1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/segments.h> 33 #include <sys/sysmacros.h> 34 #include <sys/signal.h> 35 #include <sys/systm.h> 36 #include <sys/user.h> 37 #include <sys/mman.h> 38 #include <sys/vm.h> 39 40 #include <sys/disp.h> 41 #include <sys/class.h> 42 43 #include <sys/proc.h> 44 #include <sys/buf.h> 45 #include <sys/kmem.h> 46 47 #include <sys/reboot.h> 48 #include <sys/uadmin.h> 49 #include <sys/callb.h> 50 51 #include <sys/cred.h> 52 #include <sys/vnode.h> 53 #include <sys/file.h> 54 55 #include <sys/procfs.h> 56 #include <sys/acct.h> 57 58 #include <sys/vfs.h> 59 #include <sys/dnlc.h> 60 #include <sys/var.h> 61 #include <sys/cmn_err.h> 62 #include <sys/utsname.h> 63 #include <sys/debug.h> 64 65 #include <sys/dumphdr.h> 66 #include <sys/bootconf.h> 67 #include <sys/varargs.h> 68 #include <sys/promif.h> 69 #include <sys/modctl.h> 70 71 #include <sys/consdev.h> 72 #include <sys/frame.h> 73 74 #include <sys/sunddi.h> 75 #include <sys/ddidmareq.h> 76 #include <sys/psw.h> 77 #include <sys/regset.h> 78 #include <sys/privregs.h> 79 #include <sys/clock.h> 80 #include <sys/tss.h> 81 #include <sys/cpu.h> 82 #include <sys/stack.h> 83 #include <sys/trap.h> 84 #include <sys/pic.h> 85 #include <vm/hat.h> 86 #include <vm/anon.h> 87 #include <vm/as.h> 88 #include <vm/page.h> 89 #include <vm/seg.h> 90 #include <vm/seg_kmem.h> 91 #include <vm/seg_map.h> 92 #include <vm/seg_vn.h> 93 #include <vm/seg_kp.h> 94 #include <vm/hat_i86.h> 95 #include <sys/swap.h> 96 #include <sys/thread.h> 97 #include <sys/sysconf.h> 98 #include <sys/vm_machparam.h> 99 #include <sys/archsystm.h> 100 #include <sys/machsystm.h> 101 #include <sys/machlock.h> 102 #include <sys/x_call.h> 103 #include <sys/instance.h> 104 105 #include <sys/time.h> 106 #include <sys/smp_impldefs.h> 107 #include <sys/psm_types.h> 108 #include <sys/atomic.h> 109 #include <sys/panic.h> 110 #include <sys/cpuvar.h> 111 #include <sys/dtrace.h> 112 #include <sys/bl.h> 113 #include <sys/nvpair.h> 114 #include <sys/x86_archext.h> 115 #include <sys/pool_pset.h> 116 #include <sys/autoconf.h> 117 #include <sys/mem.h> 118 #include <sys/dumphdr.h> 119 #include <sys/compress.h> 120 #if defined(__xpv) 121 #include <sys/hypervisor.h> 122 #include <sys/xpv_panic.h> 123 #endif 124 125 #ifdef TRAPTRACE 126 #include <sys/traptrace.h> 127 #endif /* TRAPTRACE */ 128 129 #ifdef C2_AUDIT 130 extern void audit_enterprom(int); 131 extern void audit_exitprom(int); 132 #endif 133 134 /* 135 * The panicbuf array is used to record messages and state: 136 */ 137 char panicbuf[PANICBUFSIZE]; 138 139 /* 140 * maxphys - used during physio 141 * klustsize - used for klustering by swapfs and specfs 142 */ 143 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 144 int klustsize = 56 * 1024; 145 146 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 147 148 /* 149 * defined here, though unused on x86, 150 * to make kstat_fr.c happy. 151 */ 152 int vac; 153 154 void stop_other_cpus(); 155 void debug_enter(char *); 156 157 extern void pm_cfb_check_and_powerup(void); 158 extern void pm_cfb_rele(void); 159 160 /* 161 * Machine dependent code to reboot. 162 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 163 * to a string to be used as the argument string when rebooting. 164 * 165 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 166 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 167 * we are in a normal shutdown sequence (interrupts are not blocked, the 168 * system is not panic'ing or being suspended). 169 */ 170 /*ARGSUSED*/ 171 void 172 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 173 { 174 if (!panicstr) { 175 kpreempt_disable(); 176 affinity_set(CPU_CURRENT); 177 } 178 179 /* 180 * XXX - rconsvp is set to NULL to ensure that output messages 181 * are sent to the underlying "hardware" device using the 182 * monitor's printf routine since we are in the process of 183 * either rebooting or halting the machine. 184 */ 185 rconsvp = NULL; 186 187 /* 188 * Print the reboot message now, before pausing other cpus. 189 * There is a race condition in the printing support that 190 * can deadlock multiprocessor machines. 191 */ 192 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 193 prom_printf("rebooting...\n"); 194 195 if (IN_XPV_PANIC()) 196 reset(); 197 198 /* 199 * We can't bring up the console from above lock level, so do it now 200 */ 201 pm_cfb_check_and_powerup(); 202 203 /* make sure there are no more changes to the device tree */ 204 devtree_freeze(); 205 206 if (invoke_cb) 207 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 208 209 /* 210 * Clear any unresolved UEs from memory. 211 */ 212 page_retire_mdboot(); 213 214 #if defined(__xpv) 215 /* 216 * XXPV Should probably think some more about how we deal 217 * with panicing before it's really safe to panic. 218 * On hypervisors, we reboot very quickly.. Perhaps panic 219 * should only attempt to recover by rebooting if, 220 * say, we were able to mount the root filesystem, 221 * or if we successfully launched init(1m). 222 */ 223 if (panicstr && proc_init == NULL) 224 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff); 225 #endif 226 227 /* 228 * stop other cpus and raise our priority. since there is only 229 * one active cpu after this, and our priority will be too high 230 * for us to be preempted, we're essentially single threaded 231 * from here on out. 232 */ 233 (void) spl6(); 234 if (!panicstr) { 235 mutex_enter(&cpu_lock); 236 pause_cpus(NULL); 237 mutex_exit(&cpu_lock); 238 } 239 240 /* 241 * try and reset leaf devices. reset_leaves() should only 242 * be called when there are no other threads that could be 243 * accessing devices 244 */ 245 reset_leaves(); 246 247 (void) spl8(); 248 (*psm_shutdownf)(cmd, fcn); 249 250 if (fcn == AD_HALT || fcn == AD_POWEROFF) 251 halt((char *)NULL); 252 else 253 prom_reboot(""); 254 /*NOTREACHED*/ 255 } 256 257 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 258 /*ARGSUSED*/ 259 void 260 mdpreboot(int cmd, int fcn, char *mdep) 261 { 262 (*psm_preshutdownf)(cmd, fcn); 263 } 264 265 void 266 idle_other_cpus() 267 { 268 int cpuid = CPU->cpu_id; 269 cpuset_t xcset; 270 271 ASSERT(cpuid < NCPU); 272 CPUSET_ALL_BUT(xcset, cpuid); 273 xc_capture_cpus(xcset); 274 } 275 276 void 277 resume_other_cpus() 278 { 279 ASSERT(CPU->cpu_id < NCPU); 280 281 xc_release_cpus(); 282 } 283 284 void 285 stop_other_cpus() 286 { 287 int cpuid = CPU->cpu_id; 288 cpuset_t xcset; 289 290 ASSERT(cpuid < NCPU); 291 292 /* 293 * xc_trycall will attempt to make all other CPUs execute mach_cpu_halt, 294 * and will return immediately regardless of whether or not it was 295 * able to make them do it. 296 */ 297 CPUSET_ALL_BUT(xcset, cpuid); 298 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())mach_cpu_halt); 299 } 300 301 /* 302 * Machine dependent abort sequence handling 303 */ 304 void 305 abort_sequence_enter(char *msg) 306 { 307 if (abort_enable == 0) { 308 #ifdef C2_AUDIT 309 if (audit_active) 310 audit_enterprom(0); 311 #endif /* C2_AUDIT */ 312 return; 313 } 314 #ifdef C2_AUDIT 315 if (audit_active) 316 audit_enterprom(1); 317 #endif /* C2_AUDIT */ 318 debug_enter(msg); 319 #ifdef C2_AUDIT 320 if (audit_active) 321 audit_exitprom(1); 322 #endif /* C2_AUDIT */ 323 } 324 325 /* 326 * Enter debugger. Called when the user types ctrl-alt-d or whenever 327 * code wants to enter the debugger and possibly resume later. 328 */ 329 void 330 debug_enter( 331 char *msg) /* message to print, possibly NULL */ 332 { 333 if (dtrace_debugger_init != NULL) 334 (*dtrace_debugger_init)(); 335 336 if (msg) 337 prom_printf("%s\n", msg); 338 339 if (boothowto & RB_DEBUG) 340 kmdb_enter(); 341 342 if (dtrace_debugger_fini != NULL) 343 (*dtrace_debugger_fini)(); 344 } 345 346 void 347 reset(void) 348 { 349 #if !defined(__xpv) 350 ushort_t *bios_memchk; 351 352 /* 353 * Can't use psm_map_phys before the hat is initialized. 354 */ 355 if (khat_running) { 356 bios_memchk = (ushort_t *)psm_map_phys(0x472, 357 sizeof (ushort_t), PROT_READ | PROT_WRITE); 358 if (bios_memchk) 359 *bios_memchk = 0x1234; /* bios memory check disable */ 360 } 361 362 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0, "efi-systab")) 363 efi_reset(); 364 pc_reset(); 365 #else 366 if (IN_XPV_PANIC()) 367 pc_reset(); 368 (void) HYPERVISOR_shutdown(SHUTDOWN_reboot); 369 panic("HYPERVISOR_shutdown() failed"); 370 #endif 371 /*NOTREACHED*/ 372 } 373 374 /* 375 * Halt the machine and return to the monitor 376 */ 377 void 378 halt(char *s) 379 { 380 stop_other_cpus(); /* send stop signal to other CPUs */ 381 if (s) 382 prom_printf("(%s) \n", s); 383 prom_exit_to_mon(); 384 /*NOTREACHED*/ 385 } 386 387 /* 388 * Initiate interrupt redistribution. 389 */ 390 void 391 i_ddi_intr_redist_all_cpus() 392 { 393 } 394 395 /* 396 * XXX These probably ought to live somewhere else 397 * XXX They are called from mem.c 398 */ 399 400 /* 401 * Convert page frame number to an OBMEM page frame number 402 * (i.e. put in the type bits -- zero for this implementation) 403 */ 404 pfn_t 405 impl_obmem_pfnum(pfn_t pf) 406 { 407 return (pf); 408 } 409 410 #ifdef NM_DEBUG 411 int nmi_test = 0; /* checked in intentry.s during clock int */ 412 int nmtest = -1; 413 nmfunc1(arg, rp) 414 int arg; 415 struct regs *rp; 416 { 417 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 418 nmtest += 50; 419 if (arg == nmtest) { 420 printf("ip = %x\n", rp->r_pc); 421 return (1); 422 } 423 return (0); 424 } 425 426 #endif 427 428 #include <sys/bootsvcs.h> 429 430 /* Hacked up initialization for initial kernel check out is HERE. */ 431 /* The basic steps are: */ 432 /* kernel bootfuncs definition/initialization for KADB */ 433 /* kadb bootfuncs pointer initialization */ 434 /* putchar/getchar (interrupts disabled) */ 435 436 /* kadb bootfuncs pointer initialization */ 437 438 int 439 sysp_getchar() 440 { 441 int i; 442 ulong_t s; 443 444 if (cons_polledio == NULL) { 445 /* Uh oh */ 446 prom_printf("getchar called with no console\n"); 447 for (;;) 448 /* LOOP FOREVER */; 449 } 450 451 s = clear_int_flag(); 452 i = cons_polledio->cons_polledio_getchar( 453 cons_polledio->cons_polledio_argument); 454 restore_int_flag(s); 455 return (i); 456 } 457 458 void 459 sysp_putchar(int c) 460 { 461 ulong_t s; 462 463 /* 464 * We have no alternative but to drop the output on the floor. 465 */ 466 if (cons_polledio == NULL || 467 cons_polledio->cons_polledio_putchar == NULL) 468 return; 469 470 s = clear_int_flag(); 471 cons_polledio->cons_polledio_putchar( 472 cons_polledio->cons_polledio_argument, c); 473 restore_int_flag(s); 474 } 475 476 int 477 sysp_ischar() 478 { 479 int i; 480 ulong_t s; 481 482 if (cons_polledio == NULL || 483 cons_polledio->cons_polledio_ischar == NULL) 484 return (0); 485 486 s = clear_int_flag(); 487 i = cons_polledio->cons_polledio_ischar( 488 cons_polledio->cons_polledio_argument); 489 restore_int_flag(s); 490 return (i); 491 } 492 493 int 494 goany(void) 495 { 496 prom_printf("Type any key to continue "); 497 (void) prom_getchar(); 498 prom_printf("\n"); 499 return (1); 500 } 501 502 static struct boot_syscalls kern_sysp = { 503 sysp_getchar, /* unchar (*getchar)(); 7 */ 504 sysp_putchar, /* int (*putchar)(); 8 */ 505 sysp_ischar, /* int (*ischar)(); 9 */ 506 }; 507 508 #if defined(__xpv) 509 int using_kern_polledio; 510 #endif 511 512 void 513 kadb_uses_kernel() 514 { 515 /* 516 * This routine is now totally misnamed, since it does not in fact 517 * control kadb's I/O; it only controls the kernel's prom_* I/O. 518 */ 519 sysp = &kern_sysp; 520 #if defined(__xpv) 521 using_kern_polledio = 1; 522 #endif 523 } 524 525 /* 526 * the interface to the outside world 527 */ 528 529 /* 530 * poll_port -- wait for a register to achieve a 531 * specific state. Arguments are a mask of bits we care about, 532 * and two sub-masks. To return normally, all the bits in the 533 * first sub-mask must be ON, all the bits in the second sub- 534 * mask must be OFF. If about seconds pass without the register 535 * achieving the desired bit configuration, we return 1, else 536 * 0. 537 */ 538 int 539 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 540 { 541 int i; 542 ushort_t maskval; 543 544 for (i = 500000; i; i--) { 545 maskval = inb(port) & mask; 546 if (((maskval & onbits) == onbits) && 547 ((maskval & offbits) == 0)) 548 return (0); 549 drv_usecwait(10); 550 } 551 return (1); 552 } 553 554 /* 555 * set_idle_cpu is called from idle() when a CPU becomes idle. 556 */ 557 /*LINTED: static unused */ 558 static uint_t last_idle_cpu; 559 560 /*ARGSUSED*/ 561 void 562 set_idle_cpu(int cpun) 563 { 564 last_idle_cpu = cpun; 565 (*psm_set_idle_cpuf)(cpun); 566 } 567 568 /* 569 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 570 */ 571 /*ARGSUSED*/ 572 void 573 unset_idle_cpu(int cpun) 574 { 575 (*psm_unset_idle_cpuf)(cpun); 576 } 577 578 /* 579 * This routine is almost correct now, but not quite. It still needs the 580 * equivalent concept of "hres_last_tick", just like on the sparc side. 581 * The idea is to take a snapshot of the hi-res timer while doing the 582 * hrestime_adj updates under hres_lock in locore, so that the small 583 * interval between interrupt assertion and interrupt processing is 584 * accounted for correctly. Once we have this, the code below should 585 * be modified to subtract off hres_last_tick rather than hrtime_base. 586 * 587 * I'd have done this myself, but I don't have source to all of the 588 * vendor-specific hi-res timer routines (grrr...). The generic hook I 589 * need is something like "gethrtime_unlocked()", which would be just like 590 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 591 * This is what the GET_HRTIME() macro is for on sparc (although it also 592 * serves the function of making time available without a function call 593 * so you don't take a register window overflow while traps are disabled). 594 */ 595 void 596 pc_gethrestime(timestruc_t *tp) 597 { 598 int lock_prev; 599 timestruc_t now; 600 int nslt; /* nsec since last tick */ 601 int adj; /* amount of adjustment to apply */ 602 603 loop: 604 lock_prev = hres_lock; 605 now = hrestime; 606 nslt = (int)(gethrtime() - hres_last_tick); 607 if (nslt < 0) { 608 /* 609 * nslt < 0 means a tick came between sampling 610 * gethrtime() and hres_last_tick; restart the loop 611 */ 612 613 goto loop; 614 } 615 now.tv_nsec += nslt; 616 if (hrestime_adj != 0) { 617 if (hrestime_adj > 0) { 618 adj = (nslt >> ADJ_SHIFT); 619 if (adj > hrestime_adj) 620 adj = (int)hrestime_adj; 621 } else { 622 adj = -(nslt >> ADJ_SHIFT); 623 if (adj < hrestime_adj) 624 adj = (int)hrestime_adj; 625 } 626 now.tv_nsec += adj; 627 } 628 while ((unsigned long)now.tv_nsec >= NANOSEC) { 629 630 /* 631 * We might have a large adjustment or have been in the 632 * debugger for a long time; take care of (at most) four 633 * of those missed seconds (tv_nsec is 32 bits, so 634 * anything >4s will be wrapping around). However, 635 * anything more than 2 seconds out of sync will trigger 636 * timedelta from clock() to go correct the time anyway, 637 * so do what we can, and let the big crowbar do the 638 * rest. A similar correction while loop exists inside 639 * hres_tick(); in all cases we'd like tv_nsec to 640 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 641 * user processes, but if tv_sec's a little behind for a 642 * little while, that's OK; time still monotonically 643 * increases. 644 */ 645 646 now.tv_nsec -= NANOSEC; 647 now.tv_sec++; 648 } 649 if ((hres_lock & ~1) != lock_prev) 650 goto loop; 651 652 *tp = now; 653 } 654 655 void 656 gethrestime_lasttick(timespec_t *tp) 657 { 658 int s; 659 660 s = hr_clock_lock(); 661 *tp = hrestime; 662 hr_clock_unlock(s); 663 } 664 665 time_t 666 gethrestime_sec(void) 667 { 668 timestruc_t now; 669 670 gethrestime(&now); 671 return (now.tv_sec); 672 } 673 674 /* 675 * Initialize a kernel thread's stack 676 */ 677 678 caddr_t 679 thread_stk_init(caddr_t stk) 680 { 681 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 682 return (stk - SA(MINFRAME)); 683 } 684 685 /* 686 * Initialize lwp's kernel stack. 687 */ 688 689 #ifdef TRAPTRACE 690 /* 691 * There's a tricky interdependency here between use of sysenter and 692 * TRAPTRACE which needs recording to avoid future confusion (this is 693 * about the third time I've re-figured this out ..) 694 * 695 * Here's how debugging lcall works with TRAPTRACE. 696 * 697 * 1 We're in userland with a breakpoint on the lcall instruction. 698 * 2 We execute the instruction - the instruction pushes the userland 699 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 700 * via the call gate. 701 * 3 The hardware raises a debug trap in kernel mode, the hardware 702 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 703 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 704 * 5 cmntrap finishes building a trap frame 705 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 706 * off the stack into the traptrace buffer. 707 * 708 * This means that the traptrace buffer contains the wrong values in 709 * %esp and %ss, but everything else in there is correct. 710 * 711 * Here's how debugging sysenter works with TRAPTRACE. 712 * 713 * a We're in userland with a breakpoint on the sysenter instruction. 714 * b We execute the instruction - the instruction pushes -nothing- 715 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 716 * values to take us to sys_sysenter, at the top of the lwp's 717 * stack. 718 * c goto 3 719 * 720 * At this point, because we got into the kernel without the requisite 721 * five pushes on the stack, if we didn't make extra room, we'd 722 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 723 * values from negative (unmapped) stack addresses -- which really bites. 724 * That's why we do the '-= 8' below. 725 * 726 * XXX Note that reading "up" lwp0's stack works because t0 is declared 727 * right next to t0stack in locore.s 728 */ 729 #endif 730 731 caddr_t 732 lwp_stk_init(klwp_t *lwp, caddr_t stk) 733 { 734 caddr_t oldstk; 735 struct pcb *pcb = &lwp->lwp_pcb; 736 737 oldstk = stk; 738 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 739 #ifdef TRAPTRACE 740 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 741 #endif 742 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 743 bzero(stk, oldstk - stk); 744 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 745 746 /* 747 * Arrange that the virtualized %fs and %gs GDT descriptors 748 * have a well-defined initial state (present, ring 3 749 * and of type data). 750 */ 751 #if defined(__amd64) 752 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 753 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 754 else 755 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 756 #elif defined(__i386) 757 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 758 #endif /* __i386 */ 759 lwp_installctx(lwp); 760 return (stk); 761 } 762 763 /*ARGSUSED*/ 764 void 765 lwp_stk_fini(klwp_t *lwp) 766 {} 767 768 /* 769 * If we're not the panic CPU, we wait in panic_idle for reboot. 770 */ 771 static void 772 panic_idle(void) 773 { 774 splx(ipltospl(CLOCK_LEVEL)); 775 (void) setjmp(&curthread->t_pcb); 776 777 for (;;) 778 ; 779 } 780 781 /* 782 * Stop the other CPUs by cross-calling them and forcing them to enter 783 * the panic_idle() loop above. 784 */ 785 /*ARGSUSED*/ 786 void 787 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 788 { 789 processorid_t i; 790 cpuset_t xcset; 791 792 /* 793 * In the case of a Xen panic, the hypervisor has already stopped 794 * all of the CPUs. 795 */ 796 if (!IN_XPV_PANIC()) { 797 (void) splzs(); 798 799 CPUSET_ALL_BUT(xcset, cp->cpu_id); 800 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())panic_idle); 801 } 802 803 for (i = 0; i < NCPU; i++) { 804 if (i != cp->cpu_id && cpu[i] != NULL && 805 (cpu[i]->cpu_flags & CPU_EXISTS)) 806 cpu[i]->cpu_flags |= CPU_QUIESCED; 807 } 808 } 809 810 /* 811 * Platform callback following each entry to panicsys(). 812 */ 813 /*ARGSUSED*/ 814 void 815 panic_enter_hw(int spl) 816 { 817 /* Nothing to do here */ 818 } 819 820 /* 821 * Platform-specific code to execute after panicstr is set: we invoke 822 * the PSM entry point to indicate that a panic has occurred. 823 */ 824 /*ARGSUSED*/ 825 void 826 panic_quiesce_hw(panic_data_t *pdp) 827 { 828 psm_notifyf(PSM_PANIC_ENTER); 829 830 #ifdef TRAPTRACE 831 /* 832 * Turn off TRAPTRACE 833 */ 834 TRAPTRACE_FREEZE; 835 #endif /* TRAPTRACE */ 836 } 837 838 /* 839 * Platform callback prior to writing crash dump. 840 */ 841 /*ARGSUSED*/ 842 void 843 panic_dump_hw(int spl) 844 { 845 /* Nothing to do here */ 846 } 847 848 void * 849 plat_traceback(void *fpreg) 850 { 851 #ifdef __xpv 852 if (IN_XPV_PANIC()) 853 return (xpv_traceback(fpreg)); 854 #endif 855 return (fpreg); 856 } 857 858 /*ARGSUSED*/ 859 void 860 plat_tod_fault(enum tod_fault_type tod_bad) 861 {} 862 863 /*ARGSUSED*/ 864 int 865 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 866 { 867 return (ENOTSUP); 868 } 869 870 /* 871 * The underlying console output routines are protected by raising IPL in case 872 * we are still calling into the early boot services. Once we start calling 873 * the kernel console emulator, it will disable interrupts completely during 874 * character rendering (see sysp_putchar, for example). Refer to the comments 875 * and code in common/os/console.c for more information on these callbacks. 876 */ 877 /*ARGSUSED*/ 878 int 879 console_enter(int busy) 880 { 881 return (splzs()); 882 } 883 884 /*ARGSUSED*/ 885 void 886 console_exit(int busy, int spl) 887 { 888 splx(spl); 889 } 890 891 /* 892 * Allocate a region of virtual address space, unmapped. 893 * Stubbed out except on sparc, at least for now. 894 */ 895 /*ARGSUSED*/ 896 void * 897 boot_virt_alloc(void *addr, size_t size) 898 { 899 return (addr); 900 } 901 902 volatile unsigned long tenmicrodata; 903 904 void 905 tenmicrosec(void) 906 { 907 extern int gethrtime_hires; 908 909 if (gethrtime_hires) { 910 hrtime_t start, end; 911 start = end = gethrtime(); 912 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 913 SMT_PAUSE(); 914 end = gethrtime(); 915 } 916 } else { 917 #if defined(__xpv) 918 hrtime_t newtime; 919 920 newtime = xpv_gethrtime() + 10000; /* now + 10 us */ 921 while (xpv_gethrtime() < newtime) 922 SMT_PAUSE(); 923 #else /* __xpv */ 924 int i; 925 926 /* 927 * Artificial loop to induce delay. 928 */ 929 for (i = 0; i < microdata; i++) 930 tenmicrodata = microdata; 931 #endif /* __xpv */ 932 } 933 } 934 935 /* 936 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 937 * long, and it fills in the array with the time spent on cpu in 938 * each of the mstates, where time is returned in nsec. 939 * 940 * No guarantee is made that the returned values in times[] will 941 * monotonically increase on sequential calls, although this will 942 * be true in the long run. Any such guarantee must be handled by 943 * the caller, if needed. This can happen if we fail to account 944 * for elapsed time due to a generation counter conflict, yet we 945 * did account for it on a prior call (see below). 946 * 947 * The complication is that the cpu in question may be updating 948 * its microstate at the same time that we are reading it. 949 * Because the microstate is only updated when the CPU's state 950 * changes, the values in cpu_intracct[] can be indefinitely out 951 * of date. To determine true current values, it is necessary to 952 * compare the current time with cpu_mstate_start, and add the 953 * difference to times[cpu_mstate]. 954 * 955 * This can be a problem if those values are changing out from 956 * under us. Because the code path in new_cpu_mstate() is 957 * performance critical, we have not added a lock to it. Instead, 958 * we have added a generation counter. Before beginning 959 * modifications, the counter is set to 0. After modifications, 960 * it is set to the old value plus one. 961 * 962 * get_cpu_mstate() will not consider the values of cpu_mstate 963 * and cpu_mstate_start to be usable unless the value of 964 * cpu_mstate_gen is both non-zero and unchanged, both before and 965 * after reading the mstate information. Note that we must 966 * protect against out-of-order loads around accesses to the 967 * generation counter. Also, this is a best effort approach in 968 * that we do not retry should the counter be found to have 969 * changed. 970 * 971 * cpu_intracct[] is used to identify time spent in each CPU 972 * mstate while handling interrupts. Such time should be reported 973 * against system time, and so is subtracted out from its 974 * corresponding cpu_acct[] time and added to 975 * cpu_acct[CMS_SYSTEM]. 976 */ 977 978 void 979 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 980 { 981 int i; 982 hrtime_t now, start; 983 uint16_t gen; 984 uint16_t state; 985 hrtime_t intracct[NCMSTATES]; 986 987 /* 988 * Load all volatile state under the protection of membar. 989 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 990 * of (now - cpu_mstate_start) by a change in CPU mstate that 991 * arrives after we make our last check of cpu_mstate_gen. 992 */ 993 994 now = gethrtime_unscaled(); 995 gen = cpu->cpu_mstate_gen; 996 997 membar_consumer(); /* guarantee load ordering */ 998 start = cpu->cpu_mstate_start; 999 state = cpu->cpu_mstate; 1000 for (i = 0; i < NCMSTATES; i++) { 1001 intracct[i] = cpu->cpu_intracct[i]; 1002 times[i] = cpu->cpu_acct[i]; 1003 } 1004 membar_consumer(); /* guarantee load ordering */ 1005 1006 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 1007 times[state] += now - start; 1008 1009 for (i = 0; i < NCMSTATES; i++) { 1010 if (i == CMS_SYSTEM) 1011 continue; 1012 times[i] -= intracct[i]; 1013 if (times[i] < 0) { 1014 intracct[i] += times[i]; 1015 times[i] = 0; 1016 } 1017 times[CMS_SYSTEM] += intracct[i]; 1018 scalehrtime(×[i]); 1019 } 1020 scalehrtime(×[CMS_SYSTEM]); 1021 } 1022 1023 1024 /* 1025 * This is a version of the rdmsr instruction that allows 1026 * an error code to be returned in the case of failure. 1027 */ 1028 int 1029 checked_rdmsr(uint_t msr, uint64_t *value) 1030 { 1031 if ((x86_feature & X86_MSR) == 0) 1032 return (ENOTSUP); 1033 *value = rdmsr(msr); 1034 return (0); 1035 } 1036 1037 /* 1038 * This is a version of the wrmsr instruction that allows 1039 * an error code to be returned in the case of failure. 1040 */ 1041 int 1042 checked_wrmsr(uint_t msr, uint64_t value) 1043 { 1044 if ((x86_feature & X86_MSR) == 0) 1045 return (ENOTSUP); 1046 wrmsr(msr, value); 1047 return (0); 1048 } 1049 1050 /* 1051 * The mem driver's usual method of using hat_devload() to establish a 1052 * temporary mapping will not work for foreign pages mapped into this 1053 * domain or for the special hypervisor-provided pages. For the foreign 1054 * pages, we often don't know which domain owns them, so we can't ask the 1055 * hypervisor to set up a new mapping. For the other pages, we don't have 1056 * a pfn, so we can't create a new PTE. For these special cases, we do a 1057 * direct uiomove() from the existing kernel virtual address. 1058 */ 1059 /*ARGSUSED*/ 1060 int 1061 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw) 1062 { 1063 #if defined(__xpv) 1064 void *va = (void *)(uintptr_t)uio->uio_loffset; 1065 off_t pageoff = uio->uio_loffset & PAGEOFFSET; 1066 size_t nbytes = MIN((size_t)(PAGESIZE - pageoff), 1067 (size_t)uio->uio_iov->iov_len); 1068 1069 if ((rw == UIO_READ && 1070 (va == HYPERVISOR_shared_info || va == xen_info)) || 1071 (pfn_is_foreign(hat_getpfnum(kas.a_hat, va)))) 1072 return (uiomove(va, nbytes, rw, uio)); 1073 #endif 1074 return (ENOTSUP); 1075 } 1076 1077 pgcnt_t 1078 num_phys_pages() 1079 { 1080 pgcnt_t npages = 0; 1081 struct memlist *mp; 1082 1083 #if defined(__xpv) 1084 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1085 xen_sysctl_t op; 1086 1087 op.cmd = XEN_SYSCTL_physinfo; 1088 op.interface_version = XEN_SYSCTL_INTERFACE_VERSION; 1089 if (HYPERVISOR_sysctl(&op) != 0) 1090 panic("physinfo op refused"); 1091 1092 return ((pgcnt_t)op.u.physinfo.total_pages); 1093 } 1094 #endif /* __xpv */ 1095 1096 for (mp = phys_install; mp != NULL; mp = mp->next) 1097 npages += mp->size >> PAGESHIFT; 1098 1099 return (npages); 1100 } 1101 1102 int 1103 dump_plat_addr() 1104 { 1105 #ifdef __xpv 1106 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1107 mem_vtop_t mem_vtop; 1108 int cnt; 1109 1110 /* 1111 * On the hypervisor, we want to dump the page with shared_info on it. 1112 */ 1113 if (!IN_XPV_PANIC()) { 1114 mem_vtop.m_as = &kas; 1115 mem_vtop.m_va = HYPERVISOR_shared_info; 1116 mem_vtop.m_pfn = pfn; 1117 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 1118 cnt = 1; 1119 } else { 1120 cnt = dump_xpv_addr(); 1121 } 1122 return (cnt); 1123 #else 1124 return (0); 1125 #endif 1126 } 1127 1128 void 1129 dump_plat_pfn() 1130 { 1131 #ifdef __xpv 1132 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1133 1134 if (!IN_XPV_PANIC()) 1135 dumpvp_write(&pfn, sizeof (pfn)); 1136 else 1137 dump_xpv_pfn(); 1138 #endif 1139 } 1140 1141 /*ARGSUSED*/ 1142 int 1143 dump_plat_data(void *dump_cbuf) 1144 { 1145 #ifdef __xpv 1146 uint32_t csize; 1147 int cnt; 1148 1149 if (!IN_XPV_PANIC()) { 1150 csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf, 1151 PAGESIZE); 1152 dumpvp_write(&csize, sizeof (uint32_t)); 1153 dumpvp_write(dump_cbuf, csize); 1154 cnt = 1; 1155 } else { 1156 cnt = dump_xpv_data(dump_cbuf); 1157 } 1158 return (cnt); 1159 #else 1160 return (0); 1161 #endif 1162 } 1163 1164 /* 1165 * Calculates a linear address, given the CS selector and PC values 1166 * by looking up the %cs selector process's LDT or the CPU's GDT. 1167 * proc->p_ldtlock must be held across this call. 1168 */ 1169 int 1170 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1171 { 1172 user_desc_t *descrp; 1173 caddr_t baseaddr; 1174 uint16_t idx = SELTOIDX(rp->r_cs); 1175 1176 ASSERT(rp->r_cs <= 0xFFFF); 1177 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 1178 1179 if (SELISLDT(rp->r_cs)) { 1180 /* 1181 * Currently 64 bit processes cannot have private LDTs. 1182 */ 1183 ASSERT(p->p_model != DATAMODEL_LP64); 1184 1185 if (p->p_ldt == NULL) 1186 return (-1); 1187 1188 descrp = &p->p_ldt[idx]; 1189 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1190 1191 /* 1192 * Calculate the linear address (wraparound is not only ok, 1193 * it's expected behavior). The cast to uint32_t is because 1194 * LDT selectors are only allowed in 32-bit processes. 1195 */ 1196 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1197 rp->r_pc); 1198 } else { 1199 #ifdef DEBUG 1200 descrp = &CPU->cpu_gdt[idx]; 1201 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1202 /* GDT-based descriptors' base addresses should always be 0 */ 1203 ASSERT(baseaddr == 0); 1204 #endif 1205 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1206 } 1207 1208 return (0); 1209 } 1210 1211 /* 1212 * The implementation of dtrace_linear_pc is similar to the that of 1213 * linear_pc, above, but here we acquire p_ldtlock before accessing 1214 * p_ldt. This implementation is used by the pid provider; we prefix 1215 * it with "dtrace_" to avoid inducing spurious tracing events. 1216 */ 1217 int 1218 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1219 { 1220 user_desc_t *descrp; 1221 caddr_t baseaddr; 1222 uint16_t idx = SELTOIDX(rp->r_cs); 1223 1224 ASSERT(rp->r_cs <= 0xFFFF); 1225 1226 if (SELISLDT(rp->r_cs)) { 1227 /* 1228 * Currently 64 bit processes cannot have private LDTs. 1229 */ 1230 ASSERT(p->p_model != DATAMODEL_LP64); 1231 1232 mutex_enter(&p->p_ldtlock); 1233 if (p->p_ldt == NULL) { 1234 mutex_exit(&p->p_ldtlock); 1235 return (-1); 1236 } 1237 descrp = &p->p_ldt[idx]; 1238 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1239 mutex_exit(&p->p_ldtlock); 1240 1241 /* 1242 * Calculate the linear address (wraparound is not only ok, 1243 * it's expected behavior). The cast to uint32_t is because 1244 * LDT selectors are only allowed in 32-bit processes. 1245 */ 1246 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1247 rp->r_pc); 1248 } else { 1249 #ifdef DEBUG 1250 descrp = &CPU->cpu_gdt[idx]; 1251 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1252 /* GDT-based descriptors' base addresses should always be 0 */ 1253 ASSERT(baseaddr == 0); 1254 #endif 1255 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1256 } 1257 1258 return (0); 1259 } 1260