1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * i86pc Memory Scrubbing 31 * 32 * On detection of a correctable memory ECC error, the i86pc hardware 33 * returns the corrected data to the requester and may re-write it 34 * to memory (DRAM or NVRAM). Machines which do not re-write this to 35 * memory should add an NMI handler to correct and rewrite. 36 * 37 * Scrubbing thus reduces the likelyhood that multiple transient errors 38 * will occur in the same memory word, making uncorrectable errors due 39 * to transients less likely. 40 * 41 * Thus is born the desire that every memory location be periodically 42 * accessed. 43 * 44 * This file implements a memory scrubbing thread. This scrubber 45 * guarantees that all of physical memory is accessed periodically 46 * (memscrub_period_sec -- 12 hours). 47 * 48 * It attempts to do this as unobtrusively as possible. The thread 49 * schedules itself to wake up at an interval such that if it reads 50 * memscrub_span_pages (4MB) on each wakeup, it will read all of physical 51 * memory in in memscrub_period_sec (12 hours). 52 * 53 * The scrubber uses the REP LODS so it reads 4MB in 0.15 secs (on P5-200). 54 * When it completes a span, if all the CPUs are idle, it reads another span. 55 * Typically it soaks up idle time this way to reach its deadline early 56 * -- and sleeps until the next period begins. 57 * 58 * Maximal Cost Estimate: 8GB @ xxMB/s = xxx seconds spent in 640 wakeups 59 * that run for 0.15 seconds at intervals of 67 seconds. 60 * 61 * In practice, the scrubber finds enough idle time to finish in a few 62 * minutes, and sleeps until its 12 hour deadline. 63 * 64 * The scrubber maintains a private copy of the phys_install memory list 65 * to keep track of what memory should be scrubbed. 66 * 67 * The following parameters can be set via /etc/system 68 * 69 * memscrub_span_pages = MEMSCRUB_DFL_SPAN_PAGES (4MB) 70 * memscrub_period_sec = MEMSCRUB_DFL_PERIOD_SEC (12 hours) 71 * memscrub_thread_pri = MEMSCRUB_DFL_THREAD_PRI (0) 72 * memscrub_delay_start_sec = (10 seconds) 73 * disable_memscrub = (0) 74 * 75 * the scrubber will exit (or never be started) if it finds the variable 76 * "disable_memscrub" set. 77 * 78 * MEMSCRUB_DFL_SPAN_PAGES is based on the guess that 0.15 sec 79 * is a "good" amount of minimum time for the thread to run at a time. 80 * 81 * MEMSCRUB_DFL_PERIOD_SEC (12 hours) is nearly a total guess -- 82 * twice the frequency the hardware folk estimated would be necessary. 83 * 84 * MEMSCRUB_DFL_THREAD_PRI (0) is based on the assumption that nearly 85 * any other use of the system should be higher priority than scrubbing. 86 */ 87 88 #include <sys/types.h> 89 #include <sys/systm.h> /* timeout, types, t_lock */ 90 #include <sys/cmn_err.h> 91 #include <sys/sysmacros.h> /* MIN */ 92 #include <sys/memlist.h> /* memlist */ 93 #include <sys/kmem.h> /* KMEM_NOSLEEP */ 94 #include <sys/cpuvar.h> /* ncpus_online */ 95 #include <sys/debug.h> /* ASSERTs */ 96 #include <sys/vmem.h> 97 #include <sys/mman.h> 98 #include <vm/seg_kmem.h> 99 #include <vm/seg_kpm.h> 100 #include <vm/hat_i86.h> 101 102 static caddr_t memscrub_window; 103 static hat_mempte_t memscrub_pte; 104 105 /* 106 * Global Data: 107 */ 108 /* 109 * scan all of physical memory at least once every MEMSCRUB_PERIOD_SEC 110 */ 111 #define MEMSCRUB_DFL_PERIOD_SEC (12 * 60 * 60) /* 12 hours */ 112 113 /* 114 * start only if at least MEMSCRUB_MIN_PAGES in system 115 */ 116 #define MEMSCRUB_MIN_PAGES ((32 * 1024 * 1024) / PAGESIZE) 117 118 /* 119 * scan at least MEMSCRUB_DFL_SPAN_PAGES each iteration 120 */ 121 #define MEMSCRUB_DFL_SPAN_PAGES ((4 * 1024 * 1024) / PAGESIZE) 122 123 /* 124 * almost anything is higher priority than scrubbing 125 */ 126 #define MEMSCRUB_DFL_THREAD_PRI 0 127 128 /* 129 * we can patch these defaults in /etc/system if necessary 130 */ 131 uint_t disable_memscrub = 0; 132 static uint_t disable_memscrub_quietly = 0; 133 pgcnt_t memscrub_min_pages = MEMSCRUB_MIN_PAGES; 134 pgcnt_t memscrub_span_pages = MEMSCRUB_DFL_SPAN_PAGES; 135 time_t memscrub_period_sec = MEMSCRUB_DFL_PERIOD_SEC; 136 uint_t memscrub_thread_pri = MEMSCRUB_DFL_THREAD_PRI; 137 time_t memscrub_delay_start_sec = 10; 138 139 /* 140 * Static Routines 141 */ 142 static void memscrubber(void); 143 static int system_is_idle(void); 144 static int memscrub_add_span(uint64_t, uint64_t); 145 146 /* 147 * Static Data 148 */ 149 static struct memlist *memscrub_memlist; 150 static uint_t memscrub_phys_pages; 151 152 static kcondvar_t memscrub_cv; 153 static kmutex_t memscrub_lock; 154 155 /* 156 * memscrub_lock protects memscrub_memlist 157 */ 158 uint_t memscrub_scans_done; 159 160 uint_t memscrub_done_early; 161 uint_t memscrub_early_sec; 162 163 uint_t memscrub_done_late; 164 time_t memscrub_late_sec; 165 166 /* 167 * create memscrub_memlist from phys_install list 168 * initialize locks, set memscrub_phys_pages. 169 */ 170 void 171 memscrub_init() 172 { 173 struct memlist *src; 174 175 if (physmem < memscrub_min_pages) 176 return; 177 178 if (!kpm_enable) { 179 memscrub_window = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP); 180 memscrub_pte = hat_mempte_setup(memscrub_window); 181 } 182 183 /* 184 * copy phys_install to memscrub_memlist 185 */ 186 for (src = phys_install; src; src = src->next) { 187 if (memscrub_add_span(src->address, src->size)) { 188 cmn_err(CE_WARN, 189 "Memory scrubber failed to initialize\n"); 190 return; 191 } 192 } 193 194 mutex_init(&memscrub_lock, NULL, MUTEX_DRIVER, NULL); 195 cv_init(&memscrub_cv, NULL, CV_DRIVER, NULL); 196 197 /* 198 * create memscrubber thread 199 */ 200 (void) thread_create(NULL, 0, (void (*)())memscrubber, NULL, 0, &p0, 201 TS_RUN, memscrub_thread_pri); 202 } 203 204 /* 205 * Function to cause the software memscrubber to exit quietly if the 206 * platform support has located a hardware scrubber and enabled it. 207 */ 208 void 209 memscrub_disable(void) 210 { 211 disable_memscrub_quietly = 1; 212 } 213 214 #ifdef MEMSCRUB_DEBUG 215 void 216 memscrub_printmemlist(char *title, struct memlist *listp) 217 { 218 struct memlist *list; 219 220 cmn_err(CE_CONT, "%s:\n", title); 221 222 for (list = listp; list; list = list->next) { 223 cmn_err(CE_CONT, "addr = 0x%llx, size = 0x%llx\n", 224 list->address, list->size); 225 } 226 } 227 #endif /* MEMSCRUB_DEBUG */ 228 229 /* ARGSUSED */ 230 void 231 memscrub_wakeup(void *c) 232 { 233 /* 234 * grab mutex to guarantee that our wakeup call 235 * arrives after we go to sleep -- so we can't sleep forever. 236 */ 237 mutex_enter(&memscrub_lock); 238 cv_signal(&memscrub_cv); 239 mutex_exit(&memscrub_lock); 240 } 241 242 /* 243 * this calculation doesn't account for the time that the actual scan 244 * consumes -- so we'd fall slightly behind schedule with this 245 * interval_sec. but the idle loop optimization below usually makes us 246 * come in way ahead of schedule. 247 */ 248 static int 249 compute_interval_sec() 250 { 251 if (memscrub_phys_pages <= memscrub_span_pages) 252 return (memscrub_period_sec); 253 else 254 return (memscrub_period_sec/ 255 (memscrub_phys_pages/memscrub_span_pages)); 256 } 257 258 void 259 memscrubber() 260 { 261 time_t deadline; 262 uint64_t mlp_last_addr; 263 uint64_t mlp_next_addr; 264 int reached_end = 1; 265 time_t interval_sec = 0; 266 struct memlist *mlp; 267 268 extern void scan_memory(caddr_t, size_t); 269 270 if (memscrub_memlist == NULL) { 271 cmn_err(CE_WARN, "memscrub_memlist not initialized."); 272 goto memscrub_exit; 273 } 274 275 mlp = memscrub_memlist; 276 mlp_next_addr = mlp->address; 277 mlp_last_addr = mlp->address + mlp->size; 278 279 deadline = gethrestime_sec() + memscrub_delay_start_sec; 280 281 for (;;) { 282 if (disable_memscrub || disable_memscrub_quietly) 283 break; 284 285 mutex_enter(&memscrub_lock); 286 287 /* 288 * did we just reach the end of memory? 289 */ 290 if (reached_end) { 291 time_t now = gethrestime_sec(); 292 293 if (now >= deadline) { 294 memscrub_done_late++; 295 memscrub_late_sec += (now - deadline); 296 /* 297 * past deadline, start right away 298 */ 299 interval_sec = 0; 300 301 deadline = now + memscrub_period_sec; 302 } else { 303 /* 304 * we finished ahead of schedule. 305 * wait till previous dealine before re-start. 306 */ 307 interval_sec = deadline - now; 308 memscrub_done_early++; 309 memscrub_early_sec += interval_sec; 310 deadline += memscrub_period_sec; 311 } 312 } else { 313 interval_sec = compute_interval_sec(); 314 } 315 316 /* 317 * hit the snooze bar 318 */ 319 (void) timeout(memscrub_wakeup, NULL, interval_sec * hz); 320 321 /* 322 * go to sleep 323 */ 324 cv_wait(&memscrub_cv, &memscrub_lock); 325 326 mutex_exit(&memscrub_lock); 327 328 do { 329 pgcnt_t pages = memscrub_span_pages; 330 uint64_t address = mlp_next_addr; 331 332 if (disable_memscrub || disable_memscrub_quietly) 333 break; 334 335 mutex_enter(&memscrub_lock); 336 337 /* 338 * Make sure we don't try to scan beyond the end of 339 * the current memlist. If we would, then resize 340 * our scan target for this iteration, and prepare 341 * to read the next memlist entry on the next 342 * iteration. 343 */ 344 reached_end = 0; 345 if (address + mmu_ptob(pages) >= mlp_last_addr) { 346 pages = mmu_btop(mlp_last_addr - address); 347 mlp = mlp->next; 348 if (mlp == NULL) { 349 reached_end = 1; 350 mlp = memscrub_memlist; 351 } 352 mlp_next_addr = mlp->address; 353 mlp_last_addr = mlp->address + mlp->size; 354 } else { 355 mlp_next_addr += mmu_ptob(pages); 356 } 357 358 mutex_exit(&memscrub_lock); 359 360 while (pages--) { 361 pfn_t pfn = btop(address); 362 363 /* 364 * Without segkpm, the memscrubber cannot 365 * be allowed to migrate across CPUs, as 366 * the CPU-specific mapping of 367 * memscrub_window would be incorrect. 368 * With segkpm, switching CPUs is legal, but 369 * inefficient. We don't use 370 * kpreempt_disable as it might hold a 371 * higher priority thread (eg, RT) too long 372 * off CPU. 373 */ 374 thread_affinity_set(curthread, CPU_CURRENT); 375 if (kpm_enable) 376 memscrub_window = hat_kpm_pfn2va(pfn); 377 else 378 hat_mempte_remap(pfn, memscrub_window, 379 memscrub_pte, 380 PROT_READ, HAT_LOAD_NOCONSIST); 381 382 scan_memory(memscrub_window, PAGESIZE); 383 384 thread_affinity_clear(curthread); 385 address += MMU_PAGESIZE; 386 } 387 388 memscrub_scans_done++; 389 } while (!reached_end && system_is_idle()); 390 } 391 392 memscrub_exit: 393 394 if (!disable_memscrub_quietly) 395 cmn_err(CE_NOTE, "memory scrubber exiting."); 396 397 cv_destroy(&memscrub_cv); 398 399 thread_exit(); 400 } 401 402 403 /* 404 * return 1 if we're MP and all the other CPUs are idle 405 */ 406 static int 407 system_is_idle() 408 { 409 int cpu_id; 410 int found = 0; 411 412 if (1 == ncpus_online) 413 return (0); 414 415 for (cpu_id = 0; cpu_id < NCPU; ++cpu_id) { 416 if (!cpu[cpu_id]) 417 continue; 418 419 found++; 420 421 if (cpu[cpu_id]->cpu_thread != cpu[cpu_id]->cpu_idle_thread) { 422 if (CPU->cpu_id == cpu_id && 423 CPU->cpu_disp->disp_nrunnable == 0) 424 continue; 425 return (0); 426 } 427 428 if (found == ncpus) 429 break; 430 } 431 return (1); 432 } 433 434 /* 435 * add a span to the memscrub list 436 */ 437 static int 438 memscrub_add_span(uint64_t start, uint64_t bytes) 439 { 440 struct memlist *dst; 441 struct memlist *prev, *next; 442 uint64_t end = start + bytes - 1; 443 int retval = 0; 444 445 mutex_enter(&memscrub_lock); 446 447 #ifdef MEMSCRUB_DEBUG 448 memscrub_printmemlist("memscrub_memlist before", memscrub_memlist); 449 cmn_err(CE_CONT, "memscrub_phys_pages: 0x%x\n", memscrub_phys_pages); 450 cmn_err(CE_CONT, "memscrub_add_span: address: 0x%llx" 451 " size: 0x%llx\n", start, bytes); 452 #endif /* MEMSCRUB_DEBUG */ 453 454 /* 455 * Scan through the list to find the proper place to install it. 456 */ 457 prev = NULL; 458 next = memscrub_memlist; 459 while (next) { 460 uint64_t ns = next->address; 461 uint64_t ne = next->address + next->size - 1; 462 463 /* 464 * If this span overlaps with an existing span, then 465 * something has gone horribly wrong with the phys_install 466 * list. In fact, I'm surprised we made it this far. 467 */ 468 if ((start >= ns && start <= ne) || (end >= ns && end <= ne) || 469 (start < ns && end > ne)) 470 panic("memscrub found overlapping memory ranges " 471 "(0x%p-0x%p) and (0x%p-0x%p)", 472 (void *)(uintptr_t)start, (void *)(uintptr_t)end, 473 (void *)(uintptr_t)ns, (void *)(uintptr_t)ne); 474 475 /* 476 * New span can be appended to an existing one. 477 */ 478 if (start == ne + 1) { 479 next->size += bytes; 480 goto add_done; 481 } 482 483 /* 484 * New span can be prepended to an existing one. 485 */ 486 if (end + 1 == ns) { 487 next->size += bytes; 488 next->address = start; 489 goto add_done; 490 } 491 492 /* 493 * If the next span has a higher start address than the new 494 * one, then we have found the right spot for our 495 * insertion. 496 */ 497 if (ns > start) 498 break; 499 500 prev = next; 501 next = next->next; 502 } 503 504 /* 505 * allocate a new struct memlist 506 */ 507 dst = kmem_alloc(sizeof (struct memlist), KM_NOSLEEP); 508 if (dst == NULL) { 509 retval = -1; 510 goto add_done; 511 } 512 dst->address = start; 513 dst->size = bytes; 514 dst->prev = prev; 515 dst->next = next; 516 517 if (prev) 518 prev->next = dst; 519 else 520 memscrub_memlist = dst; 521 522 if (next) 523 next->prev = dst; 524 525 add_done: 526 527 if (retval != -1) 528 memscrub_phys_pages += mmu_btop(bytes); 529 530 #ifdef MEMSCRUB_DEBUG 531 memscrub_printmemlist("memscrub_memlist after", memscrub_memlist); 532 cmn_err(CE_CONT, "memscrub_phys_pages: 0x%x\n", memscrub_phys_pages); 533 #endif /* MEMSCRUB_DEBUG */ 534 535 mutex_exit(&memscrub_lock); 536 return (retval); 537 } 538