1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #define PSMI_1_6 29 #include <sys/smp_impldefs.h> 30 #include <sys/psm.h> 31 #include <sys/psm_modctl.h> 32 #include <sys/pit.h> 33 #include <sys/cmn_err.h> 34 #include <sys/strlog.h> 35 #include <sys/clock.h> 36 #include <sys/debug.h> 37 #include <sys/rtc.h> 38 #include <sys/x86_archext.h> 39 #include <sys/cpupart.h> 40 #include <sys/cpuvar.h> 41 #include <sys/cmt.h> 42 #include <sys/cpu.h> 43 #include <sys/disp.h> 44 #include <sys/archsystm.h> 45 #include <sys/machsystm.h> 46 #include <sys/sysmacros.h> 47 #include <sys/memlist.h> 48 #include <sys/param.h> 49 #include <sys/promif.h> 50 #if defined(__xpv) 51 #include <sys/hypervisor.h> 52 #endif 53 #include <sys/mach_intr.h> 54 #include <vm/hat_i86.h> 55 #include <sys/kdi_machimpl.h> 56 #include <sys/sdt.h> 57 58 #define OFFSETOF(s, m) (size_t)(&(((s *)0)->m)) 59 60 /* 61 * Local function prototypes 62 */ 63 static int mp_disable_intr(processorid_t cpun); 64 static void mp_enable_intr(processorid_t cpun); 65 static void mach_init(); 66 static void mach_picinit(); 67 static int machhztomhz(uint64_t cpu_freq_hz); 68 static uint64_t mach_getcpufreq(void); 69 static void mach_fixcpufreq(void); 70 static int mach_clkinit(int, int *); 71 static void mach_smpinit(void); 72 static int mach_softlvl_to_vect(int ipl); 73 static void mach_get_platform(int owner); 74 static void mach_construct_info(); 75 static int mach_translate_irq(dev_info_t *dip, int irqno); 76 static int mach_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *, 77 psm_intr_op_t, int *); 78 static void mach_notify_error(int level, char *errmsg); 79 static hrtime_t dummy_hrtime(void); 80 static void dummy_scalehrtime(hrtime_t *); 81 static void cpu_idle(void); 82 static void cpu_wakeup(cpu_t *, int); 83 #ifndef __xpv 84 static void cpu_idle_mwait(void); 85 static void cpu_wakeup_mwait(cpu_t *, int); 86 #endif 87 /* 88 * External reference functions 89 */ 90 extern void return_instr(); 91 extern uint64_t freq_tsc(uint32_t *); 92 #if defined(__i386) 93 extern uint64_t freq_notsc(uint32_t *); 94 #endif 95 extern void pc_gethrestime(timestruc_t *); 96 extern int cpuid_get_coreid(cpu_t *); 97 extern int cpuid_get_chipid(cpu_t *); 98 99 /* 100 * PSM functions initialization 101 */ 102 void (*psm_shutdownf)(int, int) = (void (*)(int, int))return_instr; 103 void (*psm_preshutdownf)(int, int) = (void (*)(int, int))return_instr; 104 void (*psm_notifyf)(int) = (void (*)(int))return_instr; 105 void (*psm_set_idle_cpuf)(int) = (void (*)(int))return_instr; 106 void (*psm_unset_idle_cpuf)(int) = (void (*)(int))return_instr; 107 void (*psminitf)() = mach_init; 108 void (*picinitf)() = return_instr; 109 int (*clkinitf)(int, int *) = (int (*)(int, int *))return_instr; 110 int (*ap_mlsetup)() = (int (*)(void))return_instr; 111 void (*send_dirintf)() = return_instr; 112 void (*setspl)(int) = (void (*)(int))return_instr; 113 int (*addspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr; 114 int (*delspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr; 115 void (*kdisetsoftint)(int, struct av_softinfo *)= 116 (void (*)(int, struct av_softinfo *))return_instr; 117 void (*setsoftint)(int, struct av_softinfo *)= 118 (void (*)(int, struct av_softinfo *))return_instr; 119 int (*slvltovect)(int) = (int (*)(int))return_instr; 120 int (*setlvl)(int, int *) = (int (*)(int, int *))return_instr; 121 void (*setlvlx)(int, int) = (void (*)(int, int))return_instr; 122 int (*psm_disable_intr)(int) = mp_disable_intr; 123 void (*psm_enable_intr)(int) = mp_enable_intr; 124 hrtime_t (*gethrtimef)(void) = dummy_hrtime; 125 hrtime_t (*gethrtimeunscaledf)(void) = dummy_hrtime; 126 void (*scalehrtimef)(hrtime_t *) = dummy_scalehrtime; 127 int (*psm_translate_irq)(dev_info_t *, int) = mach_translate_irq; 128 void (*gethrestimef)(timestruc_t *) = pc_gethrestime; 129 void (*psm_notify_error)(int, char *) = (void (*)(int, char *))NULL; 130 int (*psm_get_clockirq)(int) = NULL; 131 int (*psm_get_ipivect)(int, int) = NULL; 132 133 int (*psm_clkinit)(int) = NULL; 134 void (*psm_timer_reprogram)(hrtime_t) = NULL; 135 void (*psm_timer_enable)(void) = NULL; 136 void (*psm_timer_disable)(void) = NULL; 137 void (*psm_post_cyclic_setup)(void *arg) = NULL; 138 int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t, 139 int *) = mach_intr_ops; 140 int (*psm_state)(psm_state_request_t *) = (int (*)(psm_state_request_t *)) 141 return_instr; 142 143 void (*notify_error)(int, char *) = (void (*)(int, char *))return_instr; 144 void (*hrtime_tick)(void) = return_instr; 145 146 /* 147 * True if the generic TSC code is our source of hrtime, rather than whatever 148 * the PSM can provide. 149 */ 150 #ifdef __xpv 151 int tsc_gethrtime_enable = 0; 152 #else 153 int tsc_gethrtime_enable = 1; 154 #endif 155 int tsc_gethrtime_initted = 0; 156 157 /* 158 * True if the hrtime implementation is "hires"; namely, better than microdata. 159 */ 160 int gethrtime_hires = 0; 161 162 /* 163 * Local Static Data 164 */ 165 static struct psm_ops mach_ops; 166 static struct psm_ops *mach_set[4] = {&mach_ops, NULL, NULL, NULL}; 167 static ushort_t mach_ver[4] = {0, 0, 0, 0}; 168 169 /* 170 * If non-zero, idle cpus will become "halted" when there's 171 * no work to do. 172 */ 173 int idle_cpu_use_hlt = 1; 174 175 #ifndef __xpv 176 /* 177 * If non-zero, idle cpus will use mwait if available to halt instead of hlt. 178 */ 179 int idle_cpu_prefer_mwait = 1; 180 #endif 181 182 /*ARGSUSED*/ 183 int 184 pg_plat_hw_shared(cpu_t *cp, pghw_type_t hw) 185 { 186 switch (hw) { 187 case PGHW_IPIPE: 188 if (x86_feature & (X86_HTT)) { 189 /* 190 * Hyper-threading is SMT 191 */ 192 return (1); 193 } else { 194 return (0); 195 } 196 case PGHW_CHIP: 197 if (x86_feature & (X86_CMP|X86_HTT)) 198 return (1); 199 else 200 return (0); 201 case PGHW_CACHE: 202 if (cpuid_get_ncpu_sharing_last_cache(cp) > 1) 203 return (1); 204 else 205 return (0); 206 default: 207 return (0); 208 } 209 } 210 211 /* 212 * Compare two CPUs and see if they have a pghw_type_t sharing relationship 213 * If pghw_type_t is an unsupported hardware type, then return -1 214 */ 215 int 216 pg_plat_cpus_share(cpu_t *cpu_a, cpu_t *cpu_b, pghw_type_t hw) 217 { 218 id_t pgp_a, pgp_b; 219 220 pgp_a = pg_plat_hw_instance_id(cpu_a, hw); 221 pgp_b = pg_plat_hw_instance_id(cpu_b, hw); 222 223 if (pgp_a == -1 || pgp_b == -1) 224 return (-1); 225 226 return (pgp_a == pgp_b); 227 } 228 229 /* 230 * Return a physical instance identifier for known hardware sharing 231 * relationships 232 */ 233 id_t 234 pg_plat_hw_instance_id(cpu_t *cpu, pghw_type_t hw) 235 { 236 switch (hw) { 237 case PGHW_IPIPE: 238 return (cpuid_get_coreid(cpu)); 239 case PGHW_CACHE: 240 return (cpuid_get_last_lvl_cacheid(cpu)); 241 case PGHW_CHIP: 242 return (cpuid_get_chipid(cpu)); 243 default: 244 return (-1); 245 } 246 } 247 248 int 249 pg_plat_hw_level(pghw_type_t hw) 250 { 251 int i; 252 static pghw_type_t hw_hier[] = { 253 PGHW_IPIPE, 254 PGHW_CACHE, 255 PGHW_CHIP, 256 PGHW_NUM_COMPONENTS 257 }; 258 259 for (i = 0; hw_hier[i] != PGHW_NUM_COMPONENTS; i++) { 260 if (hw_hier[i] == hw) 261 return (i); 262 } 263 return (-1); 264 } 265 266 /* 267 * Return 1 if CMT load balancing policies should be 268 * implemented across instances of the specified hardware 269 * sharing relationship. 270 */ 271 int 272 pg_plat_cmt_load_bal_hw(pghw_type_t hw) 273 { 274 if (hw == PGHW_IPIPE || 275 hw == PGHW_FPU || 276 hw == PGHW_CHIP || 277 hw == PGHW_CACHE) 278 return (1); 279 else 280 return (0); 281 } 282 283 284 /* 285 * Return 1 if thread affinity polices should be implemented 286 * for instances of the specifed hardware sharing relationship. 287 */ 288 int 289 pg_plat_cmt_affinity_hw(pghw_type_t hw) 290 { 291 if (hw == PGHW_CACHE) 292 return (1); 293 else 294 return (0); 295 } 296 297 id_t 298 pg_plat_get_core_id(cpu_t *cpu) 299 { 300 return ((id_t)cpuid_get_coreid(cpu)); 301 } 302 303 void 304 cmp_set_nosteal_interval(void) 305 { 306 /* Set the nosteal interval (used by disp_getbest()) to 100us */ 307 nosteal_nsec = 100000UL; 308 } 309 310 /* 311 * Routine to ensure initial callers to hrtime gets 0 as return 312 */ 313 static hrtime_t 314 dummy_hrtime(void) 315 { 316 return (0); 317 } 318 319 /* ARGSUSED */ 320 static void 321 dummy_scalehrtime(hrtime_t *ticks) 322 {} 323 324 /* 325 * Idle the present CPU until awoken via an interrupt 326 */ 327 static void 328 cpu_idle(void) 329 { 330 cpu_t *cpup = CPU; 331 processorid_t cpun = cpup->cpu_id; 332 cpupart_t *cp = cpup->cpu_part; 333 int hset_update = 1; 334 335 /* 336 * If this CPU is online, and there's multiple CPUs 337 * in the system, then we should notate our halting 338 * by adding ourselves to the partition's halted CPU 339 * bitmap. This allows other CPUs to find/awaken us when 340 * work becomes available. 341 */ 342 if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1) 343 hset_update = 0; 344 345 /* 346 * Add ourselves to the partition's halted CPUs bitmask 347 * and set our HALTED flag, if necessary. 348 * 349 * When a thread becomes runnable, it is placed on the queue 350 * and then the halted cpuset is checked to determine who 351 * (if anyone) should be awoken. We therefore need to first 352 * add ourselves to the halted cpuset, and and then check if there 353 * is any work available. 354 * 355 * Note that memory barriers after updating the HALTED flag 356 * are not necessary since an atomic operation (updating the bitmap) 357 * immediately follows. On x86 the atomic operation acts as a 358 * memory barrier for the update of cpu_disp_flags. 359 */ 360 if (hset_update) { 361 cpup->cpu_disp_flags |= CPU_DISP_HALTED; 362 CPUSET_ATOMIC_ADD(cp->cp_mach->mc_haltset, cpun); 363 } 364 365 /* 366 * Check to make sure there's really nothing to do. 367 * Work destined for this CPU may become available after 368 * this check. We'll be notified through the clearing of our 369 * bit in the halted CPU bitmask, and a poke. 370 */ 371 if (disp_anywork()) { 372 if (hset_update) { 373 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 374 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun); 375 } 376 return; 377 } 378 379 /* 380 * We're on our way to being halted. 381 * 382 * Disable interrupts now, so that we'll awaken immediately 383 * after halting if someone tries to poke us between now and 384 * the time we actually halt. 385 * 386 * We check for the presence of our bit after disabling interrupts. 387 * If it's cleared, we'll return. If the bit is cleared after 388 * we check then the poke will pop us out of the halted state. 389 * 390 * This means that the ordering of the poke and the clearing 391 * of the bit by cpu_wakeup is important. 392 * cpu_wakeup() must clear, then poke. 393 * cpu_idle() must disable interrupts, then check for the bit. 394 */ 395 cli(); 396 397 if (hset_update && !CPU_IN_SET(cp->cp_mach->mc_haltset, cpun)) { 398 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 399 sti(); 400 return; 401 } 402 403 /* 404 * The check for anything locally runnable is here for performance 405 * and isn't needed for correctness. disp_nrunnable ought to be 406 * in our cache still, so it's inexpensive to check, and if there 407 * is anything runnable we won't have to wait for the poke. 408 */ 409 if (cpup->cpu_disp->disp_nrunnable != 0) { 410 if (hset_update) { 411 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 412 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun); 413 } 414 sti(); 415 return; 416 } 417 418 mach_cpu_idle(); 419 420 /* 421 * We're no longer halted 422 */ 423 if (hset_update) { 424 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 425 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun); 426 } 427 } 428 429 430 /* 431 * If "cpu" is halted, then wake it up clearing its halted bit in advance. 432 * Otherwise, see if other CPUs in the cpu partition are halted and need to 433 * be woken up so that they can steal the thread we placed on this CPU. 434 * This function is only used on MP systems. 435 */ 436 static void 437 cpu_wakeup(cpu_t *cpu, int bound) 438 { 439 uint_t cpu_found; 440 int result; 441 cpupart_t *cp; 442 443 cp = cpu->cpu_part; 444 if (CPU_IN_SET(cp->cp_mach->mc_haltset, cpu->cpu_id)) { 445 /* 446 * Clear the halted bit for that CPU since it will be 447 * poked in a moment. 448 */ 449 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpu->cpu_id); 450 /* 451 * We may find the current CPU present in the halted cpuset 452 * if we're in the context of an interrupt that occurred 453 * before we had a chance to clear our bit in cpu_idle(). 454 * Poking ourself is obviously unnecessary, since if 455 * we're here, we're not halted. 456 */ 457 if (cpu != CPU) 458 poke_cpu(cpu->cpu_id); 459 return; 460 } else { 461 /* 462 * This cpu isn't halted, but it's idle or undergoing a 463 * context switch. No need to awaken anyone else. 464 */ 465 if (cpu->cpu_thread == cpu->cpu_idle_thread || 466 cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL) 467 return; 468 } 469 470 /* 471 * No need to wake up other CPUs if the thread we just enqueued 472 * is bound. 473 */ 474 if (bound) 475 return; 476 477 478 /* 479 * See if there's any other halted CPUs. If there are, then 480 * select one, and awaken it. 481 * It's possible that after we find a CPU, somebody else 482 * will awaken it before we get the chance. 483 * In that case, look again. 484 */ 485 do { 486 CPUSET_FIND(cp->cp_mach->mc_haltset, cpu_found); 487 if (cpu_found == CPUSET_NOTINSET) 488 return; 489 490 ASSERT(cpu_found >= 0 && cpu_found < NCPU); 491 CPUSET_ATOMIC_XDEL(cp->cp_mach->mc_haltset, cpu_found, result); 492 } while (result < 0); 493 494 if (cpu_found != CPU->cpu_id) 495 poke_cpu(cpu_found); 496 } 497 498 #ifndef __xpv 499 /* 500 * Idle the present CPU until awoken via touching its monitored line 501 */ 502 static void 503 cpu_idle_mwait(void) 504 { 505 volatile uint32_t *mcpu_mwait = CPU->cpu_m.mcpu_mwait; 506 cpu_t *cpup = CPU; 507 processorid_t cpun = cpup->cpu_id; 508 cpupart_t *cp = cpup->cpu_part; 509 int hset_update = 1; 510 511 /* 512 * Set our mcpu_mwait here, so we can tell if anyone trys to 513 * wake us between now and when we call mwait. No other cpu will 514 * attempt to set our mcpu_mwait until we add ourself to the haltset. 515 */ 516 *mcpu_mwait = MWAIT_HALTED; 517 518 /* 519 * If this CPU is online, and there's multiple CPUs 520 * in the system, then we should notate our halting 521 * by adding ourselves to the partition's halted CPU 522 * bitmap. This allows other CPUs to find/awaken us when 523 * work becomes available. 524 */ 525 if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1) 526 hset_update = 0; 527 528 /* 529 * Add ourselves to the partition's halted CPUs bitmask 530 * and set our HALTED flag, if necessary. 531 * 532 * When a thread becomes runnable, it is placed on the queue 533 * and then the halted cpuset is checked to determine who 534 * (if anyone) should be awoken. We therefore need to first 535 * add ourselves to the halted cpuset, and and then check if there 536 * is any work available. 537 * 538 * Note that memory barriers after updating the HALTED flag 539 * are not necessary since an atomic operation (updating the bitmap) 540 * immediately follows. On x86 the atomic operation acts as a 541 * memory barrier for the update of cpu_disp_flags. 542 */ 543 if (hset_update) { 544 cpup->cpu_disp_flags |= CPU_DISP_HALTED; 545 CPUSET_ATOMIC_ADD(cp->cp_mach->mc_haltset, cpun); 546 } 547 548 /* 549 * Check to make sure there's really nothing to do. 550 * Work destined for this CPU may become available after 551 * this check. We'll be notified through the clearing of our 552 * bit in the halted CPU bitmask, and a write to our mcpu_mwait. 553 * 554 * disp_anywork() checks disp_nrunnable, so we do not have to later. 555 */ 556 if (disp_anywork()) { 557 if (hset_update) { 558 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 559 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun); 560 } 561 return; 562 } 563 564 /* 565 * We're on our way to being halted. 566 * To avoid a lost wakeup, arm the monitor before checking if another 567 * cpu wrote to mcpu_mwait to wake us up. 568 */ 569 i86_monitor(mcpu_mwait, 0, 0); 570 if (*mcpu_mwait == MWAIT_HALTED) { 571 DTRACE_PROBE1(idle__state__transition, uint_t, IDLE_STATE_C1); 572 573 tlb_going_idle(); 574 i86_mwait(0, 0); 575 tlb_service(); 576 577 DTRACE_PROBE1(idle__state__transition, uint_t, IDLE_STATE_C0); 578 } 579 580 /* 581 * We're no longer halted 582 */ 583 if (hset_update) { 584 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 585 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun); 586 } 587 } 588 589 /* 590 * If "cpu" is halted in mwait, then wake it up clearing its halted bit in 591 * advance. Otherwise, see if other CPUs in the cpu partition are halted and 592 * need to be woken up so that they can steal the thread we placed on this CPU. 593 * This function is only used on MP systems. 594 */ 595 static void 596 cpu_wakeup_mwait(cpu_t *cp, int bound) 597 { 598 cpupart_t *cpu_part; 599 uint_t cpu_found; 600 int result; 601 602 cpu_part = cp->cpu_part; 603 604 /* 605 * Clear the halted bit for that CPU since it will be woken up 606 * in a moment. 607 */ 608 if (CPU_IN_SET(cpu_part->cp_mach->mc_haltset, cp->cpu_id)) { 609 /* 610 * Clear the halted bit for that CPU since it will be 611 * poked in a moment. 612 */ 613 CPUSET_ATOMIC_DEL(cpu_part->cp_mach->mc_haltset, cp->cpu_id); 614 /* 615 * We may find the current CPU present in the halted cpuset 616 * if we're in the context of an interrupt that occurred 617 * before we had a chance to clear our bit in cpu_idle(). 618 * Waking ourself is obviously unnecessary, since if 619 * we're here, we're not halted. 620 * 621 * monitor/mwait wakeup via writing to our cache line is 622 * harmless and less expensive than always checking if we 623 * are waking ourself which is an uncommon case. 624 */ 625 MWAIT_WAKEUP(cp); /* write to monitored line */ 626 return; 627 } else { 628 /* 629 * This cpu isn't halted, but it's idle or undergoing a 630 * context switch. No need to awaken anyone else. 631 */ 632 if (cp->cpu_thread == cp->cpu_idle_thread || 633 cp->cpu_disp_flags & CPU_DISP_DONTSTEAL) 634 return; 635 } 636 637 /* 638 * No need to wake up other CPUs if the thread we just enqueued 639 * is bound. 640 */ 641 if (bound) 642 return; 643 644 645 /* 646 * See if there's any other halted CPUs. If there are, then 647 * select one, and awaken it. 648 * It's possible that after we find a CPU, somebody else 649 * will awaken it before we get the chance. 650 * In that case, look again. 651 */ 652 do { 653 CPUSET_FIND(cpu_part->cp_mach->mc_haltset, cpu_found); 654 if (cpu_found == CPUSET_NOTINSET) 655 return; 656 657 ASSERT(cpu_found >= 0 && cpu_found < NCPU); 658 CPUSET_ATOMIC_XDEL(cpu_part->cp_mach->mc_haltset, cpu_found, 659 result); 660 } while (result < 0); 661 662 /* 663 * Do not check if cpu_found is ourself as monitor/mwait wakeup is 664 * cheap. 665 */ 666 MWAIT_WAKEUP(cpu[cpu_found]); /* write to monitored line */ 667 } 668 #endif 669 670 void (*cpu_pause_handler)(volatile char *) = NULL; 671 672 static int 673 mp_disable_intr(int cpun) 674 { 675 /* 676 * switch to the offline cpu 677 */ 678 affinity_set(cpun); 679 /* 680 * raise ipl to just below cross call 681 */ 682 splx(XC_MED_PIL-1); 683 /* 684 * set base spl to prevent the next swtch to idle from 685 * lowering back to ipl 0 686 */ 687 CPU->cpu_intr_actv |= (1 << (XC_MED_PIL-1)); 688 set_base_spl(); 689 affinity_clear(); 690 return (DDI_SUCCESS); 691 } 692 693 static void 694 mp_enable_intr(int cpun) 695 { 696 /* 697 * switch to the online cpu 698 */ 699 affinity_set(cpun); 700 /* 701 * clear the interrupt active mask 702 */ 703 CPU->cpu_intr_actv &= ~(1 << (XC_MED_PIL-1)); 704 set_base_spl(); 705 (void) spl0(); 706 affinity_clear(); 707 } 708 709 static void 710 mach_get_platform(int owner) 711 { 712 void **srv_opsp; 713 void **clt_opsp; 714 int i; 715 int total_ops; 716 717 /* fix up psm ops */ 718 srv_opsp = (void **)mach_set[0]; 719 clt_opsp = (void **)mach_set[owner]; 720 if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01) 721 total_ops = sizeof (struct psm_ops_ver01) / 722 sizeof (void (*)(void)); 723 else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_1) 724 /* no psm_notify_func */ 725 total_ops = OFFSETOF(struct psm_ops, psm_notify_func) / 726 sizeof (void (*)(void)); 727 else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_2) 728 /* no psm_timer funcs */ 729 total_ops = OFFSETOF(struct psm_ops, psm_timer_reprogram) / 730 sizeof (void (*)(void)); 731 else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_3) 732 /* no psm_preshutdown function */ 733 total_ops = OFFSETOF(struct psm_ops, psm_preshutdown) / 734 sizeof (void (*)(void)); 735 else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_4) 736 /* no psm_preshutdown function */ 737 total_ops = OFFSETOF(struct psm_ops, psm_intr_ops) / 738 sizeof (void (*)(void)); 739 else 740 total_ops = sizeof (struct psm_ops) / sizeof (void (*)(void)); 741 742 /* 743 * Save the version of the PSM module, in case we need to 744 * bahave differently based on version. 745 */ 746 mach_ver[0] = mach_ver[owner]; 747 748 for (i = 0; i < total_ops; i++) 749 if (clt_opsp[i] != NULL) 750 srv_opsp[i] = clt_opsp[i]; 751 } 752 753 static void 754 mach_construct_info() 755 { 756 struct psm_sw *swp; 757 int mach_cnt[PSM_OWN_OVERRIDE+1] = {0}; 758 int conflict_owner = 0; 759 760 if (psmsw->psw_forw == psmsw) 761 panic("No valid PSM modules found"); 762 mutex_enter(&psmsw_lock); 763 for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) { 764 if (!(swp->psw_flag & PSM_MOD_IDENTIFY)) 765 continue; 766 mach_set[swp->psw_infop->p_owner] = swp->psw_infop->p_ops; 767 mach_ver[swp->psw_infop->p_owner] = swp->psw_infop->p_version; 768 mach_cnt[swp->psw_infop->p_owner]++; 769 } 770 mutex_exit(&psmsw_lock); 771 772 mach_get_platform(PSM_OWN_SYS_DEFAULT); 773 774 /* check to see are there any conflicts */ 775 if (mach_cnt[PSM_OWN_EXCLUSIVE] > 1) 776 conflict_owner = PSM_OWN_EXCLUSIVE; 777 if (mach_cnt[PSM_OWN_OVERRIDE] > 1) 778 conflict_owner = PSM_OWN_OVERRIDE; 779 if (conflict_owner) { 780 /* remove all psm modules except uppc */ 781 cmn_err(CE_WARN, 782 "Conflicts detected on the following PSM modules:"); 783 mutex_enter(&psmsw_lock); 784 for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) { 785 if (swp->psw_infop->p_owner == conflict_owner) 786 cmn_err(CE_WARN, "%s ", 787 swp->psw_infop->p_mach_idstring); 788 } 789 mutex_exit(&psmsw_lock); 790 cmn_err(CE_WARN, 791 "Setting the system back to SINGLE processor mode!"); 792 cmn_err(CE_WARN, 793 "Please edit /etc/mach to remove the invalid PSM module."); 794 return; 795 } 796 797 if (mach_set[PSM_OWN_EXCLUSIVE]) 798 mach_get_platform(PSM_OWN_EXCLUSIVE); 799 800 if (mach_set[PSM_OWN_OVERRIDE]) 801 mach_get_platform(PSM_OWN_OVERRIDE); 802 } 803 804 static void 805 mach_init() 806 { 807 struct psm_ops *pops; 808 809 mach_construct_info(); 810 811 pops = mach_set[0]; 812 813 /* register the interrupt and clock initialization rotuines */ 814 picinitf = mach_picinit; 815 clkinitf = mach_clkinit; 816 psm_get_clockirq = pops->psm_get_clockirq; 817 818 /* register the interrupt setup code */ 819 slvltovect = mach_softlvl_to_vect; 820 addspl = pops->psm_addspl; 821 delspl = pops->psm_delspl; 822 823 if (pops->psm_translate_irq) 824 psm_translate_irq = pops->psm_translate_irq; 825 if (pops->psm_intr_ops) 826 psm_intr_ops = pops->psm_intr_ops; 827 828 #if defined(PSMI_1_2) || defined(PSMI_1_3) || defined(PSMI_1_4) 829 /* 830 * Time-of-day functionality now handled in TOD modules. 831 * (Warn about PSM modules that think that we're going to use 832 * their ops vectors.) 833 */ 834 if (pops->psm_tod_get) 835 cmn_err(CE_WARN, "obsolete psm_tod_get op %p", 836 (void *)pops->psm_tod_get); 837 838 if (pops->psm_tod_set) 839 cmn_err(CE_WARN, "obsolete psm_tod_set op %p", 840 (void *)pops->psm_tod_set); 841 #endif 842 843 if (pops->psm_notify_error) { 844 psm_notify_error = mach_notify_error; 845 notify_error = pops->psm_notify_error; 846 } 847 848 (*pops->psm_softinit)(); 849 850 /* 851 * Initialize the dispatcher's function hooks 852 * to enable CPU halting when idle. 853 * Do not use monitor/mwait if idle_cpu_use_hlt is not set(spin idle) 854 * or idle_cpu_prefer_mwait is not set. 855 * Allocate monitor/mwait buffer for cpu0. 856 */ 857 if (idle_cpu_use_hlt) { 858 idle_cpu = cpu_idle; 859 #ifndef __xpv 860 if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait) { 861 CPU->cpu_m.mcpu_mwait = cpuid_mwait_alloc(CPU); 862 /* 863 * Protect ourself from insane mwait size. 864 */ 865 if (CPU->cpu_m.mcpu_mwait == NULL) { 866 #ifdef DEBUG 867 cmn_err(CE_NOTE, "Using hlt idle. Cannot " 868 "handle cpu 0 mwait size."); 869 #endif 870 idle_cpu_prefer_mwait = 0; 871 idle_cpu = cpu_idle; 872 } else { 873 idle_cpu = cpu_idle_mwait; 874 } 875 } else { 876 idle_cpu = cpu_idle; 877 } 878 #endif 879 } 880 881 mach_smpinit(); 882 } 883 884 static void 885 mach_smpinit(void) 886 { 887 struct psm_ops *pops; 888 processorid_t cpu_id; 889 int cnt; 890 cpuset_t cpumask; 891 892 pops = mach_set[0]; 893 894 cpu_id = -1; 895 cpu_id = (*pops->psm_get_next_processorid)(cpu_id); 896 for (cnt = 0, CPUSET_ZERO(cpumask); cpu_id != -1; cnt++) { 897 CPUSET_ADD(cpumask, cpu_id); 898 cpu_id = (*pops->psm_get_next_processorid)(cpu_id); 899 } 900 901 mp_cpus = cpumask; 902 903 /* MP related routines */ 904 ap_mlsetup = pops->psm_post_cpu_start; 905 send_dirintf = pops->psm_send_ipi; 906 907 /* optional MP related routines */ 908 if (pops->psm_shutdown) 909 psm_shutdownf = pops->psm_shutdown; 910 if (pops->psm_preshutdown) 911 psm_preshutdownf = pops->psm_preshutdown; 912 if (pops->psm_notify_func) 913 psm_notifyf = pops->psm_notify_func; 914 if (pops->psm_set_idlecpu) 915 psm_set_idle_cpuf = pops->psm_set_idlecpu; 916 if (pops->psm_unset_idlecpu) 917 psm_unset_idle_cpuf = pops->psm_unset_idlecpu; 918 919 psm_clkinit = pops->psm_clkinit; 920 921 if (pops->psm_timer_reprogram) 922 psm_timer_reprogram = pops->psm_timer_reprogram; 923 924 if (pops->psm_timer_enable) 925 psm_timer_enable = pops->psm_timer_enable; 926 927 if (pops->psm_timer_disable) 928 psm_timer_disable = pops->psm_timer_disable; 929 930 if (pops->psm_post_cyclic_setup) 931 psm_post_cyclic_setup = pops->psm_post_cyclic_setup; 932 933 if (pops->psm_state) 934 psm_state = pops->psm_state; 935 936 /* check for multiple cpu's */ 937 if (cnt < 2) 938 return; 939 940 /* check for MP platforms */ 941 if (pops->psm_cpu_start == NULL) 942 return; 943 944 /* 945 * Set the dispatcher hook to enable cpu "wake up" 946 * when a thread becomes runnable. 947 */ 948 if (idle_cpu_use_hlt) { 949 disp_enq_thread = cpu_wakeup; 950 #ifndef __xpv 951 if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait) 952 disp_enq_thread = cpu_wakeup_mwait; 953 #endif 954 } 955 956 if (pops->psm_disable_intr) 957 psm_disable_intr = pops->psm_disable_intr; 958 if (pops->psm_enable_intr) 959 psm_enable_intr = pops->psm_enable_intr; 960 961 psm_get_ipivect = pops->psm_get_ipivect; 962 963 (void) add_avintr((void *)NULL, XC_HI_PIL, xc_serv, "xc_hi_intr", 964 (*pops->psm_get_ipivect)(XC_HI_PIL, PSM_INTR_IPI_HI), 965 (caddr_t)X_CALL_HIPRI, NULL, NULL, NULL); 966 (void) add_avintr((void *)NULL, XC_MED_PIL, xc_serv, "xc_med_intr", 967 (*pops->psm_get_ipivect)(XC_MED_PIL, PSM_INTR_IPI_LO), 968 (caddr_t)X_CALL_MEDPRI, NULL, NULL, NULL); 969 970 (void) (*pops->psm_get_ipivect)(XC_CPUPOKE_PIL, PSM_INTR_POKE); 971 } 972 973 static void 974 mach_picinit() 975 { 976 struct psm_ops *pops; 977 978 pops = mach_set[0]; 979 980 /* register the interrupt handlers */ 981 setlvl = pops->psm_intr_enter; 982 setlvlx = pops->psm_intr_exit; 983 984 /* initialize the interrupt hardware */ 985 (*pops->psm_picinit)(); 986 987 /* set interrupt mask for current ipl */ 988 setspl = pops->psm_setspl; 989 cli(); 990 setspl(CPU->cpu_pri); 991 } 992 993 uint_t cpu_freq; /* MHz */ 994 uint64_t cpu_freq_hz; /* measured (in hertz) */ 995 996 #define MEGA_HZ 1000000 997 998 #ifdef __xpv 999 1000 int xpv_cpufreq_workaround = 1; 1001 int xpv_cpufreq_verbose = 0; 1002 1003 #else /* __xpv */ 1004 1005 static uint64_t 1006 mach_calchz(uint32_t pit_counter, uint64_t *processor_clks) 1007 { 1008 uint64_t cpu_hz; 1009 1010 if ((pit_counter == 0) || (*processor_clks == 0) || 1011 (*processor_clks > (((uint64_t)-1) / PIT_HZ))) 1012 return (0); 1013 1014 cpu_hz = ((uint64_t)PIT_HZ * *processor_clks) / pit_counter; 1015 1016 return (cpu_hz); 1017 } 1018 1019 #endif /* __xpv */ 1020 1021 static uint64_t 1022 mach_getcpufreq(void) 1023 { 1024 #if defined(__xpv) 1025 vcpu_time_info_t *vti = &CPU->cpu_m.mcpu_vcpu_info->time; 1026 uint64_t cpu_hz; 1027 1028 /* 1029 * During dom0 bringup, it was noted that on at least one older 1030 * Intel HT machine, the hypervisor initially gives a tsc_to_system_mul 1031 * value that is quite wrong (the 3.06GHz clock was reported 1032 * as 4.77GHz) 1033 * 1034 * The curious thing is, that if you stop the kernel at entry, 1035 * breakpoint here and inspect the value with kmdb, the value 1036 * is correct - but if you don't stop and simply enable the 1037 * printf statement (below), you can see the bad value printed 1038 * here. Almost as if something kmdb did caused the hypervisor to 1039 * figure it out correctly. And, note that the hypervisor 1040 * eventually -does- figure it out correctly ... if you look at 1041 * the field later in the life of dom0, it is correct. 1042 * 1043 * For now, on dom0, we employ a slightly cheesy workaround of 1044 * using the DOM0_PHYSINFO hypercall. 1045 */ 1046 if (DOMAIN_IS_INITDOMAIN(xen_info) && xpv_cpufreq_workaround) { 1047 xen_sysctl_t op0, *op = &op0; 1048 1049 op->cmd = XEN_SYSCTL_physinfo; 1050 op->interface_version = XEN_SYSCTL_INTERFACE_VERSION; 1051 if (HYPERVISOR_sysctl(op) != 0) 1052 panic("physinfo op refused"); 1053 1054 cpu_hz = 1000 * (uint64_t)op->u.physinfo.cpu_khz; 1055 } else { 1056 cpu_hz = (UINT64_C(1000000000) << 32) / vti->tsc_to_system_mul; 1057 1058 if (vti->tsc_shift < 0) 1059 cpu_hz <<= -vti->tsc_shift; 1060 else 1061 cpu_hz >>= vti->tsc_shift; 1062 } 1063 1064 if (xpv_cpufreq_verbose) 1065 printf("mach_getcpufreq: system_mul 0x%x, shift %d, " 1066 "cpu_hz %" PRId64 "Hz\n", 1067 vti->tsc_to_system_mul, vti->tsc_shift, cpu_hz); 1068 1069 return (cpu_hz); 1070 #else /* __xpv */ 1071 uint32_t pit_counter; 1072 uint64_t processor_clks; 1073 1074 if (x86_feature & X86_TSC) { 1075 /* 1076 * We have a TSC. freq_tsc() knows how to measure the number 1077 * of clock cycles sampled against the PIT. 1078 */ 1079 ulong_t flags = clear_int_flag(); 1080 processor_clks = freq_tsc(&pit_counter); 1081 restore_int_flag(flags); 1082 return (mach_calchz(pit_counter, &processor_clks)); 1083 } else if (x86_vendor == X86_VENDOR_Cyrix || x86_type == X86_TYPE_P5) { 1084 #if defined(__amd64) 1085 panic("mach_getcpufreq: no TSC!"); 1086 #elif defined(__i386) 1087 /* 1088 * We are a Cyrix based on a 6x86 core or an Intel Pentium 1089 * for which freq_notsc() knows how to measure the number of 1090 * elapsed clock cycles sampled against the PIT 1091 */ 1092 ulong_t flags = clear_int_flag(); 1093 processor_clks = freq_notsc(&pit_counter); 1094 restore_int_flag(flags); 1095 return (mach_calchz(pit_counter, &processor_clks)); 1096 #endif /* __i386 */ 1097 } 1098 1099 /* We do not know how to calculate cpu frequency for this cpu. */ 1100 return (0); 1101 #endif /* __xpv */ 1102 } 1103 1104 /* 1105 * If the clock speed of a cpu is found to be reported incorrectly, do not add 1106 * to this array, instead improve the accuracy of the algorithm that determines 1107 * the clock speed of the processor or extend the implementation to support the 1108 * vendor as appropriate. This is here only to support adjusting the speed on 1109 * older slower processors that mach_fixcpufreq() would not be able to account 1110 * for otherwise. 1111 */ 1112 static int x86_cpu_freq[] = { 60, 75, 80, 90, 120, 160, 166, 175, 180, 233 }; 1113 1114 /* 1115 * On fast processors the clock frequency that is measured may be off by 1116 * a few MHz from the value printed on the part. This is a combination of 1117 * the factors that for such fast parts being off by this much is within 1118 * the tolerances for manufacture and because of the difficulties in the 1119 * measurement that can lead to small error. This function uses some 1120 * heuristics in order to tweak the value that was measured to match what 1121 * is most likely printed on the part. 1122 * 1123 * Some examples: 1124 * AMD Athlon 1000 mhz measured as 998 mhz 1125 * Intel Pentium III Xeon 733 mhz measured as 731 mhz 1126 * Intel Pentium IV 1500 mhz measured as 1495mhz 1127 * 1128 * If in the future this function is no longer sufficient to correct 1129 * for the error in the measurement, then the algorithm used to perform 1130 * the measurement will have to be improved in order to increase accuracy 1131 * rather than adding horrible and questionable kludges here. 1132 * 1133 * This is called after the cyclics subsystem because of the potential 1134 * that the heuristics within may give a worse estimate of the clock 1135 * frequency than the value that was measured. 1136 */ 1137 static void 1138 mach_fixcpufreq(void) 1139 { 1140 uint32_t freq, mul, near66, delta66, near50, delta50, fixed, delta, i; 1141 1142 freq = (uint32_t)cpu_freq; 1143 1144 /* 1145 * Find the nearest integer multiple of 200/3 (about 66) MHz to the 1146 * measured speed taking into account that the 667 MHz parts were 1147 * the first to round-up. 1148 */ 1149 mul = (uint32_t)((3 * (uint64_t)freq + 100) / 200); 1150 near66 = (uint32_t)((200 * (uint64_t)mul + ((mul >= 10) ? 1 : 0)) / 3); 1151 delta66 = (near66 > freq) ? (near66 - freq) : (freq - near66); 1152 1153 /* Find the nearest integer multiple of 50 MHz to the measured speed */ 1154 mul = (freq + 25) / 50; 1155 near50 = mul * 50; 1156 delta50 = (near50 > freq) ? (near50 - freq) : (freq - near50); 1157 1158 /* Find the closer of the two */ 1159 if (delta66 < delta50) { 1160 fixed = near66; 1161 delta = delta66; 1162 } else { 1163 fixed = near50; 1164 delta = delta50; 1165 } 1166 1167 if (fixed > INT_MAX) 1168 return; 1169 1170 /* 1171 * Some older parts have a core clock frequency that is not an 1172 * integral multiple of 50 or 66 MHz. Check if one of the old 1173 * clock frequencies is closer to the measured value than any 1174 * of the integral multiples of 50 an 66, and if so set fixed 1175 * and delta appropriately to represent the closest value. 1176 */ 1177 i = sizeof (x86_cpu_freq) / sizeof (int); 1178 while (i > 0) { 1179 i--; 1180 1181 if (x86_cpu_freq[i] <= freq) { 1182 mul = freq - x86_cpu_freq[i]; 1183 1184 if (mul < delta) { 1185 fixed = x86_cpu_freq[i]; 1186 delta = mul; 1187 } 1188 1189 break; 1190 } 1191 1192 mul = x86_cpu_freq[i] - freq; 1193 1194 if (mul < delta) { 1195 fixed = x86_cpu_freq[i]; 1196 delta = mul; 1197 } 1198 } 1199 1200 /* 1201 * Set a reasonable maximum for how much to correct the measured 1202 * result by. This check is here to prevent the adjustment made 1203 * by this function from being more harm than good. It is entirely 1204 * possible that in the future parts will be made that are not 1205 * integral multiples of 66 or 50 in clock frequency or that 1206 * someone may overclock a part to some odd frequency. If the 1207 * measured value is farther from the corrected value than 1208 * allowed, then assume the corrected value is in error and use 1209 * the measured value. 1210 */ 1211 if (6 < delta) 1212 return; 1213 1214 cpu_freq = (int)fixed; 1215 } 1216 1217 1218 static int 1219 machhztomhz(uint64_t cpu_freq_hz) 1220 { 1221 uint64_t cpu_mhz; 1222 1223 /* Round to nearest MHZ */ 1224 cpu_mhz = (cpu_freq_hz + (MEGA_HZ / 2)) / MEGA_HZ; 1225 1226 if (cpu_mhz > INT_MAX) 1227 return (0); 1228 1229 return ((int)cpu_mhz); 1230 1231 } 1232 1233 1234 static int 1235 mach_clkinit(int preferred_mode, int *set_mode) 1236 { 1237 struct psm_ops *pops; 1238 int resolution; 1239 1240 pops = mach_set[0]; 1241 1242 cpu_freq_hz = mach_getcpufreq(); 1243 1244 cpu_freq = machhztomhz(cpu_freq_hz); 1245 1246 if (!(x86_feature & X86_TSC) || (cpu_freq == 0)) 1247 tsc_gethrtime_enable = 0; 1248 1249 #ifndef __xpv 1250 if (tsc_gethrtime_enable) { 1251 tsc_hrtimeinit(cpu_freq_hz); 1252 } else 1253 #endif 1254 { 1255 if (pops->psm_hrtimeinit) 1256 (*pops->psm_hrtimeinit)(); 1257 gethrtimef = pops->psm_gethrtime; 1258 gethrtimeunscaledf = gethrtimef; 1259 /* scalehrtimef will remain dummy */ 1260 } 1261 1262 mach_fixcpufreq(); 1263 1264 if (mach_ver[0] >= PSM_INFO_VER01_3) { 1265 if (preferred_mode == TIMER_ONESHOT) { 1266 1267 resolution = (*pops->psm_clkinit)(0); 1268 if (resolution != 0) { 1269 *set_mode = TIMER_ONESHOT; 1270 return (resolution); 1271 } 1272 } 1273 1274 /* 1275 * either periodic mode was requested or could not set to 1276 * one-shot mode 1277 */ 1278 resolution = (*pops->psm_clkinit)(hz); 1279 /* 1280 * psm should be able to do periodic, so we do not check 1281 * for return value of psm_clkinit here. 1282 */ 1283 *set_mode = TIMER_PERIODIC; 1284 return (resolution); 1285 } else { 1286 /* 1287 * PSMI interface prior to PSMI_3 does not define a return 1288 * value for psm_clkinit, so the return value is ignored. 1289 */ 1290 (void) (*pops->psm_clkinit)(hz); 1291 *set_mode = TIMER_PERIODIC; 1292 return (nsec_per_tick); 1293 } 1294 } 1295 1296 1297 /*ARGSUSED*/ 1298 static int 1299 mach_softlvl_to_vect(int ipl) 1300 { 1301 setsoftint = av_set_softint_pending; 1302 kdisetsoftint = kdi_av_set_softint_pending; 1303 1304 return (PSM_SV_SOFTWARE); 1305 } 1306 1307 #ifdef DEBUG 1308 /* 1309 * This is here to allow us to simulate cpus that refuse to start. 1310 */ 1311 cpuset_t cpufailset; 1312 #endif 1313 1314 int 1315 mach_cpu_start(struct cpu *cp, void *ctx) 1316 { 1317 struct psm_ops *pops = mach_set[0]; 1318 processorid_t id = cp->cpu_id; 1319 1320 #ifdef DEBUG 1321 if (CPU_IN_SET(cpufailset, id)) 1322 return (0); 1323 #endif 1324 return ((*pops->psm_cpu_start)(id, ctx)); 1325 } 1326 1327 int 1328 mach_cpuid_start(processorid_t id, void *ctx) 1329 { 1330 struct psm_ops *pops = mach_set[0]; 1331 1332 #ifdef DEBUG 1333 if (CPU_IN_SET(cpufailset, id)) 1334 return (0); 1335 #endif 1336 return ((*pops->psm_cpu_start)(id, ctx)); 1337 } 1338 1339 /*ARGSUSED*/ 1340 static int 1341 mach_translate_irq(dev_info_t *dip, int irqno) 1342 { 1343 return (irqno); /* default to NO translation */ 1344 } 1345 1346 static void 1347 mach_notify_error(int level, char *errmsg) 1348 { 1349 /* 1350 * SL_FATAL is pass in once panicstr is set, deliver it 1351 * as CE_PANIC. Also, translate SL_ codes back to CE_ 1352 * codes for the psmi handler 1353 */ 1354 if (level & SL_FATAL) 1355 (*notify_error)(CE_PANIC, errmsg); 1356 else if (level & SL_WARN) 1357 (*notify_error)(CE_WARN, errmsg); 1358 else if (level & SL_NOTE) 1359 (*notify_error)(CE_NOTE, errmsg); 1360 else if (level & SL_CONSOLE) 1361 (*notify_error)(CE_CONT, errmsg); 1362 } 1363 1364 /* 1365 * It provides the default basic intr_ops interface for the new DDI 1366 * interrupt framework if the PSM doesn't have one. 1367 * 1368 * Input: 1369 * dip - pointer to the dev_info structure of the requested device 1370 * hdlp - pointer to the internal interrupt handle structure for the 1371 * requested interrupt 1372 * intr_op - opcode for this call 1373 * result - pointer to the integer that will hold the result to be 1374 * passed back if return value is PSM_SUCCESS 1375 * 1376 * Output: 1377 * return value is either PSM_SUCCESS or PSM_FAILURE 1378 */ 1379 static int 1380 mach_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp, 1381 psm_intr_op_t intr_op, int *result) 1382 { 1383 struct intrspec *ispec; 1384 1385 switch (intr_op) { 1386 case PSM_INTR_OP_CHECK_MSI: 1387 *result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI | 1388 DDI_INTR_TYPE_MSIX); 1389 break; 1390 case PSM_INTR_OP_ALLOC_VECTORS: 1391 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) 1392 *result = 1; 1393 else 1394 *result = 0; 1395 break; 1396 case PSM_INTR_OP_FREE_VECTORS: 1397 break; 1398 case PSM_INTR_OP_NAVAIL_VECTORS: 1399 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) 1400 *result = 1; 1401 else 1402 *result = 0; 1403 break; 1404 case PSM_INTR_OP_XLATE_VECTOR: 1405 ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp; 1406 *result = psm_translate_irq(dip, ispec->intrspec_vec); 1407 break; 1408 case PSM_INTR_OP_GET_CAP: 1409 *result = 0; 1410 break; 1411 case PSM_INTR_OP_GET_PENDING: 1412 case PSM_INTR_OP_CLEAR_MASK: 1413 case PSM_INTR_OP_SET_MASK: 1414 case PSM_INTR_OP_GET_SHARED: 1415 case PSM_INTR_OP_SET_PRI: 1416 case PSM_INTR_OP_SET_CAP: 1417 case PSM_INTR_OP_SET_CPU: 1418 case PSM_INTR_OP_GET_INTR: 1419 default: 1420 return (PSM_FAILURE); 1421 } 1422 return (PSM_SUCCESS); 1423 } 1424 /* 1425 * Return 1 if CMT load balancing policies should be 1426 * implemented across instances of the specified hardware 1427 * sharing relationship. 1428 */ 1429 int 1430 pg_cmt_load_bal_hw(pghw_type_t hw) 1431 { 1432 if (hw == PGHW_IPIPE || 1433 hw == PGHW_FPU || 1434 hw == PGHW_CHIP) 1435 return (1); 1436 else 1437 return (0); 1438 } 1439 /* 1440 * Return 1 if thread affinity polices should be implemented 1441 * for instances of the specifed hardware sharing relationship. 1442 */ 1443 int 1444 pg_cmt_affinity_hw(pghw_type_t hw) 1445 { 1446 if (hw == PGHW_CACHE) 1447 return (1); 1448 else 1449 return (0); 1450 } 1451