1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/systm.h> 35 #include <sys/user.h> 36 #include <sys/mman.h> 37 #include <sys/vm.h> 38 #include <sys/conf.h> 39 #include <sys/avintr.h> 40 #include <sys/autoconf.h> 41 #include <sys/disp.h> 42 #include <sys/class.h> 43 #include <sys/bitmap.h> 44 45 #include <sys/privregs.h> 46 47 #include <sys/proc.h> 48 #include <sys/buf.h> 49 #include <sys/kmem.h> 50 #include <sys/kstat.h> 51 52 #include <sys/reboot.h> 53 #include <sys/uadmin.h> 54 55 #include <sys/cred.h> 56 #include <sys/vnode.h> 57 #include <sys/file.h> 58 59 #include <sys/procfs.h> 60 #include <sys/acct.h> 61 62 #include <sys/vfs.h> 63 #include <sys/dnlc.h> 64 #include <sys/var.h> 65 #include <sys/cmn_err.h> 66 #include <sys/utsname.h> 67 #include <sys/debug.h> 68 #include <sys/kdi.h> 69 70 #include <sys/dumphdr.h> 71 #include <sys/bootconf.h> 72 #include <sys/varargs.h> 73 #include <sys/promif.h> 74 #include <sys/prom_emul.h> /* for create_prom_prop */ 75 #include <sys/modctl.h> /* for "procfs" hack */ 76 77 #include <sys/consdev.h> 78 #include <sys/frame.h> 79 80 #include <sys/sunddi.h> 81 #include <sys/sunndi.h> 82 #include <sys/ndi_impldefs.h> 83 #include <sys/ddidmareq.h> 84 #include <sys/psw.h> 85 #include <sys/regset.h> 86 #include <sys/clock.h> 87 #include <sys/pte.h> 88 #include <sys/mmu.h> 89 #include <sys/tss.h> 90 #include <sys/stack.h> 91 #include <sys/trap.h> 92 #include <sys/pic.h> 93 #include <sys/fp.h> 94 #include <vm/anon.h> 95 #include <vm/as.h> 96 #include <vm/page.h> 97 #include <vm/seg.h> 98 #include <vm/seg_dev.h> 99 #include <vm/seg_kmem.h> 100 #include <vm/seg_kpm.h> 101 #include <vm/seg_map.h> 102 #include <vm/seg_vn.h> 103 #include <vm/seg_kp.h> 104 #include <sys/memnode.h> 105 #include <vm/vm_dep.h> 106 #include <sys/swap.h> 107 #include <sys/thread.h> 108 #include <sys/sysconf.h> 109 #include <sys/vm_machparam.h> 110 #include <sys/archsystm.h> 111 #include <sys/machsystm.h> 112 #include <vm/hat.h> 113 #include <vm/hat_i86.h> 114 #include <sys/pmem.h> 115 #include <sys/instance.h> 116 #include <sys/smp_impldefs.h> 117 #include <sys/x86_archext.h> 118 #include <sys/segments.h> 119 #include <sys/clconf.h> 120 #include <sys/kobj.h> 121 #include <sys/kobj_lex.h> 122 #include <sys/prom_emul.h> 123 #include <sys/cpc_impl.h> 124 #include <sys/chip.h> 125 #include <sys/x86_archext.h> 126 #include <sys/smbios.h> 127 128 extern void progressbar_init(void); 129 extern void progressbar_start(void); 130 131 /* 132 * XXX make declaration below "static" when drivers no longer use this 133 * interface. 134 */ 135 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 136 137 /* 138 * segkp 139 */ 140 extern int segkp_fromheap; 141 142 static void kvm_init(void); 143 static void startup_init(void); 144 static void startup_memlist(void); 145 static void startup_modules(void); 146 static void startup_bop_gone(void); 147 static void startup_vm(void); 148 static void startup_end(void); 149 150 /* 151 * Declare these as initialized data so we can patch them. 152 */ 153 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */ 154 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 155 156 char *kobj_file_buf; 157 int kobj_file_bufsize; /* set in /etc/system */ 158 159 /* Global variables for MP support. Used in mp_startup */ 160 caddr_t rm_platter_va; 161 uint32_t rm_platter_pa; 162 163 /* 164 * Some CPUs have holes in the middle of the 64-bit virtual address range. 165 */ 166 uintptr_t hole_start, hole_end; 167 168 /* 169 * kpm mapping window 170 */ 171 caddr_t kpm_vbase; 172 size_t kpm_size; 173 static int kpm_desired = 0; /* Do we want to try to use segkpm? */ 174 175 /* 176 * VA range that must be preserved for boot until we release all of its 177 * mappings. 178 */ 179 #if defined(__amd64) 180 static void *kmem_setaside; 181 #endif 182 183 /* 184 * Configuration parameters set at boot time. 185 */ 186 187 caddr_t econtig; /* end of first block of contiguous kernel */ 188 189 struct bootops *bootops = 0; /* passed in from boot */ 190 struct bootops **bootopsp; 191 struct boot_syscalls *sysp; /* passed in from boot */ 192 193 char bootblock_fstype[16]; 194 195 char kern_bootargs[OBP_MAXPATHLEN]; 196 197 /* 198 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 199 * depends on number of BOP_ALLOC calls made and requested size, memory size 200 * combination and whether boot.bin memory needs to be freed. 201 */ 202 #define POSS_NEW_FRAGMENTS 12 203 204 /* 205 * VM data structures 206 */ 207 long page_hashsz; /* Size of page hash table (power of two) */ 208 struct page *pp_base; /* Base of initial system page struct array */ 209 struct page **page_hash; /* Page hash table */ 210 struct seg ktextseg; /* Segment used for kernel executable image */ 211 struct seg kvalloc; /* Segment used for "valloc" mapping */ 212 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 213 struct seg kmapseg; /* Segment used for generic kernel mappings */ 214 struct seg kdebugseg; /* Segment used for the kernel debugger */ 215 216 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 217 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 218 219 #if defined(__amd64) 220 struct seg kvseg_core; /* Segment used for the core heap */ 221 struct seg kpmseg; /* Segment used for physical mapping */ 222 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 223 #else 224 struct seg *segkpm = NULL; /* Unused on IA32 */ 225 #endif 226 227 caddr_t segkp_base; /* Base address of segkp */ 228 #if defined(__amd64) 229 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 230 #else 231 pgcnt_t segkpsize = 0; 232 #endif 233 234 struct memseg *memseg_base; 235 struct vnode unused_pages_vp; 236 237 #define FOURGB 0x100000000LL 238 239 struct memlist *memlist; 240 241 caddr_t s_text; /* start of kernel text segment */ 242 caddr_t e_text; /* end of kernel text segment */ 243 caddr_t s_data; /* start of kernel data segment */ 244 caddr_t e_data; /* end of kernel data segment */ 245 caddr_t modtext; /* start of loadable module text reserved */ 246 caddr_t e_modtext; /* end of loadable module text reserved */ 247 caddr_t moddata; /* start of loadable module data reserved */ 248 caddr_t e_moddata; /* end of loadable module data reserved */ 249 250 struct memlist *phys_install; /* Total installed physical memory */ 251 struct memlist *phys_avail; /* Total available physical memory */ 252 253 static void memlist_add(uint64_t, uint64_t, struct memlist *, 254 struct memlist **); 255 256 /* 257 * kphysm_init returns the number of pages that were processed 258 */ 259 static pgcnt_t kphysm_init(page_t *, struct memseg *, pgcnt_t, pgcnt_t); 260 261 #define IO_PROP_SIZE 64 /* device property size */ 262 263 /* 264 * a couple useful roundup macros 265 */ 266 #define ROUND_UP_PAGE(x) \ 267 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 268 #define ROUND_UP_LPAGE(x) \ 269 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 270 #define ROUND_UP_4MEG(x) \ 271 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOURMB_PAGESIZE)) 272 #define ROUND_UP_TOPLEVEL(x) \ 273 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 274 275 /* 276 * 32-bit Kernel's Virtual memory layout. 277 * +-----------------------+ 278 * | psm 1-1 map | 279 * | exec args area | 280 * 0xFFC00000 -|-----------------------|- ARGSBASE 281 * | debugger | 282 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 283 * | Kernel Data | 284 * 0xFEC00000 -|-----------------------| 285 * | Kernel Text | 286 * 0xFE800000 -|-----------------------|- KERNEL_TEXT 287 * | LUFS sinkhole | 288 * 0xFE000000 -|-----------------------|- lufs_addr 289 * --- -|-----------------------|- valloc_base + valloc_sz 290 * | early pp structures | 291 * | memsegs, memlists, | 292 * | page hash, etc. | 293 * --- -|-----------------------|- valloc_base (floating) 294 * | ptable_va | 295 * 0xFDFFE000 -|-----------------------|- ekernelheap, ptable_va 296 * | | (segkp is an arena under the heap) 297 * | | 298 * | kvseg | 299 * | | 300 * | | 301 * --- -|-----------------------|- kernelheap (floating) 302 * | Segkmap | 303 * 0xC3002000 -|-----------------------|- segkmap_start (floating) 304 * | Red Zone | 305 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 306 * | | || 307 * | Shared objects | \/ 308 * | | 309 * : : 310 * | user data | 311 * |-----------------------| 312 * | user text | 313 * 0x08048000 -|-----------------------| 314 * | user stack | 315 * : : 316 * | invalid | 317 * 0x00000000 +-----------------------+ 318 * 319 * 320 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 321 * +-----------------------+ 322 * | psm 1-1 map | 323 * | exec args area | 324 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 325 * | debugger (?) | 326 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 327 * | unused | 328 * +-----------------------+ 329 * | Kernel Data | 330 * 0xFFFFFFFF.FBC00000 |-----------------------| 331 * | Kernel Text | 332 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 333 * | LUFS sinkhole | 334 * 0xFFFFFFFF.FB000000 -|-----------------------|- lufs_addr 335 * --- |-----------------------|- valloc_base + valloc_sz 336 * | early pp structures | 337 * | memsegs, memlists, | 338 * | page hash, etc. | 339 * --- |-----------------------|- valloc_base 340 * | ptable_va | 341 * --- |-----------------------|- ptable_va 342 * | Core heap | (used for loadable modules) 343 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 344 * | Kernel | 345 * | heap | 346 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 347 * | segkmap | 348 * 0xFFFFFXXX.XXX00000 |-----------------------|- segkmap_start (floating) 349 * | device mappings | 350 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 351 * | segkp | 352 * --- |-----------------------|- segkp_base 353 * | segkpm | 354 * 0xFFFFFE00.00000000 |-----------------------| 355 * | Red Zone | 356 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE 357 * | User stack |- User space memory 358 * | | 359 * | shared objects, etc | (grows downwards) 360 * : : 361 * | | 362 * 0xFFFF8000.00000000 |-----------------------| 363 * | | 364 * | VA Hole / unused | 365 * | | 366 * 0x00008000.00000000 |-----------------------| 367 * | | 368 * | | 369 * : : 370 * | user heap | (grows upwards) 371 * | | 372 * | user data | 373 * |-----------------------| 374 * | user text | 375 * 0x00000000.04000000 |-----------------------| 376 * | invalid | 377 * 0x00000000.00000000 +-----------------------+ 378 * 379 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 380 * kernel, except that userlimit is raised to 0xfe000000 381 * 382 * Floating values: 383 * 384 * valloc_base: start of the kernel's memory management/tracking data 385 * structures. This region contains page_t structures for the lowest 4GB 386 * of physical memory, memsegs, memlists, and the page hash. 387 * 388 * core_base: start of the kernel's "core" heap area on 64-bit systems. 389 * This area is intended to be used for global data as well as for module 390 * text/data that does not fit into the nucleus pages. The core heap is 391 * restricted to a 2GB range, allowing every address within it to be 392 * accessed using rip-relative addressing 393 * 394 * ekernelheap: end of kernelheap and start of segmap. 395 * 396 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 397 * above a red zone that separates the user's address space from the 398 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 399 * 400 * segkmap_start: start of segmap. The length of segmap can be modified 401 * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated). 402 * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems. 403 * 404 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 405 * decreased by 2X the size required for page_t. This allows the kernel 406 * heap to grow in size with physical memory. With sizeof(page_t) == 80 407 * bytes, the following shows the values of kernelbase and kernel heap 408 * sizes for different memory configurations (assuming default segmap and 409 * segkp sizes). 410 * 411 * mem size for kernelbase kernel heap 412 * size page_t's size 413 * ---- --------- ---------- ----------- 414 * 1gb 0x01400000 0xd1800000 684MB 415 * 2gb 0x02800000 0xcf000000 704MB 416 * 4gb 0x05000000 0xca000000 744MB 417 * 6gb 0x07800000 0xc5000000 784MB 418 * 8gb 0x0a000000 0xc0000000 824MB 419 * 16gb 0x14000000 0xac000000 984MB 420 * 32gb 0x28000000 0x84000000 1304MB 421 * 64gb 0x50000000 0x34000000 1944MB (*) 422 * 423 * kernelbase is less than the abi minimum of 0xc0000000 for memory 424 * configurations above 8gb. 425 * 426 * (*) support for memory configurations above 32gb will require manual tuning 427 * of kernelbase to balance out the need of user applications. 428 */ 429 430 void init_intr_threads(struct cpu *); 431 432 /* 433 * Dummy spl priority masks 434 */ 435 static unsigned char dummy_cpu_pri[MAXIPL + 1] = { 436 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 437 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf 438 }; 439 440 /* real-time-clock initialization parameters */ 441 long gmt_lag; /* offset in seconds of gmt to local time */ 442 extern long process_rtc_config_file(void); 443 444 char *final_kernelheap; 445 char *boot_kernelheap; 446 uintptr_t kernelbase; 447 uintptr_t eprom_kernelbase; 448 size_t segmapsize; 449 static uintptr_t segmap_reserved; 450 uintptr_t segkmap_start; 451 int segmapfreelists; 452 pgcnt_t boot_npages; 453 pgcnt_t npages; 454 size_t core_size; /* size of "core" heap */ 455 uintptr_t core_base; /* base address of "core" heap */ 456 457 /* 458 * List of bootstrap pages. We mark these as allocated in startup. 459 * release_bootstrap() will free them when we're completely done with 460 * the bootstrap. 461 */ 462 static page_t *bootpages, *rd_pages; 463 464 struct system_hardware system_hardware; 465 466 /* 467 * Enable some debugging messages concerning memory usage... 468 * 469 * XX64 There should only be one print routine once memlist usage between 470 * vmx and the kernel is cleaned up and there is a single memlist structure 471 * shared between kernel and boot. 472 */ 473 static void 474 print_boot_memlist(char *title, struct memlist *mp) 475 { 476 prom_printf("MEMLIST: %s:\n", title); 477 while (mp != NULL) { 478 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 479 mp->address, mp->size); 480 mp = mp->next; 481 } 482 } 483 484 static void 485 print_kernel_memlist(char *title, struct memlist *mp) 486 { 487 prom_printf("MEMLIST: %s:\n", title); 488 while (mp != NULL) { 489 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 490 mp->address, mp->size); 491 mp = mp->next; 492 } 493 } 494 495 /* 496 * XX64 need a comment here.. are these just default values, surely 497 * we read the "cpuid" type information to figure this out. 498 */ 499 int l2cache_sz = 0x80000; 500 int l2cache_linesz = 0x40; 501 int l2cache_assoc = 1; 502 503 /* 504 * on 64 bit we use a predifined VA range for mapping devices in the kernel 505 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 506 */ 507 #ifdef __amd64 508 509 vmem_t *device_arena; 510 uintptr_t toxic_addr = (uintptr_t)NULL; 511 size_t toxic_size = 1 * 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 512 513 #else /* __i386 */ 514 515 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 516 size_t toxic_bit_map_len = 0; /* in bits */ 517 518 #endif /* __i386 */ 519 520 /* 521 * Simple boot time debug facilities 522 */ 523 static char *prm_dbg_str[] = { 524 "%s:%d: '%s' is 0x%x\n", 525 "%s:%d: '%s' is 0x%llx\n" 526 }; 527 528 int prom_debug; 529 530 #define PRM_DEBUG(q) if (prom_debug) \ 531 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 532 #define PRM_POINT(q) if (prom_debug) \ 533 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 534 535 /* 536 * This structure is used to keep track of the intial allocations 537 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 538 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 539 */ 540 #define NUM_ALLOCATIONS 7 541 int num_allocations = 0; 542 struct { 543 void **al_ptr; 544 size_t al_size; 545 } allocations[NUM_ALLOCATIONS]; 546 size_t valloc_sz = 0; 547 uintptr_t valloc_base; 548 extern uintptr_t ptable_va; 549 extern size_t ptable_sz; 550 551 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 552 size = ROUND_UP_PAGE(size); \ 553 if (num_allocations == NUM_ALLOCATIONS) \ 554 panic("too many ADD_TO_ALLOCATIONS()"); \ 555 allocations[num_allocations].al_ptr = (void**)&ptr; \ 556 allocations[num_allocations].al_size = size; \ 557 valloc_sz += size; \ 558 ++num_allocations; \ 559 } 560 561 static void 562 perform_allocations(void) 563 { 564 caddr_t mem; 565 int i; 566 567 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, BO_NO_ALIGN); 568 if (mem != (caddr_t)valloc_base) 569 panic("BOP_ALLOC() failed"); 570 bzero(mem, valloc_sz); 571 for (i = 0; i < num_allocations; ++i) { 572 *allocations[i].al_ptr = (void *)mem; 573 mem += allocations[i].al_size; 574 } 575 } 576 577 /* 578 * Our world looks like this at startup time. 579 * 580 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 581 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 582 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 583 * addresses are fixed in the binary at link time. 584 * 585 * On the text page: 586 * unix/genunix/krtld/module text loads. 587 * 588 * On the data page: 589 * unix/genunix/krtld/module data loads and space for page_t's. 590 */ 591 /* 592 * Machine-dependent startup code 593 */ 594 void 595 startup(void) 596 { 597 extern void startup_bios_disk(); 598 /* 599 * Make sure that nobody tries to use sekpm until we have 600 * initialized it properly. 601 */ 602 #if defined(__amd64) 603 kpm_desired = kpm_enable; 604 #endif 605 kpm_enable = 0; 606 607 progressbar_init(); 608 startup_init(); 609 startup_memlist(); 610 startup_modules(); 611 startup_bios_disk(); 612 startup_bop_gone(); 613 startup_vm(); 614 startup_end(); 615 progressbar_start(); 616 } 617 618 static void 619 startup_init() 620 { 621 PRM_POINT("startup_init() starting..."); 622 623 /* 624 * Complete the extraction of cpuid data 625 */ 626 cpuid_pass2(CPU); 627 628 (void) check_boot_version(BOP_GETVERSION(bootops)); 629 630 /* 631 * Check for prom_debug in boot environment 632 */ 633 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 634 ++prom_debug; 635 PRM_POINT("prom_debug found in boot enviroment"); 636 } 637 638 /* 639 * Collect node, cpu and memory configuration information. 640 */ 641 get_system_configuration(); 642 643 /* 644 * Halt if this is an unsupported processor. 645 */ 646 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 647 printf("\n486 processor (\"%s\") detected.\n", 648 CPU->cpu_brandstr); 649 halt("This processor is not supported by this release " 650 "of Solaris."); 651 } 652 653 /* 654 * Set up dummy values till psm spl code installed 655 */ 656 CPU->cpu_pri_data = dummy_cpu_pri; 657 658 PRM_POINT("startup_init() done"); 659 } 660 661 /* 662 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 663 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 664 * also filters out physical page zero. There is some reliance on the 665 * boot loader allocating only a few contiguous physical memory chunks. 666 */ 667 static void 668 avail_filter(uint64_t *addr, uint64_t *size) 669 { 670 uintptr_t va; 671 uintptr_t next_va; 672 pfn_t pfn; 673 uint64_t pfn_addr; 674 uint64_t pfn_eaddr; 675 uint_t prot; 676 size_t len; 677 uint_t change; 678 679 if (prom_debug) 680 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 681 *addr, *size); 682 683 /* 684 * page zero is required for BIOS.. never make it available 685 */ 686 if (*addr == 0) { 687 *addr += MMU_PAGESIZE; 688 *size -= MMU_PAGESIZE; 689 } 690 691 /* 692 * First we trim from the front of the range. Since hat_boot_probe() 693 * walks ranges in virtual order, but addr/size are physical, we need 694 * to the list until no changes are seen. This deals with the case 695 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 696 * but w < v. 697 */ 698 do { 699 change = 0; 700 for (va = KERNEL_TEXT; 701 *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; 702 va = next_va) { 703 704 next_va = va + len; 705 pfn_addr = ptob((uint64_t)pfn); 706 pfn_eaddr = pfn_addr + len; 707 708 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 709 change = 1; 710 while (*size > 0 && len > 0) { 711 *addr += MMU_PAGESIZE; 712 *size -= MMU_PAGESIZE; 713 len -= MMU_PAGESIZE; 714 } 715 } 716 } 717 if (change && prom_debug) 718 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 719 *addr, *size); 720 } while (change); 721 722 /* 723 * Trim pages from the end of the range. 724 */ 725 for (va = KERNEL_TEXT; 726 *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; 727 va = next_va) { 728 729 next_va = va + len; 730 pfn_addr = ptob((uint64_t)pfn); 731 732 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 733 *size = pfn_addr - *addr; 734 } 735 736 if (prom_debug) 737 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 738 *addr, *size); 739 } 740 741 static void 742 kpm_init() 743 { 744 struct segkpm_crargs b; 745 uintptr_t start, end; 746 struct memlist *pmem; 747 748 /* 749 * These variables were all designed for sfmmu in which segkpm is 750 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 751 * might use 2+ page sizes on a single machine, so none of these 752 * variables have a single correct value. They are set up as if we 753 * always use a 4KB pagesize, which should do no harm. In the long 754 * run, we should get rid of KPM's assumption that only a single 755 * pagesize is used. 756 */ 757 kpm_pgshft = MMU_PAGESHIFT; 758 kpm_pgsz = MMU_PAGESIZE; 759 kpm_pgoff = MMU_PAGEOFFSET; 760 kpmp2pshft = 0; 761 kpmpnpgs = 1; 762 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 763 764 PRM_POINT("about to create segkpm"); 765 rw_enter(&kas.a_lock, RW_WRITER); 766 767 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 768 panic("cannot attach segkpm"); 769 770 b.prot = PROT_READ | PROT_WRITE; 771 b.nvcolors = 1; 772 773 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 774 panic("segkpm_create segkpm"); 775 776 rw_exit(&kas.a_lock); 777 778 /* 779 * Map each of the memsegs into the kpm segment, coalesing adjacent 780 * memsegs to allow mapping with the largest possible pages. 781 */ 782 pmem = phys_install; 783 start = pmem->address; 784 end = start + pmem->size; 785 for (;;) { 786 if (pmem == NULL || pmem->address > end) { 787 hat_devload(kas.a_hat, kpm_vbase + start, 788 end - start, mmu_btop(start), 789 PROT_READ | PROT_WRITE, 790 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 791 if (pmem == NULL) 792 break; 793 start = pmem->address; 794 } 795 end = pmem->address + pmem->size; 796 pmem = pmem->next; 797 } 798 } 799 800 /* 801 * The purpose of startup memlist is to get the system to the 802 * point where it can use kmem_alloc()'s that operate correctly 803 * relying on BOP_ALLOC(). This includes allocating page_ts, 804 * page hash table, vmem initialized, etc. 805 * 806 * Boot's versions of physinstalled and physavail are insufficient for 807 * the kernel's purposes. Specifically we don't know which pages that 808 * are not in physavail can be reclaimed after boot is gone. 809 * 810 * This code solves the problem by dividing the address space 811 * into 3 regions as it takes over the MMU from the booter. 812 * 813 * 1) Any (non-nucleus) pages that are mapped at addresses above KERNEL_TEXT 814 * can not be used by the kernel. 815 * 816 * 2) Any free page that happens to be mapped below kernelbase 817 * is protected until the boot loader is released, but will then be reclaimed. 818 * 819 * 3) Boot shouldn't use any address in the remaining area between kernelbase 820 * and KERNEL_TEXT. 821 * 822 * In the case of multiple mappings to the same page, region 1 has precedence 823 * over region 2. 824 */ 825 static void 826 startup_memlist(void) 827 { 828 size_t memlist_sz; 829 size_t memseg_sz; 830 size_t pagehash_sz; 831 size_t pp_sz; 832 uintptr_t va; 833 size_t len; 834 uint_t prot; 835 pfn_t pfn; 836 int memblocks; 837 caddr_t pagecolor_mem; 838 size_t pagecolor_memsz; 839 caddr_t page_ctrs_mem; 840 size_t page_ctrs_size; 841 struct memlist *current; 842 extern void startup_build_mem_nodes(struct memlist *); 843 844 /* XX64 fix these - they should be in include files */ 845 extern ulong_t cr4_value; 846 extern size_t page_coloring_init(uint_t, int, int); 847 extern void page_coloring_setup(caddr_t); 848 849 PRM_POINT("startup_memlist() starting..."); 850 851 /* 852 * Take the most current snapshot we can by calling mem-update. 853 * For this to work properly, we first have to ask boot for its 854 * end address. 855 */ 856 if (BOP_GETPROPLEN(bootops, "memory-update") == 0) 857 (void) BOP_GETPROP(bootops, "memory-update", NULL); 858 859 /* 860 * find if the kernel is mapped on a large page 861 */ 862 va = KERNEL_TEXT; 863 if (hat_boot_probe(&va, &len, &pfn, &prot) == 0) 864 panic("Couldn't find kernel text boot mapping"); 865 866 /* 867 * Use leftover large page nucleus text/data space for loadable modules. 868 * Use at most MODTEXT/MODDATA. 869 */ 870 if (len > MMU_PAGESIZE) { 871 872 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 873 e_moddata = (caddr_t)ROUND_UP_4MEG(e_data); 874 if (e_moddata - moddata > MODDATA) 875 e_moddata = moddata + MODDATA; 876 877 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 878 e_modtext = (caddr_t)ROUND_UP_4MEG(e_text); 879 if (e_modtext - modtext > MODTEXT) 880 e_modtext = modtext + MODTEXT; 881 882 883 } else { 884 885 PRM_POINT("Kernel NOT loaded on Large Page!"); 886 e_moddata = moddata = (caddr_t)ROUND_UP_PAGE(e_data); 887 e_modtext = modtext = (caddr_t)ROUND_UP_PAGE(e_text); 888 889 } 890 econtig = e_moddata; 891 892 PRM_DEBUG(modtext); 893 PRM_DEBUG(e_modtext); 894 PRM_DEBUG(moddata); 895 PRM_DEBUG(e_moddata); 896 PRM_DEBUG(econtig); 897 898 /* 899 * For MP machines cr4_value must be set or the non-boot 900 * CPUs will not be able to start. 901 */ 902 if (x86_feature & X86_LARGEPAGE) 903 cr4_value = getcr4(); 904 PRM_DEBUG(cr4_value); 905 906 /* 907 * Examine the boot loaders physical memory map to find out: 908 * - total memory in system - physinstalled 909 * - the max physical address - physmax 910 * - the number of segments the intsalled memory comes in 911 */ 912 if (prom_debug) 913 print_boot_memlist("boot physinstalled", 914 bootops->boot_mem->physinstalled); 915 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 916 &physinstalled, &memblocks); 917 PRM_DEBUG(physmax); 918 PRM_DEBUG(physinstalled); 919 PRM_DEBUG(memblocks); 920 921 if (prom_debug) 922 print_boot_memlist("boot physavail", 923 bootops->boot_mem->physavail); 924 925 /* 926 * Initialize hat's mmu parameters. 927 * Check for enforce-prot-exec in boot environment. It's used to 928 * enable/disable support for the page table entry NX bit. 929 * The default is to enforce PROT_EXEC on processors that support NX. 930 * Boot seems to round up the "len", but 8 seems to be big enough. 931 */ 932 mmu_init(); 933 934 #ifdef __i386 935 /* 936 * physmax is lowered if there is more memory than can be 937 * physically addressed in 32 bit (PAE/non-PAE) modes. 938 */ 939 if (mmu.pae_hat) { 940 if (PFN_ABOVE64G(physmax)) { 941 physinstalled -= (physmax - (PFN_64G - 1)); 942 physmax = PFN_64G - 1; 943 } 944 } else { 945 if (PFN_ABOVE4G(physmax)) { 946 physinstalled -= (physmax - (PFN_4G - 1)); 947 physmax = PFN_4G - 1; 948 } 949 } 950 #endif 951 952 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 953 954 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 955 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 956 char value[8]; 957 958 if (len < 8) 959 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 960 else 961 (void) strcpy(value, ""); 962 if (strcmp(value, "off") == 0) 963 mmu.pt_nx = 0; 964 } 965 PRM_DEBUG(mmu.pt_nx); 966 967 /* 968 * We will need page_t's for every page in the system, except for 969 * memory mapped at or above above the start of the kernel text segment. 970 * 971 * pages above e_modtext are attributed to kernel debugger (obp_pages) 972 */ 973 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 974 obp_pages = 0; 975 va = KERNEL_TEXT; 976 while (hat_boot_probe(&va, &len, &pfn, &prot) != 0) { 977 npages -= len >> MMU_PAGESHIFT; 978 if (va >= (uintptr_t)e_moddata) 979 obp_pages += len >> MMU_PAGESHIFT; 980 va += len; 981 } 982 PRM_DEBUG(npages); 983 PRM_DEBUG(obp_pages); 984 985 /* 986 * If physmem is patched to be non-zero, use it instead of 987 * the computed value unless it is larger than the real 988 * amount of memory on hand. 989 */ 990 if (physmem == 0 || physmem > npages) 991 physmem = npages; 992 else 993 npages = physmem; 994 PRM_DEBUG(physmem); 995 996 /* 997 * We now compute the sizes of all the initial allocations for 998 * structures the kernel needs in order do kmem_alloc(). These 999 * include: 1000 * memsegs 1001 * memlists 1002 * page hash table 1003 * page_t's 1004 * page coloring data structs 1005 */ 1006 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1007 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1008 PRM_DEBUG(memseg_sz); 1009 1010 /* 1011 * Reserve space for phys_avail/phys_install memlists. 1012 * There's no real good way to know exactly how much room we'll need, 1013 * but this should be a good upper bound. 1014 */ 1015 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1016 (memblocks + POSS_NEW_FRAGMENTS)); 1017 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1018 PRM_DEBUG(memlist_sz); 1019 1020 /* 1021 * The page structure hash table size is a power of 2 1022 * such that the average hash chain length is PAGE_HASHAVELEN. 1023 */ 1024 page_hashsz = npages / PAGE_HASHAVELEN; 1025 page_hashsz = 1 << highbit(page_hashsz); 1026 pagehash_sz = sizeof (struct page *) * page_hashsz; 1027 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1028 PRM_DEBUG(pagehash_sz); 1029 1030 /* 1031 * Set aside room for the page structures themselves. Note: on 1032 * 64-bit systems we don't allocate page_t's for every page here. 1033 * We just allocate enough to map the lowest 4GB of physical 1034 * memory, minus those pages that are used for the "nucleus" kernel 1035 * text and data. The remaining pages are allocated once we can 1036 * map around boot. 1037 * 1038 * boot_npages is used to allocate an area big enough for our 1039 * initial page_t's. kphym_init may use less than that. 1040 */ 1041 boot_npages = npages; 1042 #if defined(__amd64) 1043 if (npages > mmu_btop(FOURGB - (econtig - s_text))) 1044 boot_npages = mmu_btop(FOURGB - (econtig - s_text)); 1045 #endif 1046 PRM_DEBUG(boot_npages); 1047 pp_sz = sizeof (struct page) * boot_npages; 1048 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1049 PRM_DEBUG(pp_sz); 1050 1051 /* 1052 * determine l2 cache info and memory size for page coloring 1053 */ 1054 (void) getl2cacheinfo(CPU, 1055 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1056 pagecolor_memsz = 1057 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1058 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1059 PRM_DEBUG(pagecolor_memsz); 1060 1061 page_ctrs_size = page_ctrs_sz(); 1062 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1063 PRM_DEBUG(page_ctrs_size); 1064 1065 /* 1066 * valloc_base will be below kernel text 1067 * The extra pages are for the HAT and kmdb to map page tables. 1068 */ 1069 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1070 valloc_base = KERNEL_TEXT - valloc_sz; 1071 PRM_DEBUG(valloc_base); 1072 ptable_va = valloc_base - ptable_sz; 1073 1074 #if defined(__amd64) 1075 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1076 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1077 "systems."); 1078 kernelbase = (uintptr_t)KERNELBASE; 1079 core_base = (uintptr_t)COREHEAP_BASE; 1080 core_size = ptable_va - core_base; 1081 #else /* __i386 */ 1082 /* 1083 * We configure kernelbase based on: 1084 * 1085 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1086 * KERNELBASE_MAX. we large page align eprom_kernelbase 1087 * 1088 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1089 * On large memory systems we must lower kernelbase to allow 1090 * enough room for page_t's for all of memory. 1091 * 1092 * The value set here, might be changed a little later. 1093 */ 1094 if (eprom_kernelbase) { 1095 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1096 if (kernelbase > KERNELBASE_MAX) 1097 kernelbase = KERNELBASE_MAX; 1098 } else { 1099 kernelbase = (uintptr_t)KERNELBASE; 1100 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1101 } 1102 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1103 core_base = ptable_va; 1104 core_size = 0; 1105 #endif 1106 1107 PRM_DEBUG(kernelbase); 1108 PRM_DEBUG(core_base); 1109 PRM_DEBUG(core_size); 1110 1111 /* 1112 * At this point, we can only use a portion of the kernelheap that 1113 * will be available after we boot. Both 32-bit and 64-bit systems 1114 * have this limitation, although the reasons are completely 1115 * different. 1116 * 1117 * On 64-bit systems, the booter only supports allocations in the 1118 * upper 4GB of memory, so we have to work with a reduced kernel 1119 * heap until we take over all allocations. The booter also sits 1120 * in the lower portion of that 4GB range, so we have to raise the 1121 * bottom of the heap even further. 1122 * 1123 * On 32-bit systems we have to leave room to place segmap below 1124 * the heap. We don't yet know how large segmap will be, so we 1125 * have to be very conservative. 1126 */ 1127 #if defined(__amd64) 1128 /* 1129 * XX64: For now, we let boot have the lower 2GB of the top 4GB 1130 * address range. In the long run, that should be fixed. It's 1131 * insane for a booter to need 2 2GB address ranges. 1132 */ 1133 boot_kernelheap = (caddr_t)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); 1134 segmap_reserved = 0; 1135 1136 #else /* __i386 */ 1137 segkp_fromheap = 1; 1138 segmap_reserved = ROUND_UP_LPAGE(MAX(segmapsize, SEGMAPMAX)); 1139 boot_kernelheap = (caddr_t)(ROUND_UP_LPAGE(kernelbase) + 1140 segmap_reserved); 1141 #endif 1142 PRM_DEBUG(boot_kernelheap); 1143 kernelheap = boot_kernelheap; 1144 ekernelheap = (char *)core_base; 1145 1146 /* 1147 * If segmap is too large we can push the bottom of the kernel heap 1148 * higher than the base. Or worse, it could exceed the top of the 1149 * VA space entirely, causing it to wrap around. 1150 */ 1151 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1152 panic("too little memory available for kernelheap," 1153 " use a different kernelbase"); 1154 1155 /* 1156 * Now that we know the real value of kernelbase, 1157 * update variables that were initialized with a value of 1158 * KERNELBASE (in common/conf/param.c). 1159 * 1160 * XXX The problem with this sort of hackery is that the 1161 * compiler just may feel like putting the const declarations 1162 * (in param.c) into the .text section. Perhaps they should 1163 * just be declared as variables there? 1164 */ 1165 1166 #if defined(__amd64) 1167 ASSERT(_kernelbase == KERNELBASE); 1168 ASSERT(_userlimit == USERLIMIT); 1169 /* 1170 * As one final sanity check, verify that the "red zone" between 1171 * kernel and userspace is exactly the size we expected. 1172 */ 1173 ASSERT(_kernelbase == (_userlimit + (2 * 1024 * 1024))); 1174 #else 1175 *(uintptr_t *)&_kernelbase = kernelbase; 1176 *(uintptr_t *)&_userlimit = kernelbase; 1177 *(uintptr_t *)&_userlimit32 = _userlimit; 1178 #endif 1179 PRM_DEBUG(_kernelbase); 1180 PRM_DEBUG(_userlimit); 1181 PRM_DEBUG(_userlimit32); 1182 1183 /* 1184 * do all the initial allocations 1185 */ 1186 perform_allocations(); 1187 1188 /* 1189 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1190 */ 1191 kernelheap_init(kernelheap, ekernelheap, kernelheap + MMU_PAGESIZE, 1192 (void *)core_base, (void *)ptable_va); 1193 1194 /* 1195 * Build phys_install and phys_avail in kernel memspace. 1196 * - phys_install should be all memory in the system. 1197 * - phys_avail is phys_install minus any memory mapped before this 1198 * point above KERNEL_TEXT. 1199 */ 1200 current = phys_install = memlist; 1201 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1202 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1203 panic("physinstalled was too big!"); 1204 if (prom_debug) 1205 print_kernel_memlist("phys_install", phys_install); 1206 1207 phys_avail = current; 1208 PRM_POINT("Building phys_avail:\n"); 1209 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1210 avail_filter); 1211 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1212 panic("physavail was too big!"); 1213 if (prom_debug) 1214 print_kernel_memlist("phys_avail", phys_avail); 1215 1216 /* 1217 * setup page coloring 1218 */ 1219 page_coloring_setup(pagecolor_mem); 1220 page_lock_init(); /* currently a no-op */ 1221 1222 /* 1223 * free page list counters 1224 */ 1225 (void) page_ctrs_alloc(page_ctrs_mem); 1226 1227 /* 1228 * Initialize the page structures from the memory lists. 1229 */ 1230 availrmem_initial = availrmem = freemem = 0; 1231 PRM_POINT("Calling kphysm_init()..."); 1232 boot_npages = kphysm_init(pp_base, memseg_base, 0, boot_npages); 1233 PRM_POINT("kphysm_init() done"); 1234 PRM_DEBUG(boot_npages); 1235 1236 /* 1237 * Now that page_t's have been initialized, remove all the 1238 * initial allocation pages from the kernel free page lists. 1239 */ 1240 boot_mapin((caddr_t)valloc_base, valloc_sz); 1241 1242 /* 1243 * Initialize kernel memory allocator. 1244 */ 1245 kmem_init(); 1246 1247 /* 1248 * print this out early so that we know what's going on 1249 */ 1250 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1251 1252 /* 1253 * Initialize bp_mapin(). 1254 */ 1255 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1256 1257 #if defined(__i386) 1258 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1259 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1260 "System using 0x%lx", 1261 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1262 #endif 1263 1264 #ifdef KERNELBASE_ABI_MIN 1265 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1266 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1267 "i386 ABI compliant.", (uintptr_t)kernelbase); 1268 } 1269 #endif 1270 1271 PRM_POINT("startup_memlist() done"); 1272 } 1273 1274 static void 1275 startup_modules(void) 1276 { 1277 unsigned int i; 1278 extern void impl_setup_ddi(void); 1279 extern void prom_setup(void); 1280 1281 PRM_POINT("startup_modules() starting..."); 1282 /* 1283 * Initialize ten-micro second timer so that drivers will 1284 * not get short changed in their init phase. This was 1285 * not getting called until clkinit which, on fast cpu's 1286 * caused the drv_usecwait to be way too short. 1287 */ 1288 microfind(); 1289 1290 /* 1291 * Read the GMT lag from /etc/rtc_config. 1292 */ 1293 gmt_lag = process_rtc_config_file(); 1294 1295 /* 1296 * Calculate default settings of system parameters based upon 1297 * maxusers, yet allow to be overridden via the /etc/system file. 1298 */ 1299 param_calc(0); 1300 1301 mod_setup(); 1302 1303 /* 1304 * Setup machine check architecture on P6 1305 */ 1306 setup_mca(); 1307 1308 /* 1309 * Initialize system parameters. 1310 */ 1311 param_init(); 1312 1313 /* 1314 * maxmem is the amount of physical memory we're playing with. 1315 */ 1316 maxmem = physmem; 1317 1318 /* 1319 * Initialize the hat layer. 1320 */ 1321 hat_init(); 1322 1323 /* 1324 * Initialize segment management stuff. 1325 */ 1326 seg_init(); 1327 1328 if (modload("fs", "specfs") == -1) 1329 halt("Can't load specfs"); 1330 1331 if (modload("fs", "devfs") == -1) 1332 halt("Can't load devfs"); 1333 1334 dispinit(); 1335 1336 /* 1337 * This is needed here to initialize hw_serial[] for cluster booting. 1338 */ 1339 if ((i = modload("misc", "sysinit")) != (unsigned int)-1) 1340 (void) modunload(i); 1341 else 1342 cmn_err(CE_CONT, "sysinit load failed"); 1343 1344 /* Read cluster configuration data. */ 1345 clconf_init(); 1346 1347 /* 1348 * Create a kernel device tree. First, create rootnex and 1349 * then invoke bus specific code to probe devices. 1350 */ 1351 setup_ddi(); 1352 impl_setup_ddi(); 1353 /* 1354 * Fake a prom tree such that /dev/openprom continues to work 1355 */ 1356 prom_setup(); 1357 1358 /* 1359 * Load all platform specific modules 1360 */ 1361 psm_modload(); 1362 1363 PRM_POINT("startup_modules() done"); 1364 } 1365 1366 static void 1367 startup_bop_gone(void) 1368 { 1369 PRM_POINT("startup_bop_gone() starting..."); 1370 1371 /* 1372 * Do final allocations of HAT data structures that need to 1373 * be allocated before quiescing the boot loader. 1374 */ 1375 PRM_POINT("Calling hat_kern_alloc()..."); 1376 hat_kern_alloc(); 1377 PRM_POINT("hat_kern_alloc() done"); 1378 1379 /* 1380 * Setup MTRR (Memory type range registers) 1381 */ 1382 setup_mtrr(); 1383 PRM_POINT("startup_bop_gone() done"); 1384 } 1385 1386 /* 1387 * Walk through the pagetables looking for pages mapped in by boot. If the 1388 * setaside flag is set the pages are expected to be returned to the 1389 * kernel later in boot, so we add them to the bootpages list. 1390 */ 1391 static void 1392 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1393 { 1394 uintptr_t va = low; 1395 size_t len; 1396 uint_t prot; 1397 pfn_t pfn; 1398 page_t *pp; 1399 pgcnt_t boot_protect_cnt = 0; 1400 1401 while (hat_boot_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1402 if (va + len >= high) 1403 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1404 "legal range.", len, (void *)va); 1405 1406 while (len > 0) { 1407 pp = page_numtopp_alloc(pfn); 1408 if (pp != NULL) { 1409 if (setaside == 0) 1410 panic("Unexpected mapping by boot. " 1411 "addr=%p pfn=%lx\n", 1412 (void *)va, pfn); 1413 1414 pp->p_next = bootpages; 1415 bootpages = pp; 1416 ++boot_protect_cnt; 1417 } 1418 1419 ++pfn; 1420 len -= MMU_PAGESIZE; 1421 va += MMU_PAGESIZE; 1422 } 1423 } 1424 PRM_DEBUG(boot_protect_cnt); 1425 } 1426 1427 static void 1428 startup_vm(void) 1429 { 1430 struct segmap_crargs a; 1431 extern void hat_kern_setup(void); 1432 pgcnt_t pages_left; 1433 1434 extern int exec_lpg_disable, use_brk_lpg, use_stk_lpg, use_zmap_lpg; 1435 extern pgcnt_t auto_lpg_min_physmem; 1436 1437 PRM_POINT("startup_vm() starting..."); 1438 1439 /* 1440 * The next two loops are done in distinct steps in order 1441 * to be sure that any page that is doubly mapped (both above 1442 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1443 * Note this may never happen, but it might someday. 1444 */ 1445 1446 bootpages = NULL; 1447 PRM_POINT("Protecting boot pages"); 1448 /* 1449 * Protect any pages mapped above KERNEL_TEXT that somehow have 1450 * page_t's. This can only happen if something weird allocated 1451 * in this range (like kadb/kmdb). 1452 */ 1453 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1454 1455 /* 1456 * Before we can take over memory allocation/mapping from the boot 1457 * loader we must remove from our free page lists any boot pages that 1458 * will stay mapped until release_bootstrap(). 1459 */ 1460 protect_boot_range(0, kernelbase, 1); 1461 #if defined(__amd64) 1462 protect_boot_range(BOOT_DOUBLEMAP_BASE, 1463 BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE, 0); 1464 #endif 1465 1466 /* 1467 * Copy in boot's page tables, set up extra page tables for the kernel, 1468 * and switch to the kernel's context. 1469 */ 1470 PRM_POINT("Calling hat_kern_setup()..."); 1471 hat_kern_setup(); 1472 1473 /* 1474 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1475 */ 1476 bootops->bsys_alloc = NULL; 1477 PRM_POINT("hat_kern_setup() done"); 1478 1479 hat_cpu_online(CPU); 1480 1481 /* 1482 * Before we call kvm_init(), we need to establish the final size 1483 * of the kernel's heap. So, we need to figure out how much space 1484 * to set aside for segkp, segkpm, and segmap. 1485 */ 1486 final_kernelheap = (caddr_t)ROUND_UP_LPAGE(kernelbase); 1487 #if defined(__amd64) 1488 if (kpm_desired) { 1489 /* 1490 * Segkpm appears at the bottom of the kernel's address 1491 * range. To detect accidental overruns of the user 1492 * address space, we leave a "red zone" of unmapped memory 1493 * between kernelbase and the beginning of segkpm. 1494 */ 1495 kpm_vbase = final_kernelheap + KERNEL_REDZONE_SIZE; 1496 kpm_size = mmu_ptob(physmax); 1497 PRM_DEBUG(kpm_vbase); 1498 PRM_DEBUG(kpm_size); 1499 final_kernelheap = 1500 (caddr_t)ROUND_UP_TOPLEVEL(kpm_vbase + kpm_size); 1501 } 1502 1503 if (!segkp_fromheap) { 1504 size_t sz = mmu_ptob(segkpsize); 1505 1506 /* 1507 * determine size of segkp and adjust the bottom of the 1508 * kernel's heap. 1509 */ 1510 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1511 sz = SEGKPDEFSIZE; 1512 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1513 "segkpsize has been reset to %ld pages", 1514 mmu_btop(sz)); 1515 } 1516 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1517 1518 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1519 segkp_base = final_kernelheap; 1520 PRM_DEBUG(segkpsize); 1521 PRM_DEBUG(segkp_base); 1522 final_kernelheap = segkp_base + mmu_ptob(segkpsize); 1523 PRM_DEBUG(final_kernelheap); 1524 } 1525 1526 /* 1527 * put the range of VA for device mappings next 1528 */ 1529 toxic_addr = (uintptr_t)final_kernelheap; 1530 PRM_DEBUG(toxic_addr); 1531 final_kernelheap = (char *)toxic_addr + toxic_size; 1532 #endif 1533 PRM_DEBUG(final_kernelheap); 1534 ASSERT(final_kernelheap < boot_kernelheap); 1535 1536 /* 1537 * Users can change segmapsize through eeprom or /etc/system. 1538 * If the variable is tuned through eeprom, there is no upper 1539 * bound on the size of segmap. If it is tuned through 1540 * /etc/system on 32-bit systems, it must be no larger than we 1541 * planned for in startup_memlist(). 1542 */ 1543 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1544 segkmap_start = ROUND_UP_LPAGE((uintptr_t)final_kernelheap); 1545 1546 #if defined(__i386) 1547 if (segmapsize > segmap_reserved) { 1548 cmn_err(CE_NOTE, "!segmapsize may not be set > 0x%lx in " 1549 "/etc/system. Use eeprom.", (long)SEGMAPMAX); 1550 segmapsize = segmap_reserved; 1551 } 1552 /* 1553 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1554 * the bottom of the kernel's address range. Set aside space for a 1555 * red zone just below the start of segmap. 1556 */ 1557 segkmap_start += KERNEL_REDZONE_SIZE; 1558 segmapsize -= KERNEL_REDZONE_SIZE; 1559 #endif 1560 final_kernelheap = (char *)(segkmap_start + segmapsize); 1561 1562 PRM_DEBUG(segkmap_start); 1563 PRM_DEBUG(segmapsize); 1564 PRM_DEBUG(final_kernelheap); 1565 1566 /* 1567 * Initialize VM system 1568 */ 1569 PRM_POINT("Calling kvm_init()..."); 1570 kvm_init(); 1571 PRM_POINT("kvm_init() done"); 1572 1573 /* 1574 * Tell kmdb that the VM system is now working 1575 */ 1576 if (boothowto & RB_DEBUG) 1577 kdi_dvec_vmready(); 1578 1579 /* 1580 * Mangle the brand string etc. 1581 */ 1582 cpuid_pass3(CPU); 1583 1584 PRM_DEBUG(final_kernelheap); 1585 1586 /* 1587 * Now that we can use memory outside the top 4GB (on 64-bit 1588 * systems) and we know the size of segmap, we can set the final 1589 * size of the kernel's heap. Note: on 64-bit systems we still 1590 * can't touch anything in the bottom half of the top 4GB range 1591 * because boot still has pages mapped there. 1592 */ 1593 if (final_kernelheap < boot_kernelheap) { 1594 kernelheap_extend(final_kernelheap, boot_kernelheap); 1595 #if defined(__amd64) 1596 kmem_setaside = vmem_xalloc(heap_arena, BOOT_DOUBLEMAP_SIZE, 1597 MMU_PAGESIZE, 0, 0, (void *)(BOOT_DOUBLEMAP_BASE), 1598 (void *)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE), 1599 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1600 PRM_DEBUG(kmem_setaside); 1601 if (kmem_setaside == NULL) 1602 panic("Could not protect boot's memory"); 1603 #endif 1604 } 1605 /* 1606 * Now that the kernel heap may have grown significantly, we need 1607 * to make all the remaining page_t's available to back that memory. 1608 * 1609 * XX64 this should probably wait till after release boot-strap too. 1610 */ 1611 pages_left = npages - boot_npages; 1612 if (pages_left > 0) { 1613 PRM_DEBUG(pages_left); 1614 (void) kphysm_init(NULL, memseg_base, boot_npages, pages_left); 1615 } 1616 1617 #if defined(__amd64) 1618 1619 /* 1620 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1621 */ 1622 device_arena = vmem_create("device", (void *)toxic_addr, 1623 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1624 1625 #else /* __i386 */ 1626 1627 /* 1628 * allocate the bit map that tracks toxic pages 1629 */ 1630 toxic_bit_map_len = btop((ulong_t)(ptable_va - kernelbase)); 1631 PRM_DEBUG(toxic_bit_map_len); 1632 toxic_bit_map = 1633 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1634 ASSERT(toxic_bit_map != NULL); 1635 PRM_DEBUG(toxic_bit_map); 1636 1637 #endif /* __i386 */ 1638 1639 1640 /* 1641 * Now that we've got more VA, as well as the ability to allocate from 1642 * it, tell the debugger. 1643 */ 1644 if (boothowto & RB_DEBUG) 1645 kdi_dvec_memavail(); 1646 1647 /* 1648 * The following code installs a special page fault handler (#pf) 1649 * to work around a pentium bug. 1650 */ 1651 #if !defined(__amd64) 1652 if (x86_type == X86_TYPE_P5) { 1653 gate_desc_t *newidt; 1654 desctbr_t newidt_r; 1655 1656 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1657 panic("failed to install pentium_pftrap"); 1658 1659 bcopy(idt0, newidt, sizeof (idt0)); 1660 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1661 KCS_SEL, 0, SDT_SYSIGT, SEL_KPL); 1662 1663 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1664 PROT_READ|PROT_EXEC); 1665 1666 newidt_r.dtr_limit = sizeof (idt0) - 1; 1667 newidt_r.dtr_base = (uintptr_t)newidt; 1668 CPU->cpu_idt = newidt; 1669 wr_idtr(&newidt_r); 1670 } 1671 #endif /* !__amd64 */ 1672 1673 /* 1674 * Map page pfn=0 for drivers, such as kd, that need to pick up 1675 * parameters left there by controllers/BIOS. 1676 */ 1677 PRM_POINT("setup up p0_va"); 1678 p0_va = i86devmap(0, 1, PROT_READ); 1679 PRM_DEBUG(p0_va); 1680 1681 /* 1682 * If the following is true, someone has patched phsymem to be less 1683 * than the number of pages that the system actually has. Remove 1684 * pages until system memory is limited to the requested amount. 1685 * Since we have allocated page structures for all pages, we 1686 * correct the amount of memory we want to remove by the size of 1687 * the memory used to hold page structures for the non-used pages. 1688 */ 1689 if (physmem < npages) { 1690 uint_t diff; 1691 offset_t off; 1692 struct page *pp; 1693 caddr_t rand_vaddr; 1694 struct seg kseg; 1695 1696 cmn_err(CE_WARN, "limiting physmem to %lu pages", physmem); 1697 1698 off = 0; 1699 diff = npages - physmem; 1700 diff -= mmu_btopr(diff * sizeof (struct page)); 1701 kseg.s_as = &kas; 1702 while (diff--) { 1703 rand_vaddr = (caddr_t) 1704 (((uintptr_t)&unused_pages_vp >> 7) ^ 1705 (uintptr_t)((u_offset_t)off >> MMU_PAGESHIFT)); 1706 pp = page_create_va(&unused_pages_vp, off, MMU_PAGESIZE, 1707 PG_WAIT | PG_EXCL, &kseg, rand_vaddr); 1708 if (pp == NULL) { 1709 panic("limited physmem too much!"); 1710 /*NOTREACHED*/ 1711 } 1712 page_io_unlock(pp); 1713 page_downgrade(pp); 1714 availrmem--; 1715 off += MMU_PAGESIZE; 1716 } 1717 } 1718 1719 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1720 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1721 1722 /* For small memory systems disable automatic large pages. */ 1723 if (physmem < auto_lpg_min_physmem) { 1724 exec_lpg_disable = 1; 1725 use_brk_lpg = 0; 1726 use_stk_lpg = 0; 1727 use_zmap_lpg = 0; 1728 } 1729 1730 PRM_POINT("Calling hat_init_finish()..."); 1731 hat_init_finish(); 1732 PRM_POINT("hat_init_finish() done"); 1733 1734 /* 1735 * Initialize the segkp segment type. 1736 */ 1737 rw_enter(&kas.a_lock, RW_WRITER); 1738 if (!segkp_fromheap) { 1739 if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1740 segkp) < 0) { 1741 panic("startup: cannot attach segkp"); 1742 /*NOTREACHED*/ 1743 } 1744 } else { 1745 /* 1746 * For 32 bit x86 systems, we will have segkp under the heap. 1747 * There will not be a segkp segment. We do, however, need 1748 * to fill in the seg structure. 1749 */ 1750 segkp->s_as = &kas; 1751 } 1752 if (segkp_create(segkp) != 0) { 1753 panic("startup: segkp_create failed"); 1754 /*NOTREACHED*/ 1755 } 1756 PRM_DEBUG(segkp); 1757 rw_exit(&kas.a_lock); 1758 1759 /* 1760 * kpm segment 1761 */ 1762 segmap_kpm = 0; 1763 if (kpm_desired) { 1764 kpm_init(); 1765 kpm_enable = 1; 1766 } 1767 1768 /* 1769 * Now create segmap segment. 1770 */ 1771 rw_enter(&kas.a_lock, RW_WRITER); 1772 if (seg_attach(&kas, (caddr_t)segkmap_start, segmapsize, segkmap) < 0) { 1773 panic("cannot attach segkmap"); 1774 /*NOTREACHED*/ 1775 } 1776 PRM_DEBUG(segkmap); 1777 1778 /* 1779 * The 64 bit HAT permanently maps only segmap's page tables. 1780 * The 32 bit HAT maps the heap's page tables too. 1781 */ 1782 #if defined(__amd64) 1783 hat_kmap_init(segkmap_start, segmapsize); 1784 #else /* __i386 */ 1785 ASSERT(segkmap_start + segmapsize == (uintptr_t)final_kernelheap); 1786 hat_kmap_init(segkmap_start, (uintptr_t)ekernelheap - segkmap_start); 1787 #endif /* __i386 */ 1788 1789 a.prot = PROT_READ | PROT_WRITE; 1790 a.shmsize = 0; 1791 a.nfreelist = segmapfreelists; 1792 1793 if (segmap_create(segkmap, (caddr_t)&a) != 0) 1794 panic("segmap_create segkmap"); 1795 rw_exit(&kas.a_lock); 1796 1797 setup_vaddr_for_ppcopy(CPU); 1798 1799 segdev_init(); 1800 pmem_init(); 1801 PRM_POINT("startup_vm() done"); 1802 } 1803 1804 static void 1805 startup_end(void) 1806 { 1807 extern void setx86isalist(void); 1808 1809 PRM_POINT("startup_end() starting..."); 1810 1811 /* 1812 * Perform tasks that get done after most of the VM 1813 * initialization has been done but before the clock 1814 * and other devices get started. 1815 */ 1816 kern_setup1(); 1817 1818 /* 1819 * Perform CPC initialization for this CPU. 1820 */ 1821 kcpc_hw_init(CPU); 1822 1823 #if defined(__amd64) 1824 /* 1825 * Validate support for syscall/sysret 1826 * XX64 -- include SSE, SSE2, etc. here too? 1827 */ 1828 if ((x86_feature & X86_ASYSC) == 0) { 1829 cmn_err(CE_WARN, 1830 "cpu%d does not support syscall/sysret", CPU->cpu_id); 1831 } 1832 #endif 1833 /* 1834 * Configure the system. 1835 */ 1836 PRM_POINT("Calling configure()..."); 1837 configure(); /* set up devices */ 1838 PRM_POINT("configure() done"); 1839 1840 /* 1841 * Set the isa_list string to the defined instruction sets we 1842 * support. 1843 */ 1844 setx86isalist(); 1845 init_intr_threads(CPU); 1846 psm_install(); 1847 1848 /* 1849 * We're done with bootops. We don't unmap the bootstrap yet because 1850 * we're still using bootsvcs. 1851 */ 1852 PRM_POINT("zeroing out bootops"); 1853 *bootopsp = (struct bootops *)0; 1854 bootops = (struct bootops *)NULL; 1855 1856 PRM_POINT("Enabling interrupts"); 1857 (*picinitf)(); 1858 sti(); 1859 1860 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 1861 "softlevel1", NULL, NULL); /* XXX to be moved later */ 1862 1863 PRM_POINT("startup_end() done"); 1864 } 1865 1866 extern char hw_serial[]; 1867 char *_hs1107 = hw_serial; 1868 ulong_t _bdhs34; 1869 1870 void 1871 post_startup(void) 1872 { 1873 /* 1874 * Set the system wide, processor-specific flags to be passed 1875 * to userland via the aux vector for performance hints and 1876 * instruction set extensions. 1877 */ 1878 bind_hwcap(); 1879 1880 /* 1881 * Load the System Management BIOS into the global ksmbios handle, 1882 * if an SMBIOS is present on this system. 1883 */ 1884 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1885 1886 /* 1887 * Startup memory scrubber. 1888 */ 1889 memscrub_init(); 1890 1891 /* 1892 * Perform forceloading tasks for /etc/system. 1893 */ 1894 (void) mod_sysctl(SYS_FORCELOAD, NULL); 1895 1896 /* 1897 * ON4.0: Force /proc module in until clock interrupt handle fixed 1898 * ON4.0: This must be fixed or restated in /etc/systems. 1899 */ 1900 (void) modload("fs", "procfs"); 1901 1902 #if defined(__i386) 1903 /* 1904 * Check for required functional Floating Point hardware, 1905 * unless FP hardware explicitly disabled. 1906 */ 1907 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 1908 halt("No working FP hardware found"); 1909 #endif 1910 1911 maxmem = freemem; 1912 1913 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 1914 1915 /* 1916 * Perform the formal initialization of the boot chip, 1917 * and associate the boot cpu with it. 1918 * This must be done after the cpu node for CPU has been 1919 * added to the device tree, when the necessary probing to 1920 * know the chip type and chip "id" is performed. 1921 */ 1922 chip_cpu_init(CPU); 1923 chip_cpu_assign(CPU); 1924 } 1925 1926 static int 1927 pp_in_ramdisk(page_t *pp) 1928 { 1929 extern uint64_t ramdisk_start, ramdisk_end; 1930 1931 return ((pp->p_pagenum >= btop(ramdisk_start)) && 1932 (pp->p_pagenum < btopr(ramdisk_end))); 1933 } 1934 1935 void 1936 release_bootstrap(void) 1937 { 1938 int root_is_ramdisk; 1939 pfn_t pfn; 1940 page_t *pp; 1941 extern void kobj_boot_unmountroot(void); 1942 extern dev_t rootdev; 1943 1944 /* unmount boot ramdisk and release kmem usage */ 1945 kobj_boot_unmountroot(); 1946 1947 /* 1948 * We're finished using the boot loader so free its pages. 1949 */ 1950 PRM_POINT("Unmapping lower boot pages"); 1951 clear_boot_mappings(0, kernelbase); 1952 #if defined(__amd64) 1953 PRM_POINT("Unmapping upper boot pages"); 1954 clear_boot_mappings(BOOT_DOUBLEMAP_BASE, 1955 BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); 1956 #endif 1957 1958 /* 1959 * If root isn't on ramdisk, destroy the hardcoded 1960 * ramdisk node now and release the memory. Else, 1961 * ramdisk memory is kept in rd_pages. 1962 */ 1963 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 1964 if (!root_is_ramdisk) { 1965 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 1966 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 1967 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 1968 (void) ddi_remove_child(dip, 0); 1969 } 1970 1971 PRM_POINT("Releasing boot pages"); 1972 while (bootpages) { 1973 pp = bootpages; 1974 bootpages = pp->p_next; 1975 if (root_is_ramdisk && pp_in_ramdisk(pp)) { 1976 pp->p_next = rd_pages; 1977 rd_pages = pp; 1978 continue; 1979 } 1980 pp->p_next = (struct page *)0; 1981 page_free(pp, 1); 1982 } 1983 1984 /* 1985 * Find 1 page below 1 MB so that other processors can boot up. 1986 * Make sure it has a kernel VA as well as a 1:1 mapping. 1987 * We should have just free'd one up. 1988 */ 1989 if (use_mp) { 1990 for (pfn = 1; pfn < btop(1*1024*1024); pfn++) { 1991 if (page_numtopp_alloc(pfn) == NULL) 1992 continue; 1993 rm_platter_va = i86devmap(pfn, 1, 1994 PROT_READ | PROT_WRITE | PROT_EXEC); 1995 rm_platter_pa = ptob(pfn); 1996 hat_devload(kas.a_hat, 1997 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 1998 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 1999 HAT_LOAD_NOCONSIST); 2000 break; 2001 } 2002 if (pfn == btop(1*1024*1024)) 2003 panic("No page available for starting " 2004 "other processors"); 2005 } 2006 2007 #if defined(__amd64) 2008 PRM_POINT("Returning boot's VA space to kernel heap"); 2009 if (kmem_setaside != NULL) 2010 vmem_free(heap_arena, kmem_setaside, BOOT_DOUBLEMAP_SIZE); 2011 #endif 2012 } 2013 2014 /* 2015 * Initialize the platform-specific parts of a page_t. 2016 */ 2017 void 2018 add_physmem_cb(page_t *pp, pfn_t pnum) 2019 { 2020 pp->p_pagenum = pnum; 2021 pp->p_mapping = NULL; 2022 pp->p_embed = 0; 2023 pp->p_share = 0; 2024 pp->p_mlentry = 0; 2025 } 2026 2027 /* 2028 * kphysm_init() initializes physical memory. 2029 */ 2030 static pgcnt_t 2031 kphysm_init( 2032 page_t *inpp, 2033 struct memseg *memsegp, 2034 pgcnt_t start, 2035 pgcnt_t npages) 2036 { 2037 struct memlist *pmem; 2038 struct memseg *cur_memseg; 2039 struct memseg **memsegpp; 2040 pfn_t base_pfn; 2041 pgcnt_t num; 2042 pgcnt_t total_skipped = 0; 2043 pgcnt_t skipping = 0; 2044 pgcnt_t pages_done = 0; 2045 pgcnt_t largepgcnt; 2046 uint64_t addr; 2047 uint64_t size; 2048 page_t *pp = inpp; 2049 int dobreak = 0; 2050 extern pfn_t ddiphysmin; 2051 2052 ASSERT(page_hash != NULL && page_hashsz != 0); 2053 2054 for (cur_memseg = memsegp; cur_memseg->pages != NULL; cur_memseg++); 2055 ASSERT(cur_memseg == memsegp || start > 0); 2056 2057 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2058 /* 2059 * In a 32 bit kernel can't use higher memory if we're 2060 * not booting in PAE mode. This check takes care of that. 2061 */ 2062 addr = pmem->address; 2063 size = pmem->size; 2064 if (btop(addr) > physmax) 2065 continue; 2066 2067 /* 2068 * align addr and size - they may not be at page boundaries 2069 */ 2070 if ((addr & MMU_PAGEOFFSET) != 0) { 2071 addr += MMU_PAGEOFFSET; 2072 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2073 size -= addr - pmem->address; 2074 } 2075 2076 /* only process pages below physmax */ 2077 if (btop(addr + size) > physmax) 2078 size = ptob(physmax - btop(addr)); 2079 2080 num = btop(size); 2081 if (num == 0) 2082 continue; 2083 2084 if (total_skipped < start) { 2085 if (start - total_skipped > num) { 2086 total_skipped += num; 2087 continue; 2088 } 2089 skipping = start - total_skipped; 2090 num -= skipping; 2091 addr += (MMU_PAGESIZE * skipping); 2092 total_skipped = start; 2093 } 2094 if (num == 0) 2095 continue; 2096 2097 if (num > npages) 2098 num = npages; 2099 2100 npages -= num; 2101 pages_done += num; 2102 base_pfn = btop(addr); 2103 2104 /* 2105 * If the caller didn't provide space for the page 2106 * structures, carve them out of the memseg they will 2107 * represent. 2108 */ 2109 if (pp == NULL) { 2110 pgcnt_t pp_pgs; 2111 2112 if (num <= 1) 2113 continue; 2114 2115 /* 2116 * Compute how many of the pages we need to use for 2117 * page_ts 2118 */ 2119 pp_pgs = (num * sizeof (page_t)) / MMU_PAGESIZE + 1; 2120 while (mmu_ptob(pp_pgs - 1) / sizeof (page_t) >= 2121 num - pp_pgs + 1) 2122 --pp_pgs; 2123 PRM_DEBUG(pp_pgs); 2124 2125 pp = vmem_alloc(heap_arena, mmu_ptob(pp_pgs), 2126 VM_NOSLEEP); 2127 if (pp == NULL) { 2128 cmn_err(CE_WARN, "Unable to add %ld pages to " 2129 "the system.", num); 2130 continue; 2131 } 2132 2133 hat_devload(kas.a_hat, (void *)pp, mmu_ptob(pp_pgs), 2134 base_pfn, PROT_READ | PROT_WRITE | HAT_UNORDERED_OK, 2135 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 2136 bzero(pp, mmu_ptob(pp_pgs)); 2137 num -= pp_pgs; 2138 base_pfn += pp_pgs; 2139 } 2140 2141 if (prom_debug) 2142 prom_printf("MEMSEG addr=0x%" PRIx64 2143 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2144 addr, num, base_pfn, base_pfn + num); 2145 2146 /* 2147 * drop pages below ddiphysmin to simplify ddi memory 2148 * allocation with non-zero addr_lo requests. 2149 */ 2150 if (base_pfn < ddiphysmin) { 2151 if (base_pfn + num <= ddiphysmin) { 2152 /* drop entire range below ddiphysmin */ 2153 continue; 2154 } 2155 /* adjust range to ddiphysmin */ 2156 pp += (ddiphysmin - base_pfn); 2157 num -= (ddiphysmin - base_pfn); 2158 base_pfn = ddiphysmin; 2159 } 2160 /* 2161 * Build the memsegs entry 2162 */ 2163 cur_memseg->pages = pp; 2164 cur_memseg->epages = pp + num; 2165 cur_memseg->pages_base = base_pfn; 2166 cur_memseg->pages_end = base_pfn + num; 2167 2168 /* 2169 * insert in memseg list in decreasing pfn range order. 2170 * Low memory is typically more fragmented such that this 2171 * ordering keeps the larger ranges at the front of the list 2172 * for code that searches memseg. 2173 */ 2174 memsegpp = &memsegs; 2175 for (;;) { 2176 if (*memsegpp == NULL) { 2177 /* empty memsegs */ 2178 memsegs = cur_memseg; 2179 break; 2180 } 2181 /* check for continuity with start of memsegpp */ 2182 if (cur_memseg->pages_end == (*memsegpp)->pages_base) { 2183 if (cur_memseg->epages == (*memsegpp)->pages) { 2184 /* 2185 * contiguous pfn and page_t's. Merge 2186 * cur_memseg into *memsegpp. Drop 2187 * cur_memseg 2188 */ 2189 (*memsegpp)->pages_base = 2190 cur_memseg->pages_base; 2191 (*memsegpp)->pages = 2192 cur_memseg->pages; 2193 /* 2194 * check if contiguous with the end of 2195 * the next memseg. 2196 */ 2197 if ((*memsegpp)->next && 2198 ((*memsegpp)->pages_base == 2199 (*memsegpp)->next->pages_end)) { 2200 cur_memseg = *memsegpp; 2201 memsegpp = &((*memsegpp)->next); 2202 dobreak = 1; 2203 } else { 2204 break; 2205 } 2206 } else { 2207 /* 2208 * contiguous pfn but not page_t's. 2209 * drop last pfn/page_t in cur_memseg 2210 * to prevent creation of large pages 2211 * with noncontiguous page_t's if not 2212 * aligned to largest page boundary. 2213 */ 2214 largepgcnt = page_get_pagecnt( 2215 page_num_pagesizes() - 1); 2216 2217 if (cur_memseg->pages_end & 2218 (largepgcnt - 1)) { 2219 num--; 2220 cur_memseg->epages--; 2221 cur_memseg->pages_end--; 2222 } 2223 } 2224 } 2225 2226 /* check for continuity with end of memsegpp */ 2227 if (cur_memseg->pages_base == (*memsegpp)->pages_end) { 2228 if (cur_memseg->pages == (*memsegpp)->epages) { 2229 /* 2230 * contiguous pfn and page_t's. Merge 2231 * cur_memseg into *memsegpp. Drop 2232 * cur_memseg. 2233 */ 2234 if (dobreak) { 2235 /* merge previously done */ 2236 cur_memseg->pages = 2237 (*memsegpp)->pages; 2238 cur_memseg->pages_base = 2239 (*memsegpp)->pages_base; 2240 cur_memseg->next = 2241 (*memsegpp)->next; 2242 } else { 2243 (*memsegpp)->pages_end = 2244 cur_memseg->pages_end; 2245 (*memsegpp)->epages = 2246 cur_memseg->epages; 2247 } 2248 break; 2249 } 2250 /* 2251 * contiguous pfn but not page_t's. 2252 * drop first pfn/page_t in cur_memseg 2253 * to prevent creation of large pages 2254 * with noncontiguous page_t's if not 2255 * aligned to largest page boundary. 2256 */ 2257 largepgcnt = page_get_pagecnt( 2258 page_num_pagesizes() - 1); 2259 if (base_pfn & (largepgcnt - 1)) { 2260 num--; 2261 base_pfn++; 2262 cur_memseg->pages++; 2263 cur_memseg->pages_base++; 2264 pp = cur_memseg->pages; 2265 } 2266 if (dobreak) 2267 break; 2268 } 2269 2270 if (cur_memseg->pages_base >= 2271 (*memsegpp)->pages_end) { 2272 cur_memseg->next = *memsegpp; 2273 *memsegpp = cur_memseg; 2274 break; 2275 } 2276 if ((*memsegpp)->next == NULL) { 2277 cur_memseg->next = NULL; 2278 (*memsegpp)->next = cur_memseg; 2279 break; 2280 } 2281 memsegpp = &((*memsegpp)->next); 2282 ASSERT(*memsegpp != NULL); 2283 } 2284 2285 /* 2286 * add_physmem() initializes the PSM part of the page 2287 * struct by calling the PSM back with add_physmem_cb(). 2288 * In addition it coalesces pages into larger pages as 2289 * it initializes them. 2290 */ 2291 add_physmem(pp, num, base_pfn); 2292 cur_memseg++; 2293 availrmem_initial += num; 2294 availrmem += num; 2295 2296 /* 2297 * If the caller provided the page frames to us, then 2298 * advance in that list. Otherwise, prepare to allocate 2299 * our own page frames for the next memseg. 2300 */ 2301 pp = (inpp == NULL) ? NULL : pp + num; 2302 } 2303 2304 PRM_DEBUG(availrmem_initial); 2305 PRM_DEBUG(availrmem); 2306 PRM_DEBUG(freemem); 2307 build_pfn_hash(); 2308 return (pages_done); 2309 } 2310 2311 /* 2312 * Kernel VM initialization. 2313 */ 2314 static void 2315 kvm_init(void) 2316 { 2317 #ifdef DEBUG 2318 extern void _start(); 2319 2320 ASSERT((caddr_t)_start == s_text); 2321 #endif 2322 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2323 2324 /* 2325 * Put the kernel segments in kernel address space. 2326 */ 2327 rw_enter(&kas.a_lock, RW_WRITER); 2328 as_avlinit(&kas); 2329 2330 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2331 (void) segkmem_create(&ktextseg); 2332 2333 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2334 (void) segkmem_create(&kvalloc); 2335 2336 /* 2337 * We're about to map out /boot. This is the beginning of the 2338 * system resource management transition. We can no longer 2339 * call into /boot for I/O or memory allocations. 2340 * 2341 * XX64 - Is this still correct with kernelheap_extend() being called 2342 * later than this???? 2343 */ 2344 (void) seg_attach(&kas, final_kernelheap, 2345 ekernelheap - final_kernelheap, &kvseg); 2346 (void) segkmem_create(&kvseg); 2347 2348 #if defined(__amd64) 2349 (void) seg_attach(&kas, (caddr_t)core_base, core_size, &kvseg_core); 2350 (void) segkmem_create(&kvseg_core); 2351 #endif 2352 2353 (void) seg_attach(&kas, (caddr_t)SEGDEBUGBASE, (size_t)SEGDEBUGSIZE, 2354 &kdebugseg); 2355 (void) segkmem_create(&kdebugseg); 2356 2357 rw_exit(&kas.a_lock); 2358 2359 /* 2360 * Ensure that the red zone at kernelbase is never accessible. 2361 */ 2362 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2363 2364 /* 2365 * Make the text writable so that it can be hot patched by DTrace. 2366 */ 2367 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2368 PROT_READ | PROT_WRITE | PROT_EXEC); 2369 2370 /* 2371 * Make data writable until end. 2372 */ 2373 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2374 PROT_READ | PROT_WRITE | PROT_EXEC); 2375 } 2376 2377 /* 2378 * These are MTTR registers supported by P6 2379 */ 2380 static struct mtrrvar mtrrphys_arr[MAX_MTRRVAR]; 2381 static uint64_t mtrr64k, mtrr16k1, mtrr16k2; 2382 static uint64_t mtrr4k1, mtrr4k2, mtrr4k3; 2383 static uint64_t mtrr4k4, mtrr4k5, mtrr4k6; 2384 static uint64_t mtrr4k7, mtrr4k8, mtrrcap; 2385 uint64_t mtrrdef, pat_attr_reg; 2386 2387 /* 2388 * Disable reprogramming of MTRRs by default. 2389 */ 2390 int enable_relaxed_mtrr = 0; 2391 2392 /* 2393 * These must serve for Pentium, Pentium Pro (P6/Pentium II/Pentium III) 2394 * and Pentium 4, and yes, they are named 0, 1, 2, 4, 3 in ascending 2395 * address order (starting from 0x400). The Pentium 4 only implements 2396 * 4 sets, and while they are named 0-3 in the doc, the corresponding 2397 * names for P6 are 0,1,2,4. So define these arrays in address order 2398 * so that they work for both pre-Pentium4 and Pentium 4 processors. 2399 */ 2400 2401 static uint_t mci_ctl[] = {REG_MC0_CTL, REG_MC1_CTL, REG_MC2_CTL, 2402 REG_MC4_CTL, REG_MC3_CTL}; 2403 static uint_t mci_status[] = {REG_MC0_STATUS, REG_MC1_STATUS, REG_MC2_STATUS, 2404 REG_MC4_STATUS, REG_MC3_STATUS}; 2405 static uint_t mci_addr[] = {REG_MC0_ADDR, REG_MC1_ADDR, REG_MC2_ADDR, 2406 REG_MC4_ADDR, REG_MC3_ADDR}; 2407 static int mca_cnt; 2408 2409 2410 void 2411 setup_mca() 2412 { 2413 int i; 2414 uint64_t allzeros; 2415 uint64_t allones; 2416 uint64_t mca_cap; 2417 2418 if (!(x86_feature & X86_MCA)) 2419 return; 2420 (void) rdmsr(REG_MCG_CAP, &mca_cap); 2421 allones = 0xffffffffffffffffULL; 2422 if (mca_cap & MCG_CAP_CTL_P) 2423 (void) wrmsr(REG_MCG_CTL, &allones); 2424 mca_cnt = mca_cap & MCG_CAP_COUNT_MASK; 2425 if (mca_cnt > P6_MCG_CAP_COUNT) 2426 mca_cnt = P6_MCG_CAP_COUNT; 2427 for (i = 1; i < mca_cnt; i++) 2428 (void) wrmsr(mci_ctl[i], &allones); 2429 allzeros = 0; 2430 for (i = 0; i < mca_cnt; i++) 2431 (void) wrmsr(mci_status[i], &allzeros); 2432 setcr4(getcr4() | CR4_MCE); 2433 2434 } 2435 2436 int 2437 mca_exception(struct regs *rp) 2438 { 2439 uint64_t status, addr; 2440 uint64_t allzeros; 2441 uint64_t buf; 2442 int i, ret = 1, errcode, mserrcode; 2443 2444 allzeros = 0; 2445 (void) rdmsr(REG_MCG_STATUS, &buf); 2446 status = buf; 2447 if (status & MCG_STATUS_RIPV) 2448 ret = 0; 2449 if (status & MCG_STATUS_EIPV) 2450 cmn_err(CE_WARN, "MCE at 0x%lx", rp->r_pc); 2451 (void) wrmsr(REG_MCG_STATUS, &allzeros); 2452 for (i = 0; i < mca_cnt; i++) { 2453 (void) rdmsr(mci_status[i], &buf); 2454 status = buf; 2455 /* 2456 * If status register not valid skip this bank 2457 */ 2458 if (!(status & MCI_STATUS_VAL)) 2459 continue; 2460 errcode = status & MCI_STATUS_ERRCODE; 2461 mserrcode = (status >> MSERRCODE_SHFT) & MCI_STATUS_ERRCODE; 2462 if (status & MCI_STATUS_ADDRV) { 2463 /* 2464 * If mci_addr contains the address where 2465 * error occurred, display the address 2466 */ 2467 (void) rdmsr(mci_addr[i], &buf); 2468 addr = buf; 2469 cmn_err(CE_WARN, "MCE: Bank %d: error code 0x%x:"\ 2470 "addr = 0x%" PRIx64 ", model errcode = 0x%x", i, 2471 errcode, addr, mserrcode); 2472 } else { 2473 cmn_err(CE_WARN, 2474 "MCE: Bank %d: error code 0x%x, mserrcode = 0x%x", 2475 i, errcode, mserrcode); 2476 } 2477 (void) wrmsr(mci_status[i], &allzeros); 2478 } 2479 return (ret); 2480 } 2481 2482 void 2483 setup_mtrr() 2484 { 2485 int i, ecx; 2486 int vcnt; 2487 struct mtrrvar *mtrrphys; 2488 2489 if (!(x86_feature & X86_MTRR)) 2490 return; 2491 2492 (void) rdmsr(REG_MTRRCAP, &mtrrcap); 2493 (void) rdmsr(REG_MTRRDEF, &mtrrdef); 2494 if (mtrrcap & MTRRCAP_FIX) { 2495 (void) rdmsr(REG_MTRR64K, &mtrr64k); 2496 (void) rdmsr(REG_MTRR16K1, &mtrr16k1); 2497 (void) rdmsr(REG_MTRR16K2, &mtrr16k2); 2498 (void) rdmsr(REG_MTRR4K1, &mtrr4k1); 2499 (void) rdmsr(REG_MTRR4K2, &mtrr4k2); 2500 (void) rdmsr(REG_MTRR4K3, &mtrr4k3); 2501 (void) rdmsr(REG_MTRR4K4, &mtrr4k4); 2502 (void) rdmsr(REG_MTRR4K5, &mtrr4k5); 2503 (void) rdmsr(REG_MTRR4K6, &mtrr4k6); 2504 (void) rdmsr(REG_MTRR4K7, &mtrr4k7); 2505 (void) rdmsr(REG_MTRR4K8, &mtrr4k8); 2506 } 2507 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2508 vcnt = MAX_MTRRVAR; 2509 2510 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2511 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2512 (void) rdmsr(ecx, &mtrrphys->mtrrphys_base); 2513 (void) rdmsr(ecx + 1, &mtrrphys->mtrrphys_mask); 2514 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2515 mtrrphys->mtrrphys_mask &= ~MTRRPHYSMASK_V; 2516 } 2517 } 2518 if (x86_feature & X86_PAT) { 2519 if (enable_relaxed_mtrr) 2520 mtrrdef = MTRR_TYPE_WB|MTRRDEF_FE|MTRRDEF_E; 2521 pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2522 } 2523 2524 mtrr_sync(); 2525 } 2526 2527 /* 2528 * Sync current cpu mtrr with the incore copy of mtrr. 2529 * This function has to be invoked with interrupts disabled 2530 * Currently we do not capture other cpu's. This is invoked on cpu0 2531 * just after reading /etc/system. 2532 * On other cpu's its invoked from mp_startup(). 2533 */ 2534 void 2535 mtrr_sync() 2536 { 2537 uint64_t my_mtrrdef; 2538 uint_t crvalue, cr0_orig; 2539 int vcnt, i, ecx; 2540 struct mtrrvar *mtrrphys; 2541 2542 cr0_orig = crvalue = getcr0(); 2543 crvalue |= CR0_CD; 2544 crvalue &= ~CR0_NW; 2545 setcr0(crvalue); 2546 invalidate_cache(); 2547 setcr3(getcr3()); 2548 2549 if (x86_feature & X86_PAT) { 2550 (void) wrmsr(REG_MTRRPAT, &pat_attr_reg); 2551 } 2552 (void) rdmsr(REG_MTRRDEF, &my_mtrrdef); 2553 my_mtrrdef &= ~MTRRDEF_E; 2554 (void) wrmsr(REG_MTRRDEF, &my_mtrrdef); 2555 if (mtrrcap & MTRRCAP_FIX) { 2556 (void) wrmsr(REG_MTRR64K, &mtrr64k); 2557 (void) wrmsr(REG_MTRR16K1, &mtrr16k1); 2558 (void) wrmsr(REG_MTRR16K2, &mtrr16k2); 2559 (void) wrmsr(REG_MTRR4K1, &mtrr4k1); 2560 (void) wrmsr(REG_MTRR4K2, &mtrr4k2); 2561 (void) wrmsr(REG_MTRR4K3, &mtrr4k3); 2562 (void) wrmsr(REG_MTRR4K4, &mtrr4k4); 2563 (void) wrmsr(REG_MTRR4K5, &mtrr4k5); 2564 (void) wrmsr(REG_MTRR4K6, &mtrr4k6); 2565 (void) wrmsr(REG_MTRR4K7, &mtrr4k7); 2566 (void) wrmsr(REG_MTRR4K8, &mtrr4k8); 2567 } 2568 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2569 vcnt = MAX_MTRRVAR; 2570 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2571 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2572 (void) wrmsr(ecx, &mtrrphys->mtrrphys_base); 2573 (void) wrmsr(ecx + 1, &mtrrphys->mtrrphys_mask); 2574 } 2575 (void) wrmsr(REG_MTRRDEF, &mtrrdef); 2576 setcr3(getcr3()); 2577 invalidate_cache(); 2578 setcr0(cr0_orig); 2579 } 2580 2581 /* 2582 * resync mtrr so that BIOS is happy. Called from mdboot 2583 */ 2584 void 2585 mtrr_resync() 2586 { 2587 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2588 /* 2589 * We could have changed the default mtrr definition. 2590 * Put it back to uncached which is what it is at power on 2591 */ 2592 mtrrdef = MTRR_TYPE_UC|MTRRDEF_FE|MTRRDEF_E; 2593 mtrr_sync(); 2594 } 2595 } 2596 2597 void 2598 get_system_configuration() 2599 { 2600 char prop[32]; 2601 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2602 2603 if (((BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop)) || 2604 (BOP_GETPROP(bootops, "nodes", prop) < 0) || 2605 (kobj_getvalue(prop, &nodes_ll) == -1) || 2606 (nodes_ll > MAXNODES)) || 2607 ((BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop)) || 2608 (BOP_GETPROP(bootops, "cpus_pernode", prop) < 0) || 2609 (kobj_getvalue(prop, &cpus_pernode_ll) == -1))) { 2610 2611 system_hardware.hd_nodes = 1; 2612 system_hardware.hd_cpus_per_node = 0; 2613 } else { 2614 system_hardware.hd_nodes = (int)nodes_ll; 2615 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2616 } 2617 if ((BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop)) || 2618 (BOP_GETPROP(bootops, "kernelbase", prop) < 0) || 2619 (kobj_getvalue(prop, &lvalue) == -1)) 2620 eprom_kernelbase = NULL; 2621 else 2622 eprom_kernelbase = (uintptr_t)lvalue; 2623 2624 if ((BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop)) || 2625 (BOP_GETPROP(bootops, "segmapsize", prop) < 0) || 2626 (kobj_getvalue(prop, &lvalue) == -1)) { 2627 segmapsize = SEGMAPDEFAULT; 2628 } else { 2629 segmapsize = (uintptr_t)lvalue; 2630 } 2631 2632 if ((BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop)) || 2633 (BOP_GETPROP(bootops, "segmapfreelists", prop) < 0) || 2634 (kobj_getvalue(prop, &lvalue) == -1)) { 2635 segmapfreelists = 0; /* use segmap driver default */ 2636 } else { 2637 segmapfreelists = (int)lvalue; 2638 } 2639 } 2640 2641 /* 2642 * Add to a memory list. 2643 * start = start of new memory segment 2644 * len = length of new memory segment in bytes 2645 * new = pointer to a new struct memlist 2646 * memlistp = memory list to which to add segment. 2647 */ 2648 static void 2649 memlist_add( 2650 uint64_t start, 2651 uint64_t len, 2652 struct memlist *new, 2653 struct memlist **memlistp) 2654 { 2655 struct memlist *cur; 2656 uint64_t end = start + len; 2657 2658 new->address = start; 2659 new->size = len; 2660 2661 cur = *memlistp; 2662 2663 while (cur) { 2664 if (cur->address >= end) { 2665 new->next = cur; 2666 *memlistp = new; 2667 new->prev = cur->prev; 2668 cur->prev = new; 2669 return; 2670 } 2671 ASSERT(cur->address + cur->size <= start); 2672 if (cur->next == NULL) { 2673 cur->next = new; 2674 new->prev = cur; 2675 new->next = NULL; 2676 return; 2677 } 2678 memlistp = &cur->next; 2679 cur = cur->next; 2680 } 2681 } 2682 2683 void 2684 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2685 { 2686 size_t tsize = e_modtext - modtext; 2687 size_t dsize = e_moddata - moddata; 2688 2689 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2690 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2691 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2692 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2693 } 2694 2695 caddr_t 2696 kobj_text_alloc(vmem_t *arena, size_t size) 2697 { 2698 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2699 } 2700 2701 /*ARGSUSED*/ 2702 caddr_t 2703 kobj_texthole_alloc(caddr_t addr, size_t size) 2704 { 2705 panic("unexpected call to kobj_texthole_alloc()"); 2706 /*NOTREACHED*/ 2707 return (0); 2708 } 2709 2710 /*ARGSUSED*/ 2711 void 2712 kobj_texthole_free(caddr_t addr, size_t size) 2713 { 2714 panic("unexpected call to kobj_texthole_free()"); 2715 } 2716 2717 /* 2718 * This is called just after configure() in startup(). 2719 * 2720 * The ISALIST concept is a bit hopeless on Intel, because 2721 * there's no guarantee of an ever-more-capable processor 2722 * given that various parts of the instruction set may appear 2723 * and disappear between different implementations. 2724 * 2725 * While it would be possible to correct it and even enhance 2726 * it somewhat, the explicit hardware capability bitmask allows 2727 * more flexibility. 2728 * 2729 * So, we just leave this alone. 2730 */ 2731 void 2732 setx86isalist(void) 2733 { 2734 char *tp; 2735 size_t len; 2736 extern char *isa_list; 2737 2738 #define TBUFSIZE 1024 2739 2740 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2741 *tp = '\0'; 2742 2743 #if defined(__amd64) 2744 (void) strcpy(tp, "amd64 "); 2745 #endif 2746 2747 switch (x86_vendor) { 2748 case X86_VENDOR_Intel: 2749 case X86_VENDOR_AMD: 2750 case X86_VENDOR_TM: 2751 if (x86_feature & X86_CMOV) { 2752 /* 2753 * Pentium Pro or later 2754 */ 2755 (void) strcat(tp, "pentium_pro"); 2756 (void) strcat(tp, x86_feature & X86_MMX ? 2757 "+mmx pentium_pro " : " "); 2758 } 2759 /*FALLTHROUGH*/ 2760 case X86_VENDOR_Cyrix: 2761 /* 2762 * The Cyrix 6x86 does not have any Pentium features 2763 * accessible while not at privilege level 0. 2764 */ 2765 if (x86_feature & X86_CPUID) { 2766 (void) strcat(tp, "pentium"); 2767 (void) strcat(tp, x86_feature & X86_MMX ? 2768 "+mmx pentium " : " "); 2769 } 2770 break; 2771 default: 2772 break; 2773 } 2774 (void) strcat(tp, "i486 i386 i86"); 2775 len = strlen(tp) + 1; /* account for NULL at end of string */ 2776 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2777 kmem_free(tp, TBUFSIZE); 2778 2779 #undef TBUFSIZE 2780 } 2781 2782 2783 #ifdef __amd64 2784 2785 void * 2786 device_arena_alloc(size_t size, int vm_flag) 2787 { 2788 return (vmem_alloc(device_arena, size, vm_flag)); 2789 } 2790 2791 void 2792 device_arena_free(void *vaddr, size_t size) 2793 { 2794 vmem_free(device_arena, vaddr, size); 2795 } 2796 2797 #else 2798 2799 void * 2800 device_arena_alloc(size_t size, int vm_flag) 2801 { 2802 caddr_t vaddr; 2803 uintptr_t v; 2804 size_t start; 2805 size_t end; 2806 2807 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2808 if (vaddr == NULL) 2809 return (NULL); 2810 2811 v = (uintptr_t)vaddr; 2812 ASSERT(v >= kernelbase); 2813 ASSERT(v + size <= ptable_va); 2814 2815 start = btop(v - kernelbase); 2816 end = btop(v + size - 1 - kernelbase); 2817 ASSERT(start < toxic_bit_map_len); 2818 ASSERT(end < toxic_bit_map_len); 2819 2820 while (start <= end) { 2821 BT_ATOMIC_SET(toxic_bit_map, start); 2822 ++start; 2823 } 2824 return (vaddr); 2825 } 2826 2827 void 2828 device_arena_free(void *vaddr, size_t size) 2829 { 2830 uintptr_t v = (uintptr_t)vaddr; 2831 size_t start; 2832 size_t end; 2833 2834 ASSERT(v >= kernelbase); 2835 ASSERT(v + size <= ptable_va); 2836 2837 start = btop(v - kernelbase); 2838 end = btop(v + size - 1 - kernelbase); 2839 ASSERT(start < toxic_bit_map_len); 2840 ASSERT(end < toxic_bit_map_len); 2841 2842 while (start <= end) { 2843 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2844 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2845 ++start; 2846 } 2847 vmem_free(heap_arena, vaddr, size); 2848 } 2849 2850 /* 2851 * returns 1st address in range that is in device arena, or NULL 2852 * if len is not NULL it returns the length of the toxic range 2853 */ 2854 void * 2855 device_arena_contains(void *vaddr, size_t size, size_t *len) 2856 { 2857 uintptr_t v = (uintptr_t)vaddr; 2858 uintptr_t eaddr = v + size; 2859 size_t start; 2860 size_t end; 2861 2862 /* 2863 * if called very early by kmdb, just return NULL 2864 */ 2865 if (toxic_bit_map == NULL) 2866 return (NULL); 2867 2868 /* 2869 * First check if we're completely outside the bitmap range. 2870 */ 2871 if (v >= ptable_va || eaddr < kernelbase) 2872 return (NULL); 2873 2874 /* 2875 * Trim ends of search to look at only what the bitmap covers. 2876 */ 2877 if (v < kernelbase) 2878 v = kernelbase; 2879 start = btop(v - kernelbase); 2880 end = btop(eaddr - kernelbase); 2881 if (end >= toxic_bit_map_len) 2882 end = toxic_bit_map_len; 2883 2884 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2885 return (NULL); 2886 2887 v = kernelbase + ptob(start); 2888 if (len != NULL) 2889 *len = ptob(end - start); 2890 return ((void *)v); 2891 } 2892 2893 #endif 2894