1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/t_lock.h> 29 #include <sys/param.h> 30 #include <sys/segments.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/systm.h> 34 #include <sys/user.h> 35 #include <sys/mman.h> 36 #include <sys/vm.h> 37 38 #include <sys/disp.h> 39 #include <sys/class.h> 40 41 #include <sys/proc.h> 42 #include <sys/buf.h> 43 #include <sys/kmem.h> 44 45 #include <sys/reboot.h> 46 #include <sys/uadmin.h> 47 #include <sys/callb.h> 48 49 #include <sys/cred.h> 50 #include <sys/vnode.h> 51 #include <sys/file.h> 52 53 #include <sys/procfs.h> 54 #include <sys/acct.h> 55 56 #include <sys/vfs.h> 57 #include <sys/dnlc.h> 58 #include <sys/var.h> 59 #include <sys/cmn_err.h> 60 #include <sys/utsname.h> 61 #include <sys/debug.h> 62 63 #include <sys/dumphdr.h> 64 #include <sys/bootconf.h> 65 #include <sys/varargs.h> 66 #include <sys/promif.h> 67 #include <sys/modctl.h> 68 69 #include <sys/consdev.h> 70 #include <sys/frame.h> 71 72 #include <sys/sunddi.h> 73 #include <sys/ddidmareq.h> 74 #include <sys/psw.h> 75 #include <sys/regset.h> 76 #include <sys/privregs.h> 77 #include <sys/clock.h> 78 #include <sys/tss.h> 79 #include <sys/cpu.h> 80 #include <sys/stack.h> 81 #include <sys/trap.h> 82 #include <sys/pic.h> 83 #include <vm/hat.h> 84 #include <vm/anon.h> 85 #include <vm/as.h> 86 #include <vm/page.h> 87 #include <vm/seg.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_map.h> 90 #include <vm/seg_vn.h> 91 #include <vm/seg_kp.h> 92 #include <vm/hat_i86.h> 93 #include <sys/swap.h> 94 #include <sys/thread.h> 95 #include <sys/sysconf.h> 96 #include <sys/vm_machparam.h> 97 #include <sys/archsystm.h> 98 #include <sys/machsystm.h> 99 #include <sys/machlock.h> 100 #include <sys/x_call.h> 101 #include <sys/instance.h> 102 103 #include <sys/time.h> 104 #include <sys/smp_impldefs.h> 105 #include <sys/psm_types.h> 106 #include <sys/atomic.h> 107 #include <sys/panic.h> 108 #include <sys/cpuvar.h> 109 #include <sys/dtrace.h> 110 #include <sys/bl.h> 111 #include <sys/nvpair.h> 112 #include <sys/x86_archext.h> 113 #include <sys/pool_pset.h> 114 #include <sys/autoconf.h> 115 #include <sys/mem.h> 116 #include <sys/dumphdr.h> 117 #include <sys/compress.h> 118 #include <sys/cpu_module.h> 119 #if defined(__xpv) 120 #include <sys/hypervisor.h> 121 #include <sys/xpv_panic.h> 122 #endif 123 124 #include <sys/fastboot.h> 125 #include <sys/machelf.h> 126 #include <sys/kobj.h> 127 #include <sys/multiboot.h> 128 129 #ifdef TRAPTRACE 130 #include <sys/traptrace.h> 131 #endif /* TRAPTRACE */ 132 133 #include <sys/clock_impl.h> 134 135 extern void audit_enterprom(int); 136 extern void audit_exitprom(int); 137 138 /* 139 * Occassionally the kernel knows better whether to power-off or reboot. 140 */ 141 int force_shutdown_method = AD_UNKNOWN; 142 143 /* 144 * The panicbuf array is used to record messages and state: 145 */ 146 char panicbuf[PANICBUFSIZE]; 147 148 /* 149 * maxphys - used during physio 150 * klustsize - used for klustering by swapfs and specfs 151 */ 152 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 153 int klustsize = 56 * 1024; 154 155 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 156 157 /* 158 * defined here, though unused on x86, 159 * to make kstat_fr.c happy. 160 */ 161 int vac; 162 163 void debug_enter(char *); 164 165 extern void pm_cfb_check_and_powerup(void); 166 extern void pm_cfb_rele(void); 167 168 extern fastboot_info_t newkernel; 169 170 /* 171 * Machine dependent code to reboot. 172 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 173 * to a string to be used as the argument string when rebooting. 174 * 175 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 176 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 177 * we are in a normal shutdown sequence (interrupts are not blocked, the 178 * system is not panic'ing or being suspended). 179 */ 180 /*ARGSUSED*/ 181 void 182 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 183 { 184 processorid_t bootcpuid = 0; 185 static int is_first_quiesce = 1; 186 static int is_first_reset = 1; 187 int reset_status = 0; 188 static char fallback_str[] = "Falling back to regular reboot.\n"; 189 190 if (fcn == AD_FASTREBOOT && !newkernel.fi_valid) 191 fcn = AD_BOOT; 192 193 if (!panicstr) { 194 kpreempt_disable(); 195 if (fcn == AD_FASTREBOOT) { 196 mutex_enter(&cpu_lock); 197 if (CPU_ACTIVE(cpu_get(bootcpuid))) { 198 affinity_set(bootcpuid); 199 } 200 mutex_exit(&cpu_lock); 201 } else { 202 affinity_set(CPU_CURRENT); 203 } 204 } 205 206 if (force_shutdown_method != AD_UNKNOWN) 207 fcn = force_shutdown_method; 208 209 /* 210 * XXX - rconsvp is set to NULL to ensure that output messages 211 * are sent to the underlying "hardware" device using the 212 * monitor's printf routine since we are in the process of 213 * either rebooting or halting the machine. 214 */ 215 rconsvp = NULL; 216 217 /* 218 * Print the reboot message now, before pausing other cpus. 219 * There is a race condition in the printing support that 220 * can deadlock multiprocessor machines. 221 */ 222 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 223 prom_printf("rebooting...\n"); 224 225 if (IN_XPV_PANIC()) 226 reset(); 227 228 /* 229 * We can't bring up the console from above lock level, so do it now 230 */ 231 pm_cfb_check_and_powerup(); 232 233 /* make sure there are no more changes to the device tree */ 234 devtree_freeze(); 235 236 if (invoke_cb) 237 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 238 239 /* 240 * Clear any unresolved UEs from memory. 241 */ 242 page_retire_mdboot(); 243 244 #if defined(__xpv) 245 /* 246 * XXPV Should probably think some more about how we deal 247 * with panicing before it's really safe to panic. 248 * On hypervisors, we reboot very quickly.. Perhaps panic 249 * should only attempt to recover by rebooting if, 250 * say, we were able to mount the root filesystem, 251 * or if we successfully launched init(1m). 252 */ 253 if (panicstr && proc_init == NULL) 254 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff); 255 #endif 256 /* 257 * stop other cpus and raise our priority. since there is only 258 * one active cpu after this, and our priority will be too high 259 * for us to be preempted, we're essentially single threaded 260 * from here on out. 261 */ 262 (void) spl6(); 263 if (!panicstr) { 264 mutex_enter(&cpu_lock); 265 pause_cpus(NULL); 266 mutex_exit(&cpu_lock); 267 } 268 269 /* 270 * If the system is panicking, the preloaded kernel is valid, and 271 * fastreboot_onpanic has been set, and the system has been up for 272 * longer than fastreboot_onpanic_uptime (default to 10 minutes), 273 * choose Fast Reboot. 274 */ 275 if (fcn == AD_BOOT && panicstr && newkernel.fi_valid && 276 fastreboot_onpanic && 277 (panic_lbolt - lbolt_at_boot) > fastreboot_onpanic_uptime) { 278 fcn = AD_FASTREBOOT; 279 } 280 281 /* 282 * Try to quiesce devices. 283 */ 284 if (is_first_quiesce) { 285 /* 286 * Clear is_first_quiesce before calling quiesce_devices() 287 * so that if quiesce_devices() causes panics, it will not 288 * be invoked again. 289 */ 290 is_first_quiesce = 0; 291 292 quiesce_active = 1; 293 quiesce_devices(ddi_root_node(), &reset_status); 294 if (reset_status == -1) { 295 if (fcn == AD_FASTREBOOT && !force_fastreboot) { 296 prom_printf("Driver(s) not capable of fast " 297 "reboot.\n"); 298 prom_printf(fallback_str); 299 fastreboot_capable = 0; 300 fcn = AD_BOOT; 301 } else if (fcn != AD_FASTREBOOT) 302 fastreboot_capable = 0; 303 } 304 quiesce_active = 0; 305 } 306 307 /* 308 * Try to reset devices. reset_leaves() should only be called 309 * a) when there are no other threads that could be accessing devices, 310 * and 311 * b) on a system that's not capable of fast reboot (fastreboot_capable 312 * being 0), or on a system where quiesce_devices() failed to 313 * complete (quiesce_active being 1). 314 */ 315 if (is_first_reset && (!fastreboot_capable || quiesce_active)) { 316 /* 317 * Clear is_first_reset before calling reset_devices() 318 * so that if reset_devices() causes panics, it will not 319 * be invoked again. 320 */ 321 is_first_reset = 0; 322 reset_leaves(); 323 } 324 325 /* Verify newkernel checksum */ 326 if (fastreboot_capable && fcn == AD_FASTREBOOT && 327 fastboot_cksum_verify(&newkernel) != 0) { 328 fastreboot_capable = 0; 329 prom_printf("Fast reboot: checksum failed for the new " 330 "kernel.\n"); 331 prom_printf(fallback_str); 332 } 333 334 (void) spl8(); 335 336 if (fastreboot_capable && fcn == AD_FASTREBOOT) { 337 /* 338 * psm_shutdown is called within fast_reboot() 339 */ 340 fast_reboot(); 341 } else { 342 (*psm_shutdownf)(cmd, fcn); 343 344 if (fcn == AD_HALT || fcn == AD_POWEROFF) 345 halt((char *)NULL); 346 else 347 prom_reboot(""); 348 } 349 /*NOTREACHED*/ 350 } 351 352 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 353 /*ARGSUSED*/ 354 void 355 mdpreboot(int cmd, int fcn, char *mdep) 356 { 357 if (fcn == AD_FASTREBOOT && !fastreboot_capable) { 358 fcn = AD_BOOT; 359 #ifdef __xpv 360 cmn_err(CE_WARN, "Fast reboot is not supported on xVM"); 361 #else 362 cmn_err(CE_WARN, 363 "Fast reboot is not supported on this platform"); 364 #endif 365 } 366 367 if (fcn == AD_FASTREBOOT) { 368 fastboot_load_kernel(mdep); 369 if (!newkernel.fi_valid) 370 fcn = AD_BOOT; 371 } 372 373 (*psm_preshutdownf)(cmd, fcn); 374 } 375 376 static void 377 stop_other_cpus(void) 378 { 379 ulong_t s = clear_int_flag(); /* fast way to keep CPU from changing */ 380 cpuset_t xcset; 381 382 CPUSET_ALL_BUT(xcset, CPU->cpu_id); 383 xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)mach_cpu_halt); 384 restore_int_flag(s); 385 } 386 387 /* 388 * Machine dependent abort sequence handling 389 */ 390 void 391 abort_sequence_enter(char *msg) 392 { 393 if (abort_enable == 0) { 394 if (audit_active) 395 audit_enterprom(0); 396 return; 397 } 398 if (audit_active) 399 audit_enterprom(1); 400 debug_enter(msg); 401 if (audit_active) 402 audit_exitprom(1); 403 } 404 405 /* 406 * Enter debugger. Called when the user types ctrl-alt-d or whenever 407 * code wants to enter the debugger and possibly resume later. 408 */ 409 void 410 debug_enter( 411 char *msg) /* message to print, possibly NULL */ 412 { 413 if (dtrace_debugger_init != NULL) 414 (*dtrace_debugger_init)(); 415 416 if (msg) 417 prom_printf("%s\n", msg); 418 419 if (boothowto & RB_DEBUG) 420 kmdb_enter(); 421 422 if (dtrace_debugger_fini != NULL) 423 (*dtrace_debugger_fini)(); 424 } 425 426 void 427 reset(void) 428 { 429 extern void acpi_reset_system(); 430 #if !defined(__xpv) 431 ushort_t *bios_memchk; 432 433 /* 434 * Can't use psm_map_phys or acpi_reset_system before the hat is 435 * initialized. 436 */ 437 if (khat_running) { 438 bios_memchk = (ushort_t *)psm_map_phys(0x472, 439 sizeof (ushort_t), PROT_READ | PROT_WRITE); 440 if (bios_memchk) 441 *bios_memchk = 0x1234; /* bios memory check disable */ 442 443 if (options_dip != NULL && 444 ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0, 445 "efi-systab")) { 446 efi_reset(); 447 } 448 449 /* 450 * The problem with using stubs is that we can call 451 * acpi_reset_system only after the kernel is up and running. 452 * 453 * We should create a global state to keep track of how far 454 * up the kernel is but for the time being we will depend on 455 * bootops. bootops cleared in startup_end(). 456 */ 457 if (bootops == NULL) 458 acpi_reset_system(); 459 } 460 461 pc_reset(); 462 #else 463 if (IN_XPV_PANIC()) { 464 if (khat_running && bootops == NULL) { 465 acpi_reset_system(); 466 } 467 468 pc_reset(); 469 } 470 471 (void) HYPERVISOR_shutdown(SHUTDOWN_reboot); 472 panic("HYPERVISOR_shutdown() failed"); 473 #endif 474 /*NOTREACHED*/ 475 } 476 477 /* 478 * Halt the machine and return to the monitor 479 */ 480 void 481 halt(char *s) 482 { 483 stop_other_cpus(); /* send stop signal to other CPUs */ 484 if (s) 485 prom_printf("(%s) \n", s); 486 prom_exit_to_mon(); 487 /*NOTREACHED*/ 488 } 489 490 /* 491 * Initiate interrupt redistribution. 492 */ 493 void 494 i_ddi_intr_redist_all_cpus() 495 { 496 } 497 498 /* 499 * XXX These probably ought to live somewhere else 500 * XXX They are called from mem.c 501 */ 502 503 /* 504 * Convert page frame number to an OBMEM page frame number 505 * (i.e. put in the type bits -- zero for this implementation) 506 */ 507 pfn_t 508 impl_obmem_pfnum(pfn_t pf) 509 { 510 return (pf); 511 } 512 513 #ifdef NM_DEBUG 514 int nmi_test = 0; /* checked in intentry.s during clock int */ 515 int nmtest = -1; 516 nmfunc1(arg, rp) 517 int arg; 518 struct regs *rp; 519 { 520 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 521 nmtest += 50; 522 if (arg == nmtest) { 523 printf("ip = %x\n", rp->r_pc); 524 return (1); 525 } 526 return (0); 527 } 528 529 #endif 530 531 #include <sys/bootsvcs.h> 532 533 /* Hacked up initialization for initial kernel check out is HERE. */ 534 /* The basic steps are: */ 535 /* kernel bootfuncs definition/initialization for KADB */ 536 /* kadb bootfuncs pointer initialization */ 537 /* putchar/getchar (interrupts disabled) */ 538 539 /* kadb bootfuncs pointer initialization */ 540 541 int 542 sysp_getchar() 543 { 544 int i; 545 ulong_t s; 546 547 if (cons_polledio == NULL) { 548 /* Uh oh */ 549 prom_printf("getchar called with no console\n"); 550 for (;;) 551 /* LOOP FOREVER */; 552 } 553 554 s = clear_int_flag(); 555 i = cons_polledio->cons_polledio_getchar( 556 cons_polledio->cons_polledio_argument); 557 restore_int_flag(s); 558 return (i); 559 } 560 561 void 562 sysp_putchar(int c) 563 { 564 ulong_t s; 565 566 /* 567 * We have no alternative but to drop the output on the floor. 568 */ 569 if (cons_polledio == NULL || 570 cons_polledio->cons_polledio_putchar == NULL) 571 return; 572 573 s = clear_int_flag(); 574 cons_polledio->cons_polledio_putchar( 575 cons_polledio->cons_polledio_argument, c); 576 restore_int_flag(s); 577 } 578 579 int 580 sysp_ischar() 581 { 582 int i; 583 ulong_t s; 584 585 if (cons_polledio == NULL || 586 cons_polledio->cons_polledio_ischar == NULL) 587 return (0); 588 589 s = clear_int_flag(); 590 i = cons_polledio->cons_polledio_ischar( 591 cons_polledio->cons_polledio_argument); 592 restore_int_flag(s); 593 return (i); 594 } 595 596 int 597 goany(void) 598 { 599 prom_printf("Type any key to continue "); 600 (void) prom_getchar(); 601 prom_printf("\n"); 602 return (1); 603 } 604 605 static struct boot_syscalls kern_sysp = { 606 sysp_getchar, /* unchar (*getchar)(); 7 */ 607 sysp_putchar, /* int (*putchar)(); 8 */ 608 sysp_ischar, /* int (*ischar)(); 9 */ 609 }; 610 611 #if defined(__xpv) 612 int using_kern_polledio; 613 #endif 614 615 void 616 kadb_uses_kernel() 617 { 618 /* 619 * This routine is now totally misnamed, since it does not in fact 620 * control kadb's I/O; it only controls the kernel's prom_* I/O. 621 */ 622 sysp = &kern_sysp; 623 #if defined(__xpv) 624 using_kern_polledio = 1; 625 #endif 626 } 627 628 /* 629 * the interface to the outside world 630 */ 631 632 /* 633 * poll_port -- wait for a register to achieve a 634 * specific state. Arguments are a mask of bits we care about, 635 * and two sub-masks. To return normally, all the bits in the 636 * first sub-mask must be ON, all the bits in the second sub- 637 * mask must be OFF. If about seconds pass without the register 638 * achieving the desired bit configuration, we return 1, else 639 * 0. 640 */ 641 int 642 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 643 { 644 int i; 645 ushort_t maskval; 646 647 for (i = 500000; i; i--) { 648 maskval = inb(port) & mask; 649 if (((maskval & onbits) == onbits) && 650 ((maskval & offbits) == 0)) 651 return (0); 652 drv_usecwait(10); 653 } 654 return (1); 655 } 656 657 /* 658 * set_idle_cpu is called from idle() when a CPU becomes idle. 659 */ 660 /*LINTED: static unused */ 661 static uint_t last_idle_cpu; 662 663 /*ARGSUSED*/ 664 void 665 set_idle_cpu(int cpun) 666 { 667 last_idle_cpu = cpun; 668 (*psm_set_idle_cpuf)(cpun); 669 } 670 671 /* 672 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 673 */ 674 /*ARGSUSED*/ 675 void 676 unset_idle_cpu(int cpun) 677 { 678 (*psm_unset_idle_cpuf)(cpun); 679 } 680 681 /* 682 * This routine is almost correct now, but not quite. It still needs the 683 * equivalent concept of "hres_last_tick", just like on the sparc side. 684 * The idea is to take a snapshot of the hi-res timer while doing the 685 * hrestime_adj updates under hres_lock in locore, so that the small 686 * interval between interrupt assertion and interrupt processing is 687 * accounted for correctly. Once we have this, the code below should 688 * be modified to subtract off hres_last_tick rather than hrtime_base. 689 * 690 * I'd have done this myself, but I don't have source to all of the 691 * vendor-specific hi-res timer routines (grrr...). The generic hook I 692 * need is something like "gethrtime_unlocked()", which would be just like 693 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 694 * This is what the GET_HRTIME() macro is for on sparc (although it also 695 * serves the function of making time available without a function call 696 * so you don't take a register window overflow while traps are disabled). 697 */ 698 void 699 pc_gethrestime(timestruc_t *tp) 700 { 701 int lock_prev; 702 timestruc_t now; 703 int nslt; /* nsec since last tick */ 704 int adj; /* amount of adjustment to apply */ 705 706 loop: 707 lock_prev = hres_lock; 708 now = hrestime; 709 nslt = (int)(gethrtime() - hres_last_tick); 710 if (nslt < 0) { 711 /* 712 * nslt < 0 means a tick came between sampling 713 * gethrtime() and hres_last_tick; restart the loop 714 */ 715 716 goto loop; 717 } 718 now.tv_nsec += nslt; 719 if (hrestime_adj != 0) { 720 if (hrestime_adj > 0) { 721 adj = (nslt >> ADJ_SHIFT); 722 if (adj > hrestime_adj) 723 adj = (int)hrestime_adj; 724 } else { 725 adj = -(nslt >> ADJ_SHIFT); 726 if (adj < hrestime_adj) 727 adj = (int)hrestime_adj; 728 } 729 now.tv_nsec += adj; 730 } 731 while ((unsigned long)now.tv_nsec >= NANOSEC) { 732 733 /* 734 * We might have a large adjustment or have been in the 735 * debugger for a long time; take care of (at most) four 736 * of those missed seconds (tv_nsec is 32 bits, so 737 * anything >4s will be wrapping around). However, 738 * anything more than 2 seconds out of sync will trigger 739 * timedelta from clock() to go correct the time anyway, 740 * so do what we can, and let the big crowbar do the 741 * rest. A similar correction while loop exists inside 742 * hres_tick(); in all cases we'd like tv_nsec to 743 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 744 * user processes, but if tv_sec's a little behind for a 745 * little while, that's OK; time still monotonically 746 * increases. 747 */ 748 749 now.tv_nsec -= NANOSEC; 750 now.tv_sec++; 751 } 752 if ((hres_lock & ~1) != lock_prev) 753 goto loop; 754 755 *tp = now; 756 } 757 758 void 759 gethrestime_lasttick(timespec_t *tp) 760 { 761 int s; 762 763 s = hr_clock_lock(); 764 *tp = hrestime; 765 hr_clock_unlock(s); 766 } 767 768 time_t 769 gethrestime_sec(void) 770 { 771 timestruc_t now; 772 773 gethrestime(&now); 774 return (now.tv_sec); 775 } 776 777 /* 778 * Initialize a kernel thread's stack 779 */ 780 781 caddr_t 782 thread_stk_init(caddr_t stk) 783 { 784 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 785 return (stk - SA(MINFRAME)); 786 } 787 788 /* 789 * Initialize lwp's kernel stack. 790 */ 791 792 #ifdef TRAPTRACE 793 /* 794 * There's a tricky interdependency here between use of sysenter and 795 * TRAPTRACE which needs recording to avoid future confusion (this is 796 * about the third time I've re-figured this out ..) 797 * 798 * Here's how debugging lcall works with TRAPTRACE. 799 * 800 * 1 We're in userland with a breakpoint on the lcall instruction. 801 * 2 We execute the instruction - the instruction pushes the userland 802 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 803 * via the call gate. 804 * 3 The hardware raises a debug trap in kernel mode, the hardware 805 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 806 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 807 * 5 cmntrap finishes building a trap frame 808 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 809 * off the stack into the traptrace buffer. 810 * 811 * This means that the traptrace buffer contains the wrong values in 812 * %esp and %ss, but everything else in there is correct. 813 * 814 * Here's how debugging sysenter works with TRAPTRACE. 815 * 816 * a We're in userland with a breakpoint on the sysenter instruction. 817 * b We execute the instruction - the instruction pushes -nothing- 818 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 819 * values to take us to sys_sysenter, at the top of the lwp's 820 * stack. 821 * c goto 3 822 * 823 * At this point, because we got into the kernel without the requisite 824 * five pushes on the stack, if we didn't make extra room, we'd 825 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 826 * values from negative (unmapped) stack addresses -- which really bites. 827 * That's why we do the '-= 8' below. 828 * 829 * XXX Note that reading "up" lwp0's stack works because t0 is declared 830 * right next to t0stack in locore.s 831 */ 832 #endif 833 834 caddr_t 835 lwp_stk_init(klwp_t *lwp, caddr_t stk) 836 { 837 caddr_t oldstk; 838 struct pcb *pcb = &lwp->lwp_pcb; 839 840 oldstk = stk; 841 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 842 #ifdef TRAPTRACE 843 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 844 #endif 845 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 846 bzero(stk, oldstk - stk); 847 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 848 849 /* 850 * Arrange that the virtualized %fs and %gs GDT descriptors 851 * have a well-defined initial state (present, ring 3 852 * and of type data). 853 */ 854 #if defined(__amd64) 855 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 856 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 857 else 858 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 859 #elif defined(__i386) 860 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 861 #endif /* __i386 */ 862 lwp_installctx(lwp); 863 return (stk); 864 } 865 866 /*ARGSUSED*/ 867 void 868 lwp_stk_fini(klwp_t *lwp) 869 {} 870 871 /* 872 * If we're not the panic CPU, we wait in panic_idle for reboot. 873 */ 874 void 875 panic_idle(void) 876 { 877 splx(ipltospl(CLOCK_LEVEL)); 878 (void) setjmp(&curthread->t_pcb); 879 880 dumpsys_helper(); 881 882 #ifndef __xpv 883 for (;;) 884 i86_halt(); 885 #else 886 for (;;) 887 ; 888 #endif 889 } 890 891 /* 892 * Stop the other CPUs by cross-calling them and forcing them to enter 893 * the panic_idle() loop above. 894 */ 895 /*ARGSUSED*/ 896 void 897 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 898 { 899 processorid_t i; 900 cpuset_t xcset; 901 902 /* 903 * In the case of a Xen panic, the hypervisor has already stopped 904 * all of the CPUs. 905 */ 906 if (!IN_XPV_PANIC()) { 907 (void) splzs(); 908 909 CPUSET_ALL_BUT(xcset, cp->cpu_id); 910 xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)panic_idle); 911 } 912 913 for (i = 0; i < NCPU; i++) { 914 if (i != cp->cpu_id && cpu[i] != NULL && 915 (cpu[i]->cpu_flags & CPU_EXISTS)) 916 cpu[i]->cpu_flags |= CPU_QUIESCED; 917 } 918 } 919 920 /* 921 * Platform callback following each entry to panicsys(). 922 */ 923 /*ARGSUSED*/ 924 void 925 panic_enter_hw(int spl) 926 { 927 /* Nothing to do here */ 928 } 929 930 /* 931 * Platform-specific code to execute after panicstr is set: we invoke 932 * the PSM entry point to indicate that a panic has occurred. 933 */ 934 /*ARGSUSED*/ 935 void 936 panic_quiesce_hw(panic_data_t *pdp) 937 { 938 psm_notifyf(PSM_PANIC_ENTER); 939 940 cmi_panic_callback(); 941 942 #ifdef TRAPTRACE 943 /* 944 * Turn off TRAPTRACE 945 */ 946 TRAPTRACE_FREEZE; 947 #endif /* TRAPTRACE */ 948 } 949 950 /* 951 * Platform callback prior to writing crash dump. 952 */ 953 /*ARGSUSED*/ 954 void 955 panic_dump_hw(int spl) 956 { 957 /* Nothing to do here */ 958 } 959 960 void * 961 plat_traceback(void *fpreg) 962 { 963 #ifdef __xpv 964 if (IN_XPV_PANIC()) 965 return (xpv_traceback(fpreg)); 966 #endif 967 return (fpreg); 968 } 969 970 /*ARGSUSED*/ 971 void 972 plat_tod_fault(enum tod_fault_type tod_bad) 973 {} 974 975 /*ARGSUSED*/ 976 int 977 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 978 { 979 return (ENOTSUP); 980 } 981 982 /* 983 * The underlying console output routines are protected by raising IPL in case 984 * we are still calling into the early boot services. Once we start calling 985 * the kernel console emulator, it will disable interrupts completely during 986 * character rendering (see sysp_putchar, for example). Refer to the comments 987 * and code in common/os/console.c for more information on these callbacks. 988 */ 989 /*ARGSUSED*/ 990 int 991 console_enter(int busy) 992 { 993 return (splzs()); 994 } 995 996 /*ARGSUSED*/ 997 void 998 console_exit(int busy, int spl) 999 { 1000 splx(spl); 1001 } 1002 1003 /* 1004 * Allocate a region of virtual address space, unmapped. 1005 * Stubbed out except on sparc, at least for now. 1006 */ 1007 /*ARGSUSED*/ 1008 void * 1009 boot_virt_alloc(void *addr, size_t size) 1010 { 1011 return (addr); 1012 } 1013 1014 volatile unsigned long tenmicrodata; 1015 1016 void 1017 tenmicrosec(void) 1018 { 1019 extern int gethrtime_hires; 1020 1021 if (gethrtime_hires) { 1022 hrtime_t start, end; 1023 start = end = gethrtime(); 1024 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 1025 SMT_PAUSE(); 1026 end = gethrtime(); 1027 } 1028 } else { 1029 #if defined(__xpv) 1030 hrtime_t newtime; 1031 1032 newtime = xpv_gethrtime() + 10000; /* now + 10 us */ 1033 while (xpv_gethrtime() < newtime) 1034 SMT_PAUSE(); 1035 #else /* __xpv */ 1036 int i; 1037 1038 /* 1039 * Artificial loop to induce delay. 1040 */ 1041 for (i = 0; i < microdata; i++) 1042 tenmicrodata = microdata; 1043 #endif /* __xpv */ 1044 } 1045 } 1046 1047 /* 1048 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 1049 * long, and it fills in the array with the time spent on cpu in 1050 * each of the mstates, where time is returned in nsec. 1051 * 1052 * No guarantee is made that the returned values in times[] will 1053 * monotonically increase on sequential calls, although this will 1054 * be true in the long run. Any such guarantee must be handled by 1055 * the caller, if needed. This can happen if we fail to account 1056 * for elapsed time due to a generation counter conflict, yet we 1057 * did account for it on a prior call (see below). 1058 * 1059 * The complication is that the cpu in question may be updating 1060 * its microstate at the same time that we are reading it. 1061 * Because the microstate is only updated when the CPU's state 1062 * changes, the values in cpu_intracct[] can be indefinitely out 1063 * of date. To determine true current values, it is necessary to 1064 * compare the current time with cpu_mstate_start, and add the 1065 * difference to times[cpu_mstate]. 1066 * 1067 * This can be a problem if those values are changing out from 1068 * under us. Because the code path in new_cpu_mstate() is 1069 * performance critical, we have not added a lock to it. Instead, 1070 * we have added a generation counter. Before beginning 1071 * modifications, the counter is set to 0. After modifications, 1072 * it is set to the old value plus one. 1073 * 1074 * get_cpu_mstate() will not consider the values of cpu_mstate 1075 * and cpu_mstate_start to be usable unless the value of 1076 * cpu_mstate_gen is both non-zero and unchanged, both before and 1077 * after reading the mstate information. Note that we must 1078 * protect against out-of-order loads around accesses to the 1079 * generation counter. Also, this is a best effort approach in 1080 * that we do not retry should the counter be found to have 1081 * changed. 1082 * 1083 * cpu_intracct[] is used to identify time spent in each CPU 1084 * mstate while handling interrupts. Such time should be reported 1085 * against system time, and so is subtracted out from its 1086 * corresponding cpu_acct[] time and added to 1087 * cpu_acct[CMS_SYSTEM]. 1088 */ 1089 1090 void 1091 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 1092 { 1093 int i; 1094 hrtime_t now, start; 1095 uint16_t gen; 1096 uint16_t state; 1097 hrtime_t intracct[NCMSTATES]; 1098 1099 /* 1100 * Load all volatile state under the protection of membar. 1101 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 1102 * of (now - cpu_mstate_start) by a change in CPU mstate that 1103 * arrives after we make our last check of cpu_mstate_gen. 1104 */ 1105 1106 now = gethrtime_unscaled(); 1107 gen = cpu->cpu_mstate_gen; 1108 1109 membar_consumer(); /* guarantee load ordering */ 1110 start = cpu->cpu_mstate_start; 1111 state = cpu->cpu_mstate; 1112 for (i = 0; i < NCMSTATES; i++) { 1113 intracct[i] = cpu->cpu_intracct[i]; 1114 times[i] = cpu->cpu_acct[i]; 1115 } 1116 membar_consumer(); /* guarantee load ordering */ 1117 1118 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 1119 times[state] += now - start; 1120 1121 for (i = 0; i < NCMSTATES; i++) { 1122 if (i == CMS_SYSTEM) 1123 continue; 1124 times[i] -= intracct[i]; 1125 if (times[i] < 0) { 1126 intracct[i] += times[i]; 1127 times[i] = 0; 1128 } 1129 times[CMS_SYSTEM] += intracct[i]; 1130 scalehrtime(×[i]); 1131 } 1132 scalehrtime(×[CMS_SYSTEM]); 1133 } 1134 1135 /* 1136 * This is a version of the rdmsr instruction that allows 1137 * an error code to be returned in the case of failure. 1138 */ 1139 int 1140 checked_rdmsr(uint_t msr, uint64_t *value) 1141 { 1142 if ((x86_feature & X86_MSR) == 0) 1143 return (ENOTSUP); 1144 *value = rdmsr(msr); 1145 return (0); 1146 } 1147 1148 /* 1149 * This is a version of the wrmsr instruction that allows 1150 * an error code to be returned in the case of failure. 1151 */ 1152 int 1153 checked_wrmsr(uint_t msr, uint64_t value) 1154 { 1155 if ((x86_feature & X86_MSR) == 0) 1156 return (ENOTSUP); 1157 wrmsr(msr, value); 1158 return (0); 1159 } 1160 1161 /* 1162 * The mem driver's usual method of using hat_devload() to establish a 1163 * temporary mapping will not work for foreign pages mapped into this 1164 * domain or for the special hypervisor-provided pages. For the foreign 1165 * pages, we often don't know which domain owns them, so we can't ask the 1166 * hypervisor to set up a new mapping. For the other pages, we don't have 1167 * a pfn, so we can't create a new PTE. For these special cases, we do a 1168 * direct uiomove() from the existing kernel virtual address. 1169 */ 1170 /*ARGSUSED*/ 1171 int 1172 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw) 1173 { 1174 #if defined(__xpv) 1175 void *va = (void *)(uintptr_t)uio->uio_loffset; 1176 off_t pageoff = uio->uio_loffset & PAGEOFFSET; 1177 size_t nbytes = MIN((size_t)(PAGESIZE - pageoff), 1178 (size_t)uio->uio_iov->iov_len); 1179 1180 if ((rw == UIO_READ && 1181 (va == HYPERVISOR_shared_info || va == xen_info)) || 1182 (pfn_is_foreign(hat_getpfnum(kas.a_hat, va)))) 1183 return (uiomove(va, nbytes, rw, uio)); 1184 #endif 1185 return (ENOTSUP); 1186 } 1187 1188 pgcnt_t 1189 num_phys_pages() 1190 { 1191 pgcnt_t npages = 0; 1192 struct memlist *mp; 1193 1194 #if defined(__xpv) 1195 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1196 return (xpv_nr_phys_pages()); 1197 #endif /* __xpv */ 1198 1199 for (mp = phys_install; mp != NULL; mp = mp->next) 1200 npages += mp->size >> PAGESHIFT; 1201 1202 return (npages); 1203 } 1204 1205 /* cpu threshold for compressed dumps */ 1206 #ifdef _LP64 1207 uint_t dump_plat_mincpu = DUMP_PLAT_X86_64_MINCPU; 1208 #else 1209 uint_t dump_plat_mincpu = DUMP_PLAT_X86_32_MINCPU; 1210 #endif 1211 1212 int 1213 dump_plat_addr() 1214 { 1215 #ifdef __xpv 1216 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1217 mem_vtop_t mem_vtop; 1218 int cnt; 1219 1220 /* 1221 * On the hypervisor, we want to dump the page with shared_info on it. 1222 */ 1223 if (!IN_XPV_PANIC()) { 1224 mem_vtop.m_as = &kas; 1225 mem_vtop.m_va = HYPERVISOR_shared_info; 1226 mem_vtop.m_pfn = pfn; 1227 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 1228 cnt = 1; 1229 } else { 1230 cnt = dump_xpv_addr(); 1231 } 1232 return (cnt); 1233 #else 1234 return (0); 1235 #endif 1236 } 1237 1238 void 1239 dump_plat_pfn() 1240 { 1241 #ifdef __xpv 1242 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1243 1244 if (!IN_XPV_PANIC()) 1245 dumpvp_write(&pfn, sizeof (pfn)); 1246 else 1247 dump_xpv_pfn(); 1248 #endif 1249 } 1250 1251 /*ARGSUSED*/ 1252 int 1253 dump_plat_data(void *dump_cbuf) 1254 { 1255 #ifdef __xpv 1256 uint32_t csize; 1257 int cnt; 1258 1259 if (!IN_XPV_PANIC()) { 1260 csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf, 1261 PAGESIZE); 1262 dumpvp_write(&csize, sizeof (uint32_t)); 1263 dumpvp_write(dump_cbuf, csize); 1264 cnt = 1; 1265 } else { 1266 cnt = dump_xpv_data(dump_cbuf); 1267 } 1268 return (cnt); 1269 #else 1270 return (0); 1271 #endif 1272 } 1273 1274 /* 1275 * Calculates a linear address, given the CS selector and PC values 1276 * by looking up the %cs selector process's LDT or the CPU's GDT. 1277 * proc->p_ldtlock must be held across this call. 1278 */ 1279 int 1280 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1281 { 1282 user_desc_t *descrp; 1283 caddr_t baseaddr; 1284 uint16_t idx = SELTOIDX(rp->r_cs); 1285 1286 ASSERT(rp->r_cs <= 0xFFFF); 1287 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 1288 1289 if (SELISLDT(rp->r_cs)) { 1290 /* 1291 * Currently 64 bit processes cannot have private LDTs. 1292 */ 1293 ASSERT(p->p_model != DATAMODEL_LP64); 1294 1295 if (p->p_ldt == NULL) 1296 return (-1); 1297 1298 descrp = &p->p_ldt[idx]; 1299 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1300 1301 /* 1302 * Calculate the linear address (wraparound is not only ok, 1303 * it's expected behavior). The cast to uint32_t is because 1304 * LDT selectors are only allowed in 32-bit processes. 1305 */ 1306 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1307 rp->r_pc); 1308 } else { 1309 #ifdef DEBUG 1310 descrp = &CPU->cpu_gdt[idx]; 1311 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1312 /* GDT-based descriptors' base addresses should always be 0 */ 1313 ASSERT(baseaddr == 0); 1314 #endif 1315 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1316 } 1317 1318 return (0); 1319 } 1320 1321 /* 1322 * The implementation of dtrace_linear_pc is similar to the that of 1323 * linear_pc, above, but here we acquire p_ldtlock before accessing 1324 * p_ldt. This implementation is used by the pid provider; we prefix 1325 * it with "dtrace_" to avoid inducing spurious tracing events. 1326 */ 1327 int 1328 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1329 { 1330 user_desc_t *descrp; 1331 caddr_t baseaddr; 1332 uint16_t idx = SELTOIDX(rp->r_cs); 1333 1334 ASSERT(rp->r_cs <= 0xFFFF); 1335 1336 if (SELISLDT(rp->r_cs)) { 1337 /* 1338 * Currently 64 bit processes cannot have private LDTs. 1339 */ 1340 ASSERT(p->p_model != DATAMODEL_LP64); 1341 1342 mutex_enter(&p->p_ldtlock); 1343 if (p->p_ldt == NULL) { 1344 mutex_exit(&p->p_ldtlock); 1345 return (-1); 1346 } 1347 descrp = &p->p_ldt[idx]; 1348 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1349 mutex_exit(&p->p_ldtlock); 1350 1351 /* 1352 * Calculate the linear address (wraparound is not only ok, 1353 * it's expected behavior). The cast to uint32_t is because 1354 * LDT selectors are only allowed in 32-bit processes. 1355 */ 1356 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1357 rp->r_pc); 1358 } else { 1359 #ifdef DEBUG 1360 descrp = &CPU->cpu_gdt[idx]; 1361 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1362 /* GDT-based descriptors' base addresses should always be 0 */ 1363 ASSERT(baseaddr == 0); 1364 #endif 1365 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1366 } 1367 1368 return (0); 1369 } 1370 1371 /* 1372 * We need to post a soft interrupt to reprogram the lbolt cyclic when 1373 * switching from event to cyclic driven lbolt. The following code adds 1374 * and posts the softint for x86. 1375 */ 1376 static ddi_softint_hdl_impl_t lbolt_softint_hdl = 1377 {0, NULL, NULL, NULL, 0, NULL, NULL, NULL}; 1378 1379 void 1380 lbolt_softint_add(void) 1381 { 1382 (void) add_avsoftintr((void *)&lbolt_softint_hdl, LOCK_LEVEL, 1383 (avfunc)lbolt_ev_to_cyclic, "lbolt_ev_to_cyclic", NULL, NULL); 1384 } 1385 1386 void 1387 lbolt_softint_post(void) 1388 { 1389 (*setsoftint)(CBE_LOCK_PIL, lbolt_softint_hdl.ih_pending); 1390 } 1391