1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/t_lock.h> 29 #include <sys/param.h> 30 #include <sys/segments.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/systm.h> 34 #include <sys/user.h> 35 #include <sys/mman.h> 36 #include <sys/vm.h> 37 38 #include <sys/disp.h> 39 #include <sys/class.h> 40 41 #include <sys/proc.h> 42 #include <sys/buf.h> 43 #include <sys/kmem.h> 44 45 #include <sys/reboot.h> 46 #include <sys/uadmin.h> 47 #include <sys/callb.h> 48 49 #include <sys/cred.h> 50 #include <sys/vnode.h> 51 #include <sys/file.h> 52 53 #include <sys/procfs.h> 54 #include <sys/acct.h> 55 56 #include <sys/vfs.h> 57 #include <sys/dnlc.h> 58 #include <sys/var.h> 59 #include <sys/cmn_err.h> 60 #include <sys/utsname.h> 61 #include <sys/debug.h> 62 63 #include <sys/dumphdr.h> 64 #include <sys/bootconf.h> 65 #include <sys/varargs.h> 66 #include <sys/promif.h> 67 #include <sys/modctl.h> 68 69 #include <sys/consdev.h> 70 #include <sys/frame.h> 71 72 #include <sys/sunddi.h> 73 #include <sys/ddidmareq.h> 74 #include <sys/psw.h> 75 #include <sys/regset.h> 76 #include <sys/privregs.h> 77 #include <sys/clock.h> 78 #include <sys/tss.h> 79 #include <sys/cpu.h> 80 #include <sys/stack.h> 81 #include <sys/trap.h> 82 #include <sys/pic.h> 83 #include <vm/hat.h> 84 #include <vm/anon.h> 85 #include <vm/as.h> 86 #include <vm/page.h> 87 #include <vm/seg.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_map.h> 90 #include <vm/seg_vn.h> 91 #include <vm/seg_kp.h> 92 #include <vm/hat_i86.h> 93 #include <sys/swap.h> 94 #include <sys/thread.h> 95 #include <sys/sysconf.h> 96 #include <sys/vm_machparam.h> 97 #include <sys/archsystm.h> 98 #include <sys/machsystm.h> 99 #include <sys/machlock.h> 100 #include <sys/x_call.h> 101 #include <sys/instance.h> 102 103 #include <sys/time.h> 104 #include <sys/smp_impldefs.h> 105 #include <sys/psm_types.h> 106 #include <sys/atomic.h> 107 #include <sys/panic.h> 108 #include <sys/cpuvar.h> 109 #include <sys/dtrace.h> 110 #include <sys/bl.h> 111 #include <sys/nvpair.h> 112 #include <sys/x86_archext.h> 113 #include <sys/pool_pset.h> 114 #include <sys/autoconf.h> 115 #include <sys/mem.h> 116 #include <sys/dumphdr.h> 117 #include <sys/compress.h> 118 #include <sys/cpu_module.h> 119 #if defined(__xpv) 120 #include <sys/hypervisor.h> 121 #include <sys/xpv_panic.h> 122 #endif 123 124 #include <sys/fastboot.h> 125 #include <sys/machelf.h> 126 #include <sys/kobj.h> 127 #include <sys/multiboot.h> 128 129 #ifdef TRAPTRACE 130 #include <sys/traptrace.h> 131 #endif /* TRAPTRACE */ 132 133 extern void audit_enterprom(int); 134 extern void audit_exitprom(int); 135 136 /* 137 * Occassionally the kernel knows better whether to power-off or reboot. 138 */ 139 int force_shutdown_method = AD_UNKNOWN; 140 141 /* 142 * The panicbuf array is used to record messages and state: 143 */ 144 char panicbuf[PANICBUFSIZE]; 145 146 /* 147 * maxphys - used during physio 148 * klustsize - used for klustering by swapfs and specfs 149 */ 150 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 151 int klustsize = 56 * 1024; 152 153 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 154 155 /* 156 * defined here, though unused on x86, 157 * to make kstat_fr.c happy. 158 */ 159 int vac; 160 161 void stop_other_cpus(); 162 void debug_enter(char *); 163 164 extern void pm_cfb_check_and_powerup(void); 165 extern void pm_cfb_rele(void); 166 167 extern fastboot_info_t newkernel; 168 169 int quiesce_active = 0; 170 171 /* 172 * Machine dependent code to reboot. 173 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 174 * to a string to be used as the argument string when rebooting. 175 * 176 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 177 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 178 * we are in a normal shutdown sequence (interrupts are not blocked, the 179 * system is not panic'ing or being suspended). 180 */ 181 /*ARGSUSED*/ 182 void 183 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 184 { 185 processorid_t bootcpuid = 0; 186 static int is_first_quiesce = 1; 187 static int is_first_reset = 1; 188 int reset_status = 0; 189 190 if (fcn == AD_FASTREBOOT && !newkernel.fi_valid) 191 fcn = AD_BOOT; 192 193 if (!panicstr) { 194 kpreempt_disable(); 195 if (fcn == AD_FASTREBOOT) { 196 mutex_enter(&cpu_lock); 197 if (CPU_ACTIVE(cpu_get(bootcpuid))) { 198 affinity_set(bootcpuid); 199 } 200 mutex_exit(&cpu_lock); 201 } else { 202 affinity_set(CPU_CURRENT); 203 } 204 } 205 206 if (force_shutdown_method != AD_UNKNOWN) 207 fcn = force_shutdown_method; 208 209 /* 210 * XXX - rconsvp is set to NULL to ensure that output messages 211 * are sent to the underlying "hardware" device using the 212 * monitor's printf routine since we are in the process of 213 * either rebooting or halting the machine. 214 */ 215 rconsvp = NULL; 216 217 /* 218 * Print the reboot message now, before pausing other cpus. 219 * There is a race condition in the printing support that 220 * can deadlock multiprocessor machines. 221 */ 222 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 223 prom_printf("rebooting...\n"); 224 225 if (IN_XPV_PANIC()) 226 reset(); 227 228 /* 229 * We can't bring up the console from above lock level, so do it now 230 */ 231 pm_cfb_check_and_powerup(); 232 233 /* make sure there are no more changes to the device tree */ 234 devtree_freeze(); 235 236 if (invoke_cb) 237 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 238 239 /* 240 * Clear any unresolved UEs from memory. 241 */ 242 page_retire_mdboot(); 243 244 #if defined(__xpv) 245 /* 246 * XXPV Should probably think some more about how we deal 247 * with panicing before it's really safe to panic. 248 * On hypervisors, we reboot very quickly.. Perhaps panic 249 * should only attempt to recover by rebooting if, 250 * say, we were able to mount the root filesystem, 251 * or if we successfully launched init(1m). 252 */ 253 if (panicstr && proc_init == NULL) 254 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff); 255 #endif 256 /* 257 * stop other cpus and raise our priority. since there is only 258 * one active cpu after this, and our priority will be too high 259 * for us to be preempted, we're essentially single threaded 260 * from here on out. 261 */ 262 (void) spl6(); 263 if (!panicstr) { 264 mutex_enter(&cpu_lock); 265 pause_cpus(NULL); 266 mutex_exit(&cpu_lock); 267 } 268 269 /* 270 * Try to quiesce devices. 271 */ 272 if (is_first_quiesce) { 273 /* 274 * Clear is_first_quiesce before calling quiesce_devices() 275 * so that if quiesce_devices() causes panics, it will not 276 * be invoked again. 277 */ 278 is_first_quiesce = 0; 279 280 quiesce_active = 1; 281 quiesce_devices(ddi_root_node(), &reset_status); 282 if (reset_status == -1) { 283 if (fcn == AD_FASTREBOOT && !force_fastreboot) { 284 prom_printf("Driver(s) not capable of fast " 285 "reboot. Fall back to regular reboot.\n"); 286 fastreboot_capable = 0; 287 } else if (fcn != AD_FASTREBOOT) 288 fastreboot_capable = 0; 289 } 290 quiesce_active = 0; 291 } 292 293 /* 294 * Try to reset devices. reset_leaves() should only be called 295 * a) when there are no other threads that could be accessing devices, 296 * and 297 * b) on a system that's not capable of fast reboot (fastreboot_capable 298 * being 0), or on a system where quiesce_devices() failed to 299 * complete (quiesce_active being 1). 300 */ 301 if (is_first_reset && (!fastreboot_capable || quiesce_active)) { 302 /* 303 * Clear is_first_reset before calling reset_devices() 304 * so that if reset_devices() causes panics, it will not 305 * be invoked again. 306 */ 307 is_first_reset = 0; 308 reset_leaves(); 309 } 310 311 (void) spl8(); 312 (*psm_shutdownf)(cmd, fcn); 313 314 if (fcn == AD_FASTREBOOT && !panicstr && fastreboot_capable) 315 fast_reboot(); 316 else if (fcn == AD_HALT || fcn == AD_POWEROFF) 317 halt((char *)NULL); 318 else 319 prom_reboot(""); 320 /*NOTREACHED*/ 321 } 322 323 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 324 /*ARGSUSED*/ 325 void 326 mdpreboot(int cmd, int fcn, char *mdep) 327 { 328 if (fcn == AD_FASTREBOOT && !fastreboot_capable) { 329 fcn = AD_BOOT; 330 #ifdef __xpv 331 cmn_err(CE_WARN, "Fast reboot not supported on xVM"); 332 #else 333 cmn_err(CE_WARN, "Fast reboot not supported on this platform"); 334 #endif 335 } 336 337 if (fcn == AD_FASTREBOOT) { 338 load_kernel(mdep); 339 if (!newkernel.fi_valid) 340 fcn = AD_BOOT; 341 } 342 343 (*psm_preshutdownf)(cmd, fcn); 344 } 345 346 void 347 idle_other_cpus() 348 { 349 int cpuid = CPU->cpu_id; 350 cpuset_t xcset; 351 352 ASSERT(cpuid < NCPU); 353 CPUSET_ALL_BUT(xcset, cpuid); 354 xc_capture_cpus(xcset); 355 } 356 357 void 358 resume_other_cpus() 359 { 360 ASSERT(CPU->cpu_id < NCPU); 361 362 xc_release_cpus(); 363 } 364 365 void 366 stop_other_cpus() 367 { 368 int cpuid = CPU->cpu_id; 369 cpuset_t xcset; 370 371 ASSERT(cpuid < NCPU); 372 373 /* 374 * xc_trycall will attempt to make all other CPUs execute mach_cpu_halt, 375 * and will return immediately regardless of whether or not it was 376 * able to make them do it. 377 */ 378 CPUSET_ALL_BUT(xcset, cpuid); 379 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())mach_cpu_halt); 380 } 381 382 /* 383 * Machine dependent abort sequence handling 384 */ 385 void 386 abort_sequence_enter(char *msg) 387 { 388 if (abort_enable == 0) { 389 if (audit_active) 390 audit_enterprom(0); 391 return; 392 } 393 if (audit_active) 394 audit_enterprom(1); 395 debug_enter(msg); 396 if (audit_active) 397 audit_exitprom(1); 398 } 399 400 /* 401 * Enter debugger. Called when the user types ctrl-alt-d or whenever 402 * code wants to enter the debugger and possibly resume later. 403 */ 404 void 405 debug_enter( 406 char *msg) /* message to print, possibly NULL */ 407 { 408 if (dtrace_debugger_init != NULL) 409 (*dtrace_debugger_init)(); 410 411 if (msg) 412 prom_printf("%s\n", msg); 413 414 if (boothowto & RB_DEBUG) 415 kmdb_enter(); 416 417 if (dtrace_debugger_fini != NULL) 418 (*dtrace_debugger_fini)(); 419 } 420 421 void 422 reset(void) 423 { 424 #if !defined(__xpv) 425 ushort_t *bios_memchk; 426 427 /* 428 * Can't use psm_map_phys before the hat is initialized. 429 */ 430 if (khat_running) { 431 bios_memchk = (ushort_t *)psm_map_phys(0x472, 432 sizeof (ushort_t), PROT_READ | PROT_WRITE); 433 if (bios_memchk) 434 *bios_memchk = 0x1234; /* bios memory check disable */ 435 } 436 437 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0, "efi-systab")) 438 efi_reset(); 439 pc_reset(); 440 #else 441 if (IN_XPV_PANIC()) 442 pc_reset(); 443 (void) HYPERVISOR_shutdown(SHUTDOWN_reboot); 444 panic("HYPERVISOR_shutdown() failed"); 445 #endif 446 /*NOTREACHED*/ 447 } 448 449 /* 450 * Halt the machine and return to the monitor 451 */ 452 void 453 halt(char *s) 454 { 455 stop_other_cpus(); /* send stop signal to other CPUs */ 456 if (s) 457 prom_printf("(%s) \n", s); 458 prom_exit_to_mon(); 459 /*NOTREACHED*/ 460 } 461 462 /* 463 * Initiate interrupt redistribution. 464 */ 465 void 466 i_ddi_intr_redist_all_cpus() 467 { 468 } 469 470 /* 471 * XXX These probably ought to live somewhere else 472 * XXX They are called from mem.c 473 */ 474 475 /* 476 * Convert page frame number to an OBMEM page frame number 477 * (i.e. put in the type bits -- zero for this implementation) 478 */ 479 pfn_t 480 impl_obmem_pfnum(pfn_t pf) 481 { 482 return (pf); 483 } 484 485 #ifdef NM_DEBUG 486 int nmi_test = 0; /* checked in intentry.s during clock int */ 487 int nmtest = -1; 488 nmfunc1(arg, rp) 489 int arg; 490 struct regs *rp; 491 { 492 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 493 nmtest += 50; 494 if (arg == nmtest) { 495 printf("ip = %x\n", rp->r_pc); 496 return (1); 497 } 498 return (0); 499 } 500 501 #endif 502 503 #include <sys/bootsvcs.h> 504 505 /* Hacked up initialization for initial kernel check out is HERE. */ 506 /* The basic steps are: */ 507 /* kernel bootfuncs definition/initialization for KADB */ 508 /* kadb bootfuncs pointer initialization */ 509 /* putchar/getchar (interrupts disabled) */ 510 511 /* kadb bootfuncs pointer initialization */ 512 513 int 514 sysp_getchar() 515 { 516 int i; 517 ulong_t s; 518 519 if (cons_polledio == NULL) { 520 /* Uh oh */ 521 prom_printf("getchar called with no console\n"); 522 for (;;) 523 /* LOOP FOREVER */; 524 } 525 526 s = clear_int_flag(); 527 i = cons_polledio->cons_polledio_getchar( 528 cons_polledio->cons_polledio_argument); 529 restore_int_flag(s); 530 return (i); 531 } 532 533 void 534 sysp_putchar(int c) 535 { 536 ulong_t s; 537 538 /* 539 * We have no alternative but to drop the output on the floor. 540 */ 541 if (cons_polledio == NULL || 542 cons_polledio->cons_polledio_putchar == NULL) 543 return; 544 545 s = clear_int_flag(); 546 cons_polledio->cons_polledio_putchar( 547 cons_polledio->cons_polledio_argument, c); 548 restore_int_flag(s); 549 } 550 551 int 552 sysp_ischar() 553 { 554 int i; 555 ulong_t s; 556 557 if (cons_polledio == NULL || 558 cons_polledio->cons_polledio_ischar == NULL) 559 return (0); 560 561 s = clear_int_flag(); 562 i = cons_polledio->cons_polledio_ischar( 563 cons_polledio->cons_polledio_argument); 564 restore_int_flag(s); 565 return (i); 566 } 567 568 int 569 goany(void) 570 { 571 prom_printf("Type any key to continue "); 572 (void) prom_getchar(); 573 prom_printf("\n"); 574 return (1); 575 } 576 577 static struct boot_syscalls kern_sysp = { 578 sysp_getchar, /* unchar (*getchar)(); 7 */ 579 sysp_putchar, /* int (*putchar)(); 8 */ 580 sysp_ischar, /* int (*ischar)(); 9 */ 581 }; 582 583 #if defined(__xpv) 584 int using_kern_polledio; 585 #endif 586 587 void 588 kadb_uses_kernel() 589 { 590 /* 591 * This routine is now totally misnamed, since it does not in fact 592 * control kadb's I/O; it only controls the kernel's prom_* I/O. 593 */ 594 sysp = &kern_sysp; 595 #if defined(__xpv) 596 using_kern_polledio = 1; 597 #endif 598 } 599 600 /* 601 * the interface to the outside world 602 */ 603 604 /* 605 * poll_port -- wait for a register to achieve a 606 * specific state. Arguments are a mask of bits we care about, 607 * and two sub-masks. To return normally, all the bits in the 608 * first sub-mask must be ON, all the bits in the second sub- 609 * mask must be OFF. If about seconds pass without the register 610 * achieving the desired bit configuration, we return 1, else 611 * 0. 612 */ 613 int 614 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 615 { 616 int i; 617 ushort_t maskval; 618 619 for (i = 500000; i; i--) { 620 maskval = inb(port) & mask; 621 if (((maskval & onbits) == onbits) && 622 ((maskval & offbits) == 0)) 623 return (0); 624 drv_usecwait(10); 625 } 626 return (1); 627 } 628 629 /* 630 * set_idle_cpu is called from idle() when a CPU becomes idle. 631 */ 632 /*LINTED: static unused */ 633 static uint_t last_idle_cpu; 634 635 /*ARGSUSED*/ 636 void 637 set_idle_cpu(int cpun) 638 { 639 last_idle_cpu = cpun; 640 (*psm_set_idle_cpuf)(cpun); 641 } 642 643 /* 644 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 645 */ 646 /*ARGSUSED*/ 647 void 648 unset_idle_cpu(int cpun) 649 { 650 (*psm_unset_idle_cpuf)(cpun); 651 } 652 653 /* 654 * This routine is almost correct now, but not quite. It still needs the 655 * equivalent concept of "hres_last_tick", just like on the sparc side. 656 * The idea is to take a snapshot of the hi-res timer while doing the 657 * hrestime_adj updates under hres_lock in locore, so that the small 658 * interval between interrupt assertion and interrupt processing is 659 * accounted for correctly. Once we have this, the code below should 660 * be modified to subtract off hres_last_tick rather than hrtime_base. 661 * 662 * I'd have done this myself, but I don't have source to all of the 663 * vendor-specific hi-res timer routines (grrr...). The generic hook I 664 * need is something like "gethrtime_unlocked()", which would be just like 665 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 666 * This is what the GET_HRTIME() macro is for on sparc (although it also 667 * serves the function of making time available without a function call 668 * so you don't take a register window overflow while traps are disabled). 669 */ 670 void 671 pc_gethrestime(timestruc_t *tp) 672 { 673 int lock_prev; 674 timestruc_t now; 675 int nslt; /* nsec since last tick */ 676 int adj; /* amount of adjustment to apply */ 677 678 loop: 679 lock_prev = hres_lock; 680 now = hrestime; 681 nslt = (int)(gethrtime() - hres_last_tick); 682 if (nslt < 0) { 683 /* 684 * nslt < 0 means a tick came between sampling 685 * gethrtime() and hres_last_tick; restart the loop 686 */ 687 688 goto loop; 689 } 690 now.tv_nsec += nslt; 691 if (hrestime_adj != 0) { 692 if (hrestime_adj > 0) { 693 adj = (nslt >> ADJ_SHIFT); 694 if (adj > hrestime_adj) 695 adj = (int)hrestime_adj; 696 } else { 697 adj = -(nslt >> ADJ_SHIFT); 698 if (adj < hrestime_adj) 699 adj = (int)hrestime_adj; 700 } 701 now.tv_nsec += adj; 702 } 703 while ((unsigned long)now.tv_nsec >= NANOSEC) { 704 705 /* 706 * We might have a large adjustment or have been in the 707 * debugger for a long time; take care of (at most) four 708 * of those missed seconds (tv_nsec is 32 bits, so 709 * anything >4s will be wrapping around). However, 710 * anything more than 2 seconds out of sync will trigger 711 * timedelta from clock() to go correct the time anyway, 712 * so do what we can, and let the big crowbar do the 713 * rest. A similar correction while loop exists inside 714 * hres_tick(); in all cases we'd like tv_nsec to 715 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 716 * user processes, but if tv_sec's a little behind for a 717 * little while, that's OK; time still monotonically 718 * increases. 719 */ 720 721 now.tv_nsec -= NANOSEC; 722 now.tv_sec++; 723 } 724 if ((hres_lock & ~1) != lock_prev) 725 goto loop; 726 727 *tp = now; 728 } 729 730 void 731 gethrestime_lasttick(timespec_t *tp) 732 { 733 int s; 734 735 s = hr_clock_lock(); 736 *tp = hrestime; 737 hr_clock_unlock(s); 738 } 739 740 time_t 741 gethrestime_sec(void) 742 { 743 timestruc_t now; 744 745 gethrestime(&now); 746 return (now.tv_sec); 747 } 748 749 /* 750 * Initialize a kernel thread's stack 751 */ 752 753 caddr_t 754 thread_stk_init(caddr_t stk) 755 { 756 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 757 return (stk - SA(MINFRAME)); 758 } 759 760 /* 761 * Initialize lwp's kernel stack. 762 */ 763 764 #ifdef TRAPTRACE 765 /* 766 * There's a tricky interdependency here between use of sysenter and 767 * TRAPTRACE which needs recording to avoid future confusion (this is 768 * about the third time I've re-figured this out ..) 769 * 770 * Here's how debugging lcall works with TRAPTRACE. 771 * 772 * 1 We're in userland with a breakpoint on the lcall instruction. 773 * 2 We execute the instruction - the instruction pushes the userland 774 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 775 * via the call gate. 776 * 3 The hardware raises a debug trap in kernel mode, the hardware 777 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 778 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 779 * 5 cmntrap finishes building a trap frame 780 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 781 * off the stack into the traptrace buffer. 782 * 783 * This means that the traptrace buffer contains the wrong values in 784 * %esp and %ss, but everything else in there is correct. 785 * 786 * Here's how debugging sysenter works with TRAPTRACE. 787 * 788 * a We're in userland with a breakpoint on the sysenter instruction. 789 * b We execute the instruction - the instruction pushes -nothing- 790 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 791 * values to take us to sys_sysenter, at the top of the lwp's 792 * stack. 793 * c goto 3 794 * 795 * At this point, because we got into the kernel without the requisite 796 * five pushes on the stack, if we didn't make extra room, we'd 797 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 798 * values from negative (unmapped) stack addresses -- which really bites. 799 * That's why we do the '-= 8' below. 800 * 801 * XXX Note that reading "up" lwp0's stack works because t0 is declared 802 * right next to t0stack in locore.s 803 */ 804 #endif 805 806 caddr_t 807 lwp_stk_init(klwp_t *lwp, caddr_t stk) 808 { 809 caddr_t oldstk; 810 struct pcb *pcb = &lwp->lwp_pcb; 811 812 oldstk = stk; 813 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 814 #ifdef TRAPTRACE 815 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 816 #endif 817 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 818 bzero(stk, oldstk - stk); 819 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 820 821 /* 822 * Arrange that the virtualized %fs and %gs GDT descriptors 823 * have a well-defined initial state (present, ring 3 824 * and of type data). 825 */ 826 #if defined(__amd64) 827 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 828 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 829 else 830 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 831 #elif defined(__i386) 832 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 833 #endif /* __i386 */ 834 lwp_installctx(lwp); 835 return (stk); 836 } 837 838 /*ARGSUSED*/ 839 void 840 lwp_stk_fini(klwp_t *lwp) 841 {} 842 843 /* 844 * If we're not the panic CPU, we wait in panic_idle for reboot. 845 */ 846 static void 847 panic_idle(void) 848 { 849 splx(ipltospl(CLOCK_LEVEL)); 850 (void) setjmp(&curthread->t_pcb); 851 852 for (;;) 853 ; 854 } 855 856 /* 857 * Stop the other CPUs by cross-calling them and forcing them to enter 858 * the panic_idle() loop above. 859 */ 860 /*ARGSUSED*/ 861 void 862 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 863 { 864 processorid_t i; 865 cpuset_t xcset; 866 867 /* 868 * In the case of a Xen panic, the hypervisor has already stopped 869 * all of the CPUs. 870 */ 871 if (!IN_XPV_PANIC()) { 872 (void) splzs(); 873 874 CPUSET_ALL_BUT(xcset, cp->cpu_id); 875 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())panic_idle); 876 } 877 878 for (i = 0; i < NCPU; i++) { 879 if (i != cp->cpu_id && cpu[i] != NULL && 880 (cpu[i]->cpu_flags & CPU_EXISTS)) 881 cpu[i]->cpu_flags |= CPU_QUIESCED; 882 } 883 } 884 885 /* 886 * Platform callback following each entry to panicsys(). 887 */ 888 /*ARGSUSED*/ 889 void 890 panic_enter_hw(int spl) 891 { 892 /* Nothing to do here */ 893 } 894 895 /* 896 * Platform-specific code to execute after panicstr is set: we invoke 897 * the PSM entry point to indicate that a panic has occurred. 898 */ 899 /*ARGSUSED*/ 900 void 901 panic_quiesce_hw(panic_data_t *pdp) 902 { 903 psm_notifyf(PSM_PANIC_ENTER); 904 905 cmi_panic_callback(); 906 907 #ifdef TRAPTRACE 908 /* 909 * Turn off TRAPTRACE 910 */ 911 TRAPTRACE_FREEZE; 912 #endif /* TRAPTRACE */ 913 } 914 915 /* 916 * Platform callback prior to writing crash dump. 917 */ 918 /*ARGSUSED*/ 919 void 920 panic_dump_hw(int spl) 921 { 922 /* Nothing to do here */ 923 } 924 925 void * 926 plat_traceback(void *fpreg) 927 { 928 #ifdef __xpv 929 if (IN_XPV_PANIC()) 930 return (xpv_traceback(fpreg)); 931 #endif 932 return (fpreg); 933 } 934 935 /*ARGSUSED*/ 936 void 937 plat_tod_fault(enum tod_fault_type tod_bad) 938 {} 939 940 /*ARGSUSED*/ 941 int 942 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 943 { 944 return (ENOTSUP); 945 } 946 947 /* 948 * The underlying console output routines are protected by raising IPL in case 949 * we are still calling into the early boot services. Once we start calling 950 * the kernel console emulator, it will disable interrupts completely during 951 * character rendering (see sysp_putchar, for example). Refer to the comments 952 * and code in common/os/console.c for more information on these callbacks. 953 */ 954 /*ARGSUSED*/ 955 int 956 console_enter(int busy) 957 { 958 return (splzs()); 959 } 960 961 /*ARGSUSED*/ 962 void 963 console_exit(int busy, int spl) 964 { 965 splx(spl); 966 } 967 968 /* 969 * Allocate a region of virtual address space, unmapped. 970 * Stubbed out except on sparc, at least for now. 971 */ 972 /*ARGSUSED*/ 973 void * 974 boot_virt_alloc(void *addr, size_t size) 975 { 976 return (addr); 977 } 978 979 volatile unsigned long tenmicrodata; 980 981 void 982 tenmicrosec(void) 983 { 984 extern int gethrtime_hires; 985 986 if (gethrtime_hires) { 987 hrtime_t start, end; 988 start = end = gethrtime(); 989 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 990 SMT_PAUSE(); 991 end = gethrtime(); 992 } 993 } else { 994 #if defined(__xpv) 995 hrtime_t newtime; 996 997 newtime = xpv_gethrtime() + 10000; /* now + 10 us */ 998 while (xpv_gethrtime() < newtime) 999 SMT_PAUSE(); 1000 #else /* __xpv */ 1001 int i; 1002 1003 /* 1004 * Artificial loop to induce delay. 1005 */ 1006 for (i = 0; i < microdata; i++) 1007 tenmicrodata = microdata; 1008 #endif /* __xpv */ 1009 } 1010 } 1011 1012 /* 1013 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 1014 * long, and it fills in the array with the time spent on cpu in 1015 * each of the mstates, where time is returned in nsec. 1016 * 1017 * No guarantee is made that the returned values in times[] will 1018 * monotonically increase on sequential calls, although this will 1019 * be true in the long run. Any such guarantee must be handled by 1020 * the caller, if needed. This can happen if we fail to account 1021 * for elapsed time due to a generation counter conflict, yet we 1022 * did account for it on a prior call (see below). 1023 * 1024 * The complication is that the cpu in question may be updating 1025 * its microstate at the same time that we are reading it. 1026 * Because the microstate is only updated when the CPU's state 1027 * changes, the values in cpu_intracct[] can be indefinitely out 1028 * of date. To determine true current values, it is necessary to 1029 * compare the current time with cpu_mstate_start, and add the 1030 * difference to times[cpu_mstate]. 1031 * 1032 * This can be a problem if those values are changing out from 1033 * under us. Because the code path in new_cpu_mstate() is 1034 * performance critical, we have not added a lock to it. Instead, 1035 * we have added a generation counter. Before beginning 1036 * modifications, the counter is set to 0. After modifications, 1037 * it is set to the old value plus one. 1038 * 1039 * get_cpu_mstate() will not consider the values of cpu_mstate 1040 * and cpu_mstate_start to be usable unless the value of 1041 * cpu_mstate_gen is both non-zero and unchanged, both before and 1042 * after reading the mstate information. Note that we must 1043 * protect against out-of-order loads around accesses to the 1044 * generation counter. Also, this is a best effort approach in 1045 * that we do not retry should the counter be found to have 1046 * changed. 1047 * 1048 * cpu_intracct[] is used to identify time spent in each CPU 1049 * mstate while handling interrupts. Such time should be reported 1050 * against system time, and so is subtracted out from its 1051 * corresponding cpu_acct[] time and added to 1052 * cpu_acct[CMS_SYSTEM]. 1053 */ 1054 1055 void 1056 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 1057 { 1058 int i; 1059 hrtime_t now, start; 1060 uint16_t gen; 1061 uint16_t state; 1062 hrtime_t intracct[NCMSTATES]; 1063 1064 /* 1065 * Load all volatile state under the protection of membar. 1066 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 1067 * of (now - cpu_mstate_start) by a change in CPU mstate that 1068 * arrives after we make our last check of cpu_mstate_gen. 1069 */ 1070 1071 now = gethrtime_unscaled(); 1072 gen = cpu->cpu_mstate_gen; 1073 1074 membar_consumer(); /* guarantee load ordering */ 1075 start = cpu->cpu_mstate_start; 1076 state = cpu->cpu_mstate; 1077 for (i = 0; i < NCMSTATES; i++) { 1078 intracct[i] = cpu->cpu_intracct[i]; 1079 times[i] = cpu->cpu_acct[i]; 1080 } 1081 membar_consumer(); /* guarantee load ordering */ 1082 1083 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 1084 times[state] += now - start; 1085 1086 for (i = 0; i < NCMSTATES; i++) { 1087 if (i == CMS_SYSTEM) 1088 continue; 1089 times[i] -= intracct[i]; 1090 if (times[i] < 0) { 1091 intracct[i] += times[i]; 1092 times[i] = 0; 1093 } 1094 times[CMS_SYSTEM] += intracct[i]; 1095 scalehrtime(×[i]); 1096 } 1097 scalehrtime(×[CMS_SYSTEM]); 1098 } 1099 1100 /* 1101 * This is a version of the rdmsr instruction that allows 1102 * an error code to be returned in the case of failure. 1103 */ 1104 int 1105 checked_rdmsr(uint_t msr, uint64_t *value) 1106 { 1107 if ((x86_feature & X86_MSR) == 0) 1108 return (ENOTSUP); 1109 *value = rdmsr(msr); 1110 return (0); 1111 } 1112 1113 /* 1114 * This is a version of the wrmsr instruction that allows 1115 * an error code to be returned in the case of failure. 1116 */ 1117 int 1118 checked_wrmsr(uint_t msr, uint64_t value) 1119 { 1120 if ((x86_feature & X86_MSR) == 0) 1121 return (ENOTSUP); 1122 wrmsr(msr, value); 1123 return (0); 1124 } 1125 1126 /* 1127 * The mem driver's usual method of using hat_devload() to establish a 1128 * temporary mapping will not work for foreign pages mapped into this 1129 * domain or for the special hypervisor-provided pages. For the foreign 1130 * pages, we often don't know which domain owns them, so we can't ask the 1131 * hypervisor to set up a new mapping. For the other pages, we don't have 1132 * a pfn, so we can't create a new PTE. For these special cases, we do a 1133 * direct uiomove() from the existing kernel virtual address. 1134 */ 1135 /*ARGSUSED*/ 1136 int 1137 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw) 1138 { 1139 #if defined(__xpv) 1140 void *va = (void *)(uintptr_t)uio->uio_loffset; 1141 off_t pageoff = uio->uio_loffset & PAGEOFFSET; 1142 size_t nbytes = MIN((size_t)(PAGESIZE - pageoff), 1143 (size_t)uio->uio_iov->iov_len); 1144 1145 if ((rw == UIO_READ && 1146 (va == HYPERVISOR_shared_info || va == xen_info)) || 1147 (pfn_is_foreign(hat_getpfnum(kas.a_hat, va)))) 1148 return (uiomove(va, nbytes, rw, uio)); 1149 #endif 1150 return (ENOTSUP); 1151 } 1152 1153 pgcnt_t 1154 num_phys_pages() 1155 { 1156 pgcnt_t npages = 0; 1157 struct memlist *mp; 1158 1159 #if defined(__xpv) 1160 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1161 xen_sysctl_t op; 1162 1163 op.cmd = XEN_SYSCTL_physinfo; 1164 op.interface_version = XEN_SYSCTL_INTERFACE_VERSION; 1165 if (HYPERVISOR_sysctl(&op) != 0) 1166 panic("physinfo op refused"); 1167 1168 return ((pgcnt_t)op.u.physinfo.total_pages); 1169 } 1170 #endif /* __xpv */ 1171 1172 for (mp = phys_install; mp != NULL; mp = mp->next) 1173 npages += mp->size >> PAGESHIFT; 1174 1175 return (npages); 1176 } 1177 1178 int 1179 dump_plat_addr() 1180 { 1181 #ifdef __xpv 1182 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1183 mem_vtop_t mem_vtop; 1184 int cnt; 1185 1186 /* 1187 * On the hypervisor, we want to dump the page with shared_info on it. 1188 */ 1189 if (!IN_XPV_PANIC()) { 1190 mem_vtop.m_as = &kas; 1191 mem_vtop.m_va = HYPERVISOR_shared_info; 1192 mem_vtop.m_pfn = pfn; 1193 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 1194 cnt = 1; 1195 } else { 1196 cnt = dump_xpv_addr(); 1197 } 1198 return (cnt); 1199 #else 1200 return (0); 1201 #endif 1202 } 1203 1204 void 1205 dump_plat_pfn() 1206 { 1207 #ifdef __xpv 1208 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1209 1210 if (!IN_XPV_PANIC()) 1211 dumpvp_write(&pfn, sizeof (pfn)); 1212 else 1213 dump_xpv_pfn(); 1214 #endif 1215 } 1216 1217 /*ARGSUSED*/ 1218 int 1219 dump_plat_data(void *dump_cbuf) 1220 { 1221 #ifdef __xpv 1222 uint32_t csize; 1223 int cnt; 1224 1225 if (!IN_XPV_PANIC()) { 1226 csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf, 1227 PAGESIZE); 1228 dumpvp_write(&csize, sizeof (uint32_t)); 1229 dumpvp_write(dump_cbuf, csize); 1230 cnt = 1; 1231 } else { 1232 cnt = dump_xpv_data(dump_cbuf); 1233 } 1234 return (cnt); 1235 #else 1236 return (0); 1237 #endif 1238 } 1239 1240 /* 1241 * Calculates a linear address, given the CS selector and PC values 1242 * by looking up the %cs selector process's LDT or the CPU's GDT. 1243 * proc->p_ldtlock must be held across this call. 1244 */ 1245 int 1246 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1247 { 1248 user_desc_t *descrp; 1249 caddr_t baseaddr; 1250 uint16_t idx = SELTOIDX(rp->r_cs); 1251 1252 ASSERT(rp->r_cs <= 0xFFFF); 1253 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 1254 1255 if (SELISLDT(rp->r_cs)) { 1256 /* 1257 * Currently 64 bit processes cannot have private LDTs. 1258 */ 1259 ASSERT(p->p_model != DATAMODEL_LP64); 1260 1261 if (p->p_ldt == NULL) 1262 return (-1); 1263 1264 descrp = &p->p_ldt[idx]; 1265 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1266 1267 /* 1268 * Calculate the linear address (wraparound is not only ok, 1269 * it's expected behavior). The cast to uint32_t is because 1270 * LDT selectors are only allowed in 32-bit processes. 1271 */ 1272 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1273 rp->r_pc); 1274 } else { 1275 #ifdef DEBUG 1276 descrp = &CPU->cpu_gdt[idx]; 1277 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1278 /* GDT-based descriptors' base addresses should always be 0 */ 1279 ASSERT(baseaddr == 0); 1280 #endif 1281 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1282 } 1283 1284 return (0); 1285 } 1286 1287 /* 1288 * The implementation of dtrace_linear_pc is similar to the that of 1289 * linear_pc, above, but here we acquire p_ldtlock before accessing 1290 * p_ldt. This implementation is used by the pid provider; we prefix 1291 * it with "dtrace_" to avoid inducing spurious tracing events. 1292 */ 1293 int 1294 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1295 { 1296 user_desc_t *descrp; 1297 caddr_t baseaddr; 1298 uint16_t idx = SELTOIDX(rp->r_cs); 1299 1300 ASSERT(rp->r_cs <= 0xFFFF); 1301 1302 if (SELISLDT(rp->r_cs)) { 1303 /* 1304 * Currently 64 bit processes cannot have private LDTs. 1305 */ 1306 ASSERT(p->p_model != DATAMODEL_LP64); 1307 1308 mutex_enter(&p->p_ldtlock); 1309 if (p->p_ldt == NULL) { 1310 mutex_exit(&p->p_ldtlock); 1311 return (-1); 1312 } 1313 descrp = &p->p_ldt[idx]; 1314 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1315 mutex_exit(&p->p_ldtlock); 1316 1317 /* 1318 * Calculate the linear address (wraparound is not only ok, 1319 * it's expected behavior). The cast to uint32_t is because 1320 * LDT selectors are only allowed in 32-bit processes. 1321 */ 1322 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1323 rp->r_pc); 1324 } else { 1325 #ifdef DEBUG 1326 descrp = &CPU->cpu_gdt[idx]; 1327 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1328 /* GDT-based descriptors' base addresses should always be 0 */ 1329 ASSERT(baseaddr == 0); 1330 #endif 1331 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1332 } 1333 1334 return (0); 1335 } 1336