1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/systm.h> 27 #include <sys/sysmacros.h> 28 #include <sys/bootconf.h> 29 #include <sys/atomic.h> 30 #include <sys/lgrp.h> 31 #include <sys/memlist.h> 32 #include <sys/memnode.h> 33 #include <sys/platform_module.h> 34 #include <vm/vm_dep.h> 35 36 int max_mem_nodes = 1; 37 38 struct mem_node_conf mem_node_config[MAX_MEM_NODES]; 39 int mem_node_pfn_shift; 40 /* 41 * num_memnodes should be updated atomically and always >= 42 * the number of bits in memnodes_mask or the algorithm may fail. 43 */ 44 uint16_t num_memnodes; 45 mnodeset_t memnodes_mask; /* assumes 8*(sizeof(mnodeset_t)) >= MAX_MEM_NODES */ 46 47 /* 48 * If set, mem_node_physalign should be a power of two, and 49 * should reflect the minimum address alignment of each node. 50 */ 51 uint64_t mem_node_physalign; 52 53 /* 54 * Platform hooks we will need. 55 */ 56 57 #pragma weak plat_build_mem_nodes 58 #pragma weak plat_slice_add 59 #pragma weak plat_slice_del 60 61 /* 62 * Adjust the memnode config after a DR operation. 63 * 64 * It is rather tricky to do these updates since we can't 65 * protect the memnode structures with locks, so we must 66 * be mindful of the order in which updates and reads to 67 * these values can occur. 68 */ 69 70 void 71 mem_node_add_slice(pfn_t start, pfn_t end) 72 { 73 int mnode; 74 mnodeset_t newmask, oldmask; 75 76 /* 77 * DR will pass us the first pfn that is allocatable. 78 * We need to round down to get the real start of 79 * the slice. 80 */ 81 if (mem_node_physalign) { 82 start &= ~(btop(mem_node_physalign) - 1); 83 end = roundup(end, btop(mem_node_physalign)) - 1; 84 } 85 86 mnode = PFN_2_MEM_NODE(start); 87 ASSERT(mnode < max_mem_nodes); 88 89 if (cas32((uint32_t *)&mem_node_config[mnode].exists, 0, 1)) { 90 /* 91 * Add slice to existing node. 92 */ 93 if (start < mem_node_config[mnode].physbase) 94 mem_node_config[mnode].physbase = start; 95 if (end > mem_node_config[mnode].physmax) 96 mem_node_config[mnode].physmax = end; 97 } else { 98 mem_node_config[mnode].physbase = start; 99 mem_node_config[mnode].physmax = end; 100 atomic_add_16(&num_memnodes, 1); 101 do { 102 oldmask = memnodes_mask; 103 newmask = memnodes_mask | (1ull << mnode); 104 } while (cas64(&memnodes_mask, oldmask, newmask) != oldmask); 105 } 106 107 /* 108 * Inform the common lgrp framework about the new memory 109 */ 110 lgrp_config(LGRP_CONFIG_MEM_ADD, mnode, MEM_NODE_2_LGRPHAND(mnode)); 111 } 112 113 /* 114 * Remove a PFN range from a memnode. On some platforms, 115 * the memnode will be created with physbase at the first 116 * allocatable PFN, but later deleted with the MC slice 117 * base address converted to a PFN, in which case we need 118 * to assume physbase and up. 119 */ 120 void 121 mem_node_del_slice(pfn_t start, pfn_t end) 122 { 123 int mnode; 124 pgcnt_t delta_pgcnt, node_size; 125 mnodeset_t omask, nmask; 126 127 if (mem_node_physalign) { 128 start &= ~(btop(mem_node_physalign) - 1); 129 end = roundup(end, btop(mem_node_physalign)) - 1; 130 } 131 mnode = PFN_2_MEM_NODE(start); 132 133 ASSERT(mnode < max_mem_nodes); 134 ASSERT(mem_node_config[mnode].exists == 1); 135 136 delta_pgcnt = end - start; 137 node_size = mem_node_config[mnode].physmax - 138 mem_node_config[mnode].physbase; 139 140 if (node_size > delta_pgcnt) { 141 /* 142 * Subtract the slice from the memnode. 143 */ 144 if (start <= mem_node_config[mnode].physbase) 145 mem_node_config[mnode].physbase = end + 1; 146 ASSERT(end <= mem_node_config[mnode].physmax); 147 if (end == mem_node_config[mnode].physmax) 148 mem_node_config[mnode].physmax = start - 1; 149 } else { 150 /* 151 * Let the common lgrp framework know this mnode is 152 * leaving 153 */ 154 lgrp_config(LGRP_CONFIG_MEM_DEL, 155 mnode, MEM_NODE_2_LGRPHAND(mnode)); 156 157 /* 158 * Delete the whole node. 159 */ 160 ASSERT(MNODE_PGCNT(mnode) == 0); 161 do { 162 omask = memnodes_mask; 163 nmask = omask & ~(1ull << mnode); 164 } while (cas64(&memnodes_mask, omask, nmask) != omask); 165 atomic_add_16(&num_memnodes, -1); 166 mem_node_config[mnode].exists = 0; 167 } 168 } 169 170 void 171 mem_node_add_range(pfn_t start, pfn_t end) 172 { 173 if (&plat_slice_add) 174 plat_slice_add(start, end); 175 else 176 mem_node_add_slice(start, end); 177 } 178 179 void 180 mem_node_del_range(pfn_t start, pfn_t end) 181 { 182 if (&plat_slice_del) 183 plat_slice_del(start, end); 184 else 185 mem_node_del_slice(start, end); 186 } 187 188 void 189 startup_build_mem_nodes(struct memlist *list) 190 { 191 pfn_t start, end; 192 193 /* LINTED: ASSERT will always true or false */ 194 ASSERT(NBBY * sizeof (mnodeset_t) >= max_mem_nodes); 195 196 if (&plat_build_mem_nodes) { 197 plat_build_mem_nodes(list); 198 } else { 199 /* 200 * Boot install lists are arranged <addr, len>, ... 201 */ 202 while (list) { 203 start = list->ml_address >> PAGESHIFT; 204 if (start > physmax) 205 continue; 206 end = 207 (list->ml_address + list->ml_size - 1) >> PAGESHIFT; 208 if (end > physmax) 209 end = physmax; 210 mem_node_add_range(start, end); 211 list = list->ml_next; 212 } 213 mem_node_physalign = 0; 214 mem_node_pfn_shift = 0; 215 } 216 } 217 218 /* 219 * Allocate an unassigned memnode. 220 */ 221 int 222 mem_node_alloc() 223 { 224 int mnode; 225 mnodeset_t newmask, oldmask; 226 227 /* 228 * Find an unused memnode. Update it atomically to prevent 229 * a first time memnode creation race. 230 */ 231 for (mnode = 0; mnode < max_mem_nodes; mnode++) 232 if (cas32((uint32_t *)&mem_node_config[mnode].exists, 233 0, 1) == 0) 234 break; 235 236 if (mnode >= max_mem_nodes) 237 panic("Out of free memnodes\n"); 238 239 mem_node_config[mnode].physbase = (pfn_t)-1l; 240 mem_node_config[mnode].physmax = 0; 241 atomic_add_16(&num_memnodes, 1); 242 do { 243 oldmask = memnodes_mask; 244 newmask = memnodes_mask | (1ull << mnode); 245 } while (cas64(&memnodes_mask, oldmask, newmask) != oldmask); 246 247 return (mnode); 248 } 249 250 /* 251 * Find the intersection between a memnode and a memlist 252 * and returns the number of pages that overlap. 253 * 254 * Assumes the list is protected from DR operations by 255 * the memlist lock. 256 */ 257 pgcnt_t 258 mem_node_memlist_pages(int mnode, struct memlist *mlist) 259 { 260 pfn_t base, end; 261 pfn_t cur_base, cur_end; 262 pgcnt_t npgs; 263 struct memlist *pmem; 264 265 base = mem_node_config[mnode].physbase; 266 end = mem_node_config[mnode].physmax; 267 npgs = 0; 268 269 memlist_read_lock(); 270 271 for (pmem = mlist; pmem; pmem = pmem->ml_next) { 272 cur_base = btop(pmem->ml_address); 273 cur_end = cur_base + btop(pmem->ml_size) - 1; 274 if (end < cur_base || base > cur_end) 275 continue; 276 npgs = npgs + (MIN(cur_end, end) - 277 MAX(cur_base, base)) + 1; 278 } 279 280 memlist_read_unlock(); 281 282 return (npgs); 283 } 284