xref: /titanic_41/usr/src/uts/i86pc/os/mp_pc.c (revision c227543f6890bd6f2054360ec1820bfef8132431)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  */
29 
30 /*
31  * Welcome to the world of the "real mode platter".
32  * See also startup.c, mpcore.s and apic.c for related routines.
33  */
34 
35 #include <sys/types.h>
36 #include <sys/systm.h>
37 #include <sys/cpuvar.h>
38 #include <sys/cpu_module.h>
39 #include <sys/kmem.h>
40 #include <sys/archsystm.h>
41 #include <sys/machsystm.h>
42 #include <sys/controlregs.h>
43 #include <sys/x86_archext.h>
44 #include <sys/smp_impldefs.h>
45 #include <sys/sysmacros.h>
46 #include <sys/mach_mmu.h>
47 #include <sys/promif.h>
48 #include <sys/cpu.h>
49 #include <sys/cpu_event.h>
50 #include <sys/sunndi.h>
51 #include <sys/fs/dv_node.h>
52 #include <vm/hat_i86.h>
53 #include <vm/as.h>
54 
55 extern cpuset_t cpu_ready_set;
56 
57 extern int  mp_start_cpu_common(cpu_t *cp, boolean_t boot);
58 extern void real_mode_start_cpu(void);
59 extern void real_mode_start_cpu_end(void);
60 extern void real_mode_stop_cpu_stage1(void);
61 extern void real_mode_stop_cpu_stage1_end(void);
62 extern void real_mode_stop_cpu_stage2(void);
63 extern void real_mode_stop_cpu_stage2_end(void);
64 extern void *(*cpu_pause_func)(void *);
65 
66 void rmp_gdt_init(rm_platter_t *);
67 
68 /*
69  * Fill up the real mode platter to make it easy for real mode code to
70  * kick it off. This area should really be one passed by boot to kernel
71  * and guaranteed to be below 1MB and aligned to 16 bytes. Should also
72  * have identical physical and virtual address in paged mode.
73  */
74 static ushort_t *warm_reset_vector = NULL;
75 
76 int
77 mach_cpucontext_init(void)
78 {
79 	ushort_t *vec;
80 	ulong_t addr;
81 	struct rm_platter *rm = (struct rm_platter *)rm_platter_va;
82 
83 	if (!(vec = (ushort_t *)psm_map_phys(WARM_RESET_VECTOR,
84 	    sizeof (vec), PROT_READ | PROT_WRITE)))
85 		return (-1);
86 
87 	/*
88 	 * setup secondary cpu bios boot up vector
89 	 * Write page offset to 0x467 and page frame number to 0x469.
90 	 */
91 	addr = (ulong_t)((caddr_t)rm->rm_code - (caddr_t)rm) + rm_platter_pa;
92 	vec[0] = (ushort_t)(addr & PAGEOFFSET);
93 	vec[1] = (ushort_t)((addr & (0xfffff & PAGEMASK)) >> 4);
94 	warm_reset_vector = vec;
95 
96 	/* Map real mode platter into kas so kernel can access it. */
97 	hat_devload(kas.a_hat,
98 	    (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
99 	    btop(rm_platter_pa), PROT_READ | PROT_WRITE | PROT_EXEC,
100 	    HAT_LOAD_NOCONSIST);
101 
102 	/* Copy CPU startup code to rm_platter if it's still during boot. */
103 	if (!plat_dr_enabled()) {
104 		ASSERT((size_t)real_mode_start_cpu_end -
105 		    (size_t)real_mode_start_cpu <= RM_PLATTER_CODE_SIZE);
106 		bcopy((caddr_t)real_mode_start_cpu, (caddr_t)rm->rm_code,
107 		    (size_t)real_mode_start_cpu_end -
108 		    (size_t)real_mode_start_cpu);
109 	}
110 
111 	return (0);
112 }
113 
114 void
115 mach_cpucontext_fini(void)
116 {
117 	if (warm_reset_vector)
118 		psm_unmap_phys((caddr_t)warm_reset_vector,
119 		    sizeof (warm_reset_vector));
120 	hat_unload(kas.a_hat, (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
121 	    HAT_UNLOAD);
122 }
123 
124 #if defined(__amd64)
125 extern void *long_mode_64(void);
126 #endif	/* __amd64 */
127 
128 /*ARGSUSED*/
129 void
130 rmp_gdt_init(rm_platter_t *rm)
131 {
132 
133 #if defined(__amd64)
134 	/* Use the kas address space for the CPU startup thread. */
135 	if (MAKECR3(kas.a_hat->hat_htable->ht_pfn) > 0xffffffffUL)
136 		panic("Cannot initialize CPUs; kernel's 64-bit page tables\n"
137 		    "located above 4G in physical memory (@ 0x%lx)",
138 		    MAKECR3(kas.a_hat->hat_htable->ht_pfn));
139 
140 	/*
141 	 * Setup pseudo-descriptors for temporary GDT and IDT for use ONLY
142 	 * by code in real_mode_start_cpu():
143 	 *
144 	 * GDT[0]:  NULL selector
145 	 * GDT[1]:  64-bit CS: Long = 1, Present = 1, bits 12, 11 = 1
146 	 *
147 	 * Clear the IDT as interrupts will be off and a limit of 0 will cause
148 	 * the CPU to triple fault and reset on an NMI, seemingly as reasonable
149 	 * a course of action as any other, though it may cause the entire
150 	 * platform to reset in some cases...
151 	 */
152 	rm->rm_temp_gdt[0] = 0;
153 	rm->rm_temp_gdt[TEMPGDT_KCODE64] = 0x20980000000000ULL;
154 
155 	rm->rm_temp_gdt_lim = (ushort_t)(sizeof (rm->rm_temp_gdt) - 1);
156 	rm->rm_temp_gdt_base = rm_platter_pa +
157 	    (uint32_t)offsetof(rm_platter_t, rm_temp_gdt);
158 	rm->rm_temp_idt_lim = 0;
159 	rm->rm_temp_idt_base = 0;
160 
161 	/*
162 	 * Since the CPU needs to jump to protected mode using an identity
163 	 * mapped address, we need to calculate it here.
164 	 */
165 	rm->rm_longmode64_addr = rm_platter_pa +
166 	    ((uint32_t)long_mode_64 - (uint32_t)real_mode_start_cpu);
167 #endif	/* __amd64 */
168 }
169 
170 static void *
171 mach_cpucontext_alloc_tables(struct cpu *cp)
172 {
173 	struct tss *ntss;
174 	struct cpu_tables *ct;
175 
176 	/*
177 	 * Allocate space for stack, tss, gdt and idt. We round the size
178 	 * allotted for cpu_tables up, so that the TSS is on a unique page.
179 	 * This is more efficient when running in virtual machines.
180 	 */
181 	ct = kmem_zalloc(P2ROUNDUP(sizeof (*ct), PAGESIZE), KM_SLEEP);
182 	if ((uintptr_t)ct & PAGEOFFSET)
183 		panic("mach_cpucontext_alloc_tables: cpu%d misaligned tables",
184 		    cp->cpu_id);
185 
186 	ntss = cp->cpu_tss = &ct->ct_tss;
187 
188 #if defined(__amd64)
189 
190 	/*
191 	 * #DF (double fault).
192 	 */
193 	ntss->tss_ist1 = (uint64_t)&ct->ct_stack[sizeof (ct->ct_stack)];
194 
195 #elif defined(__i386)
196 
197 	ntss->tss_esp0 = ntss->tss_esp1 = ntss->tss_esp2 = ntss->tss_esp =
198 	    (uint32_t)&ct->ct_stack[sizeof (ct->ct_stack)];
199 
200 	ntss->tss_ss0 = ntss->tss_ss1 = ntss->tss_ss2 = ntss->tss_ss = KDS_SEL;
201 
202 	ntss->tss_eip = (uint32_t)cp->cpu_thread->t_pc;
203 
204 	ntss->tss_cs = KCS_SEL;
205 	ntss->tss_ds = ntss->tss_es = KDS_SEL;
206 	ntss->tss_fs = KFS_SEL;
207 	ntss->tss_gs = KGS_SEL;
208 
209 #endif	/* __i386 */
210 
211 	/*
212 	 * Set I/O bit map offset equal to size of TSS segment limit
213 	 * for no I/O permission map. This will cause all user I/O
214 	 * instructions to generate #gp fault.
215 	 */
216 	ntss->tss_bitmapbase = sizeof (*ntss);
217 
218 	/*
219 	 * Setup kernel tss.
220 	 */
221 	set_syssegd((system_desc_t *)&cp->cpu_gdt[GDT_KTSS], cp->cpu_tss,
222 	    sizeof (*cp->cpu_tss) - 1, SDT_SYSTSS, SEL_KPL);
223 
224 	return (ct);
225 }
226 
227 void *
228 mach_cpucontext_xalloc(struct cpu *cp, int optype)
229 {
230 	size_t len;
231 	struct cpu_tables *ct;
232 	rm_platter_t *rm = (rm_platter_t *)rm_platter_va;
233 	static int cpu_halt_code_ready;
234 
235 	if (optype == MACH_CPUCONTEXT_OP_STOP) {
236 		ASSERT(plat_dr_enabled());
237 
238 		/*
239 		 * The WARM_RESET_VECTOR has a limitation that the physical
240 		 * address written to it must be page-aligned. To work around
241 		 * this limitation, the CPU stop code has been splitted into
242 		 * two stages.
243 		 * The stage 2 code, which implements the real logic to halt
244 		 * CPUs, is copied to the rm_cpu_halt_code field in the real
245 		 * mode platter. The stage 1 code, which simply jumps to the
246 		 * stage 2 code in the rm_cpu_halt_code field, is copied to
247 		 * rm_code field in the real mode platter and it may be
248 		 * overwritten after the CPU has been stopped.
249 		 */
250 		if (!cpu_halt_code_ready) {
251 			/*
252 			 * The rm_cpu_halt_code field in the real mode platter
253 			 * is used by the CPU stop code only. So only copy the
254 			 * CPU stop stage 2 code into the rm_cpu_halt_code
255 			 * field on the first call.
256 			 */
257 			len = (size_t)real_mode_stop_cpu_stage2_end -
258 			    (size_t)real_mode_stop_cpu_stage2;
259 			ASSERT(len <= RM_PLATTER_CPU_HALT_CODE_SIZE);
260 			bcopy((caddr_t)real_mode_stop_cpu_stage2,
261 			    (caddr_t)rm->rm_cpu_halt_code, len);
262 			cpu_halt_code_ready = 1;
263 		}
264 
265 		/*
266 		 * The rm_code field in the real mode platter is shared by
267 		 * the CPU start, CPU stop, CPR and fast reboot code. So copy
268 		 * the CPU stop stage 1 code into the rm_code field every time.
269 		 */
270 		len = (size_t)real_mode_stop_cpu_stage1_end -
271 		    (size_t)real_mode_stop_cpu_stage1;
272 		ASSERT(len <= RM_PLATTER_CODE_SIZE);
273 		bcopy((caddr_t)real_mode_stop_cpu_stage1,
274 		    (caddr_t)rm->rm_code, len);
275 		rm->rm_cpu_halted = 0;
276 
277 		return (cp->cpu_m.mcpu_mach_ctx_ptr);
278 	} else if (optype != MACH_CPUCONTEXT_OP_START) {
279 		return (NULL);
280 	}
281 
282 	/*
283 	 * Only need to allocate tables when starting CPU.
284 	 * Tables allocated when starting CPU will be reused when stopping CPU.
285 	 */
286 	ct = mach_cpucontext_alloc_tables(cp);
287 	if (ct == NULL) {
288 		return (NULL);
289 	}
290 
291 	/* Copy CPU startup code to rm_platter for CPU hot-add operations. */
292 	if (plat_dr_enabled()) {
293 		bcopy((caddr_t)real_mode_start_cpu, (caddr_t)rm->rm_code,
294 		    (size_t)real_mode_start_cpu_end -
295 		    (size_t)real_mode_start_cpu);
296 	}
297 
298 	/*
299 	 * Now copy all that we've set up onto the real mode platter
300 	 * for the real mode code to digest as part of starting the cpu.
301 	 */
302 	rm->rm_idt_base = cp->cpu_idt;
303 	rm->rm_idt_lim = sizeof (*cp->cpu_idt) * NIDT - 1;
304 	rm->rm_gdt_base = cp->cpu_gdt;
305 	rm->rm_gdt_lim = sizeof (*cp->cpu_gdt) * NGDT - 1;
306 
307 	/*
308 	 * CPU needs to access kernel address space after powering on.
309 	 * When hot-adding CPU at runtime, directly use top level page table
310 	 * of kas other than the return value of getcr3(). getcr3() returns
311 	 * current process's top level page table, which may be different from
312 	 * the one of kas.
313 	 */
314 	rm->rm_pdbr = MAKECR3(kas.a_hat->hat_htable->ht_pfn);
315 	rm->rm_cpu = cp->cpu_id;
316 	rm->rm_x86feature = x86_feature;
317 
318 	/*
319 	 * For hot-adding CPU at runtime, Machine Check and Performance Counter
320 	 * should be disabled. They will be enabled on demand after CPU powers
321 	 * on successfully
322 	 */
323 	rm->rm_cr4 = getcr4();
324 	rm->rm_cr4 &= ~(CR4_MCE | CR4_PCE);
325 
326 	rmp_gdt_init(rm);
327 
328 	return (ct);
329 }
330 
331 void
332 mach_cpucontext_xfree(struct cpu *cp, void *arg, int err, int optype)
333 {
334 	struct cpu_tables *ct = arg;
335 
336 	ASSERT(&ct->ct_tss == cp->cpu_tss);
337 	if (optype == MACH_CPUCONTEXT_OP_START) {
338 		switch (err) {
339 		case 0:
340 			/*
341 			 * Save pointer for reuse when stopping CPU.
342 			 */
343 			cp->cpu_m.mcpu_mach_ctx_ptr = arg;
344 			break;
345 		case ETIMEDOUT:
346 			/*
347 			 * The processor was poked, but failed to start before
348 			 * we gave up waiting for it.  In case it starts later,
349 			 * don't free anything.
350 			 */
351 			cp->cpu_m.mcpu_mach_ctx_ptr = arg;
352 			break;
353 		default:
354 			/*
355 			 * Some other, passive, error occurred.
356 			 */
357 			kmem_free(ct, P2ROUNDUP(sizeof (*ct), PAGESIZE));
358 			cp->cpu_tss = NULL;
359 			break;
360 		}
361 	} else if (optype == MACH_CPUCONTEXT_OP_STOP) {
362 		switch (err) {
363 		case 0:
364 			/*
365 			 * Free resources allocated when starting CPU.
366 			 */
367 			kmem_free(ct, P2ROUNDUP(sizeof (*ct), PAGESIZE));
368 			cp->cpu_tss = NULL;
369 			cp->cpu_m.mcpu_mach_ctx_ptr = NULL;
370 			break;
371 		default:
372 			/*
373 			 * Don't touch table pointer in case of failure.
374 			 */
375 			break;
376 		}
377 	} else {
378 		ASSERT(0);
379 	}
380 }
381 
382 void *
383 mach_cpucontext_alloc(struct cpu *cp)
384 {
385 	return (mach_cpucontext_xalloc(cp, MACH_CPUCONTEXT_OP_START));
386 }
387 
388 void
389 mach_cpucontext_free(struct cpu *cp, void *arg, int err)
390 {
391 	mach_cpucontext_xfree(cp, arg, err, MACH_CPUCONTEXT_OP_START);
392 }
393 
394 /*
395  * "Enter monitor."  Called via cross-call from stop_other_cpus().
396  */
397 void
398 mach_cpu_halt(char *msg)
399 {
400 	if (msg)
401 		prom_printf("%s\n", msg);
402 
403 	/*CONSTANTCONDITION*/
404 	while (1)
405 		;
406 }
407 
408 void
409 mach_cpu_idle(void)
410 {
411 	i86_halt();
412 }
413 
414 void
415 mach_cpu_pause(volatile char *safe)
416 {
417 	/*
418 	 * This cpu is now safe.
419 	 */
420 	*safe = PAUSE_WAIT;
421 	membar_enter(); /* make sure stores are flushed */
422 
423 	/*
424 	 * Now we wait.  When we are allowed to continue, safe
425 	 * will be set to PAUSE_IDLE.
426 	 */
427 	while (*safe != PAUSE_IDLE)
428 		SMT_PAUSE();
429 }
430 
431 /*
432  * Power on the target CPU.
433  */
434 int
435 mp_cpu_poweron(struct cpu *cp)
436 {
437 	int error;
438 	cpuset_t tempset;
439 	processorid_t cpuid;
440 
441 	ASSERT(cp != NULL);
442 	cpuid = cp->cpu_id;
443 	if (use_mp == 0 || plat_dr_support_cpu() == 0) {
444 		return (ENOTSUP);
445 	} else if (cpuid < 0 || cpuid >= max_ncpus) {
446 		return (EINVAL);
447 	}
448 
449 	/*
450 	 * The currrent x86 implementaiton of mp_cpu_configure() and
451 	 * mp_cpu_poweron() have a limitation that mp_cpu_poweron() could only
452 	 * be called once after calling mp_cpu_configure() for a specific CPU.
453 	 * It's because mp_cpu_poweron() will destroy data structure created
454 	 * by mp_cpu_configure(). So reject the request if the CPU has already
455 	 * been powered on once after calling mp_cpu_configure().
456 	 * This limitaiton only affects the p_online syscall and the DR driver
457 	 * won't be affected because the DR driver always invoke public CPU
458 	 * management interfaces in the predefined order:
459 	 * cpu_configure()->cpu_poweron()...->cpu_poweroff()->cpu_unconfigure()
460 	 */
461 	if (cpuid_checkpass(cp, 4) || cp->cpu_thread == cp->cpu_idle_thread) {
462 		return (ENOTSUP);
463 	}
464 
465 	/*
466 	 * Check if there's at least a Mbyte of kmem available
467 	 * before attempting to start the cpu.
468 	 */
469 	if (kmem_avail() < 1024 * 1024) {
470 		/*
471 		 * Kick off a reap in case that helps us with
472 		 * later attempts ..
473 		 */
474 		kmem_reap();
475 		return (ENOMEM);
476 	}
477 
478 	affinity_set(CPU->cpu_id);
479 
480 	/*
481 	 * Start the target CPU. No need to call mach_cpucontext_fini()
482 	 * if mach_cpucontext_init() fails.
483 	 */
484 	if ((error = mach_cpucontext_init()) == 0) {
485 		error = mp_start_cpu_common(cp, B_FALSE);
486 		mach_cpucontext_fini();
487 	}
488 	if (error != 0) {
489 		affinity_clear();
490 		return (error);
491 	}
492 
493 	/* Wait for the target cpu to reach READY state. */
494 	tempset = cpu_ready_set;
495 	while (!CPU_IN_SET(tempset, cpuid)) {
496 		delay(1);
497 		tempset = *((volatile cpuset_t *)&cpu_ready_set);
498 	}
499 
500 	/* Mark the target CPU as available for mp operation. */
501 	CPUSET_ATOMIC_ADD(mp_cpus, cpuid);
502 
503 	/* Free the space allocated to hold the microcode file */
504 	ucode_cleanup();
505 
506 	affinity_clear();
507 
508 	return (0);
509 }
510 
511 #define	MP_CPU_DETACH_MAX_TRIES		5
512 #define	MP_CPU_DETACH_DELAY		100
513 
514 static int
515 mp_cpu_detach_driver(dev_info_t *dip)
516 {
517 	int i;
518 	int rv = EBUSY;
519 	dev_info_t *pdip;
520 
521 	pdip = ddi_get_parent(dip);
522 	ASSERT(pdip != NULL);
523 	/*
524 	 * Check if caller holds pdip busy - can cause deadlocks in
525 	 * e_ddi_branch_unconfigure(), which calls devfs_clean().
526 	 */
527 	if (DEVI_BUSY_OWNED(pdip)) {
528 		return (EDEADLOCK);
529 	}
530 
531 	for (i = 0; i < MP_CPU_DETACH_MAX_TRIES; i++) {
532 		if (e_ddi_branch_unconfigure(dip, NULL, 0) == 0) {
533 			rv = 0;
534 			break;
535 		}
536 		DELAY(MP_CPU_DETACH_DELAY);
537 	}
538 
539 	return (rv);
540 }
541 
542 /*
543  * Power off the target CPU.
544  * Note: cpu_lock will be released and then reacquired.
545  */
546 int
547 mp_cpu_poweroff(struct cpu *cp)
548 {
549 	int rv = 0;
550 	void *ctx;
551 	dev_info_t *dip = NULL;
552 	rm_platter_t *rm = (rm_platter_t *)rm_platter_va;
553 	extern void cpupm_start(cpu_t *);
554 	extern void cpupm_stop(cpu_t *);
555 
556 	ASSERT(cp != NULL);
557 	ASSERT((cp->cpu_flags & CPU_OFFLINE) != 0);
558 	ASSERT((cp->cpu_flags & CPU_QUIESCED) != 0);
559 
560 	if (use_mp == 0 || plat_dr_support_cpu() == 0) {
561 		return (ENOTSUP);
562 	}
563 	/*
564 	 * There is no support for powering off cpu0 yet.
565 	 * There are many pieces of code which have a hard dependency on cpu0.
566 	 */
567 	if (cp->cpu_id == 0) {
568 		return (ENOTSUP);
569 	};
570 
571 	if (mach_cpu_get_device_node(cp, &dip) != PSM_SUCCESS) {
572 		return (ENXIO);
573 	}
574 	ASSERT(dip != NULL);
575 	if (mp_cpu_detach_driver(dip) != 0) {
576 		rv = EBUSY;
577 		goto out_online;
578 	}
579 
580 	/* Allocate CPU context for stopping */
581 	if (mach_cpucontext_init() != 0) {
582 		rv = ENXIO;
583 		goto out_online;
584 	}
585 	ctx = mach_cpucontext_xalloc(cp, MACH_CPUCONTEXT_OP_STOP);
586 	if (ctx == NULL) {
587 		rv = ENXIO;
588 		goto out_context_fini;
589 	}
590 
591 	cpupm_stop(cp);
592 	cpu_event_fini_cpu(cp);
593 
594 	if (cp->cpu_m.mcpu_cmi_hdl != NULL) {
595 		cmi_fini(cp->cpu_m.mcpu_cmi_hdl);
596 		cp->cpu_m.mcpu_cmi_hdl = NULL;
597 	}
598 
599 	rv = mach_cpu_stop(cp, ctx);
600 	if (rv != 0) {
601 		goto out_enable_cmi;
602 	}
603 
604 	/* Wait until the target CPU has been halted. */
605 	while (*(volatile ushort_t *)&(rm->rm_cpu_halted) != 0xdead) {
606 		delay(1);
607 	}
608 	rm->rm_cpu_halted = 0xffff;
609 
610 	/* CPU_READY has been cleared by mach_cpu_stop. */
611 	ASSERT((cp->cpu_flags & CPU_READY) == 0);
612 	ASSERT((cp->cpu_flags & CPU_RUNNING) == 0);
613 	cp->cpu_flags = CPU_OFFLINE | CPU_QUIESCED | CPU_POWEROFF;
614 	CPUSET_ATOMIC_DEL(mp_cpus, cp->cpu_id);
615 
616 	mach_cpucontext_xfree(cp, ctx, 0, MACH_CPUCONTEXT_OP_STOP);
617 	mach_cpucontext_fini();
618 
619 	return (0);
620 
621 out_enable_cmi:
622 	{
623 		cmi_hdl_t hdl;
624 
625 		if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp),
626 		    cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp))) != NULL) {
627 			if (x86_feature & X86_MCA)
628 				cmi_mca_init(hdl);
629 			cp->cpu_m.mcpu_cmi_hdl = hdl;
630 		}
631 	}
632 	cpu_event_init_cpu(cp);
633 	cpupm_start(cp);
634 	mach_cpucontext_xfree(cp, ctx, rv, MACH_CPUCONTEXT_OP_STOP);
635 
636 out_context_fini:
637 	mach_cpucontext_fini();
638 
639 out_online:
640 	(void) e_ddi_branch_configure(dip, NULL, 0);
641 
642 	if (rv != EAGAIN && rv != ETIME) {
643 		rv = ENXIO;
644 	}
645 
646 	return (rv);
647 }
648 
649 /*
650  * Return vcpu state, since this could be a virtual environment that we
651  * are unaware of, return "unknown".
652  */
653 /* ARGSUSED */
654 int
655 vcpu_on_pcpu(processorid_t cpu)
656 {
657 	return (VCPU_STATE_UNKNOWN);
658 }
659