1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * i86pc Memory Scrubbing 31 * 32 * On detection of a correctable memory ECC error, the i86pc hardware 33 * returns the corrected data to the requester and may re-write it 34 * to memory (DRAM or NVRAM). Machines which do not re-write this to 35 * memory should add an NMI handler to correct and rewrite. 36 * 37 * Scrubbing thus reduces the likelyhood that multiple transient errors 38 * will occur in the same memory word, making uncorrectable errors due 39 * to transients less likely. 40 * 41 * Thus is born the desire that every memory location be periodically 42 * accessed. 43 * 44 * This file implements a memory scrubbing thread. This scrubber 45 * guarantees that all of physical memory is accessed periodically 46 * (memscrub_period_sec -- 12 hours). 47 * 48 * It attempts to do this as unobtrusively as possible. The thread 49 * schedules itself to wake up at an interval such that if it reads 50 * memscrub_span_pages (4MB) on each wakeup, it will read all of physical 51 * memory in in memscrub_period_sec (12 hours). 52 * 53 * The scrubber uses the REP LODS so it reads 4MB in 0.15 secs (on P5-200). 54 * When it completes a span, if all the CPUs are idle, it reads another span. 55 * Typically it soaks up idle time this way to reach its deadline early 56 * -- and sleeps until the next period begins. 57 * 58 * Maximal Cost Estimate: 8GB @ xxMB/s = xxx seconds spent in 640 wakeups 59 * that run for 0.15 seconds at intervals of 67 seconds. 60 * 61 * In practice, the scrubber finds enough idle time to finish in a few 62 * minutes, and sleeps until its 12 hour deadline. 63 * 64 * The scrubber maintains a private copy of the phys_install memory list 65 * to keep track of what memory should be scrubbed. 66 * 67 * The following parameters can be set via /etc/system 68 * 69 * memscrub_span_pages = MEMSCRUB_DFL_SPAN_PAGES (4MB) 70 * memscrub_period_sec = MEMSCRUB_DFL_PERIOD_SEC (12 hours) 71 * memscrub_thread_pri = MEMSCRUB_DFL_THREAD_PRI (0) 72 * memscrub_delay_start_sec = (10 seconds) 73 * disable_memscrub = (0) 74 * 75 * the scrubber will exit (or never be started) if it finds the variable 76 * "disable_memscrub" set. 77 * 78 * MEMSCRUB_DFL_SPAN_PAGES is based on the guess that 0.15 sec 79 * is a "good" amount of minimum time for the thread to run at a time. 80 * 81 * MEMSCRUB_DFL_PERIOD_SEC (12 hours) is nearly a total guess -- 82 * twice the frequency the hardware folk estimated would be necessary. 83 * 84 * MEMSCRUB_DFL_THREAD_PRI (0) is based on the assumption that nearly 85 * any other use of the system should be higher priority than scrubbing. 86 */ 87 88 #include <sys/types.h> 89 #include <sys/systm.h> /* timeout, types, t_lock */ 90 #include <sys/cmn_err.h> 91 #include <sys/sysmacros.h> /* MIN */ 92 #include <sys/memlist.h> /* memlist */ 93 #include <sys/kmem.h> /* KMEM_NOSLEEP */ 94 #include <sys/cpuvar.h> /* ncpus_online */ 95 #include <sys/debug.h> /* ASSERTs */ 96 #include <sys/vmem.h> 97 #include <sys/mman.h> 98 #include <vm/seg_kmem.h> 99 #include <vm/seg_kpm.h> 100 #include <vm/hat_i86.h> 101 #include <sys/callb.h> /* CPR callback */ 102 103 static caddr_t memscrub_window; 104 static hat_mempte_t memscrub_pte; 105 106 /* 107 * Global Data: 108 */ 109 /* 110 * scan all of physical memory at least once every MEMSCRUB_PERIOD_SEC 111 */ 112 #define MEMSCRUB_DFL_PERIOD_SEC (12 * 60 * 60) /* 12 hours */ 113 114 /* 115 * start only if at least MEMSCRUB_MIN_PAGES in system 116 */ 117 #define MEMSCRUB_MIN_PAGES ((32 * 1024 * 1024) / PAGESIZE) 118 119 /* 120 * scan at least MEMSCRUB_DFL_SPAN_PAGES each iteration 121 */ 122 #define MEMSCRUB_DFL_SPAN_PAGES ((4 * 1024 * 1024) / PAGESIZE) 123 124 /* 125 * almost anything is higher priority than scrubbing 126 */ 127 #define MEMSCRUB_DFL_THREAD_PRI 0 128 129 /* 130 * we can patch these defaults in /etc/system if necessary 131 */ 132 uint_t disable_memscrub = 0; 133 static uint_t disable_memscrub_quietly = 0; 134 pgcnt_t memscrub_min_pages = MEMSCRUB_MIN_PAGES; 135 pgcnt_t memscrub_span_pages = MEMSCRUB_DFL_SPAN_PAGES; 136 time_t memscrub_period_sec = MEMSCRUB_DFL_PERIOD_SEC; 137 uint_t memscrub_thread_pri = MEMSCRUB_DFL_THREAD_PRI; 138 time_t memscrub_delay_start_sec = 10; 139 140 /* 141 * Static Routines 142 */ 143 static void memscrubber(void); 144 static int system_is_idle(void); 145 static int memscrub_add_span(uint64_t, uint64_t); 146 147 /* 148 * Static Data 149 */ 150 static struct memlist *memscrub_memlist; 151 static uint_t memscrub_phys_pages; 152 153 static kcondvar_t memscrub_cv; 154 static kmutex_t memscrub_lock; 155 156 /* 157 * memscrub_lock protects memscrub_memlist 158 */ 159 uint_t memscrub_scans_done; 160 161 uint_t memscrub_done_early; 162 uint_t memscrub_early_sec; 163 164 uint_t memscrub_done_late; 165 time_t memscrub_late_sec; 166 167 /* 168 * create memscrub_memlist from phys_install list 169 * initialize locks, set memscrub_phys_pages. 170 */ 171 void 172 memscrub_init() 173 { 174 struct memlist *src; 175 176 if (physmem < memscrub_min_pages) 177 return; 178 179 if (!kpm_enable) { 180 memscrub_window = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP); 181 memscrub_pte = hat_mempte_setup(memscrub_window); 182 } 183 184 /* 185 * copy phys_install to memscrub_memlist 186 */ 187 for (src = phys_install; src; src = src->next) { 188 if (memscrub_add_span(src->address, src->size)) { 189 cmn_err(CE_WARN, 190 "Memory scrubber failed to initialize\n"); 191 return; 192 } 193 } 194 195 mutex_init(&memscrub_lock, NULL, MUTEX_DRIVER, NULL); 196 cv_init(&memscrub_cv, NULL, CV_DRIVER, NULL); 197 198 /* 199 * create memscrubber thread 200 */ 201 (void) thread_create(NULL, 0, (void (*)())memscrubber, NULL, 0, &p0, 202 TS_RUN, memscrub_thread_pri); 203 } 204 205 /* 206 * Function to cause the software memscrubber to exit quietly if the 207 * platform support has located a hardware scrubber and enabled it. 208 */ 209 void 210 memscrub_disable(void) 211 { 212 disable_memscrub_quietly = 1; 213 } 214 215 #ifdef MEMSCRUB_DEBUG 216 void 217 memscrub_printmemlist(char *title, struct memlist *listp) 218 { 219 struct memlist *list; 220 221 cmn_err(CE_CONT, "%s:\n", title); 222 223 for (list = listp; list; list = list->next) { 224 cmn_err(CE_CONT, "addr = 0x%llx, size = 0x%llx\n", 225 list->address, list->size); 226 } 227 } 228 #endif /* MEMSCRUB_DEBUG */ 229 230 /* ARGSUSED */ 231 void 232 memscrub_wakeup(void *c) 233 { 234 /* 235 * grab mutex to guarantee that our wakeup call 236 * arrives after we go to sleep -- so we can't sleep forever. 237 */ 238 mutex_enter(&memscrub_lock); 239 cv_signal(&memscrub_cv); 240 mutex_exit(&memscrub_lock); 241 } 242 243 /* 244 * this calculation doesn't account for the time that the actual scan 245 * consumes -- so we'd fall slightly behind schedule with this 246 * interval_sec. but the idle loop optimization below usually makes us 247 * come in way ahead of schedule. 248 */ 249 static int 250 compute_interval_sec() 251 { 252 if (memscrub_phys_pages <= memscrub_span_pages) 253 return (memscrub_period_sec); 254 else 255 return (memscrub_period_sec/ 256 (memscrub_phys_pages/memscrub_span_pages)); 257 } 258 259 void 260 memscrubber() 261 { 262 time_t deadline; 263 uint64_t mlp_last_addr; 264 uint64_t mlp_next_addr; 265 int reached_end = 1; 266 time_t interval_sec = 0; 267 struct memlist *mlp; 268 269 extern void scan_memory(caddr_t, size_t); 270 callb_cpr_t cprinfo; 271 272 /* 273 * notify CPR of our existence 274 */ 275 CALLB_CPR_INIT(&cprinfo, &memscrub_lock, callb_generic_cpr, "memscrub"); 276 277 if (memscrub_memlist == NULL) { 278 cmn_err(CE_WARN, "memscrub_memlist not initialized."); 279 goto memscrub_exit; 280 } 281 282 mlp = memscrub_memlist; 283 mlp_next_addr = mlp->address; 284 mlp_last_addr = mlp->address + mlp->size; 285 286 deadline = gethrestime_sec() + memscrub_delay_start_sec; 287 288 for (;;) { 289 if (disable_memscrub || disable_memscrub_quietly) 290 break; 291 292 mutex_enter(&memscrub_lock); 293 294 /* 295 * did we just reach the end of memory? 296 */ 297 if (reached_end) { 298 time_t now = gethrestime_sec(); 299 300 if (now >= deadline) { 301 memscrub_done_late++; 302 memscrub_late_sec += (now - deadline); 303 /* 304 * past deadline, start right away 305 */ 306 interval_sec = 0; 307 308 deadline = now + memscrub_period_sec; 309 } else { 310 /* 311 * we finished ahead of schedule. 312 * wait till previous dealine before re-start. 313 */ 314 interval_sec = deadline - now; 315 memscrub_done_early++; 316 memscrub_early_sec += interval_sec; 317 deadline += memscrub_period_sec; 318 } 319 } else { 320 interval_sec = compute_interval_sec(); 321 } 322 323 /* 324 * it is safe from our standpoint for CPR to 325 * suspend the system 326 */ 327 CALLB_CPR_SAFE_BEGIN(&cprinfo); 328 329 /* 330 * hit the snooze bar 331 */ 332 (void) timeout(memscrub_wakeup, NULL, interval_sec * hz); 333 334 /* 335 * go to sleep 336 */ 337 cv_wait(&memscrub_cv, &memscrub_lock); 338 339 /* we need to goto work */ 340 CALLB_CPR_SAFE_END(&cprinfo, &memscrub_lock); 341 342 mutex_exit(&memscrub_lock); 343 344 do { 345 pgcnt_t pages = memscrub_span_pages; 346 uint64_t address = mlp_next_addr; 347 348 if (disable_memscrub || disable_memscrub_quietly) 349 break; 350 351 mutex_enter(&memscrub_lock); 352 353 /* 354 * Make sure we don't try to scan beyond the end of 355 * the current memlist. If we would, then resize 356 * our scan target for this iteration, and prepare 357 * to read the next memlist entry on the next 358 * iteration. 359 */ 360 reached_end = 0; 361 if (address + mmu_ptob(pages) >= mlp_last_addr) { 362 pages = mmu_btop(mlp_last_addr - address); 363 mlp = mlp->next; 364 if (mlp == NULL) { 365 reached_end = 1; 366 mlp = memscrub_memlist; 367 } 368 mlp_next_addr = mlp->address; 369 mlp_last_addr = mlp->address + mlp->size; 370 } else { 371 mlp_next_addr += mmu_ptob(pages); 372 } 373 374 mutex_exit(&memscrub_lock); 375 376 while (pages--) { 377 pfn_t pfn = btop(address); 378 379 /* 380 * Without segkpm, the memscrubber cannot 381 * be allowed to migrate across CPUs, as 382 * the CPU-specific mapping of 383 * memscrub_window would be incorrect. 384 * With segkpm, switching CPUs is legal, but 385 * inefficient. We don't use 386 * kpreempt_disable as it might hold a 387 * higher priority thread (eg, RT) too long 388 * off CPU. 389 */ 390 thread_affinity_set(curthread, CPU_CURRENT); 391 if (kpm_enable) 392 memscrub_window = hat_kpm_pfn2va(pfn); 393 else 394 hat_mempte_remap(pfn, memscrub_window, 395 memscrub_pte, 396 PROT_READ, HAT_LOAD_NOCONSIST); 397 398 scan_memory(memscrub_window, PAGESIZE); 399 400 thread_affinity_clear(curthread); 401 address += MMU_PAGESIZE; 402 } 403 404 memscrub_scans_done++; 405 } while (!reached_end && system_is_idle()); 406 } 407 408 memscrub_exit: 409 410 if (!disable_memscrub_quietly) 411 cmn_err(CE_NOTE, "memory scrubber exiting."); 412 /* 413 * We are about to bail, but don't have the memscrub_lock, 414 * and it is needed for CALLB_CPR_EXIT. 415 */ 416 mutex_enter(&memscrub_lock); 417 CALLB_CPR_EXIT(&cprinfo); 418 419 cv_destroy(&memscrub_cv); 420 421 thread_exit(); 422 } 423 424 425 /* 426 * return 1 if we're MP and all the other CPUs are idle 427 */ 428 static int 429 system_is_idle() 430 { 431 int cpu_id; 432 int found = 0; 433 434 if (1 == ncpus_online) 435 return (0); 436 437 for (cpu_id = 0; cpu_id < NCPU; ++cpu_id) { 438 if (!cpu[cpu_id]) 439 continue; 440 441 found++; 442 443 if (cpu[cpu_id]->cpu_thread != cpu[cpu_id]->cpu_idle_thread) { 444 if (CPU->cpu_id == cpu_id && 445 CPU->cpu_disp->disp_nrunnable == 0) 446 continue; 447 return (0); 448 } 449 450 if (found == ncpus) 451 break; 452 } 453 return (1); 454 } 455 456 /* 457 * add a span to the memscrub list 458 */ 459 static int 460 memscrub_add_span(uint64_t start, uint64_t bytes) 461 { 462 struct memlist *dst; 463 struct memlist *prev, *next; 464 uint64_t end = start + bytes - 1; 465 int retval = 0; 466 467 mutex_enter(&memscrub_lock); 468 469 #ifdef MEMSCRUB_DEBUG 470 memscrub_printmemlist("memscrub_memlist before", memscrub_memlist); 471 cmn_err(CE_CONT, "memscrub_phys_pages: 0x%x\n", memscrub_phys_pages); 472 cmn_err(CE_CONT, "memscrub_add_span: address: 0x%llx" 473 " size: 0x%llx\n", start, bytes); 474 #endif /* MEMSCRUB_DEBUG */ 475 476 /* 477 * Scan through the list to find the proper place to install it. 478 */ 479 prev = NULL; 480 next = memscrub_memlist; 481 while (next) { 482 uint64_t ns = next->address; 483 uint64_t ne = next->address + next->size - 1; 484 485 /* 486 * If this span overlaps with an existing span, then 487 * something has gone horribly wrong with the phys_install 488 * list. In fact, I'm surprised we made it this far. 489 */ 490 if ((start >= ns && start <= ne) || (end >= ns && end <= ne) || 491 (start < ns && end > ne)) 492 panic("memscrub found overlapping memory ranges " 493 "(0x%p-0x%p) and (0x%p-0x%p)", 494 (void *)(uintptr_t)start, (void *)(uintptr_t)end, 495 (void *)(uintptr_t)ns, (void *)(uintptr_t)ne); 496 497 /* 498 * New span can be appended to an existing one. 499 */ 500 if (start == ne + 1) { 501 next->size += bytes; 502 goto add_done; 503 } 504 505 /* 506 * New span can be prepended to an existing one. 507 */ 508 if (end + 1 == ns) { 509 next->size += bytes; 510 next->address = start; 511 goto add_done; 512 } 513 514 /* 515 * If the next span has a higher start address than the new 516 * one, then we have found the right spot for our 517 * insertion. 518 */ 519 if (ns > start) 520 break; 521 522 prev = next; 523 next = next->next; 524 } 525 526 /* 527 * allocate a new struct memlist 528 */ 529 dst = kmem_alloc(sizeof (struct memlist), KM_NOSLEEP); 530 if (dst == NULL) { 531 retval = -1; 532 goto add_done; 533 } 534 dst->address = start; 535 dst->size = bytes; 536 dst->prev = prev; 537 dst->next = next; 538 539 if (prev) 540 prev->next = dst; 541 else 542 memscrub_memlist = dst; 543 544 if (next) 545 next->prev = dst; 546 547 add_done: 548 549 if (retval != -1) 550 memscrub_phys_pages += mmu_btop(bytes); 551 552 #ifdef MEMSCRUB_DEBUG 553 memscrub_printmemlist("memscrub_memlist after", memscrub_memlist); 554 cmn_err(CE_CONT, "memscrub_phys_pages: 0x%x\n", memscrub_phys_pages); 555 #endif /* MEMSCRUB_DEBUG */ 556 557 mutex_exit(&memscrub_lock); 558 return (retval); 559 } 560