> 99 #include <sys/machsystm.h> 100 #include <vm/hat.h> 101 #include <vm/hat_i86.h> 102 #include <sys/pmem.h> 103 #include <sys/smp_impldefs.h> 104 #include <sys/x86_archext.h> 105 #include <sys/segments.h> 106 #include <sys/clconf.h> 107 #include <sys/kobj.h> 108 #include <sys/kobj_lex.h> 109 #include <sys/cpc_impl.h> 110 #include <sys/chip.h> 111 #include <sys/x86_archext.h> 112 #include <sys/cpu_module.h> 113 #include <sys/smbios.h> 114 115 extern void progressbar_init(void); 116 extern void progressbar_start(void); 117 extern void brand_init(void); 118 119 /* 120 * XXX make declaration below "static" when drivers no longer use this 121 * interface. 122 */ 123 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 124 125 /* 126 * segkp 127 */ 128 extern int segkp_fromheap; 129 130 static void kvm_init(void); 131 static void startup_init(void); 132 static void startup_memlist(void); 133 static void startup_modules(void); 134 static void startup_bop_gone(void); 135 static void startup_vm(void); 136 static void startup_end(void); 137 138 /* 139 * Declare these as initialized data so we can patch them. 140 */ 141 #ifdef __i386 142 /* 143 * Due to virtual address space limitations running in 32 bit mode, restrict 144 * the amount of physical memory configured to a max of PHYSMEM32 pages (16g). 145 * 146 * If the physical max memory size of 64g were allowed to be configured, the 147 * size of user virtual address space will be less than 1g. A limited user 148 * address space greatly reduces the range of applications that can run. 149 * 150 * If more physical memory than PHYSMEM32 is required, users should preferably 151 * run in 64 bit mode which has no virtual address space limitation issues. 152 * 153 * If 64 bit mode is not available (as in IA32) and/or more physical memory 154 * than PHYSMEM32 is required in 32 bit mode, physmem can be set to the desired 155 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 156 * should also be carefully tuned to balance out the need of the user 157 * application while minimizing the risk of kernel heap exhaustion due to 158 * kernelbase being set too high. 159 */ 160 #define PHYSMEM32 0x400000 161 162 pgcnt_t physmem = PHYSMEM32; 163 #else 164 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */ 165 #endif 166 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 167 168 char *kobj_file_buf; 169 int kobj_file_bufsize; /* set in /etc/system */ 170 171 /* Global variables for MP support. Used in mp_startup */ 172 caddr_t rm_platter_va; 173 uint32_t rm_platter_pa; 174 175 int auto_lpg_disable = 1; 176 177 /* 178 * Some CPUs have holes in the middle of the 64-bit virtual address range. 179 */ 180 uintptr_t hole_start, hole_end; 181 182 /* 183 * kpm mapping window 184 */ 185 caddr_t kpm_vbase; 186 size_t kpm_size; 187 static int kpm_desired = 0; /* Do we want to try to use segkpm? */ 188 189 /* 190 * VA range that must be preserved for boot until we release all of its 191 * mappings. 192 */ 193 #if defined(__amd64) 194 static void *kmem_setaside; 195 #endif 196 197 /* 198 * Configuration parameters set at boot time. 199 */ 200 201 caddr_t econtig; /* end of first block of contiguous kernel */ 202 203 struct bootops *bootops = 0; /* passed in from boot */ 204 struct bootops **bootopsp; 205 struct boot_syscalls *sysp; /* passed in from boot */ 206 207 char bootblock_fstype[16]; 208 209 char kern_bootargs[OBP_MAXPATHLEN]; 210 211 /* 212 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 213 * depends on number of BOP_ALLOC calls made and requested size, memory size 214 * combination and whether boot.bin memory needs to be freed. 215 */ 216 #define POSS_NEW_FRAGMENTS 12 217 218 /* 219 * VM data structures 220 */ 221 long page_hashsz; /* Size of page hash table (power of two) */ 222 struct page *pp_base; /* Base of initial system page struct array */ 223 struct page **page_hash; /* Page hash table */ 224 struct seg ktextseg; /* Segment used for kernel executable image */ 225 struct seg kvalloc; /* Segment used for "valloc" mapping */ 226 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 227 struct seg kmapseg; /* Segment used for generic kernel mappings */ 228 struct seg kdebugseg; /* Segment used for the kernel debugger */ 229 230 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 231 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 232 233 #if defined(__amd64) 234 struct seg kvseg_core; /* Segment used for the core heap */ 235 struct seg kpmseg; /* Segment used for physical mapping */ 236 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 237 #else 238 struct seg *segkpm = NULL; /* Unused on IA32 */ 239 #endif 240 241 caddr_t segkp_base; /* Base address of segkp */ 242 #if defined(__amd64) 243 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 244 #else 245 pgcnt_t segkpsize = 0; 246 #endif 247 248 struct memseg *memseg_base; 249 struct vnode unused_pages_vp; 250 251 #define FOURGB 0x100000000LL 252 253 struct memlist *memlist; 254 255 caddr_t s_text; /* start of kernel text segment */ 256 caddr_t e_text; /* end of kernel text segment */ 257 caddr_t s_data; /* start of kernel data segment */ 258 caddr_t e_data; /* end of kernel data segment */ 259 caddr_t modtext; /* start of loadable module text reserved */ 260 caddr_t e_modtext; /* end of loadable module text reserved */ 261 caddr_t moddata; /* start of loadable module data reserved */ 262 caddr_t e_moddata; /* end of loadable module data reserved */ 263 264 struct memlist *phys_install; /* Total installed physical memory */ 265 struct memlist *phys_avail; /* Total available physical memory */ 266 267 static void memlist_add(uint64_t, uint64_t, struct memlist *, 268 struct memlist **); 269 270 /* 271 * kphysm_init returns the number of pages that were processed 272 */ 273 static pgcnt_t kphysm_init(page_t *, struct memseg *, pgcnt_t, pgcnt_t); 274 275 #define IO_PROP_SIZE 64 /* device property size */ 276 277 /* 278 * a couple useful roundup macros 279 */ 280 #define ROUND_UP_PAGE(x) \ 281 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 282 #define ROUND_UP_LPAGE(x) \ 283 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 284 #define ROUND_UP_4MEG(x) \ 285 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOURMB_PAGESIZE)) 286 #define ROUND_UP_TOPLEVEL(x) \ 287 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 288 289 /* 290 * 32-bit Kernel's Virtual memory layout. 291 * +-----------------------+ 292 * | psm 1-1 map | 293 * | exec args area | 294 * 0xFFC00000 -|-----------------------|- ARGSBASE 295 * | debugger | 296 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 297 * | Kernel Data | 298 * 0xFEC00000 -|-----------------------| 299 * | Kernel Text | 300 * 0xFE800000 -|-----------------------|- KERNEL_TEXT 301 * | LUFS sinkhole | 302 * 0xFE000000 -|-----------------------|- lufs_addr 303 * --- -|-----------------------|- valloc_base + valloc_sz 304 * | early pp structures | 305 * | memsegs, memlists, | 306 * | page hash, etc. | 307 * --- -|-----------------------|- valloc_base (floating) 308 * | ptable_va | 309 * 0xFDFFE000 -|-----------------------|- ekernelheap, ptable_va 310 * | | (segkp is an arena under the heap) 311 * | | 312 * | kvseg | 313 * | | 314 * | | 315 * --- -|-----------------------|- kernelheap (floating) 316 * | Segkmap | 317 * 0xC3002000 -|-----------------------|- segkmap_start (floating) 318 * | Red Zone | 319 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 320 * | | || 321 * | Shared objects | \/ 322 * | | 323 * : : 324 * | user data | 325 * |-----------------------| 326 * | user text | 327 * 0x08048000 -|-----------------------| 328 * | user stack | 329 * : : 330 * | invalid | 331 * 0x00000000 +-----------------------+ 332 * 333 * 334 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 335 * +-----------------------+ 336 * | psm 1-1 map | 337 * | exec args area | 338 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 339 * | debugger (?) | 340 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 341 * | unused | 342 * +-----------------------+ 343 * | Kernel Data | 344 * 0xFFFFFFFF.FBC00000 |-----------------------| 345 * | Kernel Text | 346 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 347 * | LUFS sinkhole | 348 * 0xFFFFFFFF.FB000000 -|-----------------------|- lufs_addr 349 * --- |-----------------------|- valloc_base + valloc_sz 350 * | early pp structures | 351 * | memsegs, memlists, | 352 * | page hash, etc. | 353 * --- |-----------------------|- valloc_base 354 * | ptable_va | 355 * --- |-----------------------|- ptable_va 356 * | Core heap | (used for loadable modules) 357 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 358 * | Kernel | 359 * | heap | 360 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 361 * | segkmap | 362 * 0xFFFFFXXX.XXX00000 |-----------------------|- segkmap_start (floating) 363 * | device mappings | 364 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 365 * | segkp | 366 * --- |-----------------------|- segkp_base 367 * | segkpm | 368 * 0xFFFFFE00.00000000 |-----------------------| 369 * | Red Zone | 370 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE 371 * | User stack |- User space memory 372 * | | 373 * | shared objects, etc | (grows downwards) 374 * : : 375 * | | 376 * 0xFFFF8000.00000000 |-----------------------| 377 * | | 378 * | VA Hole / unused | 379 * | | 380 * 0x00008000.00000000 |-----------------------| 381 * | | 382 * | | 383 * : : 384 * | user heap | (grows upwards) 385 * | | 386 * | user data | 387 * |-----------------------| 388 * | user text | 389 * 0x00000000.04000000 |-----------------------| 390 * | invalid | 391 * 0x00000000.00000000 +-----------------------+ 392 * 393 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 394 * kernel, except that userlimit is raised to 0xfe000000 395 * 396 * Floating values: 397 * 398 * valloc_base: start of the kernel's memory management/tracking data 399 * structures. This region contains page_t structures for the lowest 4GB 400 * of physical memory, memsegs, memlists, and the page hash. 401 * 402 * core_base: start of the kernel's "core" heap area on 64-bit systems. 403 * This area is intended to be used for global data as well as for module 404 * text/data that does not fit into the nucleus pages. The core heap is 405 * restricted to a 2GB range, allowing every address within it to be 406 * accessed using rip-relative addressing 407 * 408 * ekernelheap: end of kernelheap and start of segmap. 409 * 410 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 411 * above a red zone that separates the user's address space from the 412 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 413 * 414 * segkmap_start: start of segmap. The length of segmap can be modified 415 * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated). 416 * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems. 417 * 418 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 419 * decreased by 2X the size required for page_t. This allows the kernel 420 * heap to grow in size with physical memory. With sizeof(page_t) == 80 421 * bytes, the following shows the values of kernelbase and kernel heap 422 * sizes for different memory configurations (assuming default segmap and 423 * segkp sizes). 424 * 425 * mem size for kernelbase kernel heap 426 * size page_t's size 427 * ---- --------- ---------- ----------- 428 * 1gb 0x01400000 0xd1800000 684MB 429 * 2gb 0x02800000 0xcf000000 704MB 430 * 4gb 0x05000000 0xca000000 744MB 431 * 6gb 0x07800000 0xc5000000 784MB 432 * 8gb 0x0a000000 0xc0000000 824MB 433 * 16gb 0x14000000 0xac000000 984MB 434 * 32gb 0x28000000 0x84000000 1304MB 435 * 64gb 0x50000000 0x34000000 1944MB (*) 436 * 437 * kernelbase is less than the abi minimum of 0xc0000000 for memory 438 * configurations above 8gb. 439 * 440 * (*) support for memory configurations above 32gb will require manual tuning 441 * of kernelbase to balance out the need of user applications. 442 */ 443 444 /* real-time-clock initialization parameters */ 445 long gmt_lag; /* offset in seconds of gmt to local time */ 446 extern long process_rtc_config_file(void); 447 448 char *final_kernelheap; 449 char *boot_kernelheap; 450 uintptr_t kernelbase; 451 uintptr_t eprom_kernelbase; 452 size_t segmapsize; 453 static uintptr_t segmap_reserved; 454 uintptr_t segkmap_start; 455 int segmapfreelists; 456 pgcnt_t boot_npages; 457 pgcnt_t npages; 458 size_t core_size; /* size of "core" heap */ 459 uintptr_t core_base; /* base address of "core" heap */ 460 461 /* 462 * List of bootstrap pages. We mark these as allocated in startup. 463 * release_bootstrap() will free them when we're completely done with 464 * the bootstrap. 465 */ 466 static page_t *bootpages, *rd_pages; 467 468 struct system_hardware system_hardware; 469 470 /* 471 * Enable some debugging messages concerning memory usage... 472 * 473 * XX64 There should only be one print routine once memlist usage between 474 * vmx and the kernel is cleaned up and there is a single memlist structure 475 * shared between kernel and boot. 476 */ 477 static void 478 print_boot_memlist(char *title, struct memlist *mp) 479 { 480 prom_printf("MEMLIST: %s:\n", title); 481 while (mp != NULL) { 482 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 483 mp->address, mp->size); 484 mp = mp->next; 485 } 486 } 487 488 static void 489 print_kernel_memlist(char *title, struct memlist *mp) 490 { 491 prom_printf("MEMLIST: %s:\n", title); 492 while (mp != NULL) { 493 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 494 mp->address, mp->size); 495 mp = mp->next; 496 } 497 } 498 499 /* 500 * XX64 need a comment here.. are these just default values, surely 501 * we read the "cpuid" type information to figure this out. 502 */ 503 int l2cache_sz = 0x80000; 504 int l2cache_linesz = 0x40; 505 int l2cache_assoc = 1; 506 507 /* 508 * on 64 bit we use a predifined VA range for mapping devices in the kernel 509 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 510 */ 511 #ifdef __amd64 512 513 vmem_t *device_arena; 514 uintptr_t toxic_addr = (uintptr_t)NULL; 515 size_t toxic_size = 1 * 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 516 517 #else /* __i386 */ 518 519 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 520 size_t toxic_bit_map_len = 0; /* in bits */ 521 522 #endif /* __i386 */ 523 524 /* 525 * Simple boot time debug facilities 526 */ 527 static char *prm_dbg_str[] = { 528 "%s:%d: '%s' is 0x%x\n", 529 "%s:%d: '%s' is 0x%llx\n" 530 }; 531 532 int prom_debug; 533 534 #define PRM_DEBUG(q) if (prom_debug) \ 535 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 536 #define PRM_POINT(q) if (prom_debug) \ 537 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 538 539 /* 540 * This structure is used to keep track of the intial allocations 541 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 542 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 543 */ 544 #define NUM_ALLOCATIONS 7 545 int num_allocations = 0; 546 struct { 547 void **al_ptr; 548 size_t al_size; 549 } allocations[NUM_ALLOCATIONS]; 550 size_t valloc_sz = 0; 551 uintptr_t valloc_base; 552 extern uintptr_t ptable_va; 553 extern size_t ptable_sz; 554 555 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 556 size = ROUND_UP_PAGE(size); \ 557 if (num_allocations == NUM_ALLOCATIONS) \ 558 panic("too many ADD_TO_ALLOCATIONS()"); \ 559 allocations[num_allocations].al_ptr = (void**)&ptr; \ 560 allocations[num_allocations].al_size = size; \ 561 valloc_sz += size; \ 562 ++num_allocations; \ 563 } 564 565 static void 566 perform_allocations(void) 567 { 568 caddr_t mem; 569 int i; 570 571 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, BO_NO_ALIGN); 572 if (mem != (caddr_t)valloc_base) 573 panic("BOP_ALLOC() failed"); 574 bzero(mem, valloc_sz); 575 for (i = 0; i < num_allocations; ++i) { 576 *allocations[i].al_ptr = (void *)mem; 577 mem += allocations[i].al_size; 578 } 579 } 580 581 /* 582 * Our world looks like this at startup time. 583 * 584 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 585 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 586 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 587 * addresses are fixed in the binary at link time. 588 * 589 * On the text page: 590 * unix/genunix/krtld/module text loads. 591 * 592 * On the data page: 593 * unix/genunix/krtld/module data loads and space for page_t's. 594 */ 595 /* 596 * Machine-dependent startup code 597 */ 598 void 599 startup(void) 600 { 601 extern void startup_bios_disk(void); 602 extern void startup_pci_bios(void); 603 /* 604 * Make sure that nobody tries to use sekpm until we have 605 * initialized it properly. 606 */ 607 #if defined(__amd64) 608 kpm_desired = kpm_enable; 609 #endif 610 kpm_enable = 0; 611 612 progressbar_init(); 613 startup_init(); 614 startup_memlist(); 615 startup_pci_bios(); 616 startup_modules(); 617 startup_bios_disk(); 618 startup_bop_gone(); 619 startup_vm(); 620 startup_end(); 621 progressbar_start(); 622 } 623 624 static void 625 startup_init() 626 { 627 PRM_POINT("startup_init() starting..."); 628 629 /* 630 * Complete the extraction of cpuid data 631 */ 632 cpuid_pass2(CPU); 633 634 (void) check_boot_version(BOP_GETVERSION(bootops)); 635 636 /* 637 * Check for prom_debug in boot environment 638 */ 639 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 640 ++prom_debug; 641 PRM_POINT("prom_debug found in boot enviroment"); 642 } 643 644 /* 645 * Collect node, cpu and memory configuration information. 646 */ 647 get_system_configuration(); 648 649 /* 650 * Halt if this is an unsupported processor. 651 */ 652 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 653 printf("\n486 processor (\"%s\") detected.\n", 654 CPU->cpu_brandstr); 655 halt("This processor is not supported by this release " 656 "of Solaris."); 657 } 658 659 PRM_POINT("startup_init() done"); 660 } 661 662 /* 663 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 664 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 665 * also filters out physical page zero. There is some reliance on the 666 * boot loader allocating only a few contiguous physical memory chunks. 667 */ 668 static void 669 avail_filter(uint64_t *addr, uint64_t *size) 670 { 671 uintptr_t va; 672 uintptr_t next_va; 673 pfn_t pfn; 674 uint64_t pfn_addr; 675 uint64_t pfn_eaddr; 676 uint_t prot; 677 size_t len; 678 uint_t change; 679 680 if (prom_debug) 681 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 682 *addr, *size); 683 684 /* 685 * page zero is required for BIOS.. never make it available 686 */ 687 if (*addr == 0) { 688 *addr += MMU_PAGESIZE; 689 *size -= MMU_PAGESIZE; 690 } 691 692 /* 693 * First we trim from the front of the range. Since hat_boot_probe() 694 * walks ranges in virtual order, but addr/size are physical, we need 695 * to the list until no changes are seen. This deals with the case 696 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 697 * but w < v. 698 */ 699 do { 700 change = 0; 701 for (va = KERNEL_TEXT; 702 *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; 703 va = next_va) { 704 705 next_va = va + len; 706 pfn_addr = ptob((uint64_t)pfn); 707 pfn_eaddr = pfn_addr + len; 708 709 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 710 change = 1; 711 while (*size > 0 && len > 0) { 712 *addr += MMU_PAGESIZE; 713 *size -= MMU_PAGESIZE; 714 len -= MMU_PAGESIZE; 715 } 716 } 717 } 718 if (change && prom_debug) 719 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 720 *addr, *size); 721 } while (change); 722 723 /* 724 * Trim pages from the end of the range. 725 */ 726 for (va = KERNEL_TEXT; 727 *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; 728 va = next_va) { 729 730 next_va = va + len; 731 pfn_addr = ptob((uint64_t)pfn); 732 733 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 734 *size = pfn_addr - *addr; 735 } 736 737 if (prom_debug) 738 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 739 *addr, *size); 740 } 741 742 static void 743 kpm_init() 744 { 745 struct segkpm_crargs b; 746 uintptr_t start, end; 747 struct memlist *pmem; 748 749 /* 750 * These variables were all designed for sfmmu in which segkpm is 751 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 752 * might use 2+ page sizes on a single machine, so none of these 753 * variables have a single correct value. They are set up as if we 754 * always use a 4KB pagesize, which should do no harm. In the long 755 * run, we should get rid of KPM's assumption that only a single 756 * pagesize is used. 757 */ 758 kpm_pgshft = MMU_PAGESHIFT; 759 kpm_pgsz = MMU_PAGESIZE; 760 kpm_pgoff = MMU_PAGEOFFSET; 761 kpmp2pshft = 0; 762 kpmpnpgs = 1; 763 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 764 765 PRM_POINT("about to create segkpm"); 766 rw_enter(&kas.a_lock, RW_WRITER); 767 768 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 769 panic("cannot attach segkpm"); 770 771 b.prot = PROT_READ | PROT_WRITE; 772 b.nvcolors = 1; 773 774 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 775 panic("segkpm_create segkpm"); 776 777 rw_exit(&kas.a_lock); 778 779 /* 780 * Map each of the memsegs into the kpm segment, coalesing adjacent 781 * memsegs to allow mapping with the largest possible pages. 782 */ 783 pmem = phys_install; 784 start = pmem->address; 785 end = start + pmem->size; 786 for (;;) { 787 if (pmem == NULL || pmem->address > end) { 788 hat_devload(kas.a_hat, kpm_vbase + start, 789 end - start, mmu_btop(start), 790 PROT_READ | PROT_WRITE, 791 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 792 if (pmem == NULL) 793 break; 794 start = pmem->address; 795 } 796 end = pmem->address + pmem->size; 797 pmem = pmem->next; 798 } 799 } 800 801 /* 802 * The purpose of startup memlist is to get the system to the 803 * point where it can use kmem_alloc()'s that operate correctly 804 * relying on BOP_ALLOC(). This includes allocating page_ts, 805 * page hash table, vmem initialized, etc. 806 * 807 * Boot's versions of physinstalled and physavail are insufficient for 808 * the kernel's purposes. Specifically we don't know which pages that 809 * are not in physavail can be reclaimed after boot is gone. 810 * 811 * This code solves the problem by dividing the address space 812 * into 3 regions as it takes over the MMU from the booter. 813 * 814 * 1) Any (non-nucleus) pages that are mapped at addresses above KERNEL_TEXT 815 * can not be used by the kernel. 816 * 817 * 2) Any free page that happens to be mapped below kernelbase 818 * is protected until the boot loader is released, but will then be reclaimed. 819 * 820 * 3) Boot shouldn't use any address in the remaining area between kernelbase 821 * and KERNEL_TEXT. 822 * 823 * In the case of multiple mappings to the same page, region 1 has precedence 824 * over region 2. 825 */ 826 static void 827 startup_memlist(void) 828 { 829 size_t memlist_sz; 830 size_t memseg_sz; 831 size_t pagehash_sz; 832 size_t pp_sz; 833 uintptr_t va; 834 size_t len; 835 uint_t prot; 836 pfn_t pfn; 837 int memblocks; 838 caddr_t pagecolor_mem; 839 size_t pagecolor_memsz; 840 caddr_t page_ctrs_mem; 841 size_t page_ctrs_size; 842 struct memlist *current; 843 pgcnt_t orig_npages = 0; 844 extern void startup_build_mem_nodes(struct memlist *); 845 846 /* XX64 fix these - they should be in include files */ 847 extern ulong_t cr4_value; 848 extern size_t page_coloring_init(uint_t, int, int); 849 extern void page_coloring_setup(caddr_t); 850 851 PRM_POINT("startup_memlist() starting..."); 852 853 /* 854 * Take the most current snapshot we can by calling mem-update. 855 * For this to work properly, we first have to ask boot for its 856 * end address. 857 */ 858 if (BOP_GETPROPLEN(bootops, "memory-update") == 0) 859 (void) BOP_GETPROP(bootops, "memory-update", NULL); 860 861 /* 862 * find if the kernel is mapped on a large page 863 */ 864 va = KERNEL_TEXT; 865 if (hat_boot_probe(&va, &len, &pfn, &prot) == 0) 866 panic("Couldn't find kernel text boot mapping"); 867 868 /* 869 * Use leftover large page nucleus text/data space for loadable modules. 870 * Use at most MODTEXT/MODDATA. 871 */ 872 if (len > MMU_PAGESIZE) { 873 874 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 875 e_moddata = (caddr_t)ROUND_UP_4MEG(e_data); 876 if (e_moddata - moddata > MODDATA) 877 e_moddata = moddata + MODDATA; 878 879 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 880 e_modtext = (caddr_t)ROUND_UP_4MEG(e_text); 881 if (e_modtext - modtext > MODTEXT) 882 e_modtext = modtext + MODTEXT; 883 884 885 } else { 886 887 PRM_POINT("Kernel NOT loaded on Large Page!"); 888 e_moddata = moddata = (caddr_t)ROUND_UP_PAGE(e_data); 889 e_modtext = modtext = (caddr_t)ROUND_UP_PAGE(e_text); 890 891 } 892 econtig = e_moddata; 893 894 PRM_DEBUG(modtext); 895 PRM_DEBUG(e_modtext); 896 PRM_DEBUG(moddata); 897 PRM_DEBUG(e_moddata); 898 PRM_DEBUG(econtig); 899 900 /* 901 * For MP machines cr4_value must be set or the non-boot 902 * CPUs will not be able to start. 903 */ 904 if (x86_feature & X86_LARGEPAGE) 905 cr4_value = getcr4(); 906 PRM_DEBUG(cr4_value); 907 908 /* 909 * Examine the boot loaders physical memory map to find out: 910 * - total memory in system - physinstalled 911 * - the max physical address - physmax 912 * - the number of segments the intsalled memory comes in 913 */ 914 if (prom_debug) 915 print_boot_memlist("boot physinstalled", 916 bootops->boot_mem->physinstalled); 917 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 918 &physinstalled, &memblocks); 919 PRM_DEBUG(physmax); 920 PRM_DEBUG(physinstalled); 921 PRM_DEBUG(memblocks); 922 923 if (prom_debug) 924 print_boot_memlist("boot physavail", 925 bootops->boot_mem->physavail); 926 927 /* 928 * Initialize hat's mmu parameters. 929 * Check for enforce-prot-exec in boot environment. It's used to 930 * enable/disable support for the page table entry NX bit. 931 * The default is to enforce PROT_EXEC on processors that support NX. 932 * Boot seems to round up the "len", but 8 seems to be big enough. 933 */ 934 mmu_init(); 935 936 #ifdef __i386 937 /* 938 * physmax is lowered if there is more memory than can be 939 * physically addressed in 32 bit (PAE/non-PAE) modes. 940 */ 941 if (mmu.pae_hat) { 942 if (PFN_ABOVE64G(physmax)) { 943 physinstalled -= (physmax - (PFN_64G - 1)); 944 physmax = PFN_64G - 1; 945 } 946 } else { 947 if (PFN_ABOVE4G(physmax)) { 948 physinstalled -= (physmax - (PFN_4G - 1)); 949 physmax = PFN_4G - 1; 950 } 951 } 952 #endif 953 954 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 955 956 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 957 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 958 char value[8]; 959 960 if (len < 8) 961 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 962 else 963 (void) strcpy(value, ""); 964 if (strcmp(value, "off") == 0) 965 mmu.pt_nx = 0; 966 } 967 PRM_DEBUG(mmu.pt_nx); 968 969 /* 970 * We will need page_t's for every page in the system, except for 971 * memory mapped at or above above the start of the kernel text segment. 972 * 973 * pages above e_modtext are attributed to kernel debugger (obp_pages) 974 */ 975 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 976 obp_pages = 0; 977 va = KERNEL_TEXT; 978 while (hat_boot_probe(&va, &len, &pfn, &prot) != 0) { 979 npages -= len >> MMU_PAGESHIFT; 980 if (va >= (uintptr_t)e_moddata) 981 obp_pages += len >> MMU_PAGESHIFT; 982 va += len; 983 } 984 PRM_DEBUG(npages); 985 PRM_DEBUG(obp_pages); 986 987 /* 988 * If physmem is patched to be non-zero, use it instead of 989 * the computed value unless it is larger than the real 990 * amount of memory on hand. 991 */ 992 if (physmem == 0 || physmem > npages) { 993 physmem = npages; 994 } else if (physmem < npages) { 995 orig_npages = npages; 996 npages = physmem; 997 } 998 PRM_DEBUG(physmem); 999 1000 /* 1001 * We now compute the sizes of all the initial allocations for 1002 * structures the kernel needs in order do kmem_alloc(). These 1003 * include: 1004 * memsegs 1005 * memlists 1006 * page hash table 1007 * page_t's 1008 * page coloring data structs 1009 */ 1010 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1011 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1012 PRM_DEBUG(memseg_sz); 1013 1014 /* 1015 * Reserve space for phys_avail/phys_install memlists. 1016 * There's no real good way to know exactly how much room we'll need, 1017 * but this should be a good upper bound. 1018 */ 1019 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1020 (memblocks + POSS_NEW_FRAGMENTS)); 1021 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1022 PRM_DEBUG(memlist_sz); 1023 1024 /* 1025 * The page structure hash table size is a power of 2 1026 * such that the average hash chain length is PAGE_HASHAVELEN. 1027 */ 1028 page_hashsz = npages / PAGE_HASHAVELEN; 1029 page_hashsz = 1 << highbit(page_hashsz); 1030 pagehash_sz = sizeof (struct page *) * page_hashsz; 1031 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1032 PRM_DEBUG(pagehash_sz); 1033 1034 /* 1035 * Set aside room for the page structures themselves. Note: on 1036 * 64-bit systems we don't allocate page_t's for every page here. 1037 * We just allocate enough to map the lowest 4GB of physical 1038 * memory, minus those pages that are used for the "nucleus" kernel 1039 * text and data. The remaining pages are allocated once we can 1040 * map around boot. 1041 * 1042 * boot_npages is used to allocate an area big enough for our 1043 * initial page_t's. kphym_init may use less than that. 1044 */ 1045 boot_npages = npages; 1046 #if defined(__amd64) 1047 if (npages > mmu_btop(FOURGB - (econtig - s_text))) 1048 boot_npages = mmu_btop(FOURGB - (econtig - s_text)); 1049 #endif 1050 PRM_DEBUG(boot_npages); 1051 pp_sz = sizeof (struct page) * boot_npages; 1052 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1053 PRM_DEBUG(pp_sz); 1054 1055 /* 1056 * determine l2 cache info and memory size for page coloring 1057 */ 1058 (void) getl2cacheinfo(CPU, 1059 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1060 pagecolor_memsz = 1061 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1062 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1063 PRM_DEBUG(pagecolor_memsz); 1064 1065 page_ctrs_size = page_ctrs_sz(); 1066 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1067 PRM_DEBUG(page_ctrs_size); 1068 1069 /* 1070 * valloc_base will be below kernel text 1071 * The extra pages are for the HAT and kmdb to map page tables. 1072 */ 1073 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1074 valloc_base = KERNEL_TEXT - valloc_sz; 1075 PRM_DEBUG(valloc_base); 1076 ptable_va = valloc_base - ptable_sz; 1077 1078 #if defined(__amd64) 1079 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1080 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1081 "systems."); 1082 kernelbase = (uintptr_t)KERNELBASE; 1083 core_base = (uintptr_t)COREHEAP_BASE; 1084 core_size = ptable_va - core_base; 1085 #else /* __i386 */ 1086 /* 1087 * We configure kernelbase based on: 1088 * 1089 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1090 * KERNELBASE_MAX. we large page align eprom_kernelbase 1091 * 1092 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1093 * On large memory systems we must lower kernelbase to allow 1094 * enough room for page_t's for all of memory. 1095 * 1096 * The value set here, might be changed a little later. 1097 */ 1098 if (eprom_kernelbase) { 1099 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1100 if (kernelbase > KERNELBASE_MAX) 1101 kernelbase = KERNELBASE_MAX; 1102 } else { 1103 kernelbase = (uintptr_t)KERNELBASE; 1104 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1105 } 1106 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1107 core_base = ptable_va; 1108 core_size = 0; 1109 #endif 1110 1111 PRM_DEBUG(kernelbase); 1112 PRM_DEBUG(core_base); 1113 PRM_DEBUG(core_size); 1114 1115 /* 1116 * At this point, we can only use a portion of the kernelheap that 1117 * will be available after we boot. Both 32-bit and 64-bit systems 1118 * have this limitation, although the reasons are completely 1119 * different. 1120 * 1121 * On 64-bit systems, the booter only supports allocations in the 1122 * upper 4GB of memory, so we have to work with a reduced kernel 1123 * heap until we take over all allocations. The booter also sits 1124 * in the lower portion of that 4GB range, so we have to raise the 1125 * bottom of the heap even further. 1126 * 1127 * On 32-bit systems we have to leave room to place segmap below 1128 * the heap. We don't yet know how large segmap will be, so we 1129 * have to be very conservative. 1130 */ 1131 #if defined(__amd64) 1132 /* 1133 * XX64: For now, we let boot have the lower 2GB of the top 4GB 1134 * address range. In the long run, that should be fixed. It's 1135 * insane for a booter to need 2 2GB address ranges. 1136 */ 1137 boot_kernelheap = (caddr_t)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); 1138 segmap_reserved = 0; 1139 1140 #else /* __i386 */ 1141 segkp_fromheap = 1; 1142 segmap_reserved = ROUND_UP_LPAGE(MAX(segmapsize, SEGMAPMAX)); 1143 boot_kernelheap = (caddr_t)(ROUND_UP_LPAGE(kernelbase) + 1144 segmap_reserved); 1145 #endif 1146 PRM_DEBUG(boot_kernelheap); 1147 kernelheap = boot_kernelheap; 1148 ekernelheap = (char *)core_base; 1149 1150 /* 1151 * If segmap is too large we can push the bottom of the kernel heap 1152 * higher than the base. Or worse, it could exceed the top of the 1153 * VA space entirely, causing it to wrap around. 1154 */ 1155 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1156 panic("too little memory available for kernelheap," 1157 " use a different kernelbase"); 1158 1159 /* 1160 * Now that we know the real value of kernelbase, 1161 * update variables that were initialized with a value of 1162 * KERNELBASE (in common/conf/param.c). 1163 * 1164 * XXX The problem with this sort of hackery is that the 1165 * compiler just may feel like putting the const declarations 1166 * (in param.c) into the .text section. Perhaps they should 1167 * just be declared as variables there? 1168 */ 1169 1170 #if defined(__amd64) 1171 ASSERT(_kernelbase == KERNELBASE); 1172 ASSERT(_userlimit == USERLIMIT); 1173 /* 1174 * As one final sanity check, verify that the "red zone" between 1175 * kernel and userspace is exactly the size we expected. 1176 */ 1177 ASSERT(_kernelbase == (_userlimit + (2 * 1024 * 1024))); 1178 #else 1179 *(uintptr_t *)&_kernelbase = kernelbase; 1180 *(uintptr_t *)&_userlimit = kernelbase; 1181 *(uintptr_t *)&_userlimit32 = _userlimit; 1182 #endif 1183 PRM_DEBUG(_kernelbase); 1184 PRM_DEBUG(_userlimit); 1185 PRM_DEBUG(_userlimit32); 1186 1187 /* 1188 * do all the initial allocations 1189 */ 1190 perform_allocations(); 1191 1192 /* 1193 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1194 */ 1195 kernelheap_init(kernelheap, ekernelheap, kernelheap + MMU_PAGESIZE, 1196 (void *)core_base, (void *)ptable_va); 1197 1198 /* 1199 * Build phys_install and phys_avail in kernel memspace. 1200 * - phys_install should be all memory in the system. 1201 * - phys_avail is phys_install minus any memory mapped before this 1202 * point above KERNEL_TEXT. 1203 */ 1204 current = phys_install = memlist; 1205 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1206 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1207 panic("physinstalled was too big!"); 1208 if (prom_debug) 1209 print_kernel_memlist("phys_install", phys_install); 1210 1211 phys_avail = current; 1212 PRM_POINT("Building phys_avail:\n"); 1213 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1214 avail_filter); 1215 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1216 panic("physavail was too big!"); 1217 if (prom_debug) 1218 print_kernel_memlist("phys_avail", phys_avail); 1219 1220 /* 1221 * setup page coloring 1222 */ 1223 page_coloring_setup(pagecolor_mem); 1224 page_lock_init(); /* currently a no-op */ 1225 1226 /* 1227 * free page list counters 1228 */ 1229 (void) page_ctrs_alloc(page_ctrs_mem); 1230 1231 /* 1232 * Initialize the page structures from the memory lists. 1233 */ 1234 availrmem_initial = availrmem = freemem = 0; 1235 PRM_POINT("Calling kphysm_init()..."); 1236 boot_npages = kphysm_init(pp_base, memseg_base, 0, boot_npages); 1237 PRM_POINT("kphysm_init() done"); 1238 PRM_DEBUG(boot_npages); 1239 1240 /* 1241 * Now that page_t's have been initialized, remove all the 1242 * initial allocation pages from the kernel free page lists. 1243 */ 1244 boot_mapin((caddr_t)valloc_base, valloc_sz); 1245 1246 /* 1247 * Initialize kernel memory allocator. 1248 */ 1249 kmem_init(); 1250 1251 /* 1252 * print this out early so that we know what's going on 1253 */ 1254 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1255 1256 /* 1257 * Initialize bp_mapin(). 1258 */ 1259 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1260 1261 /* 1262 * orig_npages is non-zero if physmem has been configured for less 1263 * than the available memory. 1264 */ 1265 if (orig_npages) { 1266 #ifdef __i386 1267 /* 1268 * use npages for physmem in case it has been temporarily 1269 * modified via /etc/system in kmem_init/mod_read_system_file. 1270 */ 1271 if (npages == PHYSMEM32) { 1272 cmn_err(CE_WARN, "!Due to 32 bit virtual" 1273 " address space limitations, limiting" 1274 " physmem to 0x%lx of 0x%lx available pages", 1275 npages, orig_npages); 1276 } else { 1277 cmn_err(CE_WARN, "!limiting physmem to 0x%lx of" 1278 " 0x%lx available pages", npages, orig_npages); 1279 } 1280 #else 1281 cmn_err(CE_WARN, "!limiting physmem to 0x%lx of" 1282 " 0x%lx available pages", npages, orig_npages); 1283 #endif 1284 } 1285 #if defined(__i386) 1286 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1287 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1288 "System using 0x%lx", 1289 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1290 #endif 1291 1292 #ifdef KERNELBASE_ABI_MIN 1293 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1294 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1295 "i386 ABI compliant.", (uintptr_t)kernelbase); 1296 } 1297 #endif 1298 1299 PRM_POINT("startup_memlist() done"); 1300 } 1301 1302 static void 1303 startup_modules(void) 1304 { 1305 unsigned int i; 1306 extern void prom_setup(void); 1307 1308 PRM_POINT("startup_modules() starting..."); 1309 /* 1310 * Initialize ten-micro second timer so that drivers will 1311 * not get short changed in their init phase. This was 1312 * not getting called until clkinit which, on fast cpu's 1313 * caused the drv_usecwait to be way too short. 1314 */ 1315 microfind(); 1316 1317 /* 1318 * Read the GMT lag from /etc/rtc_config. 1319 */ 1320 gmt_lag = process_rtc_config_file(); 1321 1322 /* 1323 * Calculate default settings of system parameters based upon 1324 * maxusers, yet allow to be overridden via the /etc/system file. 1325 */ 1326 param_calc(0); 1327 1328 mod_setup(); 1329 1330 /* 1331 * Initialize system parameters. 1332 */ 1333 param_init(); 1334 1335 /* 1336 * Initialize the default brands 1337 */ 1338 brand_init(); 1339 1340 /* 1341 * maxmem is the amount of physical memory we're playing with. 1342 */ 1343 maxmem = physmem; 1344 1345 /* 1346 * Initialize the hat layer. 1347 */ 1348 hat_init(); 1349 1350 /* 1351 * Initialize segment management stuff. 1352 */ 1353 seg_init(); 1354 1355 if (modload("fs", "specfs") == -1) 1356 halt("Can't load specfs"); 1357 1358 if (modload("fs", "devfs") == -1) 1359 halt("Can't load devfs"); 1360 1361 if (modload("fs", "dev") == -1) 1362 halt("Can't load dev"); 1363 1364 (void) modloadonly("sys", "lbl_edition"); 1365 1366 dispinit(); 1367 1368 /* 1369 * This is needed here to initialize hw_serial[] for cluster booting. 1370 */ 1371 if ((i = modload("misc", "sysinit")) != (unsigned int)-1) 1372 (void) modunload(i); 1373 else 1374 cmn_err(CE_CONT, "sysinit load failed"); 1375 1376 /* Read cluster configuration data. */ 1377 clconf_init(); 1378 1379 /* 1380 * Create a kernel device tree. First, create rootnex and 1381 * then invoke bus specific code to probe devices. 1382 */ 1383 setup_ddi(); 1384 1385 /* 1386 * Set up the CPU module subsystem. Modifies the device tree, so it 1387 * must be done after setup_ddi(). 1388 */ 1389 cmi_init(); 1390 1391 /* 1392 * Initialize the MCA handlers 1393 */ 1394 if (x86_feature & X86_MCA) 1395 cmi_mca_init(); 1396 1397 /* 1398 * Fake a prom tree such that /dev/openprom continues to work 1399 */ 1400 prom_setup(); 1401 1402 /* 1403 * Load all platform specific modules 1404 */ 1405 psm_modload(); 1406 1407 PRM_POINT("startup_modules() done"); 1408 } 1409 1410 static void 1411 startup_bop_gone(void) 1412 { 1413 PRM_POINT("startup_bop_gone() starting..."); 1414 1415 /* 1416 * Do final allocations of HAT data structures that need to 1417 * be allocated before quiescing the boot loader. 1418 */ 1419 PRM_POINT("Calling hat_kern_alloc()..."); 1420 hat_kern_alloc(); 1421 PRM_POINT("hat_kern_alloc() done"); 1422 1423 /* 1424 * Setup MTRR (Memory type range registers) 1425 */ 1426 setup_mtrr(); 1427 PRM_POINT("startup_bop_gone() done"); 1428 } 1429 1430 /* 1431 * Walk through the pagetables looking for pages mapped in by boot. If the 1432 * setaside flag is set the pages are expected to be returned to the 1433 * kernel later in boot, so we add them to the bootpages list. 1434 */ 1435 static void 1436 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1437 { 1438 uintptr_t va = low; 1439 size_t len; 1440 uint_t prot; 1441 pfn_t pfn; 1442 page_t *pp; 1443 pgcnt_t boot_protect_cnt = 0; 1444 1445 while (hat_boot_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1446 if (va + len >= high) 1447 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1448 "legal range.", len, (void *)va); 1449 1450 while (len > 0) { 1451 pp = page_numtopp_alloc(pfn); 1452 if (pp != NULL) { 1453 if (setaside == 0) 1454 panic("Unexpected mapping by boot. " 1455 "addr=%p pfn=%lx\n", 1456 (void *)va, pfn); 1457 1458 pp->p_next = bootpages; 1459 bootpages = pp; 1460 ++boot_protect_cnt; 1461 } 1462 1463 ++pfn; 1464 len -= MMU_PAGESIZE; 1465 va += MMU_PAGESIZE; 1466 } 1467 } 1468 PRM_DEBUG(boot_protect_cnt); 1469 } 1470 1471 static void 1472 startup_vm(void) 1473 { 1474 struct segmap_crargs a; 1475 extern void hat_kern_setup(void); 1476 pgcnt_t pages_left; 1477 1478 extern int use_brk_lpg, use_stk_lpg; 1479 1480 PRM_POINT("startup_vm() starting..."); 1481 1482 /* 1483 * The next two loops are done in distinct steps in order 1484 * to be sure that any page that is doubly mapped (both above 1485 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1486 * Note this may never happen, but it might someday. 1487 */ 1488 1489 bootpages = NULL; 1490 PRM_POINT("Protecting boot pages"); 1491 /* 1492 * Protect any pages mapped above KERNEL_TEXT that somehow have 1493 * page_t's. This can only happen if something weird allocated 1494 * in this range (like kadb/kmdb). 1495 */ 1496 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1497 1498 /* 1499 * Before we can take over memory allocation/mapping from the boot 1500 * loader we must remove from our free page lists any boot pages that 1501 * will stay mapped until release_bootstrap(). 1502 */ 1503 protect_boot_range(0, kernelbase, 1); 1504 #if defined(__amd64) 1505 protect_boot_range(BOOT_DOUBLEMAP_BASE, 1506 BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE, 0); 1507 #endif 1508 1509 /* 1510 * Copy in boot's page tables, set up extra page tables for the kernel, 1511 * and switch to the kernel's context. 1512 */ 1513 PRM_POINT("Calling hat_kern_setup()..."); 1514 hat_kern_setup(); 1515 1516 /* 1517 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1518 */ 1519 bootops->bsys_alloc = NULL; 1520 PRM_POINT("hat_kern_setup() done"); 1521 1522 hat_cpu_online(CPU); 1523 1524 /* 1525 * Before we call kvm_init(), we need to establish the final size 1526 * of the kernel's heap. So, we need to figure out how much space 1527 * to set aside for segkp, segkpm, and segmap. 1528 */ 1529 final_kernelheap = (caddr_t)ROUND_UP_LPAGE(kernelbase); 1530 #if defined(__amd64) 1531 if (kpm_desired) { 1532 /* 1533 * Segkpm appears at the bottom of the kernel's address 1534 * range. To detect accidental overruns of the user 1535 * address space, we leave a "red zone" of unmapped memory 1536 * between kernelbase and the beginning of segkpm. 1537 */ 1538 kpm_vbase = final_kernelheap + KERNEL_REDZONE_SIZE; 1539 kpm_size = mmu_ptob(physmax + 1); 1540 PRM_DEBUG(kpm_vbase); 1541 PRM_DEBUG(kpm_size); 1542 final_kernelheap = 1543 (caddr_t)ROUND_UP_TOPLEVEL(kpm_vbase + kpm_size); 1544 } 1545 1546 if (!segkp_fromheap) { 1547 size_t sz = mmu_ptob(segkpsize); 1548 1549 /* 1550 * determine size of segkp and adjust the bottom of the 1551 * kernel's heap. 1552 */ 1553 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1554 sz = SEGKPDEFSIZE; 1555 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1556 "segkpsize has been reset to %ld pages", 1557 mmu_btop(sz)); 1558 } 1559 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1560 1561 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1562 segkp_base = final_kernelheap; 1563 PRM_DEBUG(segkpsize); 1564 PRM_DEBUG(segkp_base); 1565 final_kernelheap = segkp_base + mmu_ptob(segkpsize); 1566 PRM_DEBUG(final_kernelheap); 1567 } 1568 1569 /* 1570 * put the range of VA for device mappings next 1571 */ 1572 toxic_addr = (uintptr_t)final_kernelheap; 1573 PRM_DEBUG(toxic_addr); 1574 final_kernelheap = (char *)toxic_addr + toxic_size; 1575 #endif 1576 PRM_DEBUG(final_kernelheap); 1577 ASSERT(final_kernelheap < boot_kernelheap); 1578 1579 /* 1580 * Users can change segmapsize through eeprom or /etc/system. 1581 * If the variable is tuned through eeprom, there is no upper 1582 * bound on the size of segmap. If it is tuned through 1583 * /etc/system on 32-bit systems, it must be no larger than we 1584 * planned for in startup_memlist(). 1585 */ 1586 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1587 segkmap_start = ROUND_UP_LPAGE((uintptr_t)final_kernelheap); 1588 1589 #if defined(__i386) 1590 if (segmapsize > segmap_reserved) { 1591 cmn_err(CE_NOTE, "!segmapsize may not be set > 0x%lx in " 1592 "/etc/system. Use eeprom.", (long)SEGMAPMAX); 1593 segmapsize = segmap_reserved; 1594 } 1595 /* 1596 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1597 * the bottom of the kernel's address range. Set aside space for a 1598 * red zone just below the start of segmap. 1599 */ 1600 segkmap_start += KERNEL_REDZONE_SIZE; 1601 segmapsize -= KERNEL_REDZONE_SIZE; 1602 #endif 1603 final_kernelheap = (char *)(segkmap_start + segmapsize); 1604 1605 PRM_DEBUG(segkmap_start); 1606 PRM_DEBUG(segmapsize); 1607 PRM_DEBUG(final_kernelheap); 1608 1609 /* 1610 * Initialize VM system 1611 */ 1612 PRM_POINT("Calling kvm_init()..."); 1613 kvm_init(); 1614 PRM_POINT("kvm_init() done"); 1615 1616 /* 1617 * Tell kmdb that the VM system is now working 1618 */ 1619 if (boothowto & RB_DEBUG) 1620 kdi_dvec_vmready(); 1621 1622 /* 1623 * Mangle the brand string etc. 1624 */ 1625 cpuid_pass3(CPU); 1626 1627 PRM_DEBUG(final_kernelheap); 1628 1629 /* 1630 * Now that we can use memory outside the top 4GB (on 64-bit 1631 * systems) and we know the size of segmap, we can set the final 1632 * size of the kernel's heap. Note: on 64-bit systems we still 1633 * can't touch anything in the bottom half of the top 4GB range 1634 * because boot still has pages mapped there. 1635 */ 1636 if (final_kernelheap < boot_kernelheap) { 1637 kernelheap_extend(final_kernelheap, boot_kernelheap); 1638 #if defined(__amd64) 1639 kmem_setaside = vmem_xalloc(heap_arena, BOOT_DOUBLEMAP_SIZE, 1640 MMU_PAGESIZE, 0, 0, (void *)(BOOT_DOUBLEMAP_BASE), 1641 (void *)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE), 1642 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1643 PRM_DEBUG(kmem_setaside); 1644 if (kmem_setaside == NULL) 1645 panic("Could not protect boot's memory"); 1646 #endif 1647 } 1648 /* 1649 * Now that the kernel heap may have grown significantly, we need 1650 * to make all the remaining page_t's available to back that memory. 1651 * 1652 * XX64 this should probably wait till after release boot-strap too. 1653 */ 1654 pages_left = npages - boot_npages; 1655 if (pages_left > 0) { 1656 PRM_DEBUG(pages_left); 1657 (void) kphysm_init(NULL, memseg_base, boot_npages, pages_left); 1658 } 1659 1660 #if defined(__amd64) 1661 1662 /* 1663 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1664 */ 1665 device_arena = vmem_create("device", (void *)toxic_addr, 1666 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1667 1668 #else /* __i386 */ 1669 1670 /* 1671 * allocate the bit map that tracks toxic pages 1672 */ 1673 toxic_bit_map_len = btop((ulong_t)(ptable_va - kernelbase)); 1674 PRM_DEBUG(toxic_bit_map_len); 1675 toxic_bit_map = 1676 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1677 ASSERT(toxic_bit_map != NULL); 1678 PRM_DEBUG(toxic_bit_map); 1679 1680 #endif /* __i386 */ 1681 1682 1683 /* 1684 * Now that we've got more VA, as well as the ability to allocate from 1685 * it, tell the debugger. 1686 */ 1687 if (boothowto & RB_DEBUG) 1688 kdi_dvec_memavail(); 1689 1690 /* 1691 * The following code installs a special page fault handler (#pf) 1692 * to work around a pentium bug. 1693 */ 1694 #if !defined(__amd64) 1695 if (x86_type == X86_TYPE_P5) { 1696 gate_desc_t *newidt; 1697 desctbr_t newidt_r; 1698 1699 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1700 panic("failed to install pentium_pftrap"); 1701 1702 bcopy(idt0, newidt, sizeof (idt0)); 1703 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1704 KCS_SEL, 0, SDT_SYSIGT, SEL_KPL); 1705 1706 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1707 PROT_READ|PROT_EXEC); 1708 1709 newidt_r.dtr_limit = sizeof (idt0) - 1; 1710 newidt_r.dtr_base = (uintptr_t)newidt; 1711 CPU->cpu_idt = newidt; 1712 wr_idtr(&newidt_r); 1713 } 1714 #endif /* !__amd64 */ 1715 1716 /* 1717 * Map page pfn=0 for drivers, such as kd, that need to pick up 1718 * parameters left there by controllers/BIOS. 1719 */ 1720 PRM_POINT("setup up p0_va"); 1721 p0_va = i86devmap(0, 1, PROT_READ); 1722 PRM_DEBUG(p0_va); 1723 1724 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1725 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1726 1727 /* 1728 * disable automatic large pages for small memory systems or 1729 * when the disable flag is set. 1730 */ 1731 if (!auto_lpg_disable && mmu.max_page_level > 0) { 1732 max_uheap_lpsize = LEVEL_SIZE(1); 1733 max_ustack_lpsize = LEVEL_SIZE(1); 1734 max_privmap_lpsize = LEVEL_SIZE(1); 1735 max_uidata_lpsize = LEVEL_SIZE(1); 1736 max_utext_lpsize = LEVEL_SIZE(1); 1737 max_shm_lpsize = LEVEL_SIZE(1); 1738 } 1739 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 1740 auto_lpg_disable) { 1741 use_brk_lpg = 0; 1742 use_stk_lpg = 0; 1743 } 1744 if (mmu.max_page_level > 0) { 1745 mcntl0_lpsize = LEVEL_SIZE(1); 1746 } 1747 1748 PRM_POINT("Calling hat_init_finish()..."); 1749 hat_init_finish(); 1750 PRM_POINT("hat_init_finish() done"); 1751 1752 /* 1753 * Initialize the segkp segment type. 1754 */ 1755 rw_enter(&kas.a_lock, RW_WRITER); 1756 if (!segkp_fromheap) { 1757 if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1758 segkp) < 0) { 1759 panic("startup: cannot attach segkp"); 1760 /*NOTREACHED*/ 1761 } 1762 } else { 1763 /* 1764 * For 32 bit x86 systems, we will have segkp under the heap. 1765 * There will not be a segkp segment. We do, however, need 1766 * to fill in the seg structure. 1767 */ 1768 segkp->s_as = &kas; 1769 } 1770 if (segkp_create(segkp) != 0) { 1771 panic("startup: segkp_create failed"); 1772 /*NOTREACHED*/ 1773 } 1774 PRM_DEBUG(segkp); 1775 rw_exit(&kas.a_lock); 1776 1777 /* 1778 * kpm segment 1779 */ 1780 segmap_kpm = 0; 1781 if (kpm_desired) { 1782 kpm_init(); 1783 kpm_enable = 1; 1784 vpm_enable = 1; 1785 } 1786 1787 /* 1788 * Now create segmap segment. 1789 */ 1790 rw_enter(&kas.a_lock, RW_WRITER); 1791 if (seg_attach(&kas, (caddr_t)segkmap_start, segmapsize, segkmap) < 0) { 1792 panic("cannot attach segkmap"); 1793 /*NOTREACHED*/ 1794 } 1795 PRM_DEBUG(segkmap); 1796 1797 /* 1798 * The 64 bit HAT permanently maps only segmap's page tables. 1799 * The 32 bit HAT maps the heap's page tables too. 1800 */ 1801 #if defined(__amd64) 1802 hat_kmap_init(segkmap_start, segmapsize); 1803 #else /* __i386 */ 1804 ASSERT(segkmap_start + segmapsize == (uintptr_t)final_kernelheap); 1805 hat_kmap_init(segkmap_start, (uintptr_t)ekernelheap - segkmap_start); 1806 #endif /* __i386 */ 1807 1808 a.prot = PROT_READ | PROT_WRITE; 1809 a.shmsize = 0; 1810 a.nfreelist = segmapfreelists; 1811 1812 if (segmap_create(segkmap, (caddr_t)&a) != 0) 1813 panic("segmap_create segkmap"); 1814 rw_exit(&kas.a_lock); 1815 1816 setup_vaddr_for_ppcopy(CPU); 1817 1818 segdev_init(); 1819 pmem_init(); 1820 PRM_POINT("startup_vm() done"); 1821 } 1822 1823 static void 1824 startup_end(void) 1825 { 1826 extern void setx86isalist(void); 1827 1828 PRM_POINT("startup_end() starting..."); 1829 1830 /* 1831 * Perform tasks that get done after most of the VM 1832 * initialization has been done but before the clock 1833 * and other devices get started. 1834 */ 1835 kern_setup1(); 1836 1837 /* 1838 * Perform CPC initialization for this CPU. 1839 */ 1840 kcpc_hw_init(CPU); 1841 1842 #if defined(__amd64) 1843 /* 1844 * Validate support for syscall/sysret 1845 * XX64 -- include SSE, SSE2, etc. here too? 1846 */ 1847 if ((x86_feature & X86_ASYSC) == 0) { 1848 cmn_err(CE_WARN, 1849 "cpu%d does not support syscall/sysret", CPU->cpu_id); 1850 } 1851 #endif 1852 1853 #if defined(OPTERON_WORKAROUND_6323525) 1854 if (opteron_workaround_6323525) 1855 patch_workaround_6323525(); 1856 #endif 1857 /* 1858 * Configure the system. 1859 */ 1860 PRM_POINT("Calling configure()..."); 1861 configure(); /* set up devices */ 1862 PRM_POINT("configure() done"); 1863 1864 /* 1865 * Set the isa_list string to the defined instruction sets we 1866 * support. 1867 */ 1868 setx86isalist(); 1869 cpu_intr_alloc(CPU, NINTR_THREADS); 1870 psm_install(); 1871 1872 /* 1873 * We're done with bootops. We don't unmap the bootstrap yet because 1874 * we're still using bootsvcs. 1875 */ 1876 PRM_POINT("zeroing out bootops"); 1877 *bootopsp = (struct bootops *)0; 1878 bootops = (struct bootops *)NULL; 1879 1880 PRM_POINT("Enabling interrupts"); 1881 (*picinitf)(); 1882 sti(); 1883 1884 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 1885 "softlevel1", NULL, NULL); /* XXX to be moved later */ 1886 1887 PRM_POINT("startup_end() done"); 1888 } 1889 1890 extern char hw_serial[]; 1891 char *_hs1107 = hw_serial; 1892 ulong_t _bdhs34; 1893 1894 void 1895 post_startup(void) 1896 { 1897 /* 1898 * Set the system wide, processor-specific flags to be passed 1899 * to userland via the aux vector for performance hints and 1900 * instruction set extensions. 1901 */ 1902 bind_hwcap(); 1903 1904 /* 1905 * Load the System Management BIOS into the global ksmbios handle, 1906 * if an SMBIOS is present on this system. 1907 */ 1908 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1909 1910 /* 1911 * Startup memory scrubber. 1912 */ 1913 memscrub_init(); 1914 1915 /* 1916 * Complete CPU module initialization 1917 */ 1918 cmi_post_init(); 1919 1920 /* 1921 * Perform forceloading tasks for /etc/system. 1922 */ 1923 (void) mod_sysctl(SYS_FORCELOAD, NULL); 1924 1925 /* 1926 * ON4.0: Force /proc module in until clock interrupt handle fixed 1927 * ON4.0: This must be fixed or restated in /etc/systems. 1928 */ 1929 (void) modload("fs", "procfs"); 1930 1931 #if defined(__i386) 1932 /* 1933 * Check for required functional Floating Point hardware, 1934 * unless FP hardware explicitly disabled. 1935 */ 1936 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 1937 halt("No working FP hardware found"); 1938 #endif 1939 1940 maxmem = freemem; 1941 1942 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 1943 1944 /* 1945 * Perform the formal initialization of the boot chip, 1946 * and associate the boot cpu with it. 1947 * This must be done after the cpu node for CPU has been 1948 * added to the device tree, when the necessary probing to 1949 * know the chip type and chip "id" is performed. 1950 */ 1951 chip_cpu_init(CPU); 1952 chip_cpu_assign(CPU); 1953 } 1954 1955 static int 1956 pp_in_ramdisk(page_t *pp) 1957 { 1958 extern uint64_t ramdisk_start, ramdisk_end; 1959 1960 return ((pp->p_pagenum >= btop(ramdisk_start)) && 1961 (pp->p_pagenum < btopr(ramdisk_end))); 1962 } 1963 1964 void 1965 release_bootstrap(void) 1966 { 1967 int root_is_ramdisk; 1968 pfn_t pfn; 1969 page_t *pp; 1970 extern void kobj_boot_unmountroot(void); 1971 extern dev_t rootdev; 1972 1973 /* unmount boot ramdisk and release kmem usage */ 1974 kobj_boot_unmountroot(); 1975 1976 /* 1977 * We're finished using the boot loader so free its pages. 1978 */ 1979 PRM_POINT("Unmapping lower boot pages"); 1980 clear_boot_mappings(0, kernelbase); 1981 #if defined(__amd64) 1982 PRM_POINT("Unmapping upper boot pages"); 1983 clear_boot_mappings(BOOT_DOUBLEMAP_BASE, 1984 BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); 1985 #endif 1986 1987 /* 1988 * If root isn't on ramdisk, destroy the hardcoded 1989 * ramdisk node now and release the memory. Else, 1990 * ramdisk memory is kept in rd_pages. 1991 */ 1992 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 1993 if (!root_is_ramdisk) { 1994 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 1995 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 1996 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 1997 (void) ddi_remove_child(dip, 0); 1998 } 1999 2000 PRM_POINT("Releasing boot pages"); 2001 while (bootpages) { 2002 pp = bootpages; 2003 bootpages = pp->p_next; 2004 if (root_is_ramdisk && pp_in_ramdisk(pp)) { 2005 pp->p_next = rd_pages; 2006 rd_pages = pp; 2007 continue; 2008 } 2009 pp->p_next = (struct page *)0; 2010 page_free(pp, 1); 2011 } 2012 2013 /* 2014 * Find 1 page below 1 MB so that other processors can boot up. 2015 * Make sure it has a kernel VA as well as a 1:1 mapping. 2016 * We should have just free'd one up. 2017 */ 2018 if (use_mp) { 2019 for (pfn = 1; pfn < btop(1*1024*1024); pfn++) { 2020 if (page_numtopp_alloc(pfn) == NULL) 2021 continue; 2022 rm_platter_va = i86devmap(pfn, 1, 2023 PROT_READ | PROT_WRITE | PROT_EXEC); 2024 rm_platter_pa = ptob(pfn); 2025 hat_devload(kas.a_hat, 2026 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2027 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2028 HAT_LOAD_NOCONSIST); 2029 break; 2030 } 2031 if (pfn == btop(1*1024*1024)) 2032 panic("No page available for starting " 2033 "other processors"); 2034 } 2035 2036 #if defined(__amd64) 2037 PRM_POINT("Returning boot's VA space to kernel heap"); 2038 if (kmem_setaside != NULL) 2039 vmem_free(heap_arena, kmem_setaside, BOOT_DOUBLEMAP_SIZE); 2040 #endif 2041 } 2042 2043 /* 2044 * Initialize the platform-specific parts of a page_t. 2045 */ 2046 void 2047 add_physmem_cb(page_t *pp, pfn_t pnum) 2048 { 2049 pp->p_pagenum = pnum; 2050 pp->p_mapping = NULL; 2051 pp->p_embed = 0; 2052 pp->p_share = 0; 2053 pp->p_mlentry = 0; 2054 } 2055 2056 /* 2057 * kphysm_init() initializes physical memory. 2058 */ 2059 static pgcnt_t 2060 kphysm_init( 2061 page_t *inpp, 2062 struct memseg *memsegp, 2063 pgcnt_t start, 2064 pgcnt_t npages) 2065 { 2066 struct memlist *pmem; 2067 struct memseg *cur_memseg; 2068 struct memseg **memsegpp; 2069 pfn_t base_pfn; 2070 pgcnt_t num; 2071 pgcnt_t total_skipped = 0; 2072 pgcnt_t skipping = 0; 2073 pgcnt_t pages_done = 0; 2074 pgcnt_t largepgcnt; 2075 uint64_t addr; 2076 uint64_t size; 2077 page_t *pp = inpp; 2078 int dobreak = 0; 2079 extern pfn_t ddiphysmin; 2080 2081 ASSERT(page_hash != NULL && page_hashsz != 0); 2082 2083 for (cur_memseg = memsegp; cur_memseg->pages != NULL; cur_memseg++); 2084 ASSERT(cur_memseg == memsegp || start > 0); 2085 2086 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2087 /* 2088 * In a 32 bit kernel can't use higher memory if we're 2089 * not booting in PAE mode. This check takes care of that. 2090 */ 2091 addr = pmem->address; 2092 size = pmem->size; 2093 if (btop(addr) > physmax) 2094 continue; 2095 2096 /* 2097 * align addr and size - they may not be at page boundaries 2098 */ 2099 if ((addr & MMU_PAGEOFFSET) != 0) { 2100 addr += MMU_PAGEOFFSET; 2101 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2102 size -= addr - pmem->address; 2103 } 2104 2105 /* only process pages below or equal to physmax */ 2106 if ((btop(addr + size) - 1) > physmax) 2107 size = ptob(physmax - btop(addr) + 1); 2108 2109 num = btop(size); 2110 if (num == 0) 2111 continue; 2112 2113 if (total_skipped < start) { 2114 if (start - total_skipped > num) { 2115 total_skipped += num; 2116 continue; 2117 } 2118 skipping = start - total_skipped; 2119 num -= skipping; 2120 addr += (MMU_PAGESIZE * skipping); 2121 total_skipped = start; 2122 } 2123 if (num == 0) 2124 continue; 2125 2126 if (num > npages) 2127 num = npages; 2128 2129 npages -= num; 2130 pages_done += num; 2131 base_pfn = btop(addr); 2132 2133 /* 2134 * If the caller didn't provide space for the page 2135 * structures, carve them out of the memseg they will 2136 * represent. 2137 */ 2138 if (pp == NULL) { 2139 pgcnt_t pp_pgs; 2140 2141 if (num <= 1) 2142 continue; 2143 2144 /* 2145 * Compute how many of the pages we need to use for 2146 * page_ts 2147 */ 2148 pp_pgs = (num * sizeof (page_t)) / MMU_PAGESIZE + 1; 2149 while (mmu_ptob(pp_pgs - 1) / sizeof (page_t) >= 2150 num - pp_pgs + 1) 2151 --pp_pgs; 2152 PRM_DEBUG(pp_pgs); 2153 2154 pp = vmem_alloc(heap_arena, mmu_ptob(pp_pgs), 2155 VM_NOSLEEP); 2156 if (pp == NULL) { 2157 cmn_err(CE_WARN, "Unable to add %ld pages to " 2158 "the system.", num); 2159 continue; 2160 } 2161 2162 hat_devload(kas.a_hat, (void *)pp, mmu_ptob(pp_pgs), 2163 base_pfn, PROT_READ | PROT_WRITE | HAT_UNORDERED_OK, 2164 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 2165 bzero(pp, mmu_ptob(pp_pgs)); 2166 num -= pp_pgs; 2167 base_pfn += pp_pgs; 2168 } 2169 2170 if (prom_debug) 2171 prom_printf("MEMSEG addr=0x%" PRIx64 2172 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2173 addr, num, base_pfn, base_pfn + num); 2174 2175 /* 2176 * drop pages below ddiphysmin to simplify ddi memory 2177 * allocation with non-zero addr_lo requests. 2178 */ 2179 if (base_pfn < ddiphysmin) { 2180 if (base_pfn + num <= ddiphysmin) { 2181 /* drop entire range below ddiphysmin */ 2182 continue; 2183 } 2184 /* adjust range to ddiphysmin */ 2185 pp += (ddiphysmin - base_pfn); 2186 num -= (ddiphysmin - base_pfn); 2187 base_pfn = ddiphysmin; 2188 } 2189 /* 2190 * Build the memsegs entry 2191 */ 2192 cur_memseg->pages = pp; 2193 cur_memseg->epages = pp + num; 2194 cur_memseg->pages_base = base_pfn; 2195 cur_memseg->pages_end = base_pfn + num; 2196 2197 /* 2198 * insert in memseg list in decreasing pfn range order. 2199 * Low memory is typically more fragmented such that this 2200 * ordering keeps the larger ranges at the front of the list 2201 * for code that searches memseg. 2202 */ 2203 memsegpp = &memsegs; 2204 for (;;) { 2205 if (*memsegpp == NULL) { 2206 /* empty memsegs */ 2207 memsegs = cur_memseg; 2208 break; 2209 } 2210 /* check for continuity with start of memsegpp */ 2211 if (cur_memseg->pages_end == (*memsegpp)->pages_base) { 2212 if (cur_memseg->epages == (*memsegpp)->pages) { 2213 /* 2214 * contiguous pfn and page_t's. Merge 2215 * cur_memseg into *memsegpp. Drop 2216 * cur_memseg 2217 */ 2218 (*memsegpp)->pages_base = 2219 cur_memseg->pages_base; 2220 (*memsegpp)->pages = 2221 cur_memseg->pages; 2222 /* 2223 * check if contiguous with the end of 2224 * the next memseg. 2225 */ 2226 if ((*memsegpp)->next && 2227 ((*memsegpp)->pages_base == 2228 (*memsegpp)->next->pages_end)) { 2229 cur_memseg = *memsegpp; 2230 memsegpp = &((*memsegpp)->next); 2231 dobreak = 1; 2232 } else { 2233 break; 2234 } 2235 } else { 2236 /* 2237 * contiguous pfn but not page_t's. 2238 * drop last pfn/page_t in cur_memseg 2239 * to prevent creation of large pages 2240 * with noncontiguous page_t's if not 2241 * aligned to largest page boundary. 2242 */ 2243 largepgcnt = page_get_pagecnt( 2244 page_num_pagesizes() - 1); 2245 2246 if (cur_memseg->pages_end & 2247 (largepgcnt - 1)) { 2248 num--; 2249 cur_memseg->epages--; 2250 cur_memseg->pages_end--; 2251 } 2252 } 2253 } 2254 2255 /* check for continuity with end of memsegpp */ 2256 if (cur_memseg->pages_base == (*memsegpp)->pages_end) { 2257 if (cur_memseg->pages == (*memsegpp)->epages) { 2258 /* 2259 * contiguous pfn and page_t's. Merge 2260 * cur_memseg into *memsegpp. Drop 2261 * cur_memseg. 2262 */ 2263 if (dobreak) { 2264 /* merge previously done */ 2265 cur_memseg->pages = 2266 (*memsegpp)->pages; 2267 cur_memseg->pages_base = 2268 (*memsegpp)->pages_base; 2269 cur_memseg->next = 2270 (*memsegpp)->next; 2271 } else { 2272 (*memsegpp)->pages_end = 2273 cur_memseg->pages_end; 2274 (*memsegpp)->epages = 2275 cur_memseg->epages; 2276 } 2277 break; 2278 } 2279 /* 2280 * contiguous pfn but not page_t's. 2281 * drop first pfn/page_t in cur_memseg 2282 * to prevent creation of large pages 2283 * with noncontiguous page_t's if not 2284 * aligned to largest page boundary. 2285 */ 2286 largepgcnt = page_get_pagecnt( 2287 page_num_pagesizes() - 1); 2288 if (base_pfn & (largepgcnt - 1)) { 2289 num--; 2290 base_pfn++; 2291 cur_memseg->pages++; 2292 cur_memseg->pages_base++; 2293 pp = cur_memseg->pages; 2294 } 2295 if (dobreak) 2296 break; 2297 } 2298 2299 if (cur_memseg->pages_base >= 2300 (*memsegpp)->pages_end) { 2301 cur_memseg->next = *memsegpp; 2302 *memsegpp = cur_memseg; 2303 break; 2304 } 2305 if ((*memsegpp)->next == NULL) { 2306 cur_memseg->next = NULL; 2307 (*memsegpp)->next = cur_memseg; 2308 break; 2309 } 2310 memsegpp = &((*memsegpp)->next); 2311 ASSERT(*memsegpp != NULL); 2312 } 2313 2314 /* 2315 * add_physmem() initializes the PSM part of the page 2316 * struct by calling the PSM back with add_physmem_cb(). 2317 * In addition it coalesces pages into larger pages as 2318 * it initializes them. 2319 */ 2320 add_physmem(pp, num, base_pfn); 2321 cur_memseg++; 2322 availrmem_initial += num; 2323 availrmem += num; 2324 2325 /* 2326 * If the caller provided the page frames to us, then 2327 * advance in that list. Otherwise, prepare to allocate 2328 * our own page frames for the next memseg. 2329 */ 2330 pp = (inpp == NULL) ? NULL : pp + num; 2331 } 2332 2333 PRM_DEBUG(availrmem_initial); 2334 PRM_DEBUG(availrmem); 2335 PRM_DEBUG(freemem); 2336 build_pfn_hash(); 2337 return (pages_done); 2338 } 2339 2340 /* 2341 * Kernel VM initialization. 2342 */ 2343 static void 2344 kvm_init(void) 2345 { 2346 #ifdef DEBUG 2347 extern void _start(); 2348 2349 ASSERT((caddr_t)_start == s_text); 2350 #endif 2351 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2352 2353 /* 2354 * Put the kernel segments in kernel address space. 2355 */ 2356 rw_enter(&kas.a_lock, RW_WRITER); 2357 as_avlinit(&kas); 2358 2359 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2360 (void) segkmem_create(&ktextseg); 2361 2362 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2363 (void) segkmem_create(&kvalloc); 2364 2365 /* 2366 * We're about to map out /boot. This is the beginning of the 2367 * system resource management transition. We can no longer 2368 * call into /boot for I/O or memory allocations. 2369 * 2370 * XX64 - Is this still correct with kernelheap_extend() being called 2371 * later than this???? 2372 */ 2373 (void) seg_attach(&kas, final_kernelheap, 2374 ekernelheap - final_kernelheap, &kvseg); 2375 (void) segkmem_create(&kvseg); 2376 2377 #if defined(__amd64) 2378 (void) seg_attach(&kas, (caddr_t)core_base, core_size, &kvseg_core); 2379 (void) segkmem_create(&kvseg_core); 2380 #endif 2381 2382 (void) seg_attach(&kas, (caddr_t)SEGDEBUGBASE, (size_t)SEGDEBUGSIZE, 2383 &kdebugseg); 2384 (void) segkmem_create(&kdebugseg); 2385 2386 rw_exit(&kas.a_lock); 2387 2388 /* 2389 * Ensure that the red zone at kernelbase is never accessible. 2390 */ 2391 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2392 2393 /* 2394 * Make the text writable so that it can be hot patched by DTrace. 2395 */ 2396 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2397 PROT_READ | PROT_WRITE | PROT_EXEC); 2398 2399 /* 2400 * Make data writable until end. 2401 */ 2402 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2403 PROT_READ | PROT_WRITE | PROT_EXEC); 2404 } 2405 2406 /* 2407 * These are MTTR registers supported by P6 2408 */ 2409 static struct mtrrvar mtrrphys_arr[MAX_MTRRVAR]; 2410 static uint64_t mtrr64k, mtrr16k1, mtrr16k2; 2411 static uint64_t mtrr4k1, mtrr4k2, mtrr4k3; 2412 static uint64_t mtrr4k4, mtrr4k5, mtrr4k6; 2413 static uint64_t mtrr4k7, mtrr4k8, mtrrcap; 2414 uint64_t mtrrdef, pat_attr_reg; 2415 2416 /* 2417 * Disable reprogramming of MTRRs by default. 2418 */ 2419 int enable_relaxed_mtrr = 0; 2420 2421 void 2422 setup_mtrr(void) 2423 { 2424 int i, ecx; 2425 int vcnt; 2426 struct mtrrvar *mtrrphys; 2427 2428 if (!(x86_feature & X86_MTRR)) 2429 return; 2430 2431 mtrrcap = rdmsr(REG_MTRRCAP); 2432 mtrrdef = rdmsr(REG_MTRRDEF); 2433 if (mtrrcap & MTRRCAP_FIX) { 2434 mtrr64k = rdmsr(REG_MTRR64K); 2435 mtrr16k1 = rdmsr(REG_MTRR16K1); 2436 mtrr16k2 = rdmsr(REG_MTRR16K2); 2437 mtrr4k1 = rdmsr(REG_MTRR4K1); 2438 mtrr4k2 = rdmsr(REG_MTRR4K2); 2439 mtrr4k3 = rdmsr(REG_MTRR4K3); 2440 mtrr4k4 = rdmsr(REG_MTRR4K4); 2441 mtrr4k5 = rdmsr(REG_MTRR4K5); 2442 mtrr4k6 = rdmsr(REG_MTRR4K6); 2443 mtrr4k7 = rdmsr(REG_MTRR4K7); 2444 mtrr4k8 = rdmsr(REG_MTRR4K8); 2445 } 2446 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2447 vcnt = MAX_MTRRVAR; 2448 2449 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2450 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2451 mtrrphys->mtrrphys_base = rdmsr(ecx); 2452 mtrrphys->mtrrphys_mask = rdmsr(ecx + 1); 2453 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2454 mtrrphys->mtrrphys_mask &= ~MTRRPHYSMASK_V; 2455 } 2456 } 2457 if (x86_feature & X86_PAT) { 2458 if (enable_relaxed_mtrr) 2459 mtrrdef = MTRR_TYPE_WB|MTRRDEF_FE|MTRRDEF_E; 2460 pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2461 } 2462 2463 mtrr_sync(); 2464 } 2465 2466 /* 2467 * Sync current cpu mtrr with the incore copy of mtrr. 2468 * This function has to be invoked with interrupts disabled 2469 * Currently we do not capture other cpu's. This is invoked on cpu0 2470 * just after reading /etc/system. 2471 * On other cpu's its invoked from mp_startup(). 2472 */ 2473 void 2474 mtrr_sync(void) 2475 { 2476 uint_t crvalue, cr0_orig; 2477 int vcnt, i, ecx; 2478 struct mtrrvar *mtrrphys; 2479 2480 cr0_orig = crvalue = getcr0(); 2481 crvalue |= CR0_CD; 2482 crvalue &= ~CR0_NW; 2483 setcr0(crvalue); 2484 invalidate_cache(); 2485 setcr3(getcr3()); 2486 2487 if (x86_feature & X86_PAT) 2488 wrmsr(REG_MTRRPAT, pat_attr_reg); 2489 2490 wrmsr(REG_MTRRDEF, rdmsr(REG_MTRRDEF) & 2491 ~((uint64_t)(uintptr_t)MTRRDEF_E)); 2492 2493 if (mtrrcap & MTRRCAP_FIX) { 2494 wrmsr(REG_MTRR64K, mtrr64k); 2495 wrmsr(REG_MTRR16K1, mtrr16k1); 2496 wrmsr(REG_MTRR16K2, mtrr16k2); 2497 wrmsr(REG_MTRR4K1, mtrr4k1); 2498 wrmsr(REG_MTRR4K2, mtrr4k2); 2499 wrmsr(REG_MTRR4K3, mtrr4k3); 2500 wrmsr(REG_MTRR4K4, mtrr4k4); 2501 wrmsr(REG_MTRR4K5, mtrr4k5); 2502 wrmsr(REG_MTRR4K6, mtrr4k6); 2503 wrmsr(REG_MTRR4K7, mtrr4k7); 2504 wrmsr(REG_MTRR4K8, mtrr4k8); 2505 } 2506 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2507 vcnt = MAX_MTRRVAR; 2508 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2509 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2510 wrmsr(ecx, mtrrphys->mtrrphys_base); 2511 wrmsr(ecx + 1, mtrrphys->mtrrphys_mask); 2512 } 2513 wrmsr(REG_MTRRDEF, mtrrdef); 2514 setcr3(getcr3()); 2515 invalidate_cache(); 2516 setcr0(cr0_orig); 2517 } 2518 2519 /* 2520 * resync mtrr so that BIOS is happy. Called from mdboot 2521 */ 2522 void 2523 mtrr_resync(void) 2524 { 2525 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2526 /* 2527 * We could have changed the default mtrr definition. 2528 * Put it back to uncached which is what it is at power on 2529 */ 2530 mtrrdef = MTRR_TYPE_UC|MTRRDEF_FE|MTRRDEF_E; 2531 mtrr_sync(); 2532 } 2533 } 2534 2535 void 2536 get_system_configuration(void) 2537 { 2538 char prop[32]; 2539 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2540 2541 if (((BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop)) || 2542 (BOP_GETPROP(bootops, "nodes", prop) < 0) || 2543 (kobj_getvalue(prop, &nodes_ll) == -1) || 2544 (nodes_ll > MAXNODES)) || 2545 ((BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop)) || 2546 (BOP_GETPROP(bootops, "cpus_pernode", prop) < 0) || 2547 (kobj_getvalue(prop, &cpus_pernode_ll) == -1))) { 2548 2549 system_hardware.hd_nodes = 1; 2550 system_hardware.hd_cpus_per_node = 0; 2551 } else { 2552 system_hardware.hd_nodes = (int)nodes_ll; 2553 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2554 } 2555 if ((BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop)) || 2556 (BOP_GETPROP(bootops, "kernelbase", prop) < 0) || 2557 (kobj_getvalue(prop, &lvalue) == -1)) 2558 eprom_kernelbase = NULL; 2559 else 2560 eprom_kernelbase = (uintptr_t)lvalue; 2561 2562 if ((BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop)) || 2563 (BOP_GETPROP(bootops, "segmapsize", prop) < 0) || 2564 (kobj_getvalue(prop, &lvalue) == -1)) { 2565 segmapsize = SEGMAPDEFAULT; 2566 } else { 2567 segmapsize = (uintptr_t)lvalue; 2568 } 2569 2570 if ((BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop)) || 2571 (BOP_GETPROP(bootops, "segmapfreelists", prop) < 0) || 2572 (kobj_getvalue(prop, &lvalue) == -1)) { 2573 segmapfreelists = 0; /* use segmap driver default */ 2574 } else { 2575 segmapfreelists = (int)lvalue; 2576 } 2577 2578 if ((BOP_GETPROPLEN(bootops, "physmem") <= sizeof (prop)) && 2579 (BOP_GETPROP(bootops, "physmem", prop) >= 0) && 2580 (kobj_getvalue(prop, &lvalue) != -1)) { 2581 physmem = (uintptr_t)lvalue; 2582 } 2583 } 2584 2585 /* 2586 * Add to a memory list. 2587 * start = start of new memory segment 2588 * len = length of new memory segment in bytes 2589 * new = pointer to a new struct memlist 2590 * memlistp = memory list to which to add segment. 2591 */ 2592 static void 2593 memlist_add( 2594 uint64_t start, 2595 uint64_t len, 2596 struct memlist *new, 2597 struct memlist **memlistp) 2598 { 2599 struct memlist *cur; 2600 uint64_t end = start + len; 2601 2602 new->address = start; 2603 new->size = len; 2604 2605 cur = *memlistp; 2606 2607 while (cur) { 2608 if (cur->address >= end) { 2609 new->next = cur; 2610 *memlistp = new; 2611 new->prev = cur->prev; 2612 cur->prev = new; 2613 return; 2614 } 2615 ASSERT(cur->address + cur->size <= start); 2616 if (cur->next == NULL) { 2617 cur->next = new; 2618 new->prev = cur; 2619 new->next = NULL; 2620 return; 2621 } 2622 memlistp = &cur->next; 2623 cur = cur->next; 2624 } 2625 } 2626 2627 void 2628 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2629 { 2630 size_t tsize = e_modtext - modtext; 2631 size_t dsize = e_moddata - moddata; 2632 2633 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2634 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2635 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2636 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2637 } 2638 2639 caddr_t 2640 kobj_text_alloc(vmem_t *arena, size_t size) 2641 { 2642 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2643 } 2644 2645 /*ARGSUSED*/ 2646 caddr_t 2647 kobj_texthole_alloc(caddr_t addr, size_t size) 2648 { 2649 panic("unexpected call to kobj_texthole_alloc()"); 2650 /*NOTREACHED*/ 2651 return (0); 2652 } 2653 2654 /*ARGSUSED*/ 2655 void 2656 kobj_texthole_free(caddr_t addr, size_t size) 2657 { 2658 panic("unexpected call to kobj_texthole_free()"); 2659 } 2660 2661 /* 2662 * This is called just after configure() in startup(). 2663 * 2664 * The ISALIST concept is a bit hopeless on Intel, because 2665 * there's no guarantee of an ever-more-capable processor 2666 * given that various parts of the instruction set may appear 2667 * and disappear between different implementations. 2668 * 2669 * While it would be possible to correct it and even enhance 2670 * it somewhat, the explicit hardware capability bitmask allows 2671 * more flexibility. 2672 * 2673 * So, we just leave this alone. 2674 */ 2675 void 2676 setx86isalist(void) 2677 { 2678 char *tp; 2679 size_t len; 2680 extern char *isa_list; 2681 2682 #define TBUFSIZE 1024 2683 2684 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2685 *tp = '\0'; 2686 2687 #if defined(__amd64) 2688 (void) strcpy(tp, "amd64 "); 2689 #endif 2690 2691 switch (x86_vendor) { 2692 case X86_VENDOR_Intel: 2693 case X86_VENDOR_AMD: 2694 case X86_VENDOR_TM: 2695 if (x86_feature & X86_CMOV) { 2696 /* 2697 * Pentium Pro or later 2698 */ 2699 (void) strcat(tp, "pentium_pro"); 2700 (void) strcat(tp, x86_feature & X86_MMX ? 2701 "+mmx pentium_pro " : " "); 2702 } 2703 /*FALLTHROUGH*/ 2704 case X86_VENDOR_Cyrix: 2705 /* 2706 * The Cyrix 6x86 does not have any Pentium features 2707 * accessible while not at privilege level 0. 2708 */ 2709 if (x86_feature & X86_CPUID) { 2710 (void) strcat(tp, "pentium"); 2711 (void) strcat(tp, x86_feature & X86_MMX ? 2712 "+mmx pentium " : " "); 2713 } 2714 break; 2715 default: 2716 break; 2717 } 2718 (void) strcat(tp, "i486 i386 i86"); 2719 len = strlen(tp) + 1; /* account for NULL at end of string */ 2720 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2721 kmem_free(tp, TBUFSIZE); 2722 2723 #undef TBUFSIZE 2724 } 2725 2726 2727 #ifdef __amd64 2728 2729 void * 2730 device_arena_alloc(size_t size, int vm_flag) 2731 { 2732 return (vmem_alloc(device_arena, size, vm_flag)); 2733 } 2734 2735 void 2736 device_arena_free(void *vaddr, size_t size) 2737 { 2738 vmem_free(device_arena, vaddr, size); 2739 } 2740 2741 #else 2742 2743 void * 2744 device_arena_alloc(size_t size, int vm_flag) 2745 { 2746 caddr_t vaddr; 2747 uintptr_t v; 2748 size_t start; 2749 size_t end; 2750 2751 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2752 if (vaddr == NULL) 2753 return (NULL); 2754 2755 v = (uintptr_t)vaddr; 2756 ASSERT(v >= kernelbase); 2757 ASSERT(v + size <= ptable_va); 2758 2759 start = btop(v - kernelbase); 2760 end = btop(v + size - 1 - kernelbase); 2761 ASSERT(start < toxic_bit_map_len); 2762 ASSERT(end < toxic_bit_map_len); 2763 2764 while (start <= end) { 2765 BT_ATOMIC_SET(toxic_bit_map, start); 2766 ++start; 2767 } 2768 return (vaddr); 2769 } 2770 2771 void 2772 device_arena_free(void *vaddr, size_t size) 2773 { 2774 uintptr_t v = (uintptr_t)vaddr; 2775 size_t start; 2776 size_t end; 2777 2778 ASSERT(v >= kernelbase); 2779 ASSERT(v + size <= ptable_va); 2780 2781 start = btop(v - kernelbase); 2782 end = btop(v + size - 1 - kernelbase); 2783 ASSERT(start < toxic_bit_map_len); 2784 ASSERT(end < toxic_bit_map_len); 2785 2786 while (start <= end) { 2787 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2788 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2789 ++start; 2790 } 2791 vmem_free(heap_arena, vaddr, size); 2792 } 2793 2794 /* 2795 * returns 1st address in range that is in device arena, or NULL 2796 * if len is not NULL it returns the length of the toxic range 2797 */ 2798 void * 2799 device_arena_contains(void *vaddr, size_t size, size_t *len) 2800 { 2801 uintptr_t v = (uintptr_t)vaddr; 2802 uintptr_t eaddr = v + size; 2803 size_t start; 2804 size_t end; 2805 2806 /* 2807 * if called very early by kmdb, just return NULL 2808 */ 2809 if (toxic_bit_map == NULL) 2810 return (NULL); 2811 2812 /* 2813 * First check if we're completely outside the bitmap range. 2814 */ 2815 if (v >= ptable_va || eaddr < kernelbase) 2816 return (NULL); 2817 2818 /* 2819 * Trim ends of search to look at only what the bitmap covers. 2820 */ 2821 if (v < kernelbase) 2822 v = kernelbase; 2823 start = btop(v - kernelbase); 2824 end = btop(eaddr - kernelbase); 2825 if (end >= toxic_bit_map_len) 2826 end = toxic_bit_map_len; 2827 2828 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2829 return (NULL); 2830 2831 v = kernelbase + ptob(start); 2832 if (len != NULL) 2833 *len = ptob(end - start); 2834 return ((void *)v); 2835 } 2836 2837 #endif 2838