xref: /titanic_41/usr/src/uts/i86pc/os/mp_pc.c (revision ae3d7f90695ef456a6da4f7bdccd448ebe0b99e1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 /*
25  * Copyright (c) 2010, Intel Corporation.
26  * All rights reserved.
27  */
28 
29 /*
30  * Welcome to the world of the "real mode platter".
31  * See also startup.c, mpcore.s and apic.c for related routines.
32  */
33 
34 #include <sys/types.h>
35 #include <sys/systm.h>
36 #include <sys/cpuvar.h>
37 #include <sys/cpu_module.h>
38 #include <sys/kmem.h>
39 #include <sys/archsystm.h>
40 #include <sys/machsystm.h>
41 #include <sys/controlregs.h>
42 #include <sys/x86_archext.h>
43 #include <sys/smp_impldefs.h>
44 #include <sys/sysmacros.h>
45 #include <sys/mach_mmu.h>
46 #include <sys/promif.h>
47 #include <sys/cpu.h>
48 #include <sys/cpu_event.h>
49 #include <sys/sunndi.h>
50 #include <sys/fs/dv_node.h>
51 #include <vm/hat_i86.h>
52 #include <vm/as.h>
53 
54 extern cpuset_t cpu_ready_set;
55 
56 extern int  mp_start_cpu_common(cpu_t *cp, boolean_t boot);
57 extern void real_mode_start_cpu(void);
58 extern void real_mode_start_cpu_end(void);
59 extern void real_mode_stop_cpu_stage1(void);
60 extern void real_mode_stop_cpu_stage1_end(void);
61 extern void real_mode_stop_cpu_stage2(void);
62 extern void real_mode_stop_cpu_stage2_end(void);
63 extern void *(*cpu_pause_func)(void *);
64 
65 void rmp_gdt_init(rm_platter_t *);
66 
67 /*
68  * Fill up the real mode platter to make it easy for real mode code to
69  * kick it off. This area should really be one passed by boot to kernel
70  * and guaranteed to be below 1MB and aligned to 16 bytes. Should also
71  * have identical physical and virtual address in paged mode.
72  */
73 static ushort_t *warm_reset_vector = NULL;
74 
75 int
76 mach_cpucontext_init(void)
77 {
78 	ushort_t *vec;
79 	ulong_t addr;
80 	struct rm_platter *rm = (struct rm_platter *)rm_platter_va;
81 
82 	if (!(vec = (ushort_t *)psm_map_phys(WARM_RESET_VECTOR,
83 	    sizeof (vec), PROT_READ | PROT_WRITE)))
84 		return (-1);
85 
86 	/*
87 	 * setup secondary cpu bios boot up vector
88 	 * Write page offset to 0x467 and page frame number to 0x469.
89 	 */
90 	addr = (ulong_t)((caddr_t)rm->rm_code - (caddr_t)rm) + rm_platter_pa;
91 	vec[0] = (ushort_t)(addr & PAGEOFFSET);
92 	vec[1] = (ushort_t)((addr & (0xfffff & PAGEMASK)) >> 4);
93 	warm_reset_vector = vec;
94 
95 	/* Map real mode platter into kas so kernel can access it. */
96 	hat_devload(kas.a_hat,
97 	    (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
98 	    btop(rm_platter_pa), PROT_READ | PROT_WRITE | PROT_EXEC,
99 	    HAT_LOAD_NOCONSIST);
100 
101 	/* Copy CPU startup code to rm_platter if it's still during boot. */
102 	if (!plat_dr_enabled()) {
103 		ASSERT((size_t)real_mode_start_cpu_end -
104 		    (size_t)real_mode_start_cpu <= RM_PLATTER_CODE_SIZE);
105 		bcopy((caddr_t)real_mode_start_cpu, (caddr_t)rm->rm_code,
106 		    (size_t)real_mode_start_cpu_end -
107 		    (size_t)real_mode_start_cpu);
108 	}
109 
110 	return (0);
111 }
112 
113 void
114 mach_cpucontext_fini(void)
115 {
116 	if (warm_reset_vector)
117 		psm_unmap_phys((caddr_t)warm_reset_vector,
118 		    sizeof (warm_reset_vector));
119 	hat_unload(kas.a_hat, (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
120 	    HAT_UNLOAD);
121 }
122 
123 #if defined(__amd64)
124 extern void *long_mode_64(void);
125 #endif	/* __amd64 */
126 
127 /*ARGSUSED*/
128 void
129 rmp_gdt_init(rm_platter_t *rm)
130 {
131 
132 #if defined(__amd64)
133 	/* Use the kas address space for the CPU startup thread. */
134 	if (MAKECR3(kas.a_hat->hat_htable->ht_pfn) > 0xffffffffUL)
135 		panic("Cannot initialize CPUs; kernel's 64-bit page tables\n"
136 		    "located above 4G in physical memory (@ 0x%lx)",
137 		    MAKECR3(kas.a_hat->hat_htable->ht_pfn));
138 
139 	/*
140 	 * Setup pseudo-descriptors for temporary GDT and IDT for use ONLY
141 	 * by code in real_mode_start_cpu():
142 	 *
143 	 * GDT[0]:  NULL selector
144 	 * GDT[1]:  64-bit CS: Long = 1, Present = 1, bits 12, 11 = 1
145 	 *
146 	 * Clear the IDT as interrupts will be off and a limit of 0 will cause
147 	 * the CPU to triple fault and reset on an NMI, seemingly as reasonable
148 	 * a course of action as any other, though it may cause the entire
149 	 * platform to reset in some cases...
150 	 */
151 	rm->rm_temp_gdt[0] = 0;
152 	rm->rm_temp_gdt[TEMPGDT_KCODE64] = 0x20980000000000ULL;
153 
154 	rm->rm_temp_gdt_lim = (ushort_t)(sizeof (rm->rm_temp_gdt) - 1);
155 	rm->rm_temp_gdt_base = rm_platter_pa +
156 	    (uint32_t)offsetof(rm_platter_t, rm_temp_gdt);
157 	rm->rm_temp_idt_lim = 0;
158 	rm->rm_temp_idt_base = 0;
159 
160 	/*
161 	 * Since the CPU needs to jump to protected mode using an identity
162 	 * mapped address, we need to calculate it here.
163 	 */
164 	rm->rm_longmode64_addr = rm_platter_pa +
165 	    ((uint32_t)long_mode_64 - (uint32_t)real_mode_start_cpu);
166 #endif	/* __amd64 */
167 }
168 
169 static void *
170 mach_cpucontext_alloc_tables(struct cpu *cp)
171 {
172 	struct tss *ntss;
173 	struct cpu_tables *ct;
174 
175 	/*
176 	 * Allocate space for stack, tss, gdt and idt. We round the size
177 	 * allotted for cpu_tables up, so that the TSS is on a unique page.
178 	 * This is more efficient when running in virtual machines.
179 	 */
180 	ct = kmem_zalloc(P2ROUNDUP(sizeof (*ct), PAGESIZE), KM_SLEEP);
181 	if ((uintptr_t)ct & PAGEOFFSET)
182 		panic("mach_cpucontext_alloc_tables: cpu%d misaligned tables",
183 		    cp->cpu_id);
184 
185 	ntss = cp->cpu_tss = &ct->ct_tss;
186 
187 #if defined(__amd64)
188 
189 	/*
190 	 * #DF (double fault).
191 	 */
192 	ntss->tss_ist1 = (uint64_t)&ct->ct_stack[sizeof (ct->ct_stack)];
193 
194 #elif defined(__i386)
195 
196 	ntss->tss_esp0 = ntss->tss_esp1 = ntss->tss_esp2 = ntss->tss_esp =
197 	    (uint32_t)&ct->ct_stack[sizeof (ct->ct_stack)];
198 
199 	ntss->tss_ss0 = ntss->tss_ss1 = ntss->tss_ss2 = ntss->tss_ss = KDS_SEL;
200 
201 	ntss->tss_eip = (uint32_t)cp->cpu_thread->t_pc;
202 
203 	ntss->tss_cs = KCS_SEL;
204 	ntss->tss_ds = ntss->tss_es = KDS_SEL;
205 	ntss->tss_fs = KFS_SEL;
206 	ntss->tss_gs = KGS_SEL;
207 
208 #endif	/* __i386 */
209 
210 	/*
211 	 * Set I/O bit map offset equal to size of TSS segment limit
212 	 * for no I/O permission map. This will cause all user I/O
213 	 * instructions to generate #gp fault.
214 	 */
215 	ntss->tss_bitmapbase = sizeof (*ntss);
216 
217 	/*
218 	 * Setup kernel tss.
219 	 */
220 	set_syssegd((system_desc_t *)&cp->cpu_gdt[GDT_KTSS], cp->cpu_tss,
221 	    sizeof (*cp->cpu_tss) - 1, SDT_SYSTSS, SEL_KPL);
222 
223 	return (ct);
224 }
225 
226 void *
227 mach_cpucontext_xalloc(struct cpu *cp, int optype)
228 {
229 	size_t len;
230 	struct cpu_tables *ct;
231 	rm_platter_t *rm = (rm_platter_t *)rm_platter_va;
232 	static int cpu_halt_code_ready;
233 
234 	if (optype == MACH_CPUCONTEXT_OP_STOP) {
235 		ASSERT(plat_dr_enabled());
236 
237 		/*
238 		 * The WARM_RESET_VECTOR has a limitation that the physical
239 		 * address written to it must be page-aligned. To work around
240 		 * this limitation, the CPU stop code has been splitted into
241 		 * two stages.
242 		 * The stage 2 code, which implements the real logic to halt
243 		 * CPUs, is copied to the rm_cpu_halt_code field in the real
244 		 * mode platter. The stage 1 code, which simply jumps to the
245 		 * stage 2 code in the rm_cpu_halt_code field, is copied to
246 		 * rm_code field in the real mode platter and it may be
247 		 * overwritten after the CPU has been stopped.
248 		 */
249 		if (!cpu_halt_code_ready) {
250 			/*
251 			 * The rm_cpu_halt_code field in the real mode platter
252 			 * is used by the CPU stop code only. So only copy the
253 			 * CPU stop stage 2 code into the rm_cpu_halt_code
254 			 * field on the first call.
255 			 */
256 			len = (size_t)real_mode_stop_cpu_stage2_end -
257 			    (size_t)real_mode_stop_cpu_stage2;
258 			ASSERT(len <= RM_PLATTER_CPU_HALT_CODE_SIZE);
259 			bcopy((caddr_t)real_mode_stop_cpu_stage2,
260 			    (caddr_t)rm->rm_cpu_halt_code, len);
261 			cpu_halt_code_ready = 1;
262 		}
263 
264 		/*
265 		 * The rm_code field in the real mode platter is shared by
266 		 * the CPU start, CPU stop, CPR and fast reboot code. So copy
267 		 * the CPU stop stage 1 code into the rm_code field every time.
268 		 */
269 		len = (size_t)real_mode_stop_cpu_stage1_end -
270 		    (size_t)real_mode_stop_cpu_stage1;
271 		ASSERT(len <= RM_PLATTER_CODE_SIZE);
272 		bcopy((caddr_t)real_mode_stop_cpu_stage1,
273 		    (caddr_t)rm->rm_code, len);
274 		rm->rm_cpu_halted = 0;
275 
276 		return (cp->cpu_m.mcpu_mach_ctx_ptr);
277 	} else if (optype != MACH_CPUCONTEXT_OP_START) {
278 		return (NULL);
279 	}
280 
281 	/*
282 	 * Only need to allocate tables when starting CPU.
283 	 * Tables allocated when starting CPU will be reused when stopping CPU.
284 	 */
285 	ct = mach_cpucontext_alloc_tables(cp);
286 	if (ct == NULL) {
287 		return (NULL);
288 	}
289 
290 	/* Copy CPU startup code to rm_platter for CPU hot-add operations. */
291 	if (plat_dr_enabled()) {
292 		bcopy((caddr_t)real_mode_start_cpu, (caddr_t)rm->rm_code,
293 		    (size_t)real_mode_start_cpu_end -
294 		    (size_t)real_mode_start_cpu);
295 	}
296 
297 	/*
298 	 * Now copy all that we've set up onto the real mode platter
299 	 * for the real mode code to digest as part of starting the cpu.
300 	 */
301 	rm->rm_idt_base = cp->cpu_idt;
302 	rm->rm_idt_lim = sizeof (*cp->cpu_idt) * NIDT - 1;
303 	rm->rm_gdt_base = cp->cpu_gdt;
304 	rm->rm_gdt_lim = sizeof (*cp->cpu_gdt) * NGDT - 1;
305 
306 	/*
307 	 * CPU needs to access kernel address space after powering on.
308 	 * When hot-adding CPU at runtime, directly use top level page table
309 	 * of kas other than the return value of getcr3(). getcr3() returns
310 	 * current process's top level page table, which may be different from
311 	 * the one of kas.
312 	 */
313 	rm->rm_pdbr = MAKECR3(kas.a_hat->hat_htable->ht_pfn);
314 	rm->rm_cpu = cp->cpu_id;
315 
316 	/*
317 	 * For hot-adding CPU at runtime, Machine Check and Performance Counter
318 	 * should be disabled. They will be enabled on demand after CPU powers
319 	 * on successfully
320 	 */
321 	rm->rm_cr4 = getcr4();
322 	rm->rm_cr4 &= ~(CR4_MCE | CR4_PCE);
323 
324 	rmp_gdt_init(rm);
325 
326 	return (ct);
327 }
328 
329 void
330 mach_cpucontext_xfree(struct cpu *cp, void *arg, int err, int optype)
331 {
332 	struct cpu_tables *ct = arg;
333 
334 	ASSERT(&ct->ct_tss == cp->cpu_tss);
335 	if (optype == MACH_CPUCONTEXT_OP_START) {
336 		switch (err) {
337 		case 0:
338 			/*
339 			 * Save pointer for reuse when stopping CPU.
340 			 */
341 			cp->cpu_m.mcpu_mach_ctx_ptr = arg;
342 			break;
343 		case ETIMEDOUT:
344 			/*
345 			 * The processor was poked, but failed to start before
346 			 * we gave up waiting for it.  In case it starts later,
347 			 * don't free anything.
348 			 */
349 			cp->cpu_m.mcpu_mach_ctx_ptr = arg;
350 			break;
351 		default:
352 			/*
353 			 * Some other, passive, error occurred.
354 			 */
355 			kmem_free(ct, P2ROUNDUP(sizeof (*ct), PAGESIZE));
356 			cp->cpu_tss = NULL;
357 			break;
358 		}
359 	} else if (optype == MACH_CPUCONTEXT_OP_STOP) {
360 		switch (err) {
361 		case 0:
362 			/*
363 			 * Free resources allocated when starting CPU.
364 			 */
365 			kmem_free(ct, P2ROUNDUP(sizeof (*ct), PAGESIZE));
366 			cp->cpu_tss = NULL;
367 			cp->cpu_m.mcpu_mach_ctx_ptr = NULL;
368 			break;
369 		default:
370 			/*
371 			 * Don't touch table pointer in case of failure.
372 			 */
373 			break;
374 		}
375 	} else {
376 		ASSERT(0);
377 	}
378 }
379 
380 void *
381 mach_cpucontext_alloc(struct cpu *cp)
382 {
383 	return (mach_cpucontext_xalloc(cp, MACH_CPUCONTEXT_OP_START));
384 }
385 
386 void
387 mach_cpucontext_free(struct cpu *cp, void *arg, int err)
388 {
389 	mach_cpucontext_xfree(cp, arg, err, MACH_CPUCONTEXT_OP_START);
390 }
391 
392 /*
393  * "Enter monitor."  Called via cross-call from stop_other_cpus().
394  */
395 void
396 mach_cpu_halt(char *msg)
397 {
398 	if (msg)
399 		prom_printf("%s\n", msg);
400 
401 	/*CONSTANTCONDITION*/
402 	while (1)
403 		;
404 }
405 
406 void
407 mach_cpu_idle(void)
408 {
409 	i86_halt();
410 }
411 
412 void
413 mach_cpu_pause(volatile char *safe)
414 {
415 	/*
416 	 * This cpu is now safe.
417 	 */
418 	*safe = PAUSE_WAIT;
419 	membar_enter(); /* make sure stores are flushed */
420 
421 	/*
422 	 * Now we wait.  When we are allowed to continue, safe
423 	 * will be set to PAUSE_IDLE.
424 	 */
425 	while (*safe != PAUSE_IDLE)
426 		SMT_PAUSE();
427 }
428 
429 /*
430  * Power on the target CPU.
431  */
432 int
433 mp_cpu_poweron(struct cpu *cp)
434 {
435 	int error;
436 	cpuset_t tempset;
437 	processorid_t cpuid;
438 
439 	ASSERT(cp != NULL);
440 	cpuid = cp->cpu_id;
441 	if (use_mp == 0 || plat_dr_support_cpu() == 0) {
442 		return (ENOTSUP);
443 	} else if (cpuid < 0 || cpuid >= max_ncpus) {
444 		return (EINVAL);
445 	}
446 
447 	/*
448 	 * The currrent x86 implementaiton of mp_cpu_configure() and
449 	 * mp_cpu_poweron() have a limitation that mp_cpu_poweron() could only
450 	 * be called once after calling mp_cpu_configure() for a specific CPU.
451 	 * It's because mp_cpu_poweron() will destroy data structure created
452 	 * by mp_cpu_configure(). So reject the request if the CPU has already
453 	 * been powered on once after calling mp_cpu_configure().
454 	 * This limitaiton only affects the p_online syscall and the DR driver
455 	 * won't be affected because the DR driver always invoke public CPU
456 	 * management interfaces in the predefined order:
457 	 * cpu_configure()->cpu_poweron()...->cpu_poweroff()->cpu_unconfigure()
458 	 */
459 	if (cpuid_checkpass(cp, 4) || cp->cpu_thread == cp->cpu_idle_thread) {
460 		return (ENOTSUP);
461 	}
462 
463 	/*
464 	 * Check if there's at least a Mbyte of kmem available
465 	 * before attempting to start the cpu.
466 	 */
467 	if (kmem_avail() < 1024 * 1024) {
468 		/*
469 		 * Kick off a reap in case that helps us with
470 		 * later attempts ..
471 		 */
472 		kmem_reap();
473 		return (ENOMEM);
474 	}
475 
476 	affinity_set(CPU->cpu_id);
477 
478 	/*
479 	 * Start the target CPU. No need to call mach_cpucontext_fini()
480 	 * if mach_cpucontext_init() fails.
481 	 */
482 	if ((error = mach_cpucontext_init()) == 0) {
483 		error = mp_start_cpu_common(cp, B_FALSE);
484 		mach_cpucontext_fini();
485 	}
486 	if (error != 0) {
487 		affinity_clear();
488 		return (error);
489 	}
490 
491 	/* Wait for the target cpu to reach READY state. */
492 	tempset = cpu_ready_set;
493 	while (!CPU_IN_SET(tempset, cpuid)) {
494 		delay(1);
495 		tempset = *((volatile cpuset_t *)&cpu_ready_set);
496 	}
497 
498 	/* Mark the target CPU as available for mp operation. */
499 	CPUSET_ATOMIC_ADD(mp_cpus, cpuid);
500 
501 	/* Free the space allocated to hold the microcode file */
502 	ucode_cleanup();
503 
504 	affinity_clear();
505 
506 	return (0);
507 }
508 
509 #define	MP_CPU_DETACH_MAX_TRIES		5
510 #define	MP_CPU_DETACH_DELAY		100
511 
512 static int
513 mp_cpu_detach_driver(dev_info_t *dip)
514 {
515 	int i;
516 	int rv = EBUSY;
517 	dev_info_t *pdip;
518 
519 	pdip = ddi_get_parent(dip);
520 	ASSERT(pdip != NULL);
521 	/*
522 	 * Check if caller holds pdip busy - can cause deadlocks in
523 	 * e_ddi_branch_unconfigure(), which calls devfs_clean().
524 	 */
525 	if (DEVI_BUSY_OWNED(pdip)) {
526 		return (EDEADLOCK);
527 	}
528 
529 	for (i = 0; i < MP_CPU_DETACH_MAX_TRIES; i++) {
530 		if (e_ddi_branch_unconfigure(dip, NULL, 0) == 0) {
531 			rv = 0;
532 			break;
533 		}
534 		DELAY(MP_CPU_DETACH_DELAY);
535 	}
536 
537 	return (rv);
538 }
539 
540 /*
541  * Power off the target CPU.
542  * Note: cpu_lock will be released and then reacquired.
543  */
544 int
545 mp_cpu_poweroff(struct cpu *cp)
546 {
547 	int rv = 0;
548 	void *ctx;
549 	dev_info_t *dip = NULL;
550 	rm_platter_t *rm = (rm_platter_t *)rm_platter_va;
551 	extern void cpupm_start(cpu_t *);
552 	extern void cpupm_stop(cpu_t *);
553 
554 	ASSERT(cp != NULL);
555 	ASSERT((cp->cpu_flags & CPU_OFFLINE) != 0);
556 	ASSERT((cp->cpu_flags & CPU_QUIESCED) != 0);
557 
558 	if (use_mp == 0 || plat_dr_support_cpu() == 0) {
559 		return (ENOTSUP);
560 	}
561 	/*
562 	 * There is no support for powering off cpu0 yet.
563 	 * There are many pieces of code which have a hard dependency on cpu0.
564 	 */
565 	if (cp->cpu_id == 0) {
566 		return (ENOTSUP);
567 	};
568 
569 	if (mach_cpu_get_device_node(cp, &dip) != PSM_SUCCESS) {
570 		return (ENXIO);
571 	}
572 	ASSERT(dip != NULL);
573 	if (mp_cpu_detach_driver(dip) != 0) {
574 		rv = EBUSY;
575 		goto out_online;
576 	}
577 
578 	/* Allocate CPU context for stopping */
579 	if (mach_cpucontext_init() != 0) {
580 		rv = ENXIO;
581 		goto out_online;
582 	}
583 	ctx = mach_cpucontext_xalloc(cp, MACH_CPUCONTEXT_OP_STOP);
584 	if (ctx == NULL) {
585 		rv = ENXIO;
586 		goto out_context_fini;
587 	}
588 
589 	cpupm_stop(cp);
590 	cpu_event_fini_cpu(cp);
591 
592 	if (cp->cpu_m.mcpu_cmi_hdl != NULL) {
593 		cmi_fini(cp->cpu_m.mcpu_cmi_hdl);
594 		cp->cpu_m.mcpu_cmi_hdl = NULL;
595 	}
596 
597 	rv = mach_cpu_stop(cp, ctx);
598 	if (rv != 0) {
599 		goto out_enable_cmi;
600 	}
601 
602 	/* Wait until the target CPU has been halted. */
603 	while (*(volatile ushort_t *)&(rm->rm_cpu_halted) != 0xdead) {
604 		delay(1);
605 	}
606 	rm->rm_cpu_halted = 0xffff;
607 
608 	/* CPU_READY has been cleared by mach_cpu_stop. */
609 	ASSERT((cp->cpu_flags & CPU_READY) == 0);
610 	ASSERT((cp->cpu_flags & CPU_RUNNING) == 0);
611 	cp->cpu_flags = CPU_OFFLINE | CPU_QUIESCED | CPU_POWEROFF;
612 	CPUSET_ATOMIC_DEL(mp_cpus, cp->cpu_id);
613 
614 	mach_cpucontext_xfree(cp, ctx, 0, MACH_CPUCONTEXT_OP_STOP);
615 	mach_cpucontext_fini();
616 
617 	return (0);
618 
619 out_enable_cmi:
620 	{
621 		cmi_hdl_t hdl;
622 
623 		if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp),
624 		    cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp))) != NULL) {
625 			if (is_x86_feature(x86_featureset, X86FSET_MCA))
626 				cmi_mca_init(hdl);
627 			cp->cpu_m.mcpu_cmi_hdl = hdl;
628 		}
629 	}
630 	cpu_event_init_cpu(cp);
631 	cpupm_start(cp);
632 	mach_cpucontext_xfree(cp, ctx, rv, MACH_CPUCONTEXT_OP_STOP);
633 
634 out_context_fini:
635 	mach_cpucontext_fini();
636 
637 out_online:
638 	(void) e_ddi_branch_configure(dip, NULL, 0);
639 
640 	if (rv != EAGAIN && rv != ETIME) {
641 		rv = ENXIO;
642 	}
643 
644 	return (rv);
645 }
646 
647 /*
648  * Return vcpu state, since this could be a virtual environment that we
649  * are unaware of, return "unknown".
650  */
651 /* ARGSUSED */
652 int
653 vcpu_on_pcpu(processorid_t cpu)
654 {
655 	return (VCPU_STATE_UNKNOWN);
656 }
657