1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/t_lock.h> 29 #include <sys/param.h> 30 #include <sys/segments.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/systm.h> 34 #include <sys/user.h> 35 #include <sys/mman.h> 36 #include <sys/vm.h> 37 38 #include <sys/disp.h> 39 #include <sys/class.h> 40 41 #include <sys/proc.h> 42 #include <sys/buf.h> 43 #include <sys/kmem.h> 44 45 #include <sys/reboot.h> 46 #include <sys/uadmin.h> 47 #include <sys/callb.h> 48 49 #include <sys/cred.h> 50 #include <sys/vnode.h> 51 #include <sys/file.h> 52 53 #include <sys/procfs.h> 54 #include <sys/acct.h> 55 56 #include <sys/vfs.h> 57 #include <sys/dnlc.h> 58 #include <sys/var.h> 59 #include <sys/cmn_err.h> 60 #include <sys/utsname.h> 61 #include <sys/debug.h> 62 63 #include <sys/dumphdr.h> 64 #include <sys/bootconf.h> 65 #include <sys/varargs.h> 66 #include <sys/promif.h> 67 #include <sys/modctl.h> 68 69 #include <sys/consdev.h> 70 #include <sys/frame.h> 71 72 #include <sys/sunddi.h> 73 #include <sys/ddidmareq.h> 74 #include <sys/psw.h> 75 #include <sys/regset.h> 76 #include <sys/privregs.h> 77 #include <sys/clock.h> 78 #include <sys/tss.h> 79 #include <sys/cpu.h> 80 #include <sys/stack.h> 81 #include <sys/trap.h> 82 #include <sys/pic.h> 83 #include <vm/hat.h> 84 #include <vm/anon.h> 85 #include <vm/as.h> 86 #include <vm/page.h> 87 #include <vm/seg.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_map.h> 90 #include <vm/seg_vn.h> 91 #include <vm/seg_kp.h> 92 #include <vm/hat_i86.h> 93 #include <sys/swap.h> 94 #include <sys/thread.h> 95 #include <sys/sysconf.h> 96 #include <sys/vm_machparam.h> 97 #include <sys/archsystm.h> 98 #include <sys/machsystm.h> 99 #include <sys/machlock.h> 100 #include <sys/x_call.h> 101 #include <sys/instance.h> 102 103 #include <sys/time.h> 104 #include <sys/smp_impldefs.h> 105 #include <sys/psm_types.h> 106 #include <sys/atomic.h> 107 #include <sys/panic.h> 108 #include <sys/cpuvar.h> 109 #include <sys/dtrace.h> 110 #include <sys/bl.h> 111 #include <sys/nvpair.h> 112 #include <sys/x86_archext.h> 113 #include <sys/pool_pset.h> 114 #include <sys/autoconf.h> 115 #include <sys/mem.h> 116 #include <sys/dumphdr.h> 117 #include <sys/compress.h> 118 #include <sys/cpu_module.h> 119 #if defined(__xpv) 120 #include <sys/hypervisor.h> 121 #include <sys/xpv_panic.h> 122 #endif 123 124 #include <sys/fastboot.h> 125 #include <sys/machelf.h> 126 #include <sys/kobj.h> 127 #include <sys/multiboot.h> 128 129 #ifdef TRAPTRACE 130 #include <sys/traptrace.h> 131 #endif /* TRAPTRACE */ 132 133 #include <c2/audit.h> 134 #include <sys/clock_impl.h> 135 136 extern void audit_enterprom(int); 137 extern void audit_exitprom(int); 138 139 /* 140 * Occassionally the kernel knows better whether to power-off or reboot. 141 */ 142 int force_shutdown_method = AD_UNKNOWN; 143 144 /* 145 * The panicbuf array is used to record messages and state: 146 */ 147 char panicbuf[PANICBUFSIZE]; 148 149 /* 150 * maxphys - used during physio 151 * klustsize - used for klustering by swapfs and specfs 152 */ 153 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 154 int klustsize = 56 * 1024; 155 156 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 157 158 /* 159 * defined here, though unused on x86, 160 * to make kstat_fr.c happy. 161 */ 162 int vac; 163 164 void debug_enter(char *); 165 166 extern void pm_cfb_check_and_powerup(void); 167 extern void pm_cfb_rele(void); 168 169 extern fastboot_info_t newkernel; 170 171 /* 172 * Machine dependent code to reboot. 173 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 174 * to a string to be used as the argument string when rebooting. 175 * 176 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 177 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 178 * we are in a normal shutdown sequence (interrupts are not blocked, the 179 * system is not panic'ing or being suspended). 180 */ 181 /*ARGSUSED*/ 182 void 183 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 184 { 185 processorid_t bootcpuid = 0; 186 static int is_first_quiesce = 1; 187 static int is_first_reset = 1; 188 int reset_status = 0; 189 static char fallback_str[] = "Falling back to regular reboot.\n"; 190 191 if (fcn == AD_FASTREBOOT && !newkernel.fi_valid) 192 fcn = AD_BOOT; 193 194 if (!panicstr) { 195 kpreempt_disable(); 196 if (fcn == AD_FASTREBOOT) { 197 mutex_enter(&cpu_lock); 198 if (CPU_ACTIVE(cpu_get(bootcpuid))) { 199 affinity_set(bootcpuid); 200 } 201 mutex_exit(&cpu_lock); 202 } else { 203 affinity_set(CPU_CURRENT); 204 } 205 } 206 207 if (force_shutdown_method != AD_UNKNOWN) 208 fcn = force_shutdown_method; 209 210 /* 211 * XXX - rconsvp is set to NULL to ensure that output messages 212 * are sent to the underlying "hardware" device using the 213 * monitor's printf routine since we are in the process of 214 * either rebooting or halting the machine. 215 */ 216 rconsvp = NULL; 217 218 /* 219 * Print the reboot message now, before pausing other cpus. 220 * There is a race condition in the printing support that 221 * can deadlock multiprocessor machines. 222 */ 223 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 224 prom_printf("rebooting...\n"); 225 226 if (IN_XPV_PANIC()) 227 reset(); 228 229 /* 230 * We can't bring up the console from above lock level, so do it now 231 */ 232 pm_cfb_check_and_powerup(); 233 234 /* make sure there are no more changes to the device tree */ 235 devtree_freeze(); 236 237 if (invoke_cb) 238 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 239 240 /* 241 * Clear any unresolved UEs from memory. 242 */ 243 page_retire_mdboot(); 244 245 #if defined(__xpv) 246 /* 247 * XXPV Should probably think some more about how we deal 248 * with panicing before it's really safe to panic. 249 * On hypervisors, we reboot very quickly.. Perhaps panic 250 * should only attempt to recover by rebooting if, 251 * say, we were able to mount the root filesystem, 252 * or if we successfully launched init(1m). 253 */ 254 if (panicstr && proc_init == NULL) 255 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff); 256 #endif 257 /* 258 * stop other cpus and raise our priority. since there is only 259 * one active cpu after this, and our priority will be too high 260 * for us to be preempted, we're essentially single threaded 261 * from here on out. 262 */ 263 (void) spl6(); 264 if (!panicstr) { 265 mutex_enter(&cpu_lock); 266 pause_cpus(NULL); 267 mutex_exit(&cpu_lock); 268 } 269 270 /* 271 * If the system is panicking, the preloaded kernel is valid, and 272 * fastreboot_onpanic has been set, and the system has been up for 273 * longer than fastreboot_onpanic_uptime (default to 10 minutes), 274 * choose Fast Reboot. 275 */ 276 if (fcn == AD_BOOT && panicstr && newkernel.fi_valid && 277 fastreboot_onpanic && 278 (panic_lbolt - lbolt_at_boot) > fastreboot_onpanic_uptime) { 279 fcn = AD_FASTREBOOT; 280 } 281 282 /* 283 * Try to quiesce devices. 284 */ 285 if (is_first_quiesce) { 286 /* 287 * Clear is_first_quiesce before calling quiesce_devices() 288 * so that if quiesce_devices() causes panics, it will not 289 * be invoked again. 290 */ 291 is_first_quiesce = 0; 292 293 quiesce_active = 1; 294 quiesce_devices(ddi_root_node(), &reset_status); 295 if (reset_status == -1) { 296 if (fcn == AD_FASTREBOOT && !force_fastreboot) { 297 prom_printf("Driver(s) not capable of fast " 298 "reboot.\n"); 299 prom_printf(fallback_str); 300 fastreboot_capable = 0; 301 fcn = AD_BOOT; 302 } else if (fcn != AD_FASTREBOOT) 303 fastreboot_capable = 0; 304 } 305 quiesce_active = 0; 306 } 307 308 /* 309 * Try to reset devices. reset_leaves() should only be called 310 * a) when there are no other threads that could be accessing devices, 311 * and 312 * b) on a system that's not capable of fast reboot (fastreboot_capable 313 * being 0), or on a system where quiesce_devices() failed to 314 * complete (quiesce_active being 1). 315 */ 316 if (is_first_reset && (!fastreboot_capable || quiesce_active)) { 317 /* 318 * Clear is_first_reset before calling reset_devices() 319 * so that if reset_devices() causes panics, it will not 320 * be invoked again. 321 */ 322 is_first_reset = 0; 323 reset_leaves(); 324 } 325 326 /* Verify newkernel checksum */ 327 if (fastreboot_capable && fcn == AD_FASTREBOOT && 328 fastboot_cksum_verify(&newkernel) != 0) { 329 fastreboot_capable = 0; 330 prom_printf("Fast reboot: checksum failed for the new " 331 "kernel.\n"); 332 prom_printf(fallback_str); 333 } 334 335 (void) spl8(); 336 337 if (fastreboot_capable && fcn == AD_FASTREBOOT) { 338 /* 339 * psm_shutdown is called within fast_reboot() 340 */ 341 fast_reboot(); 342 } else { 343 (*psm_shutdownf)(cmd, fcn); 344 345 if (fcn == AD_HALT || fcn == AD_POWEROFF) 346 halt((char *)NULL); 347 else 348 prom_reboot(""); 349 } 350 /*NOTREACHED*/ 351 } 352 353 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 354 /*ARGSUSED*/ 355 void 356 mdpreboot(int cmd, int fcn, char *mdep) 357 { 358 if (fcn == AD_FASTREBOOT && !fastreboot_capable) { 359 fcn = AD_BOOT; 360 #ifdef __xpv 361 cmn_err(CE_WARN, "Fast reboot is not supported on xVM"); 362 #else 363 cmn_err(CE_WARN, 364 "Fast reboot is not supported on this platform%s", 365 fastreboot_nosup_message()); 366 #endif 367 } 368 369 if (fcn == AD_FASTREBOOT) { 370 fastboot_load_kernel(mdep); 371 if (!newkernel.fi_valid) 372 fcn = AD_BOOT; 373 } 374 375 (*psm_preshutdownf)(cmd, fcn); 376 } 377 378 static void 379 stop_other_cpus(void) 380 { 381 ulong_t s = clear_int_flag(); /* fast way to keep CPU from changing */ 382 cpuset_t xcset; 383 384 CPUSET_ALL_BUT(xcset, CPU->cpu_id); 385 xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)mach_cpu_halt); 386 restore_int_flag(s); 387 } 388 389 /* 390 * Machine dependent abort sequence handling 391 */ 392 void 393 abort_sequence_enter(char *msg) 394 { 395 if (abort_enable == 0) { 396 if (AU_ZONE_AUDITING(GET_KCTX_GZ)) 397 audit_enterprom(0); 398 return; 399 } 400 if (AU_ZONE_AUDITING(GET_KCTX_GZ)) 401 audit_enterprom(1); 402 debug_enter(msg); 403 if (AU_ZONE_AUDITING(GET_KCTX_GZ)) 404 audit_exitprom(1); 405 } 406 407 /* 408 * Enter debugger. Called when the user types ctrl-alt-d or whenever 409 * code wants to enter the debugger and possibly resume later. 410 */ 411 void 412 debug_enter( 413 char *msg) /* message to print, possibly NULL */ 414 { 415 if (dtrace_debugger_init != NULL) 416 (*dtrace_debugger_init)(); 417 418 if (msg) 419 prom_printf("%s\n", msg); 420 421 if (boothowto & RB_DEBUG) 422 kmdb_enter(); 423 424 if (dtrace_debugger_fini != NULL) 425 (*dtrace_debugger_fini)(); 426 } 427 428 void 429 reset(void) 430 { 431 extern void acpi_reset_system(); 432 #if !defined(__xpv) 433 ushort_t *bios_memchk; 434 435 /* 436 * Can't use psm_map_phys or acpi_reset_system before the hat is 437 * initialized. 438 */ 439 if (khat_running) { 440 bios_memchk = (ushort_t *)psm_map_phys(0x472, 441 sizeof (ushort_t), PROT_READ | PROT_WRITE); 442 if (bios_memchk) 443 *bios_memchk = 0x1234; /* bios memory check disable */ 444 445 if (options_dip != NULL && 446 ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0, 447 "efi-systab")) { 448 efi_reset(); 449 } 450 451 /* 452 * The problem with using stubs is that we can call 453 * acpi_reset_system only after the kernel is up and running. 454 * 455 * We should create a global state to keep track of how far 456 * up the kernel is but for the time being we will depend on 457 * bootops. bootops cleared in startup_end(). 458 */ 459 if (bootops == NULL) 460 acpi_reset_system(); 461 } 462 463 pc_reset(); 464 #else 465 if (IN_XPV_PANIC()) { 466 if (khat_running && bootops == NULL) { 467 acpi_reset_system(); 468 } 469 470 pc_reset(); 471 } 472 473 (void) HYPERVISOR_shutdown(SHUTDOWN_reboot); 474 panic("HYPERVISOR_shutdown() failed"); 475 #endif 476 /*NOTREACHED*/ 477 } 478 479 /* 480 * Halt the machine and return to the monitor 481 */ 482 void 483 halt(char *s) 484 { 485 stop_other_cpus(); /* send stop signal to other CPUs */ 486 if (s) 487 prom_printf("(%s) \n", s); 488 prom_exit_to_mon(); 489 /*NOTREACHED*/ 490 } 491 492 /* 493 * Initiate interrupt redistribution. 494 */ 495 void 496 i_ddi_intr_redist_all_cpus() 497 { 498 } 499 500 /* 501 * XXX These probably ought to live somewhere else 502 * XXX They are called from mem.c 503 */ 504 505 /* 506 * Convert page frame number to an OBMEM page frame number 507 * (i.e. put in the type bits -- zero for this implementation) 508 */ 509 pfn_t 510 impl_obmem_pfnum(pfn_t pf) 511 { 512 return (pf); 513 } 514 515 #ifdef NM_DEBUG 516 int nmi_test = 0; /* checked in intentry.s during clock int */ 517 int nmtest = -1; 518 nmfunc1(arg, rp) 519 int arg; 520 struct regs *rp; 521 { 522 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 523 nmtest += 50; 524 if (arg == nmtest) { 525 printf("ip = %x\n", rp->r_pc); 526 return (1); 527 } 528 return (0); 529 } 530 531 #endif 532 533 #include <sys/bootsvcs.h> 534 535 /* Hacked up initialization for initial kernel check out is HERE. */ 536 /* The basic steps are: */ 537 /* kernel bootfuncs definition/initialization for KADB */ 538 /* kadb bootfuncs pointer initialization */ 539 /* putchar/getchar (interrupts disabled) */ 540 541 /* kadb bootfuncs pointer initialization */ 542 543 int 544 sysp_getchar() 545 { 546 int i; 547 ulong_t s; 548 549 if (cons_polledio == NULL) { 550 /* Uh oh */ 551 prom_printf("getchar called with no console\n"); 552 for (;;) 553 /* LOOP FOREVER */; 554 } 555 556 s = clear_int_flag(); 557 i = cons_polledio->cons_polledio_getchar( 558 cons_polledio->cons_polledio_argument); 559 restore_int_flag(s); 560 return (i); 561 } 562 563 void 564 sysp_putchar(int c) 565 { 566 ulong_t s; 567 568 /* 569 * We have no alternative but to drop the output on the floor. 570 */ 571 if (cons_polledio == NULL || 572 cons_polledio->cons_polledio_putchar == NULL) 573 return; 574 575 s = clear_int_flag(); 576 cons_polledio->cons_polledio_putchar( 577 cons_polledio->cons_polledio_argument, c); 578 restore_int_flag(s); 579 } 580 581 int 582 sysp_ischar() 583 { 584 int i; 585 ulong_t s; 586 587 if (cons_polledio == NULL || 588 cons_polledio->cons_polledio_ischar == NULL) 589 return (0); 590 591 s = clear_int_flag(); 592 i = cons_polledio->cons_polledio_ischar( 593 cons_polledio->cons_polledio_argument); 594 restore_int_flag(s); 595 return (i); 596 } 597 598 int 599 goany(void) 600 { 601 prom_printf("Type any key to continue "); 602 (void) prom_getchar(); 603 prom_printf("\n"); 604 return (1); 605 } 606 607 static struct boot_syscalls kern_sysp = { 608 sysp_getchar, /* unchar (*getchar)(); 7 */ 609 sysp_putchar, /* int (*putchar)(); 8 */ 610 sysp_ischar, /* int (*ischar)(); 9 */ 611 }; 612 613 #if defined(__xpv) 614 int using_kern_polledio; 615 #endif 616 617 void 618 kadb_uses_kernel() 619 { 620 /* 621 * This routine is now totally misnamed, since it does not in fact 622 * control kadb's I/O; it only controls the kernel's prom_* I/O. 623 */ 624 sysp = &kern_sysp; 625 #if defined(__xpv) 626 using_kern_polledio = 1; 627 #endif 628 } 629 630 /* 631 * the interface to the outside world 632 */ 633 634 /* 635 * poll_port -- wait for a register to achieve a 636 * specific state. Arguments are a mask of bits we care about, 637 * and two sub-masks. To return normally, all the bits in the 638 * first sub-mask must be ON, all the bits in the second sub- 639 * mask must be OFF. If about seconds pass without the register 640 * achieving the desired bit configuration, we return 1, else 641 * 0. 642 */ 643 int 644 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 645 { 646 int i; 647 ushort_t maskval; 648 649 for (i = 500000; i; i--) { 650 maskval = inb(port) & mask; 651 if (((maskval & onbits) == onbits) && 652 ((maskval & offbits) == 0)) 653 return (0); 654 drv_usecwait(10); 655 } 656 return (1); 657 } 658 659 /* 660 * set_idle_cpu is called from idle() when a CPU becomes idle. 661 */ 662 /*LINTED: static unused */ 663 static uint_t last_idle_cpu; 664 665 /*ARGSUSED*/ 666 void 667 set_idle_cpu(int cpun) 668 { 669 last_idle_cpu = cpun; 670 (*psm_set_idle_cpuf)(cpun); 671 } 672 673 /* 674 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 675 */ 676 /*ARGSUSED*/ 677 void 678 unset_idle_cpu(int cpun) 679 { 680 (*psm_unset_idle_cpuf)(cpun); 681 } 682 683 /* 684 * This routine is almost correct now, but not quite. It still needs the 685 * equivalent concept of "hres_last_tick", just like on the sparc side. 686 * The idea is to take a snapshot of the hi-res timer while doing the 687 * hrestime_adj updates under hres_lock in locore, so that the small 688 * interval between interrupt assertion and interrupt processing is 689 * accounted for correctly. Once we have this, the code below should 690 * be modified to subtract off hres_last_tick rather than hrtime_base. 691 * 692 * I'd have done this myself, but I don't have source to all of the 693 * vendor-specific hi-res timer routines (grrr...). The generic hook I 694 * need is something like "gethrtime_unlocked()", which would be just like 695 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 696 * This is what the GET_HRTIME() macro is for on sparc (although it also 697 * serves the function of making time available without a function call 698 * so you don't take a register window overflow while traps are disabled). 699 */ 700 void 701 pc_gethrestime(timestruc_t *tp) 702 { 703 int lock_prev; 704 timestruc_t now; 705 int nslt; /* nsec since last tick */ 706 int adj; /* amount of adjustment to apply */ 707 708 loop: 709 lock_prev = hres_lock; 710 now = hrestime; 711 nslt = (int)(gethrtime() - hres_last_tick); 712 if (nslt < 0) { 713 /* 714 * nslt < 0 means a tick came between sampling 715 * gethrtime() and hres_last_tick; restart the loop 716 */ 717 718 goto loop; 719 } 720 now.tv_nsec += nslt; 721 if (hrestime_adj != 0) { 722 if (hrestime_adj > 0) { 723 adj = (nslt >> ADJ_SHIFT); 724 if (adj > hrestime_adj) 725 adj = (int)hrestime_adj; 726 } else { 727 adj = -(nslt >> ADJ_SHIFT); 728 if (adj < hrestime_adj) 729 adj = (int)hrestime_adj; 730 } 731 now.tv_nsec += adj; 732 } 733 while ((unsigned long)now.tv_nsec >= NANOSEC) { 734 735 /* 736 * We might have a large adjustment or have been in the 737 * debugger for a long time; take care of (at most) four 738 * of those missed seconds (tv_nsec is 32 bits, so 739 * anything >4s will be wrapping around). However, 740 * anything more than 2 seconds out of sync will trigger 741 * timedelta from clock() to go correct the time anyway, 742 * so do what we can, and let the big crowbar do the 743 * rest. A similar correction while loop exists inside 744 * hres_tick(); in all cases we'd like tv_nsec to 745 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 746 * user processes, but if tv_sec's a little behind for a 747 * little while, that's OK; time still monotonically 748 * increases. 749 */ 750 751 now.tv_nsec -= NANOSEC; 752 now.tv_sec++; 753 } 754 if ((hres_lock & ~1) != lock_prev) 755 goto loop; 756 757 *tp = now; 758 } 759 760 void 761 gethrestime_lasttick(timespec_t *tp) 762 { 763 int s; 764 765 s = hr_clock_lock(); 766 *tp = hrestime; 767 hr_clock_unlock(s); 768 } 769 770 time_t 771 gethrestime_sec(void) 772 { 773 timestruc_t now; 774 775 gethrestime(&now); 776 return (now.tv_sec); 777 } 778 779 /* 780 * Initialize a kernel thread's stack 781 */ 782 783 caddr_t 784 thread_stk_init(caddr_t stk) 785 { 786 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 787 return (stk - SA(MINFRAME)); 788 } 789 790 /* 791 * Initialize lwp's kernel stack. 792 */ 793 794 #ifdef TRAPTRACE 795 /* 796 * There's a tricky interdependency here between use of sysenter and 797 * TRAPTRACE which needs recording to avoid future confusion (this is 798 * about the third time I've re-figured this out ..) 799 * 800 * Here's how debugging lcall works with TRAPTRACE. 801 * 802 * 1 We're in userland with a breakpoint on the lcall instruction. 803 * 2 We execute the instruction - the instruction pushes the userland 804 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 805 * via the call gate. 806 * 3 The hardware raises a debug trap in kernel mode, the hardware 807 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 808 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 809 * 5 cmntrap finishes building a trap frame 810 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 811 * off the stack into the traptrace buffer. 812 * 813 * This means that the traptrace buffer contains the wrong values in 814 * %esp and %ss, but everything else in there is correct. 815 * 816 * Here's how debugging sysenter works with TRAPTRACE. 817 * 818 * a We're in userland with a breakpoint on the sysenter instruction. 819 * b We execute the instruction - the instruction pushes -nothing- 820 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 821 * values to take us to sys_sysenter, at the top of the lwp's 822 * stack. 823 * c goto 3 824 * 825 * At this point, because we got into the kernel without the requisite 826 * five pushes on the stack, if we didn't make extra room, we'd 827 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 828 * values from negative (unmapped) stack addresses -- which really bites. 829 * That's why we do the '-= 8' below. 830 * 831 * XXX Note that reading "up" lwp0's stack works because t0 is declared 832 * right next to t0stack in locore.s 833 */ 834 #endif 835 836 caddr_t 837 lwp_stk_init(klwp_t *lwp, caddr_t stk) 838 { 839 caddr_t oldstk; 840 struct pcb *pcb = &lwp->lwp_pcb; 841 842 oldstk = stk; 843 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 844 #ifdef TRAPTRACE 845 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 846 #endif 847 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 848 bzero(stk, oldstk - stk); 849 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 850 851 /* 852 * Arrange that the virtualized %fs and %gs GDT descriptors 853 * have a well-defined initial state (present, ring 3 854 * and of type data). 855 */ 856 #if defined(__amd64) 857 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 858 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 859 else 860 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 861 #elif defined(__i386) 862 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 863 #endif /* __i386 */ 864 lwp_installctx(lwp); 865 return (stk); 866 } 867 868 /*ARGSUSED*/ 869 void 870 lwp_stk_fini(klwp_t *lwp) 871 {} 872 873 /* 874 * If we're not the panic CPU, we wait in panic_idle for reboot. 875 */ 876 void 877 panic_idle(void) 878 { 879 splx(ipltospl(CLOCK_LEVEL)); 880 (void) setjmp(&curthread->t_pcb); 881 882 dumpsys_helper(); 883 884 #ifndef __xpv 885 for (;;) 886 i86_halt(); 887 #else 888 for (;;) 889 ; 890 #endif 891 } 892 893 /* 894 * Stop the other CPUs by cross-calling them and forcing them to enter 895 * the panic_idle() loop above. 896 */ 897 /*ARGSUSED*/ 898 void 899 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 900 { 901 processorid_t i; 902 cpuset_t xcset; 903 904 /* 905 * In the case of a Xen panic, the hypervisor has already stopped 906 * all of the CPUs. 907 */ 908 if (!IN_XPV_PANIC()) { 909 (void) splzs(); 910 911 CPUSET_ALL_BUT(xcset, cp->cpu_id); 912 xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)panic_idle); 913 } 914 915 for (i = 0; i < NCPU; i++) { 916 if (i != cp->cpu_id && cpu[i] != NULL && 917 (cpu[i]->cpu_flags & CPU_EXISTS)) 918 cpu[i]->cpu_flags |= CPU_QUIESCED; 919 } 920 } 921 922 /* 923 * Platform callback following each entry to panicsys(). 924 */ 925 /*ARGSUSED*/ 926 void 927 panic_enter_hw(int spl) 928 { 929 /* Nothing to do here */ 930 } 931 932 /* 933 * Platform-specific code to execute after panicstr is set: we invoke 934 * the PSM entry point to indicate that a panic has occurred. 935 */ 936 /*ARGSUSED*/ 937 void 938 panic_quiesce_hw(panic_data_t *pdp) 939 { 940 psm_notifyf(PSM_PANIC_ENTER); 941 942 cmi_panic_callback(); 943 944 #ifdef TRAPTRACE 945 /* 946 * Turn off TRAPTRACE 947 */ 948 TRAPTRACE_FREEZE; 949 #endif /* TRAPTRACE */ 950 } 951 952 /* 953 * Platform callback prior to writing crash dump. 954 */ 955 /*ARGSUSED*/ 956 void 957 panic_dump_hw(int spl) 958 { 959 /* Nothing to do here */ 960 } 961 962 void * 963 plat_traceback(void *fpreg) 964 { 965 #ifdef __xpv 966 if (IN_XPV_PANIC()) 967 return (xpv_traceback(fpreg)); 968 #endif 969 return (fpreg); 970 } 971 972 /*ARGSUSED*/ 973 void 974 plat_tod_fault(enum tod_fault_type tod_bad) 975 {} 976 977 /*ARGSUSED*/ 978 int 979 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 980 { 981 return (ENOTSUP); 982 } 983 984 /* 985 * The underlying console output routines are protected by raising IPL in case 986 * we are still calling into the early boot services. Once we start calling 987 * the kernel console emulator, it will disable interrupts completely during 988 * character rendering (see sysp_putchar, for example). Refer to the comments 989 * and code in common/os/console.c for more information on these callbacks. 990 */ 991 /*ARGSUSED*/ 992 int 993 console_enter(int busy) 994 { 995 return (splzs()); 996 } 997 998 /*ARGSUSED*/ 999 void 1000 console_exit(int busy, int spl) 1001 { 1002 splx(spl); 1003 } 1004 1005 /* 1006 * Allocate a region of virtual address space, unmapped. 1007 * Stubbed out except on sparc, at least for now. 1008 */ 1009 /*ARGSUSED*/ 1010 void * 1011 boot_virt_alloc(void *addr, size_t size) 1012 { 1013 return (addr); 1014 } 1015 1016 volatile unsigned long tenmicrodata; 1017 1018 void 1019 tenmicrosec(void) 1020 { 1021 extern int gethrtime_hires; 1022 1023 if (gethrtime_hires) { 1024 hrtime_t start, end; 1025 start = end = gethrtime(); 1026 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 1027 SMT_PAUSE(); 1028 end = gethrtime(); 1029 } 1030 } else { 1031 #if defined(__xpv) 1032 hrtime_t newtime; 1033 1034 newtime = xpv_gethrtime() + 10000; /* now + 10 us */ 1035 while (xpv_gethrtime() < newtime) 1036 SMT_PAUSE(); 1037 #else /* __xpv */ 1038 int i; 1039 1040 /* 1041 * Artificial loop to induce delay. 1042 */ 1043 for (i = 0; i < microdata; i++) 1044 tenmicrodata = microdata; 1045 #endif /* __xpv */ 1046 } 1047 } 1048 1049 /* 1050 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 1051 * long, and it fills in the array with the time spent on cpu in 1052 * each of the mstates, where time is returned in nsec. 1053 * 1054 * No guarantee is made that the returned values in times[] will 1055 * monotonically increase on sequential calls, although this will 1056 * be true in the long run. Any such guarantee must be handled by 1057 * the caller, if needed. This can happen if we fail to account 1058 * for elapsed time due to a generation counter conflict, yet we 1059 * did account for it on a prior call (see below). 1060 * 1061 * The complication is that the cpu in question may be updating 1062 * its microstate at the same time that we are reading it. 1063 * Because the microstate is only updated when the CPU's state 1064 * changes, the values in cpu_intracct[] can be indefinitely out 1065 * of date. To determine true current values, it is necessary to 1066 * compare the current time with cpu_mstate_start, and add the 1067 * difference to times[cpu_mstate]. 1068 * 1069 * This can be a problem if those values are changing out from 1070 * under us. Because the code path in new_cpu_mstate() is 1071 * performance critical, we have not added a lock to it. Instead, 1072 * we have added a generation counter. Before beginning 1073 * modifications, the counter is set to 0. After modifications, 1074 * it is set to the old value plus one. 1075 * 1076 * get_cpu_mstate() will not consider the values of cpu_mstate 1077 * and cpu_mstate_start to be usable unless the value of 1078 * cpu_mstate_gen is both non-zero and unchanged, both before and 1079 * after reading the mstate information. Note that we must 1080 * protect against out-of-order loads around accesses to the 1081 * generation counter. Also, this is a best effort approach in 1082 * that we do not retry should the counter be found to have 1083 * changed. 1084 * 1085 * cpu_intracct[] is used to identify time spent in each CPU 1086 * mstate while handling interrupts. Such time should be reported 1087 * against system time, and so is subtracted out from its 1088 * corresponding cpu_acct[] time and added to 1089 * cpu_acct[CMS_SYSTEM]. 1090 */ 1091 1092 void 1093 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 1094 { 1095 int i; 1096 hrtime_t now, start; 1097 uint16_t gen; 1098 uint16_t state; 1099 hrtime_t intracct[NCMSTATES]; 1100 1101 /* 1102 * Load all volatile state under the protection of membar. 1103 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 1104 * of (now - cpu_mstate_start) by a change in CPU mstate that 1105 * arrives after we make our last check of cpu_mstate_gen. 1106 */ 1107 1108 now = gethrtime_unscaled(); 1109 gen = cpu->cpu_mstate_gen; 1110 1111 membar_consumer(); /* guarantee load ordering */ 1112 start = cpu->cpu_mstate_start; 1113 state = cpu->cpu_mstate; 1114 for (i = 0; i < NCMSTATES; i++) { 1115 intracct[i] = cpu->cpu_intracct[i]; 1116 times[i] = cpu->cpu_acct[i]; 1117 } 1118 membar_consumer(); /* guarantee load ordering */ 1119 1120 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 1121 times[state] += now - start; 1122 1123 for (i = 0; i < NCMSTATES; i++) { 1124 if (i == CMS_SYSTEM) 1125 continue; 1126 times[i] -= intracct[i]; 1127 if (times[i] < 0) { 1128 intracct[i] += times[i]; 1129 times[i] = 0; 1130 } 1131 times[CMS_SYSTEM] += intracct[i]; 1132 scalehrtime(×[i]); 1133 } 1134 scalehrtime(×[CMS_SYSTEM]); 1135 } 1136 1137 /* 1138 * This is a version of the rdmsr instruction that allows 1139 * an error code to be returned in the case of failure. 1140 */ 1141 int 1142 checked_rdmsr(uint_t msr, uint64_t *value) 1143 { 1144 if ((x86_feature & X86_MSR) == 0) 1145 return (ENOTSUP); 1146 *value = rdmsr(msr); 1147 return (0); 1148 } 1149 1150 /* 1151 * This is a version of the wrmsr instruction that allows 1152 * an error code to be returned in the case of failure. 1153 */ 1154 int 1155 checked_wrmsr(uint_t msr, uint64_t value) 1156 { 1157 if ((x86_feature & X86_MSR) == 0) 1158 return (ENOTSUP); 1159 wrmsr(msr, value); 1160 return (0); 1161 } 1162 1163 /* 1164 * The mem driver's usual method of using hat_devload() to establish a 1165 * temporary mapping will not work for foreign pages mapped into this 1166 * domain or for the special hypervisor-provided pages. For the foreign 1167 * pages, we often don't know which domain owns them, so we can't ask the 1168 * hypervisor to set up a new mapping. For the other pages, we don't have 1169 * a pfn, so we can't create a new PTE. For these special cases, we do a 1170 * direct uiomove() from the existing kernel virtual address. 1171 */ 1172 /*ARGSUSED*/ 1173 int 1174 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw) 1175 { 1176 #if defined(__xpv) 1177 void *va = (void *)(uintptr_t)uio->uio_loffset; 1178 off_t pageoff = uio->uio_loffset & PAGEOFFSET; 1179 size_t nbytes = MIN((size_t)(PAGESIZE - pageoff), 1180 (size_t)uio->uio_iov->iov_len); 1181 1182 if ((rw == UIO_READ && 1183 (va == HYPERVISOR_shared_info || va == xen_info)) || 1184 (pfn_is_foreign(hat_getpfnum(kas.a_hat, va)))) 1185 return (uiomove(va, nbytes, rw, uio)); 1186 #endif 1187 return (ENOTSUP); 1188 } 1189 1190 pgcnt_t 1191 num_phys_pages() 1192 { 1193 pgcnt_t npages = 0; 1194 struct memlist *mp; 1195 1196 #if defined(__xpv) 1197 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1198 return (xpv_nr_phys_pages()); 1199 #endif /* __xpv */ 1200 1201 for (mp = phys_install; mp != NULL; mp = mp->ml_next) 1202 npages += mp->ml_size >> PAGESHIFT; 1203 1204 return (npages); 1205 } 1206 1207 /* cpu threshold for compressed dumps */ 1208 #ifdef _LP64 1209 uint_t dump_plat_mincpu = DUMP_PLAT_X86_64_MINCPU; 1210 #else 1211 uint_t dump_plat_mincpu = DUMP_PLAT_X86_32_MINCPU; 1212 #endif 1213 1214 int 1215 dump_plat_addr() 1216 { 1217 #ifdef __xpv 1218 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1219 mem_vtop_t mem_vtop; 1220 int cnt; 1221 1222 /* 1223 * On the hypervisor, we want to dump the page with shared_info on it. 1224 */ 1225 if (!IN_XPV_PANIC()) { 1226 mem_vtop.m_as = &kas; 1227 mem_vtop.m_va = HYPERVISOR_shared_info; 1228 mem_vtop.m_pfn = pfn; 1229 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 1230 cnt = 1; 1231 } else { 1232 cnt = dump_xpv_addr(); 1233 } 1234 return (cnt); 1235 #else 1236 return (0); 1237 #endif 1238 } 1239 1240 void 1241 dump_plat_pfn() 1242 { 1243 #ifdef __xpv 1244 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1245 1246 if (!IN_XPV_PANIC()) 1247 dumpvp_write(&pfn, sizeof (pfn)); 1248 else 1249 dump_xpv_pfn(); 1250 #endif 1251 } 1252 1253 /*ARGSUSED*/ 1254 int 1255 dump_plat_data(void *dump_cbuf) 1256 { 1257 #ifdef __xpv 1258 uint32_t csize; 1259 int cnt; 1260 1261 if (!IN_XPV_PANIC()) { 1262 csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf, 1263 PAGESIZE); 1264 dumpvp_write(&csize, sizeof (uint32_t)); 1265 dumpvp_write(dump_cbuf, csize); 1266 cnt = 1; 1267 } else { 1268 cnt = dump_xpv_data(dump_cbuf); 1269 } 1270 return (cnt); 1271 #else 1272 return (0); 1273 #endif 1274 } 1275 1276 /* 1277 * Calculates a linear address, given the CS selector and PC values 1278 * by looking up the %cs selector process's LDT or the CPU's GDT. 1279 * proc->p_ldtlock must be held across this call. 1280 */ 1281 int 1282 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1283 { 1284 user_desc_t *descrp; 1285 caddr_t baseaddr; 1286 uint16_t idx = SELTOIDX(rp->r_cs); 1287 1288 ASSERT(rp->r_cs <= 0xFFFF); 1289 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 1290 1291 if (SELISLDT(rp->r_cs)) { 1292 /* 1293 * Currently 64 bit processes cannot have private LDTs. 1294 */ 1295 ASSERT(p->p_model != DATAMODEL_LP64); 1296 1297 if (p->p_ldt == NULL) 1298 return (-1); 1299 1300 descrp = &p->p_ldt[idx]; 1301 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1302 1303 /* 1304 * Calculate the linear address (wraparound is not only ok, 1305 * it's expected behavior). The cast to uint32_t is because 1306 * LDT selectors are only allowed in 32-bit processes. 1307 */ 1308 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1309 rp->r_pc); 1310 } else { 1311 #ifdef DEBUG 1312 descrp = &CPU->cpu_gdt[idx]; 1313 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1314 /* GDT-based descriptors' base addresses should always be 0 */ 1315 ASSERT(baseaddr == 0); 1316 #endif 1317 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1318 } 1319 1320 return (0); 1321 } 1322 1323 /* 1324 * The implementation of dtrace_linear_pc is similar to the that of 1325 * linear_pc, above, but here we acquire p_ldtlock before accessing 1326 * p_ldt. This implementation is used by the pid provider; we prefix 1327 * it with "dtrace_" to avoid inducing spurious tracing events. 1328 */ 1329 int 1330 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1331 { 1332 user_desc_t *descrp; 1333 caddr_t baseaddr; 1334 uint16_t idx = SELTOIDX(rp->r_cs); 1335 1336 ASSERT(rp->r_cs <= 0xFFFF); 1337 1338 if (SELISLDT(rp->r_cs)) { 1339 /* 1340 * Currently 64 bit processes cannot have private LDTs. 1341 */ 1342 ASSERT(p->p_model != DATAMODEL_LP64); 1343 1344 mutex_enter(&p->p_ldtlock); 1345 if (p->p_ldt == NULL) { 1346 mutex_exit(&p->p_ldtlock); 1347 return (-1); 1348 } 1349 descrp = &p->p_ldt[idx]; 1350 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1351 mutex_exit(&p->p_ldtlock); 1352 1353 /* 1354 * Calculate the linear address (wraparound is not only ok, 1355 * it's expected behavior). The cast to uint32_t is because 1356 * LDT selectors are only allowed in 32-bit processes. 1357 */ 1358 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1359 rp->r_pc); 1360 } else { 1361 #ifdef DEBUG 1362 descrp = &CPU->cpu_gdt[idx]; 1363 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1364 /* GDT-based descriptors' base addresses should always be 0 */ 1365 ASSERT(baseaddr == 0); 1366 #endif 1367 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1368 } 1369 1370 return (0); 1371 } 1372 1373 /* 1374 * We need to post a soft interrupt to reprogram the lbolt cyclic when 1375 * switching from event to cyclic driven lbolt. The following code adds 1376 * and posts the softint for x86. 1377 */ 1378 static ddi_softint_hdl_impl_t lbolt_softint_hdl = 1379 {0, NULL, NULL, NULL, 0, NULL, NULL, NULL}; 1380 1381 void 1382 lbolt_softint_add(void) 1383 { 1384 (void) add_avsoftintr((void *)&lbolt_softint_hdl, LOCK_LEVEL, 1385 (avfunc)lbolt_ev_to_cyclic, "lbolt_ev_to_cyclic", NULL, NULL); 1386 } 1387 1388 void 1389 lbolt_softint_post(void) 1390 { 1391 (*setsoftint)(CBE_LOCK_PIL, lbolt_softint_hdl.ih_pending); 1392 } 1393